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1. Linearly reductive finite group schemes

1.1. Equivariant sheaves. All group schemes will be flat, finite and
finitely presented over an arbitrary scheme.

Such a group scheme G → S will be called constant if G is the
product of S by a finite group.1 ←1

Let π : G → S be such a scheme. We will denote by QCoh(S)
the category of quasi-coherent sheaves on S, and by QCohG(S) the
category of G-equivariant quasi-coherent schemes over over S. We can
think of QCohG(S) as the category of quasi-coherent schemes over the
classifying stack BSG. When S is locally noetherian, we also denote by
Coh and CohG the categories of coherent sheaves, respectively without
and with a G-action.

There are three ways of defining QCohG(S).

(a) A quasi-coherent sheaf F on S extends naturally to a functor
F : (Sch/S)op → (Set). If f : T → S is a morphism of schemes,
then we define F (T ) as (f ∗F )(T ).

Then an action ofG on F is an action of the functorG : (Sch/S)op →
(Grp) on F . In other words, for each T → S we have an action of
the group G(T ) on the set F (T ), and that is functorial in T → S.

The morphisms are defined in the obvious way.

Date: July 20, 2006.
1(Angelo) added this
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2 ABRAMOVICH, OLSSON, AND VISTOLI

(b) We have a sheaf of commutative Hopf algebras π∗OG on S. Then
an action of G on a quasi-coherent sheaf F is defined as a coaction
F → F ⊗OS π∗OG of this sheaf on F . Equivalently, in terms of the
dual Hopf algebra HG = (π∗OG)∨, the “convolution hyperalgebra
of G”, it is an action F ⊗HG → F .

(c) Finally, QCohG(S) is the category of quasi-coherent sheaves on the
classifying stack BSG. This means the following. An object F of
QCohG(S) associates with each G-torsor P → T an O(T )-module
F (P → T ); also, for each commutative diagram

(1.1) P ′
g

//

��

P

��

T ′
f

// T

where the columns are G-torsors and g is G-equivariant, we have
a homomorphism F (P → T ) → F (P ′ → T ′) that is linear with
respect to the natural ring homomorphism O(T )→ O(T ′). These
data are required to satisfy the following conditions.

(i) Suppose that we are given a G-torsor P → T . Then we get
a presheaf of OS-modules FP→T defined by sending a Zariski-
open subscheme U to the O(U)-module F (P |U→ U). We
assume that this a quasi-coherent sheaf on S.

(ii) Suppose that we have a commutative diagram like (1.1). Then
we get a homomorphism of quasi-coherent sheaves FP→T →
f∗FP ′→T ′ , defined by the given homomorphism

FP→T (U) FP ′→T ′
(
f−1(U)

)
F (P |U→ U) // f−1(U)

)
for each open subscheme U ⊆ T . Then the corresponding
homomorphism f ∗FP→T → FP ′→T ′ is supposed to be an iso-
morphism.

Suppose that φ : H → G is a homomorphism of group schemes, there
are two natural additive functors, the restriction functor

φ∗ : QCohG(S) −→ QCohH(S)

and the induction functor

φ∗ : QCohH(S) −→ QCohG(S).

The first is evident.2 The second, φ∗ can be defined using functrial2→

actions, or using Hopf algebras - φ∗F = F ⊗HH
HG, but quite usefully

2(Dan) Changed text
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these may be thought of as follows: φ induces a morphism of algebraic
stacks

Φ: BSH −→ BSG
defined as usual by sending a principal H-bundle Q→ T to the princi-
pal G-bundle (Q×T GT )/HT , with HT acting “in the middle”. Then φ∗

is pullback of quasi-coherent sheaves along Φ, while φ∗ is pushforward
along Φ.

A few important points about these functors:3 ←3

(1) The functor φ∗ is always exact. Indeed, in terms of actions,
φ∗F is the same sheaf F but with the G action replaced by the
action of H through φ, and the action does not intervene in
exactness.

(2) If H is a group subscheme of G, then Φ is finite, and in par-
ticular affine; hence φ∗ is exact. In this case we denote it by
IndGH .4 ←4

(3) If we think of the structure morphism π : G → S as a homo-
morphism to the trivial group scheme and F is a G-equivariant
quasi-coherent sheaf on S, then we denote π∗F by FG. This
quasi-coherent sheaf FG is naturally embedded in F , and is
called the invariant subsheaf.

(4) Suppose φ : H → G is surjective, with kernel a flat group
scheme K. For F ∈ QCohH(S) we have φ∗F = FK with the
induced action of G. On the other hand if F ∈ QCohG(S) then
the adjunction morphism F → φ∗φ

∗F is an isomorphism, since
the action of H on φ∗F is trivial. In other words, we have a
canonical isomorphism φ∗ ◦ φ∗ ' id.

1.2. Linearly reductive group schemes.

Definition 1.1. A group scheme G → S is linearly reductive if the
functor QCohG(S)→ QCoh(S) sending F to FG is exact.

Definition 1.2. Assume that S is noetherian. Then G is linearly
reductive if and only if the functor CohG(S) → Coh(S) defined as
F 7→ FG is exact.

Proof. This follows immediately from the fact that every quasi-coherent
sheaf with an action of G is a direct limit of coherent sheaves with an
action of G (see [?]).5 ♠ ←5

3(Dan) I added a few here.
4(Dan) I’m pretty sure this is the right order - we induce from H up to G. I

changed all along. This is Serre’s notation.
5(Dan) What’s a reference?
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In particular, if k is a field, the category of coherent sheaves with
an action of G is equivalent to the category of finite-dimensional rep-
resentations of G; hence a finite group scheme over a field is linearly
reductive if and only if the functor V 7→ V G, from finite-dimensional
representations of G to vector spaces, is exact.

Another, perhaps more customary, way to state this condition is to
require that every finite-dimensional representation of G be a sum of
irreducible representations.66→

Proposition 1.3. Let S ′ → S be a morphism of schemes, G → S a

group scheme, G′
def
= S ′ ×S G.

(a) If G→ S is linearly reductive, then G′ → S ′ is linearly reductive.
(b) If G′ → S ′ is linearly reductive and S ′ → S is flat and surjective,

then G→ S is linearly reductive.

Proof. Let us prove part (b).
There is a cartesian diagram

BS′G′
g

//

π′

��

BSG
π

��

S ′
f

// S

from which we deduce that the two functors f ∗π∗ and π′∗g
∗ are isomor-

phic. Since f is flat, g is flat as well; also π′∗ is exact by assumption,
so π′∗g

∗ is exact, hence f ∗π∗ is exact. but since f is faithfully flat we
have that π∗ is exact, as required.

Now for part (a).
First assume that S ′ is an open subscheme of S. Then every exact

sequence
0 −→ F ′1 −→ F ′2 −→ F ′3 −→ 0

of G-equivariant quasi-coherent sheaves on S ′ extends to an exact se-
quence

0 −→ F1 −→ F2 −→ F3 −→ 0

of G-equivariant quasi-coherent sheaves on S. Since taking invariants
commutes with restriction to open subschemes, the result follows.

Now, if {Si} is an open covering of S by affines, and each restric-
tion GSi is linearly reductive over Si is linearly reductive, then the
disjoint union tiGSi is linearly reductive over tiSi; and we conclude
from part (b) that G is linearly reductive over S. Hence being lin-
early reductive is a local property in the Zariski topology. So to
prove part (a) we may assume that S and S ′ are both affine. In

6(Angelo) Added this.
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this case g∗ : QCohG
′
(S ′) → QCohGS has the property that a sequence

M ′
1 → M ′

2 → M ′
3 in QCohG

′
(S ′) is exact if and only if the induced

sequence g∗M
′
1 → g∗M

′
2 → g∗M

′
3 is. Furthermore

(g∗M
′)G = π∗g∗M

′ = f∗π
′
∗M

′ = f∗
(
M ′G′).

The result follows easily.
7 8 ♠ ←7

←8
Proposition 1.4. The class of linearly reductive group schemes is
closed under taking

(a) subgroup schemes,
(b) quotients, and
(c) extensions.

Proof. For part (a), consider a subgroup-scheme G′′ ⊂ G and the re-
sulting commutative diagram

BSG′
i //

πG′
##HHHHHHHHH
BSG

πG

��

S.

It is enough to observe that i∗ = IndGG′ is exact as i is affine. Since πG ∗
is exact by assumption, and since πG′ ∗ ' πG ∗ ◦ i∗ 9 we have that πG′ ∗ ←9

is exact, as required.
For parts (b) and (c), consider an exact sequence

1→ G′ → G→ G′′ → 1

and the corresponding commutative diagram

BSG′
i //

πG′
##HHHHHHHHH
BSG

j
//

πG

��

BSG′′

πG′′
zzvvvvvvvvvv

S

To prove part (b), suppose that G is linearly reductive, so πG ∗ is
exact. Recall that j∗ is exact and j∗ ◦ j∗ is isomorphic to the identity,
so

πG′′ ∗ ' πG′′ ∗ ◦ j∗ ◦ j∗ ' πG ∗ ◦ j∗

is exact, as required.

7(Dan) I rewrote this proof - please check!!
8(Angelo) I restored the old proof, as I don’t think that the new one is correct

(in general your V is not affine over S, not even quasi-compact).
9(Angelo) I took out “(Frobenius reciprocity)”, because this is not Frobenius

reciprocity.
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For part (c), we have by assumption that πG′ ∗ and πG′′ ∗ are exact.
Considering the cartesian diagram

BSG′
i //

πG′

��

BSG
j

��

S // BSG′′,

since S → BSG′′ is faithfully flat we have that j∗ is exact (concretely,
taking invariants of a G sheaf by G′ is exact even if when consider the
induced G′′-action). So

πG ∗ = πG′′ ∗ ◦ j∗
is exact, as required. ♠

1.3. Classifying linearly reductive group schemes. Recall that a
finite group scheme ∆ → S is said to be diagonalizable if it is abelian
and its Cartier dual is étale. A finite étale group scheme H → S is
said to be tame if its degree is prime to all residue characteristics.

Definition 1.5. A group scheme π : G→ S is well-split when it is an
extension

1 −→ ∆ −→ G −→ H −→ 1

where ∆ is diagonalizable and H is étale and tame.
It is locally well-split if there is an fpqc covering S ′ → S, such that

S ′ ×S G→ S ′ is well-split.

In caracteristic 0 every finite flat group scheme is étale and tame,
hence it is well-split.

Proposition 1.6. Every locally well-split group scheme is linearly re-
ductive.

Proof. By Propositions 1.3 it suffices to consider well-split group schemes.10
10→

Since ∆ is diagonalizable, after an étale surjective base change S ′ →
S we have ∆S′ the Cartier dual of a constant abelian group scheme,
hence a product ∆S′ '

∏
iµri . Since the structure sheaf Oµri =

SpecOS′ [x]/(xri) decomposes as a direct sum of linear characters, every
representation does, so µri is linearly reductive, so by Proposition 1.4
∆S′ is linearly reductive, and by Proposition 1.3 ∆ is linearly reductive.

A tame étale group schemes is well known to be linearly reductive
by Maschke’s Lemma. Propositions 1.4 says G is linearly reductive, as
required. ♠

10(Dan) I changed the proofs here too
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Over perfect fields the situation is simple.

Lemma 1.7. Let k be a perfect field, G→ Spec k a group scheme. If G
is well-split, then there exists a connected diagonalizable group scheme
∆0 and a tame étale group scheme H, both over k, together with an
action of H onto ∆0, such that G ' H n∆0.11 ←11

Proof. By definition, G contains a diagonalizable subgroup ∆ such that
G/∆ is étale; hence the connected component ∆0 of the identity in G
coincides with the connected component in ∆; hence it is digonalizable,

and the quotient H
def
= G/∆0 is étale and tame.

To get a splitting, it is enough to notice that the reduced subscheme
Gred, which is a group subscheme because k is perfect, maps isomor-
phically to H. ♠

Proposition 1.8. Let k be a field, G→ Spec k a finite group scheme.
Then G is linearly reductive if and only if it is locally well-split.

Proof. Let k be the algebraic closure of k; then by Proposition 1.3 Gk

is linearly reductive (or locally well-split) if and only if G is linearly
reductive (respectively locally well-split); so we may assume that k is
algebraically closed. We know that locally well-split groups are linearly
reductive, so assume that G is linearly reductive. Call p the character-
istic of k.

Let G0 be the connected component of the identity in G. Then G/G0

is a linearly reductive constant group. If it were not tame it would
contain a subgroup of order p, which is not linearly reductive. So we
may assume that G is connected, and show that it is diagonalizable.

The following lemma may be known to the experts, but we have not
found a reference.

Lemma 1.9. If a connected finite group scheme G contains a diago-
nalizable normal subgroup H, and Q = G/H is again diagonalizable,
then G is also diagonalizable.

Proof. If we show that G is abelian, then it is diagonalizable: its 12 ←12

Cartier dual is an extention with an étale quotient and an étale sub-
group, which is therefore an étale group-scheme.

The action by conjugation of G on H defines a homomorphism of
group schemes G → AutGr−Sch/k(H) = AutGr−Sch/k(H

C), where HC

is the Cartier dual of H; but the domain is local, while the target is

11(Angelo) I corrected this statement by adding the condition that k be perfect;
the statement is false otherwise.

12(Angelo) Corrected typo
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constant, so this homomorphism is trivial. Equivalently, H is central
in G.

LetA be a commutative k-algebra. The groupsH(A) andG(A)/H(A)
are commutative, hence, by “calculus of commutators” [1], Section 6,
in particular Lemma 6.1 we have a bilinear map

G(A)×G(A) −→ H(A)

(x, y) 7→ [x, y]

This is functorial in A, therefore the commutator gives a bilinear map
G×G→ H, and since H is central this gives a bilinear mapQ×Q→ H;
in particular we get a map of sheaves Q→ HomGrp−Sch/k(Q,H), where
both source and target are representable. But again the domain is local
and the target is étale, hence the Q is mapped to the trivial map, in
other words the commutator Q × Q → H maps to the identity in H.
This means that the commutator is trivial, hence G abelian.

♠

So we may proceed by induction on the dimension of the vector
space H0(G,OG), and assume that G does not contain any proper nor-
mal subgroup scheme. In particular, the Frobenius kernel G1 of G is a
normal subgroup scheme of G, which does not coincide with the iden-
tity, unless G is trivial: so we have that G = G1 - in [6], p. 139 one
says that G has height 1. Connected group schemes of height 1 are
classified by their p-Lie algebras (see, e.g., [6], p. 139).

Lemma 1.10 (Jacobson [3], Chapter 5, Exercise 14, p. 196). Let G
be a non-abelian group scheme of height 1. Then G contains αp, and
hence is not linearly reductive.

Proof. Considering the p-lie algebra g of G, we need to find an element
w ∈ g such that wp = 0. Since g is finite dimensional, for each v ∈ g
there is a minimal n such that {v, vp, vp2

, . . . , vp
n} is linearly dependent,

giving a monic p-polynomial

fv(x) = xp
n

+ a
(v)
n−1x

pn−1

+ · · ·+ a
(v)
0 x

such that fv(v) = 0.

Note that if a
(v)
0 = 0 then the nonzero element

w = f 1/p
v (v) = vp

n−1

+ (a
(v)
n−1)1/pvp

n−2

+ · · ·+ (a
(v)
1 )1/pv

satisfies wp = 0. So, arguing by contradiction, we may assume that

a
(v)
0 6= 0 for all nonzero v, i.e. fv is separable. Since the minimal

polynomial of ad(v) divides fv, we have that ad(v) is semisimple for
every nonzero v.
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Since g is assumed non-commutative, there is v with ad(v) 6= 0,
hence it has a nonzero eigenvector v′ with nonzero eigenvalue. But then
the action of ad(v′) on Span(v, v′) is nonzero nilpotent, contradicting
semisimplicity. ♠

Back to the proposition, we deduce G is abelian. Every subgroup
scheme is normal, so G can not contain any proper subgroup scheme.
But by Cartier duality the only local abelian group schemes with this
property are αp and µp; and again αp is not linearly reductive. Hence
G = µp, and we are done. ♠

Lemma 1.11. Assume that there is a point s = Spec k(s) ∈ S, such
that the fiber Gs → Spec k(s) is locally well-split. Then there exists
a flat quasi-finite map U → S of finite presentation, whose image in-
cludes s, a diagonalizable group scheme ∆ → U and an étale tame
group scheme H → U acting on ∆, such that GU → U is isomorphic
to the semi-direct product H n∆.

In particular, let V be the image of U in S, which is open; then the
restriction GV → V is locally well-split.

Proof. By standard arguments, we may assume that S is connected,
affine and of finite type over Z. There is a finite extension k of k(s) such
that Gk is of the form H n∆0, where ∆0 is a connected diagonalizable
group scheme and H is an étale group scheme, associated with a finite
group Γ. After base change by a finite flat morphism over S, we may
assume that k(s) = k. The group scheme ∆0 extends uniquely to a
diagonalizable group scheme ∆0 on S, that we still denote by ∆0. Also,
we denote again by H the group scheme over S associated with H; the
action H on ∆0 that is defined over s extends uniquely to an action of
H on ∆0. Set G′ = Hn∆0. We claim that G and G′ become isomorphic
after passing to a flat morphism of finite type U → S, whose image
includes s.

We present two methods of proof, one abstract and one more explicit.
Both use deformation theory.13 ←13

Method 1: rigidity using the cotangent complex. It suf-
fices to show that the group scheme Gk has no nontrivial formal de-
formations as a group scheme, equivalently no nontrivial infinitesimal
deformations, which is the same as saying that BGk has no nontrivial
infinitesimal deformations. According to [5], as corrected in [7], there
is a contangent complex LBGk ∈ D(Coh(BGk)) satisfying the require-
ments for applying [2], therefore first order deformations of BGk lie in
Ext1(LBGk ,OBGk). Since BGk is the quotient of a smooth scheme by a

13(Dan) added stuff
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smooth group action, it is easy to see that LBGk ∈ D[0,1](Coh(BGk)),
therefore Ext•(LBGk ,OBGk) ∈ D[−1,0](Coh(BGk), and since π∗ is exact,
Ext•(LBGk ,OBGk) ∈ D[−1,0](Coh(BGk), in particular Ext1 = 0.

Method 2: lifting using lie-algebra cohomology Denote
by R the henselization of the local ring OS,s, by m is maximal ideal,

and set Rn
def
= R/mn+1, Sn

def
= SpecRn, Gn

def
= GSn and G′n

def
= G′Sn .

Clearly S0 = s.
Let us start from the tautological G0-torsor S0 → BS0G0, which we

think of as a G′-torsor. Our aim now is to construct a sequence of
G′-torsors Pn → BSnGn, such that the restriction of each Pn to Sn−1 is
isomorphic to the G′-torsor Pn−1 → BSn−1Gn−1.

The Lie algebra g of G0 = G′0 is a representation of G0, corresponding
to a coherent sheaf on BS0G0. It is well known that the obstruction to
extending Pn−1 → BSn−1Gn−1 to a G′-torsor lies in the sheaf cohomol-
ogy H2

(
BS0G0, (m

n/mn+1)⊗g
)
; and this coincides with the cohomology

of G0 in the representation (mn/mn+1) ⊗ g, which is 0, because G0 is
linearly reductive.

Each G′-torsor Pn → BSnGn yields a (G,G′)-bitorsor

In
def
= Sn ×BSnGn Pn −→ Sn,

where the morphism Sn → BSnGn is the one given by the trivial torsor
Gn → Sn. So we obtain a sequence of (G,G′)-bitorsors In → Sn, such
that the restriction of each In to Sn−1 is isomorphic to In−1.

By Artin’s approximation theory, this shows that there is a (G,G′)-
bitorsor IR → SpecR; and, by standard limit arguments, this proves
that there is an étale morphism U → S containing s in its image,
together with a (G,G′)-bitorsor IU → U . The pullbacks of G and G′

to IU are isomorphic, and the composite IU → U → S is flat and
quasi-finite. This completes the proof. ♠

Here is our main result on linearly reductive group schemes.14
14→

Theorem 1.12. Let G→ S be a finite flat group scheme. The follow-
ing conditions are equivalent.

(a) G→ S is linearly reductive.
(b) G→ S is locally well-split.
(c) The geometric fibers of G→ S are well-split.

Furthermore, if S is noetherian we can add the following two condi-
tions.15

15→

14(Dan) added stuff here
15(Angelo) Added a noetherian condition. I think that there are non-noetherian

schemes without any closed points (I may be wrong).
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(d) The closed fibers of G are linearly reductive.
(e) The geometric closed fibers of G→ S are well-split.

Proof. This follows from Proposition 1.8 and Lemma 1.11. ♠

1.4. Étale local extensions of linearly reductive group schemes.
16 ←16

We will need the following result.

Proposition 1.13. Let S be a scheme, p ∈ S a point, G0 → p a
linearly reductive group scheme. There there exists an étale morphism
U → S, with a point q ∈ U mapping to p, and a linearly reductive
group scheme Γ → U whose restriction Γq → q is isomorphic to the
pullback of G0 to q.

Proof. Let us start with a Lemma. Let k be a field, G→ Spec k a well-
split group scheme. Let ∆ be the connected component of the identity
of G, H = G/∆. Call Autk(G) the group scheme representing the func-
tor of isomorphisms of G as a group scheme: there a homomorphism
∆ → Autk(G) sending each section of ∆ into the corresponding inner
automorphism of G; this induces an embedding ∆/∆H ⊆ Autk(G).

Lemma 1.14. The connected component of the identity of Autk(G) is
∆/∆H .

Proof. 17 Since ∆ is a characteristic subgroup scheme of G, each au- ←17

tomorphism of GA → SpecA, where A is a k-algebra, preserves ∆A.
Hence we get homomorphisms of group schemes Autk(G) → Autk(∆)
and Autk(G)→ Autk

(
H
)
, inducing a homomorphism

Autk(G) −→ Autk(∆)× Autk
(
H
)
;

the kernel of this homomorphism contains ∆/∆H . Let us denote by E
this kernel, since Autk(∆)×Autk

(
H
)

is étale over Spec k, it is enough

that to prove that E coincides with ∆/∆H .
To do this, we may pass to the algebraic closure of k, and assume

that k is algebraically closed; then it is enough to prove that given
a k-algebra A, for any element α ∈ E(A) there exists a faithfully
flat extension A ⊆ A′ such that the image of α in E(A′) comes from
(∆/∆H)(A′).

By passing to a faithfully flat extension, we may assume thatG(B)→
H(B) is surjective for any A-algebra B (because H is constant), so we
have an exact sequence

1 −→ ∆(B) −→ G(B) −→ H(B) −→ 1.

16(Angelo) Added this subsection
17(Angelo) I corrected the proof of this lemma.



12 ABRAMOVICH, OLSSON, AND VISTOLI

Furthermore, again because H is constant, for any A-algebra B we
have

∆H(B) = ∆(B)H(B);

hence for any B we have an injective homomorphism

∆(B)/∆(B)H(B) −→ (∆/∆H)(B).

Let us show that α comes from (∆/∆H)(A).
Set B = Γ(G,O), so that G = SpecB → SpecA. Then it is

easy to see that the natural restriction homomorphism AutA(GA) →
Aut

(
G(B)

)
is injective. The group ∆(B) has an order that is a power

of the characteristic of k, while the order of H(B) is prime to the char-
acteristic; so H1

(
H(B),∆(B)

)
= 0, which implies that there exists an

element δB of ∆(B) whose image in Aut
(
G(B)

)
concides with the im-

age of α. Call δB the image of δB in (∆/∆H)(B); then. I claim that
δB the image of an element δ of (∆/∆H)(A); then the image of δ in
E(A) must be α, because AutA(GA) injects into Aut

(
G(B)

)
.

To prove this, since (∆/∆H)(A) is the equalizer of the two natural
maps (∆/∆H)(B)⇒ (∆/∆H)(B ⊗A B), it is enough to show that the
two images of δB in (∆/∆H)(B ⊗A B) coincide. The two images of δB
in Aut

(
G(B ×A B)

)
are equal; since ∆(B ×A B)/∆(B ×A B)H(B×AB)

injects into Aut
(
G(B ×A B)

)
, this implies that the two images of δB

into ∆(B ×A B)H(B×AB) coincide. The images of these via the natural
injective homomorphism

∆(B ×A B)/∆(B ×A B)H(B×AB) −→ (∆/∆H)(B ×A B)

are the two images of δB, and this completes the proof. ♠

Let k(p) be the algebraic closure of k(p); the pullback Gk(p) is well-
split, that is, it is a semi-direct product Hk(p) n ∆k(p), where Hk(p) is
étale, hence a constant group, and ∆k(p) is connected and diagonaliz-
able. This is the pullback of a group scheme Γ = H n∆ → S, where
H is constant and ∆ is diagonalizable; passing to a Zariski open neigh-
borhood of the image of p in S, we may assume that H is tame, so Γ is
well split. The group scheme G0 is a twisted form of the fiber Γp. So we
need to show that every twisted form of Γp → S on a point p ∈ S ex-
tends to a étale neighborhood of p. This twisted form is classified by an
element of the non-abelian cohomology group H1

fppf

(
p,Autk(Γ)

)
. Let

us set ∆′ = ∆/∆H . The quotient Autk(Γ)/∆′p is étale, by Lemma 1.14;
hence the image of this element into

H1
fppf

(
p,Autk(Γ)/∆′p

)
= H1

ét

(
p,Autk(Γ)/∆′p

)
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is killed after passing to a finite separable extension of k(p). Any such
extension is of the form k(q), where U → S is an étale map and q is a
point on U mapping on p. We can substitute S with U , and assume that
the image of our element of Hfppf

(
p,Autk(Γ)

)
in H1

fppf

(
p,Autk(Γ)/∆′p)

is 0. We have an exact sequence of pointed sets

H1
fppf

(
p,∆′p

)
→ H1

fppf

(
p,Autk(Γ)

)
→ H1

fppf

(
p,Autk(Γ)/∆′p

)
;

so we may assume that our element comes from H1
fppf(p,∆

′
p). Since ∆′ is

diagonalizable, it is enough to prove that every element of H1
fppf(p,µn)

comes from H1
fppf(S,µn), after restricting S in the Zariski topology.

By Kummer theory, every µn-torsor over k(p) is of the form

Spec k(p)[t]/(tn − a) −→ Spec k(p)

for some a ∈ k(p)∗, with the obvious action of µn on Spec k(p)[t]/(tn−
a). After passing to a Zariski neighborhood of p ∈ S, we may assume
that a is the restriction of a section f ∈ O∗(S). Then the µn-torsor
SpecS OS[t]/(tn−f)→ S restricts to Spec k(p)[t]/(tn−a)→ Spec k(p),
and this completes the proof. ♠

2. Tame stacks

Let S be a scheme,M→ S a finitely presented algebraic stack over
S. We denote by I → M the inertia group stack; we will always
assume that I → M is finite (and we say that M has finite inertia).
If T → S is a morphism, and ξ is an object of M(T ), then the group
scheme AutT (ξ)→ T is the pullback of I along the morphism T →M
corresponding to ξ.

Under this hypothesis, because of [4], there exists a moduli space
ρ : M→M ; the morphism ρ is proper.18 ←18

Definition 2.1. The stack M is tame if the functor ρ∗ : QCohM→
QCohM is exact.

When G → S is a finite flat group scheme, then the moduli space
of BSG → S is S itself; so BSG is tame if and only if G is linearly
reductive.

Theorem 2.2. The following conditions are equivalent.

(a) M is tame.
(b) If k is an algebraically closed field with a morphism Spec k → S,

and ξ is an object of M(Spec k), then the automorphism group
scheme Autk(ξ)→ Spec k is linearly reductive.

18(Angelo) added these last few words.
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(c) There exists an fppf covering M ′ → M , a linearly reductive group
scheme G→ M ′ acting an a finite scheme U → M ′, together with
isomorphisms

M×M M ′ ' [U/G]

of algebraic stacks over M ′.19
19→

(d) Same as (c), but M ′ →M is assumed to be étale and surjective. 20
20→

Corollary 2.3. The formation of moduli space for a tame stack com-
mutes with base change: that is, if M ′ →M is a morphism of algebraic
spaces, then the moduli space of M ′ ×MM is M ′.

Corollary 2.4. If M → S tame and S ′ → S is a morphism of
schemes, then S ′ ×SM is a tame stack over S ′.

Corollary 2.5. The stack M → S tame if and only if for any mor-
phism Spec k → S, where k is an algebraically closed field, the geomet-
ric fiber Spec k ×SM is tame.

Proof of Theorem 2.2. 21 It is obvious that (d) implies (c). It is straight-21→

forward to see that (c) implies both (a) and (b).
Let us check that (a) implies (b). Let Spec k →M be the morphism

corresponding to the object ξ ofM(Spec k); set G = Autk(ξ). CallM0

the pullback Spec k ×M M; this admits a section Spec k → M0, and
the residual gerbe of this section, which is a closed substack of M0, is
isomorphic to BkG. So we get a commutative (non cartesian) diagram

BkG
ρ′

��

g
//M

ρ

��

Spec k
f

// M

whose rows are affine. So we have that g∗ : QCoh(BkG)→ QCoh(M)
is an exact functor, while φ : QCoh(M)→ QCoh(M) is exact by defi-
nition. Also we have an equality of functors f∗ρ

′
∗ = ρ∗g∗; hence, if

0 −→ V1 −→ V2 −→ V3 −→ 0

is an exact sequence of representations of G, considered as an exact
sequence of quasi-coherent sheaves on BkG, we have that the sequence

0 −→ f∗
(
V G

1

)
−→ f∗

(
V G

2

)
−→ f∗

(
V G

3

)
−→ 0

is exact; and this implies that

0 −→ V G
1 −→ V G

2 −→ V G
3 −→ 0

19(Dan) changed the statement since has to be done locally on M, not S
20(Angelo) added this
21(Angelo) I changed this proof in various places
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is exact. Hence G is linearly reductive, as claimed.
Now let us prove that (b) implies (d). In fact, we will prove a stronger

version of this implication.

Proposition 2.6. Let M → S be an algebraic stack with finite iner-
tia and moduli space ρ : M → M . Let k be a field with a morphism
Spec k → S, and let ξ be an object of M(Spec k); assume that the
automorphism group scheme Autk(ξ) → Spec k is linearly reductive.
Denote by p ∈ M the image of the composite Spec k → M → M .
Then there exists an étale morphism U → M having p in its image,
a linearly reductive group scheme G → U acting on a finite scheme
V → U of finite presentation, and an isomorphism [V/G] ' U ×SM
of algebraic stacks over U .

Thus, if M has an object over a field with linearly reductive auto-
morphism group, then there is an open tame substack ofM (the image
of U) containing this object.

Proof. The proof is divided into three steps.
We may assume that M is affine and of finite type over Z.
The case k = k(p). We start by assuming that the residue field

k(p) of p ∈ M equals k. After passing to an étale morphism to M ,
we may also assume that Autk(ξ) extends to a linearly reductive group
scheme G→M (Proposition 1.13).

By standard limit arguments we may assume that M is the spectrum
of a local henselian ring R with residue field k. The result will follows
once we have shown that there is a representable morphismM→ BMG
of algebraic stacks (or, equivalently, a G-torsor P → M in which the
total space is an algebraic space).

Let us denote by M0 the residual gerbe Bk Autk(ξ) = BkGp; this
is a closed substack of M, having Spec k as its moduli space. This
closed substack gives a sheaf of ideals I ⊆ OM; we denote by Mn the
closed substack of M whose sheaf of ideals is In+1. Denote by g the
Lie algebra of Autk(ξ).

The obstruction to extending a G-torsor Pn−1 →Mn−1 to a G-torsor
Pn →Mn lies in

H2
(
M0, (In/In+1)⊗ g

)
= H2

(
Gp, (In/In+1)⊗ g

)
= 0;

Alternatively, in terms of the cotangent complex, the obstruction lies
in Ext2(LBkGp , In/In+1) = 0. 22 ←22

22(Dan) added this sentence
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Hence we can construct a sequence of G-torsors Pn →Mn, such that
the restriction of Pn to Pn−1 is isomorphic to Pn−1, and such that the
torsor P0 →M0 has Spec k as its total space.

Let m be the maximal ideal of R, and set Mn = SpecR/mn+1. The
systems of ideals {In} and mnOM are cofinal; hence we get a sequence
of G-torsors Qn →Mn×MM, such that the restriction of Qn to Qn−1

is isomorphic to Qn−1, and such that the restriction of Q0 to M0 has
Spec k as its total space. We can define a functor from R-algebras to
sets that sends each R-algebra A to the set of isomorphism classes of
G-torsors on the stackMA. This functor is easily checked to be limit-
preserving (for example, by using a presentation of M, and descent
for G-torsors). So we can apply Artin’s approximation theorem, and
conclude that there exists a G-torsor on M, whose restriction to M0

has Spec k as its total space.
The total space P is an algebraic stack with finite inertia; further-

more, the inverse image ofM0 in P is isomorphic to Spec k. The locus
where the inertia stack IP → P has fiber of length larger than 1 is
a closed substack of P , whose image in M = SpecR is a closed sub-
scheme that does not contain p; hence this locus is empty. So P is an
algebraic space (in fact an affine scheme); and this concludes the proof
of the first case.

Obtaining a flat morphism. Now we prove a weaker version of
the Proposition, with the same statement, except that the morphism
U → M is only supposed to be flat and finitely presented, instead of
étale.

By passing to the algebraic closure of k we may assume that k is
algebraically closed.

We claim that there exists a finite extension k′ of the residue field
k(p) contained in k, such that the object ξ is defined over k′. In fact, it
follows from the definition of moduli space that there exists an object
η of Spec k(p) whose pullback to Spec k is isomorphic to ξ. This η gives

an object of the algebraic stack Spec k(p)×MM over Spec k(p), which
is finitely presented over Spec k(p), and any such object is defined a
finite extension k′ of k(p). Hence we may assume that k is a finite
extension of k(p).

There is a flat morphism of finite presentation M ′ → M , with a
point q ∈ U mapping to p, such that k(q) = k; hence, by applying the
first step to M ′×MM, there is an étale morphism U →M ′ containing
q in its image, such that U ×MM has the required quotient form.

The conclusion. The argument of the proof of the previous case
shows that to conclude we only need the following fact.
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Proposition 2.7. Let M → S be a tame stack with moduli space
ρ : M → M , k a field. Given a morphism Spec k → M , there exists
a finite separable extension k ⊆ k′ and a lifting Spec k′ → M of the
composite Spec k′ → Spec k →M .

Proof. We are going to need the following lemmas.

Lemma 2.8. Let G be a linearly reductive group scheme over a field
k. The stack Homrep

k (BkG,BkG) is of finite type over k.

23 ←23

Let k be a field, R be an artinian local k-algebra with residue field k,
G a linearly reductive group scheme acting on R. SetM = [SpecR/G],
and assume that the moduli space of M is Spec k (this is equivalent
to assuming that RG = k). We have a natural embedding BkG =
[Spec k/G] ⊆ [SpecR/G] =M.

Lemma 2.9. If T is a k-scheme, any representable morphism of k-
stacks BkG×Spec k T →M factors through BkG ⊆M.

Proof. Let P be the pullback of SpecR→M to BkG×Spec k T ; then P
is an algebraic space with an action of G, such that the morphism P →
SpecR is G-equivariant. I claim that the composite P → BkG×T → T
is an isomorphism. 24 ←24

Since it is finite and flat it enough to prove that is an isomorphism
when pulled back to a geometric point Spec Ω → T , were Ω is an
algebraically closed field; so we may assume that T = Spec Ω. Choose a
section Spec Ω→ P : since there is a unique morphism Spec Ω→ BΩGΩ

over Ω, we get a commutative diagram

Spec Ω //

%%JJJJJJJJJ P

||yyyyyyyyy

BΩGΩ

Since both Spec Ω→ BΩGΩ and P → BΩGΩ are G-torsors, the degrees
of both over BΩGΩ equal the order of G; hence Spec Ω → P is an
isomorphism, and P → Spec Ω is its inverse.

Thus, since the composite P → BkG×Spec k T → T is G-equivariant,
this means that the action of G on P is trivial. The morphism P →

23(Angelo) This would be a particular case of the boundedness result for tame
stacks, right? If so, the proof would be in the appendix. I am omitting it for now.

24(Angelo) This fact is also clear by looking at degrees, since the degree of P
over BkG ×Spec k T is |G|, while that of BkG ×Spec k T over T is 1/|G|. This is
essentially Martin’s argument. I am giving a slightly different proof.
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SpecR corresponds to a ring homomorphism R → O(P ), which is G-
equivariant, and the action of G on O(P ) is trivial. But if m is the
maximal ideal of R, there is a splitting of G-modules R ' m⊕ k; and
mG = 0, because RG = k. So m is a sum of non-trivial irreducible
representations, since G is linearly reductive, and any G-equivariant
linear map m → O(P ) is trivial. So P → SpecR factors through
Spec k, so BkG ×Spec k T → M factors through [Spec k/G] = BkG, as
claimed. ♠

Let us prove Proposition 2.7. SinceM is limit-preserving, it is suffi-
cient to show that any morphism Spec k →M , where k is a separably
closed field, lifts to Spec k →M.

Let U →M be a flat finitely presented morphism with p in its image,
such that U×MM is a quotient [V/G], with G→ U linearly reductive.
The image of U in M is open, so we may replace M with this image
and assume that U →M is surjective. Then for any morphism T → U ,
the moduli space of T ×MM is T 25; and it follows easily that the same25→

holds for morphisms T →M .
By applying this to the morphism Spec k →M , we see that we may

assume that M = Spec k.
Let k ⊆ k′ be a finite field extension such that M(k′) is non-empty.

Pick an object ξ ∈ M(k′), and set Gk′ = Autk′(ξ). After extending
k′, we may assume that Gk′ is of the form Hk′ n ∆k′ , where ∆k′ is a
diagonalizable group scheme whose order is a power of the characteristic
of k and Hk′ is a constant tame group scheme. There exist unique group
schemes ∆ and H, respectively diagonalizable and constant, whose
pullbacks to Spec k′ coincide with ∆k′ and Hk′ ; furthermore, the action
ofHk′ on ∆k′ comes from a unique action ofH on ∆. We setG = Hn∆:
this G is a group scheme on Spec k inducing Gk′ by base change.

Lemma 2.10. The stack Homrep
k (BkG,M) is of finite type over k.

Proof. It is enough to prove the result after base changing to k′; we
can therefore assume that M = [SpecR/G], where R is an artinian
k-algebra with residue field k, because of the first part of the proof.
Then by Lemma 2.9 the stack Homrep

k (BkG,M) is of isomorphic to
Homrep

k (BkG,BkG), which is of finite type by Lemma 2.8. ♠
The morphism t : Spec k → BkG corresponding to the trivial torsor

induces a morphism

F : Homrep
k (BkG,M) −→M

by composition with t.

25(Angelo) We’ll have to prove this somewhere.
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Consider the scheme-theoretic image M ⊆ M of the morphism
F : this is the smallest closed substack of M with the property that
F−1(M) = Homrep

k (BkG,M). Its sheaf of ideals is the kernel of the
homomorphism OM → F∗OHomrep

k (BkG,M).

Lemma 2.11. We have

Spec k′ ×Spec kM = BkGk′ ⊆Mk′ ,

where Bk′Gk′ is embedded in Mk′ as the residual gerbe of ξ.

Proof. By the first part of the proof, we can write Mk′ in the form
[SpecR/Gk′ ], where R is an artinian k with residue field k′. Formation
of scheme-theoretic images commutes with flat base change, hence we
need to show that the scheme-theoretic image of the morphism

Fk′ : Homrep
k′ (Bk′Gk′ ,Mk′) −→Mk′

is equal to Bk′Gk′ ; or, equivalently, that for any morphism g : T →
Homrep

k′ (Bk′Gk′ ,Mk′), the composite Fk′ ◦ g : T →Mk′ factors through
[Spec k′/Gk′ ]. This follows from Lemma 2.9. ♠

Now we can replace M with M, and assume that Mk′ is Bk′Gk′ .
Next we define an étale gerbe N , with a morphism G → N .26 ←26

For any k-scheme T and any object ξ ∈ M(T ), the automorphism
group scheme Gξ → T is linearly reductive; let

1 −→ ∆ξ −→ Gξ −→ Hξ −→ 1

be the connected étale sequence of Gξ. More concretely, ∆ξ is the sub-
functor of Gξ of automorphisms whose order is a power of the character-
istic of k. If f : T ′ → T is a morphism of schemes, then Gf∗ξ = T ′×TGξ

(this is a general property of fibered categories), and ∆f∗ξ = T ′×T ∆ξ.
Given two objects ξ ∈ M(T ) and ξ′ ∈ M(T ′), there is a right

action of ∆ξ(T ) and a left action of ∆ξ′(T
′) on HomM(ξ, ξ′), and they

commute. Furthermore, it is easy to see that

HomM(ξ, ξ′)/∆ξ(T ) = ∆ξ′(T
′)\HomM(ξ, ξ′)/∆ξ(T )

and that there is fibered category over the category of k-schemes, with
the same objects as M, such that the arrows ξ → ξ′ are the elements
of the quotient HomM(ξ, ξ′)/∆ξ(T ). We define N to be the stack
associated with this fibered category. With a little work, one can show

26(Angelo) I think this could be done with general results on non-abelian coho-
mology. I like Martin’s construction, which is a more general form of rigidification
than the ones that have been treated so far (the group depends on the object, and
not only on the base scheme). The details will need to be expanded; it might even
make sense to dedicate a separate section to a discussion of these more general
rigidifications.
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that N is an étale gerbe over Spec k27. There is a canonical morphism27→

M→N . The pullback Nk′ is BK′∆k′ (recall that ∆k′ is the connected
component of the identity in Gk′).

Since N is an étale gerbe and k is separably closed, there is a k-
morphism Spec k → N . We can replace M by M×N Spec k, so that
Mk′ = Bk′∆k′ .

In this case, we claim thatM is banded28 by the diagonalizable group28→

∆ → Spec k′ (recall that we have defined this as the diagonalizable
group scheme whose pullback to Spec k′ is ∆k′). In fact, since M
is a gerbe, and all of its objects have abelian automorphism groups,
then the automorphism group schemes descend to a group scheme over
Spec k, whose pullback to Spec k′ is ∆k′ .

29 So this group scheme is a29→

form of ∆ in the fppf topology; but the automorphism group scheme
of ∆ is constant, so this form is in fact a form in the étale topology,
and so it is trivial.

The class of the gerbe M banded by ∆ is classified by the group
H2

fppf(Spec k,∆).

Lemma 2.12. If ∆ is a diagonalizable group scheme over a separably
closed field k, we have H2

fppf(Spec k,∆) = 0.

Proof. The group scheme ∆ is a product of groups of the form µn, so
it is enough to consider the case ∆ = µn. Then the result follows from
the Kummer exact sequence of fppf sheaves

0 −→ µn −→ Gm
×n−→ Gm −→ 0

and the fact that Hi
fppf(Spec k,Gm) = Hi

ét(Spec k,Gm) = 0 (see ????).
♠

This concludes the proofs of Propositions 2.7 and 2.6 and of Theo-
rem 2.2. ♠

3. Twisted stable maps

Corollary 3.1. Let C → S be a separated finitely presented stack with
markings by gerbes; assume that the geometric fibers of C over S are
twisted curves. Then C is a twisted curve over S. 30

30→

27(Angelo) We don’t need to go to Spec k′, it is easy to verify this directly
28(Angelo) I like to use “banded” instead of “bound”, because the standard

translation for “lien” is band.
29(Angelo) this is standard and easy, I don’t think that we need to recall the

argument
30(Dan) this needs to be expanded. I moved it here.
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Theorem 3.2. Let M be a proper finitely presented tame algebraic
stack over a scheme S with finite inertia. Then the stack of stable
twisted maps from n-pointed genus g curves into M is a finitely pre-
sented algebraic stack over S, which is proper over the stack of stable
maps into M .

4. Reduction of Spaces of Galois admissible covers

5. Example: reduction of X(2) in characteristic 2

K0,4(Bµ2) vs. K1,0((Bµ2)2).
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