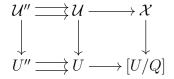
It was noted by Fabio Tonini that the proof using lie algebras in [1, Lemma 2.17 and Proposition 3.6] does not hold for local group schemes. While the alternative proofs we provided there using cotangent bundles hold, no alternative was provided for [2, Lemma 3.8], and in fact Tonini provided a counterexample to the argument used there. This necessitates discarding [2, Lemma 3.8] and providing an alternative proof for the only statement relying on it, [2, Proposition 3.6], which we provide below.

We proceed as in the proof of [2, Proposition 3.6] on page 415, in particular we may assume the coarse moduli spaces X and Y coincide, P and V are strictly henselian, and we have a homomorphism ρ : $\Gamma \to G$ of well-split linearly reductive group-schemes. We replace the argument on page 416 as follows:

STEP 1: it suffices to consider the case where $\rho: \Gamma \to G$ is trivial.

Assume the case where ρ is trivial holds true, and consider an arbitrary ρ . Write $K = \ker \rho$ and $Q = \Gamma/K$. Let $\mathcal{X} = [V/\Gamma]$ and $\mathcal{U} = [V/K]$, with the natural morphism $\mathcal{U} \to \mathcal{X}$. Write $U'' = U \times_{[U/Q]} U$ and $\mathcal{U}'' = \mathcal{U} \times_{\mathcal{X}} \mathcal{U}$. Since $U \to [U/Q]$ is a Q-torsor, the following diagram is cartesian



Since $K \to G$ is trivial, the assumption implies that the composite arrow $\mathcal{U} \to \mathcal{X} \to \mathcal{Y}$ factors uniquely as $\mathcal{U} \to U \to \mathcal{Y}$. Similarly the arrow $\mathcal{U}'' \to \mathcal{X} \to \mathcal{Y}$ factors uniquely as $\mathcal{U}'' \to U'' \to \mathcal{Y}$. Commutativity implies that $\mathcal{X} \to \mathcal{Y}$ factors uniquely as $\mathcal{X} \to [U/Q] \to \mathcal{Y}$ as required.

Se we assume below that $\rho : \Gamma \to G$ is trivial, and need to prove that $f : \mathcal{X} \to \mathcal{Y}$ factors uniquely as $\mathcal{X} \to \mathcal{X} \to \mathcal{Y}$, where $q : \mathcal{X} \to X := V/\Gamma$ is the coarse moduli space of \mathcal{X} .

STEP 2: proof when ρ is trivial.

Consider the torsor $P \to \mathcal{Y}$. Pulling back we obtain a torsor $R = P \times_{\mathcal{Y}} \mathcal{X} \to \mathcal{X}$ along with a *G*-equivariant map $\sigma : R \to P$. Since the map ρ is trivial, for every geometric point $\bar{x} \to \mathcal{X}$ the induced action of the stabilizer $\Gamma_{\bar{x}}$ on $R_{\bar{x}}$ is trivial. By [3, 6.4-6.5] there is a unique *g*-torsor $T \to X$ whose pullback is $R \to \mathcal{X}$. Since *T* is flat over *X* the scheme *T* is the coarse moduli space of $R = T \times_X \mathcal{X}$. It follows that the map σ factors uniquely through a necessarily *G*-equivariant map $\bar{\sigma} : T \to P$. The pair $(T \to X, T \to P)$ defines a unique map $g : X \to \mathcal{Y}$ factoring $\mathcal{X} \to \mathcal{Y}$, as required.

References

AOV1	[1] Abramovich, Dan; Olsson, Martin; Vistoli, Angelo. Tame stacks in positive
	characteristic. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.
AOV2	[2] Abramovich, Dan; Olsson, Martin; Vistoli, Angelo. Twisted stable maps to
	tame Artin stacks. J. Algebraic Geom. 20 (2011), no. 3, 399–477.
Olsson	[3] Olsson, Martin. Integral models for moduli spaces of G-torsors. Ann. Inst.
	Fourier (Grenoble) 62 (2012), no. 4, 1483–1549.

2