Singularities and their resolutions

Dan Abramovich
Brown University

September 26, 2019
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \]

These are singularities. Look awful, don't they? Let's get rid of them! (without losing information) - that's resolution of singularities.
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \]

These are singularities. Look awful, don't they? Let's get rid of them! -(without losing information) - that's resolution of singularities.
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

These are singularities.
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

These are singularities. Look awful, don’t they?
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

These are singularities. Look awful, don’t they? Let’s get rid of them!
On Singularities - Part 1

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2 z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

These are singularities. Look awful, don’t they? Let’s get rid of them! (without losing information) - that’s resolution of singularities
My subject: algebraic geometry

The geometry of sets defined by polynomial equations.
Algebraic geometry

- My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^n$ defined by polynomial equations:
Algebraic geometry

- My subject: algebraic geometry

 The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^n$ defined by polynomial equations:

 $$V = \{(z_1, \ldots, z_n)| f_1(z_1, \ldots, z_n) = \cdots = f_k(z_1, \ldots, z_n) = 0\},$$

 with $f_i \in \mathbb{C}[z_1, \ldots, z_n]$.

1
Algebraic geometry

- My subject: algebraic geometry

 The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^n$ defined by polynomial equations:

 \[V = \{(z_1, \ldots, z_n)| f_1(z_1, \ldots, z_n) = \cdots = f_k(z_1, \ldots, z_n) = 0\}, \]

 with $f_i \in \mathbb{C}[z_1, \ldots, z_n]$.

- These sets are called *algebraic varieties*.\(^1\)

\(^1\)affine
Examples of algebraic varieties

0 \(V = \{ x = y = 0 \} \subset \mathbb{C}^2 \): a point.
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2 \): a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\} \): a line.
Examples of algebraic varieties

0 $V = \{x = y = 0\} \subset \mathbb{C}^2$: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2 \): a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\} \): a line.

2 for \(R \in \mathbb{C} \) let \(V = \{x^2 + y^2 = R^2\} \).

All my pictures are of \(V(\mathbb{R}) \) - the real solutions of the equations.
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2: \) a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\}: \) a line.

2 for \(R \in \mathbb{C} \) let \(V = \{x^2 + y^2 = R^2\} \).

All my pictures are of \(V(\mathbb{R}) \) - the real solutions of the equations. The subject involves geometry
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2 \): a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\} \): a line.

2 for \(R \in \mathbb{C} \) let \(V = \{x^2 + y^2 = R^2\} \).

All my pictures are of \(V(\mathbb{R}) \) - the real solutions of the equations. The subject involves geometry, algebra
Examples of algebraic varieties

0 $V = \{x = y = 0\} \subset \mathbb{C}^2$: a point.

1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.

2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra, algebra.
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2 \): a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\} \): a line.

2 for \(R \in \mathbb{C} \) let \(V = \{x^2 + y^2 = R^2\} \).

All my pictures are of \(V(\mathbb{R}) \) - the real solutions of the equations. The subject involves geometry, algebra, algebra, number theory
Examples of algebraic varieties

0 \(V = \{x = y = 0\} \subset \mathbb{C}^2 \): a point.

1 If \(a, b \neq 0, 0, c \in \mathbb{C} \), let \(V = \{ax + by + c = 0\} \): a line.

2 for \(R \in \mathbb{C} \) let \(V = \{x^2 + y^2 = R^2\} \).

All my pictures are of \(V(\mathbb{R}) \) - the real solutions of the equations. The subject involves geometry, algebra, algebra, number theory, even calculus . . .
Singular and smooth points

The examples above are smooth.
Singular and smooth points

The examples above are smooth. The quintessential example is the graph \(w = F(x, y, z) \).
Singular and smooth points

The examples above are smooth.
The quintessential example is the graph \(w = F(x, y, z) \).

Definition

\{ V = f(x_1, \ldots, x_n) = 0 \} is singular at \(p \) if \(\frac{\partial f}{\partial x_i}(p) = 0 \) for all \(i \), namely \(\nabla f(p) = 0 \).

Otherwise smooth.
Singular and smooth points

The examples above are smooth. The quintessential example is the graph \(w = F(x, y, z) \).

Definition

\(\{ V = f(x_1, \ldots, x_n) = 0 \} \) is singular at \(p \) if \(\frac{\partial f}{\partial x_i}(p) = 0 \) for all \(i \), namely \(\nabla f(p) = 0 \).

Otherwise smooth\(^a\).

\(^a\)In other words, \(\{ f = 0 \} \) defines a manifold of complex codimension 1.
Singular and smooth points

The examples above are smooth.
The quintessential example is the graph \(w = F(x, y, z) \).

Definition

\[\{ V = f(x_1, \ldots, x_n) = 0 \} \] is singular at \(p \) if \(\frac{\partial f}{\partial x_i}(p) = 0 \) for all \(i \), namely \(\nabla f(p) = 0 \).

Otherwise smooth\(^a\).

\(^a\)In other words, \(\{ f = 0 \} \) defines a manifold of complex codimension 1.

The implicit function theorem says: \(\{ f = 0 \} \) is smooth if and only if locally it looks like a graph.

do the circle
Singular and smooth points

The examples above are smooth.
The quintessential example is the graph \(w = F(x, y, z) \).

Definition

\(\{ V = f(x_1, \ldots, x_n) = 0 \} \) is singular at \(p \) if \(\frac{\partial f}{\partial x_i}(p) = 0 \) for all \(i \), namely \(\nabla f(p) = 0 \).
Otherwise smooth\(^a\).

\(^a\)In other words, \(\{ f = 0 \} \) defines a manifold of complex codimension 1.

The implicit function theorem says: \(\{ f = 0 \} \) is smooth if and only if locally it looks like a graph.

(In codimension \(c \), the singular locus of \(\{ f_1 = \cdots = f_k = 0 \} \) is the set of points where \(d(f_1, \ldots, f_k) \) has rank \(< c \).)
Examples of singularities

\[y^2 = x^3 + x^2 \]
Examples of singularities

\[y^2 = x^3 + x^2 \]

\[x^2 = y^2 z \]
Examples of singularities

\[y^2 = x^3 + x^2 \]

\[x^2 = y^2 z \]

Looks like in general it might be hard to find the singularities.
Examples of singularities

\[y^2 = x^3 + x^2 \]

\[x^2 = y^2 z \]

Looks like in general it might be hard to find the singularities. There is a theorem saying that it is.
Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification\(^a\) with X' nonsingular inducing an isomorphism over the smooth locus of X.

\(^a\)proper birational map
Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification\(^a\) with X' nonsingular inducing an isomorphism over the smooth locus of X.

\(^a\) proper birational map

Theorem (Hironaka 1964)

A complex algebraic variety X admits a resolution of singularities $X' \to X$, so that the critical locus $E \subset X'$ is a simple normal crossings divisor.\(^a\)

\(^a\) Codimension 1, smooth components meeting transversally
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
- get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
- get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).

\[V = \{ x^2 = y^2z \} \]
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

▶ Write \(t = y/x \),
▶ so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
▶ so \(y = xt = t^3 - t \).
▶ get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).

\[V = \{ x^2 = y^2z \} \]

▶ Write \(t = x/y \),
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
- get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).

\[V = \{ x^2 = y^2z \} \]

- Write \(t = x/y \),
- so \(z = t^2 \),
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
- get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).

\[V = \{ x^2 = y^2 z \} \]

- Write \(t = x/y \),
- so \(z = t^2 \),
- and \(x = yt \).
Examples of resolutions

\[V = \{ y^2 = x^2(x + 1) \} \]

- Write \(t = y/x \),
- so \(t^2 = x + 1 \), and \(x = t^2 - 1 \)
- so \(y = xt = t^3 - t \).
- get a map \(t \mapsto (t^2 - 1, t^3 - t) \) with image \(V \).

\[V = \{ x^2 = y^2z \} \]

- Write \(t = x/y \),
- so \(z = t^2 \),
- and \(x = yt \).
- get a map \((y, t) \mapsto (yt, y, t^2) \) with image \(V \).
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \]
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \]

zitrus

figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \]

zitrus

figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \]

figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

zitrus kolibri
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2 z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2 z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

Three figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

zitrus
kolibri
daisy
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \]
\[y^2z^2 + z^3 - x^2 = 0 \]
\[(x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

Singularities are beautiful.

figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

zitrus
kolibri
daisy
Singularities are beautiful.
Why should we ‘get rid of them’?
On singularities - Part 2

\[x^2 + z^2 = y^3(1 - y)^3 \quad y^2z^2 + z^3 - x^2 = 0 \quad (x^2 - y^3)^2 - (z^2 - y^2)^3 = 0 \]

Singularities are beautiful.
Why should we “get rid of them”? try this
https://imaginary.org/gallery/herwig-hauser-classic
Example: Stepanov’s theorem

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X' \to X$.

Also work by Danilov, Payne, Thuillier, Harper...
Example: Stepanov’s theorem

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.
Example: Stepanov’s theorem

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.
Example: Stepanov’s theorem

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X' \to X$.

Also work by Danilov, Payne, Thuillier, Harper…
Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov’s theorem, answering a question in a paper of Prof. Chan.
Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov’s theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.
Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov’s theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.
- Stephen Obinna and Ming-Hao Quek are PhD students at Brown who will prove a generalization of that paper.
The end

Thank you for your attention