
RELATIVE AND ORBIFOLD GROMOV–WITTEN
INVARIANTS

DAN ABRAMOVICH, CHARLES CADMAN, AND JONATHAN WISE

Contents

1. Introduction 1
2. Method of proof 6
3. Construction of the main diagram 8
4. Proof of the theorem 20
Appendix A. Proofs of standard obstruction results 29
Appendix B. Obstruction theories and local complete

intersections 45
Appendix C. Notation index 46
References 47

1. Introduction

Gromov–Witten invariants are deformation invariant numbers asso-
ciated to a smooth variety over C that are closely related to the numbers
of curves in that variety with prescribed incidence to specified homol-
ogy classes. They are defined by intersecting the homology classes in
question with the virtual fundamental class on the moduli space of sta-
ble maps. There are thus two essential ingredients in Gromov–Witten
theory: a proper moduli space on which to do intersection theory, and
a virtual fundamental class of the expected dimension in the homology
of that moduli space.

In this paper, we will be interested in counting rational curves in a
smooth variety with prescribed incidence conditions, as well as pre-
scribed tangencies along a divisor. The introduction of tangencies
makes the definition of Gromov–Witten invariants more subtle. Since
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a tangency can degenerate to one of higher order, it is not obvious
how to produce a proper moduli space, and since a tangency can be
deformed to lower order, it is not obvious how to do the deformation
theory necessary to produce a virtual fundamental class.

There are now several solutions to this problem. The first is the
theory of relative stable maps, introduced by A. M. Li and Y. Ruan
in [LR01], but also studied by Ionel–Parker [IP03, IP04], Gathmann
[Gat02] and several others. In algebraic geometry it is due to J.
Li ([Li01] and [Li02]). In this theory, tangencies are prevented from
degenerating to higher order by allowing the target variety to expand,
in close analogy to the way a Deligne–Mumford stable curve might
expand to prevent a marked point from colliding with a node. The
deformation theory of these curves still remains quite subtle, however.

A second solution [Cad07b] is to change the target variety by a root
construction. The variety is replaced by a stack that is isomorphic to
the original variety away from the divisor, but in which the divisor is re-
placed by a “stacky” version of itself with a cyclotomic stabilizer group.
Provided that the stackiness of the divisor is taken to be large enough,
the concept of tangency to the divisor in the original variety can be re-
placed with transversal contact to the stacky divisor in the root stack.
In other words, the ordinary theory of twisted stable maps [AV02] ap-
plies to yield a proper moduli space and a virtual fundamental class via
straightforward deformation theory. The disadvantage of this theory,
as compared to relative stable maps, is that it may include extraneous
information (in higher genus; see Section 1.3) and cannot be used in
the degeneration formula [Li02], [AF].

Cadman and Chen applied Cadman’s method to enumerate rational
curves tangent to a smooth plane cubic [CC08]. Some of these numbers
were also computed by Gathmann using relative Gromov–Witten in-
variants [Gat05]. It is no surprise that these numbers agree when they
are both enumerative: they count the same thing. Remarkably, how-
ever, one is enumerative if and only if the other is, and the invariants
coincide even if they are not enumerative.

Our goal in this paper is to explain this coincidence by comparing the
approaches of J. Li and Cadman in genus 0. Our comparison goes by
way of a third theory that combines the advantages of both while avoid-
ing the disadvantages [AF]. This “relative–orbifold” theory furnishes
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a correspondence between the relative and orbifold moduli spaces.
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(The notation here is temporary and will be superseded in the body of
the text.) It is shown in [AF] that Ψ is an isomorphism and identifies
the virtual fundamental classes, so our task is primarily to study the
map Φ. This map is not an isomorphism, even in genus zero and for
large r, but we will show that it nevertheless carries one virtual funda-
mental class to the other via push-forward, and therefore identifies the
Gromov–Witten invariants.

There is a fourth theory of stable maps relative to a divisor called
logarithmic stable maps, currently in development by several groups.
We will not discuss logarithmic stable maps here, but see [Kim08] for
some of the beginnings of this theory.

1.1. Statement of the theorem. Let X be a smooth projective
variety, D ⊂ X a smooth divisor, and fix a curve class β ∈ H2(X,Z).
Consider a vector of nonnegative integers k = (k1, . . . kn), with

∑
ki =

β ·D, cohomology classes γ1 . . . , γn where γi ∈ H∗(X,Q) when ki = 0
and γi ∈ H∗(D,Q) when ki > 0, and nonnegative integers a1, . . . , an.
For r a positive integer, denote by Xr = XD,r the stack obtained by
taking the r-th root of X along D.

Theorem 1.1. Fix β ∈ H2(X,Z). If r is any sufficiently large and
divisible natural number then the following relative and orbifold invari-
ants coincide.〈 n∏

i=1

τai
(γi, ki)

〉(X,D)

0,β

=

〈 n∏
i=1

τai
(γi, ki)

〉Xr

0,β

Our notation is explained in the following section. There is also a
table of notation in Appendix C.

1.2. Conventions.

(1) Consider

M
rel

(X,D) := M
rel

g,(k1,...,kn)(X,D, β)

the moduli space of relative stable maps to (X,D), where
• the source curve has genus g and n marked points,
• the i-th marked point has contact order ki with D, and
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• the homology class of the curve is β.
Let erel

i be the i-th evaluation map, where

erel
i : M

rel
(X,D)→ X for ki = 0, and

erel
i : M

rel
(X,D)→ D for ki > 0.

Let si : M
rel

(X,D) → C be the i-th section of the universal
contracted curve mapping to X, and let ψi = c1s

∗
i (ωC/Mrel

(X,D)
).

The stackM
rel

(X,D) admits a virtual fundamental class [M
rel

(X,D)]vir

defined in [Li02].
With this notation we set〈 n∏

i=1

τai
(γi, ki)

〉(X,D)

g,β

:=

∫
[M

rel
(X,D)]vir

ψa1
1 e
∗
1γ1 · · ·ψan

n e
∗
nγn.

(2) Consider

M
orb

(Xr) := M g,(k1,...,kn)(Xr, β)

the moduli space of stable maps to Xr, where
• the curve has genus g and n marked points,
• the coarse evaluation map at the i-th marked point (defined

below)

eorb
i : M

orb
(Xr)→ I(Xr)

lands in the twisted sector of age ki/r (which is isomorphic
to X if ki = 0 and to D if ki > 0), and
• the homology class of the curve is β.
We have used the notation I(Xr) for the coarse moduli space

of the inertia stack of Xr, which has r components:

I(Xr) ∼= X tD t · · · tD.
The components isomorphic to D are called twisted sectors, and
are labeled by the ages ki/r ∈ (0, 1) ∩ (1/r)Z.

Let si : M
orb

(X ) → C be the i-th section of the universal
coarse curve mapping to X, and let ψi = c1s

∗
i (ωC/Morb

(Xr)
). The

stackM
orb

(Xr) admits a virtual fundamental class [M
orb

(Xr)]
vir

defined in [AGV08].
With this notation we set〈
n∏
i=1

τai
(γi, ki)

〉Xr

g,β

:=

∫
[M

orb
(Xr)]vir

ψa1
1 e
∗
1γ1 · · ·ψan

n e
∗
nγn.
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1.3. Counterexample in genus 1. Note that Theorem 1.1 applies
only to genus zero invariants. The necessity of this restriction may
be seen in the following example, which was shown to us by Davesh
Maulik [Mau]. Let E be an elliptic curve and let X = E × P1. Let
D = X0 ∪ X∞, the union of the fibers of X over 0 and ∞ ∈ P1.
Let f ∈ H2(X) be the class of a fiber of X → P1. Then the relative

invariant with no insertions vanishes: 〈〉(X,D)
1,f = 0. A simple explanation

for this is that the invariant remains the same when taking covering
of P1 branched at 0,∞, and at the same time it is multiplied by the
degree of the cover. Note that the space of genus 1 relative maps to
(X,D) of class f has expected dimension 0, even though the actual
dimension is 1.

Let Xr,s be the stack obtained from X via an r-th root construction
on X0 and an s-th root construction on X∞. The space M1,0(Xr,s, f)
has a 1-dimensional component and r2 − 1 + s2 − 1 components of
dimension 0. The 1-dimensional component is isomorphic to the stack
Pr,s, obtained from P1 by an r-th root at 0 and an s-th root at infinity.
The remaining components exist because a morphism E → E × Bµr
which is the identity onto the first factor is determined by a µr-torsor
over E. There are r2 choices for the µr-torsor, but the trivial torsor
already appears in the 1-dimensional component.

The obstruction bundle on the 1-dimensional component is the tan-
gent bundle, which has degree 1/r + 1/s. The 0-dimensional compo-
nents count with precisely their degree, which takes into account the
automorphism group of the torsor. We may therefore calculate

〈〉Xs,r

1,f =
1

r
+

1

s
+
r2 − 1

r
+
s2 − 1

s
= r + s.

We interpret this discrepancy between the relative and twisted Gromov–
Witten invariants to be a result of the nontriviality of the Picard group
of E. A more precise statement is postponed to a later investigation.

1.4. Acknowledgements. We gratefully acknowledge the help of Bar-
bara Fantechi in understanding relative stable maps, Martin Olsson’s
help with Hom-stack, Davesh Maulik for a crucial example in genus
1, and Angelo Vistoli with his insight on root stacks. In addition we
thank Jarod Alper, Linda Chen, Alessio Corti, Johan de Jong, and
Michael Thaddeus, for helpful discussions at various stages of this
project. Much progress was made while Abramovich and Wise were
visiting MSRI in Spring 2009. We thank MSRI and the Algebraic Ge-
ometry program organizers for the opportunity afforded us to use its
exciting environment.
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2. Method of proof

2.1. An intermediary moduli space. In order to prove the theo-
rem, we want to relate the moduli spaces. It is natural to relate them
through a third moduli space where both relative geometry and orbifold
geometry are present:

Consider

M
relorb

(Xr,Dr) := M
rel

g,(k1,...,kn)(Xr,Dr, β)

the moduli space of relative stable maps to (Xr,Dr), with

• genus g and n marked points,
• where the i-th marked point of the coarse curve has contact

order ki with D, and
• curve class β.

We denote by ei the i-th evaluation map, where for ki = 0 we have ei :

M
relorb

(Xr,Dr) → Xr and for ki > 0 we have ei : M
relorb

(Xr,Dr) →
Dr.

Let si : M
relorb

(Xr,Dr) → C be the i-th section of the universal
coarse contracted curve mapping to X, and let ψi = c1s

∗
i (ωC/Mrelorb

(Xr,Dr)
).

The spaceM
relorb

(Xr,Dr) admits a virtual fundamental class [M
relorb

(Xr,Dr)]
vir

defined in [AF].
With this notation we set〈 n∏

i=1

τai
(γi, ki)

〉(Xr,Dr)

0,β

:=

∫
[M

relorb
(Xr,Dr)]vir

ψa1
1 e
∗
1γ1 · · ·ψan

n e
∗
nγn.

2.2. Reduction of main theorem to properties of virtual fun-
damental classes. For any g, r we have a diagram of stabilization
morphisms

M
relorb

(Xr,Dr)
Ψ

wwnnnnnnnnnnnn
Φ

''PPPPPPPPPPP

M
rel

(X,D) M
orb

(Xr).

We have defined the terms so that

• erel
i ◦Ψ = erelorb

i = erel
i ◦ Φ,

• Ψ∗C
rel

= C
relorb

= Φ∗C
orb
, therefore

• Ψ∗ω
C

rel
/M

rel = ω
C

relorb
/M

relorb = Φ∗ω
C

orb
/M

orb , and finally

• Ψ∗srel
i = srelorb

i = Φ∗sorb
i .
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Consequently, the projection formula gives us〈 n∏
i=1

τai
(γi, ki)

〉(Xr,Dr)

0,β

=

∫
Ψ∗([M

relorb
]vir)

ψa1
1 e
∗
1γ1 · · ·ψan

n e
∗
nγn

=

∫
Φ∗([M

relorb
]vir)

ψa1
1 e
∗
1γ1 · · ·ψan

n e
∗
nγn

where the integrals are on M
rel

(X,D) and M
orb

(Xr), respectively. The
theorem is thus a consequence of the following two theorems.

Theorem 2.1. (1) For any g, r and any twisting choice r we have

Ψ∗([M
relorb

(Xr,Dr)]
vir) = [M

rel,r
(X,D)]vir

where the obstruction theories are those defined in [AF].

(2) The Gromov–Witten invariants defined using [M
rel,r

(X,D)]vir

coincide with those defined in 1.2(1) using [M
rel

(X,D)]vir.

Theorem 2.2. If g = 0, then for any r sufficiently large and divisible
depending on β we have

Φ∗([M
relorb

(Xr,Dr)]
vir) = [M

orb
(Xr)]

vir

Proof of Theorem 2.1. Part (1) follows from [AF, Theorem 4.4.1]. In-
deed given a twisting choice r, the moduli spaces

• M relorb
(Xr,Dr)

r of relative twisted stable maps with twisting
choice r and
• M rel

(X,D)r·r of relative twisted stable maps with twisting
choice r · r

are identical with identical obstruction theories (as defined in [AF,
Section 4.2, Lemma C.3.3]). The equality of invariants in Part (2) is
proved in [AF, Section 4.7]. �

Remark 2.2.3. We emphasize that we do not compare our virtual classes
to those defined in [Li02]. See discussion in [AF, Section 4.7]. The third
author has an argument for comparing these classes which goes beyond
the scope of this paper.

We will prove Theorem 2.2 in Section 4 using a technique introduced
by Costello.
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2.3. Costello’s diagram. We restrict to genus 0 maps and construct
a cartesian square

(2.3.1) M
relorb

(Xr,Dr)
ΦX //

σrel

��

M
orb

(Xr)

σ

��
Mrel(A ,BGm)′

ΦA // M(A )′.

Here ΦX is the morphism denoted Φ above. We use A to stand for
the stack A = [A1/Gm], which includes BGm = [{0}/Gm] as a closed
substack (of Artin type). We show below that the diagram has the
following properties:

(1) the virtual fundamental classes can be defined via perfect rela-
tive obstruction theories relative to the vertical arrows, and

(2) the hypotheses of [Cos06, Theorem 5.0.1] are satisfied for these
choices.

The stacks in the bottom row of this diagram require definition,
which will be given explicitly in Section 3. For the moment, we note
the following.

• We define M(A ) to be the stack of triples (C,L, s), where C is
a twisted curve, L a line bundle on C and s a section of L, such
that the associated morphism C → A is representable. The
stack M(A )′ is defined in Section 3.3.2 as an open substack of
M(A ).
• Let T be Jun Li’s moduli space of expanded pairs (see Sec-

tion 3.3.1 and [ACFW]). We define M(A rel/T ) to be the stack
of maps over T from twisted curves to expansions of A rela-
tive to the divisor BGm. The stack Mrel(A ,BGm)′ is defined in
Section 3.3.3, and it is shown there to be étale over M(A rel/T ).

3. Construction of the main diagram

In this section we will construct the stacks appearing in Diagram (2.3.1).
Our definitions require the notion of stable maps into the fibers of a
morphism, which we summarize first. In Section 3.3.1 we describe our
perspective on J. Li’s moduli space of expansions of a scheme with
a divisor; this section summarizes material from [ACFW]. Finally in
Section 3.3.2 and 3.3.3 we construct the stacks in the bottom row of
Diagram (2.3.1) and in Section 3.3.4 we show that they are algebraic.
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3.1. Stable maps into the fibers of a morphism. We refer the
reader to Appendix A for some of the details that are omitted from
this section.

3.1.1. Definitions. Suppose that X → T is a morphism of stacks. We
define M(X/T ) to be the stack of commutative diagrams

(3.1.1) C
f //

��

X

��
S // T

where C → S is a family of twisted pre-stable curves with an ordered set
of marked points (not illustrated in the diagram), and f : C → X ×T S
is representable. We will use the notation MΓ(X/T ) to refer to an open
and closed substack of M(X/T ) consisting of those diagrams as above
having some fixed data; for example, Mg,n(X/T ) will denote the sub-
stack parameterizing those diagrams where C has genus g and nmarked
(possibly twisted) points.

Let M(X/T ) be the substack of points of M(X/T ) where the (ab-
solute) inertia group is unramified. Under mild conditions, M(X/T )
is an algebraic stack and M(X/T ) is its maximal Deligne–Mumford
substack, see Proposition 3.3.2 for the cases relevant in this paper.

Remark 3.1.2. The stack of maps into the fibers of a morphism is
frequently defined as the space of maps into the total space whose
homology class is that of a fiber. We have not taken this approach for
two reasons. The first is that we need a definition in the case where
the morphism is of Artin type, so we don’t know how to talk about
the homology class of a fiber. The second reason is more philosophical:
the obstruction theory naturally associated to the space of maps with
the homology class of a fiber is different from the obstruction theory on
the space of maps into a fiber as defined above ([AF, Appendix C.2].

3.1.2. The Cartesian diagram. We will eventually need to study a com-
mutative diagram of the following form, where the upper square is
Cartesian and the lower square is not.

(3.1.3) X //

��

X ′

��
Y //

��

Y ′

��
T // T ′
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In the application,

• T ′ will be a point,
• Y ′ = A will be the moduli space of line bundles with section,
• X ′ will be a smooth Deligne–Mumford stack with X ′ → Y ′ the

morphism corresponding to a smooth divisor D′ on X ′,
• T will be J. Li’s moduli space of expanded pairs,
• Y = A exp will be the universal expansion of A along the divisor
BGm, and
• X = Xexp will be the universal expansion of X ′ along the divisor
D′.

This induces a Cartesian diagram

M(X/T ) //

��

M(X ′/T ′)

��
M(Y/T ) // M(Y ′/T ′),

where all the maps are given by composition. However, the corre-
sponding diagram with M replaced by M in the upper row is not even
commutative. This is because a map

M(X/T )→M(X ′/T ′)

may require the contraction of some components that become unstable
after composition with the map X → X ′ while the map M(Y/T ) →
M(Y ′/T ′) involves no contraction at all.

If we do not modify the construction, this will prevent us from apply-
ing Costello’s theorem. Our solution is to replace M(Y/T ) by a stack
that keeps track of slightly more information: in addition to a family
of curves in the fibers of Y → T , this stack will also parameterize a
contraction of this family in the fibers of Y ′×T ′ T .

The technical device used to achieve this is a stack M(X/X/T ),
associated to a sequence of morphisms

X → X → T

with X → X representable. This is the stack whose S-points are
diagrams

(3.1.4) C //

��

X

��

C //

��

X

��
S // T
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where the stabilization of C → C is an isomorphism.
Given a morphism T → T ′ and X = X ′T for some stack X ′ over T ′,

we define
M(X/X ′T/T ) ⊂M(X/X ′T/T )

to be the substack of points whose inertia relative to M(X ′/T ′) is un-
ramified. (Note that we are abusing notation slightly, since M(X/X ′T/T )
does not depend only on X ′T but also on the map X ′T → X ′.) Let
M(X/T )∗ denote the subspace of M(X/T ) consisting of those dia-
grams (3.1.1) that can be stabilized in M(X ′/T ′) after composing with
the map X → X ′. Then we obtain the Cartesian diagram we need:

Proposition 3.1.5. Suppose that X ′ → T ′ is a morphism of Deligne–
Mumford type. The diagram

M(X/T )∗ //

��

M(X ′/T ′)

��
M(Y/Y ′T/T ) // M(Y ′/T ′).

is Cartesian.

The proof (which is straightforward from the construction) is de-
ferred to Section 3.2.

3.1.3. Comparison of M(X/X/T ) and M(X/T ). We have a morphism

(3.1.6) τ : M(X/X/T )→M(X/T )

which forgets the middle row of (3.1.4). We will need the following
lemma.

Lemma 3.1.7. Suppose that C → C is a morphism of n-marked
twisted curves over S, the stabilization of which is an isomorphism.
Then the canonical map OC → Rp∗OC is a quasi-isomorphism.

Proof. We claim that the fibers of p : C → C over S are trees of
genus zero curves. (Note that C → C is representable, so the fibers
are schemes.) To see this, we can suppose that S is a point. Since C
is a curve, the fibers of C → C that are not points must each have
at least one special point: the point at which the fiber is attached to
the rest of C. Since the fibers that are not points are unstable curves,
it follows that the these fibers must be connected curves of arithmetic
genus zero.

Since the fibers of p have arithmetic genus zero, H1(p−1c,OC
∣∣
p−1c

)

vanishes at each geometric point c of C. Therefore, by cohomology
and base change, R1p∗OC = 0. Likewise, the map OC → p∗OC is an
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isomorphism on the geometric fibers, hence is an isomorphism, again
by cohomology and base change. �

Lemma 3.1.8. The morphism τ of (3.1.6) is formally étale.

Proof. We shall show that the natural obstruction theory vanishes. It
is easy to produce a direct proof of this fact, but it is somewhat faster
to rely on Illusie’s relative cohomology.

For τ to be formally étale at the point corresponding to Diagram (3.1.4),
it is equivalent to show that, for any square-zero extension S → S ′ with
ideal J , any commutative diagram of solid arrows

S //

��

M(X/X/T )

��

S ′ //

99tttttt
M(X/T )

can be extended, uniquely up to unique isomorphism, to a commutative
diagram including the dashed arrow. To show this, it is equivalent to
show that the lifting problem

C //

π

��

C ′

���
�
�

��

C

��

//___ C
′

���
�
�

XS
// X
′
S

admits a solution that is unique up to unique isomorphism. By [Ill71,
Ch. III, p. 199, Prop. 2.3.2], obstructions, deformations, and infinites-
imal automorphisms for such a problem are classified by

Exti(C/C; LC/XS
(logP ), J), i = 0, 1, 2

where J is the pull-back of the ideal of S in S ′ and P is the divi-
sor of marked points. It therefore suffices to show that the group
Exti(C/C; LC/XS

(logP ), J) vanishes for all i. There is an exact tri-

angle [Ill71, Ch. III, p. 221, Equation (4.10.3)]

RHom(C/C; LC/XS
(logP ), J)→ RHom(LC/XS

(logP ), J)
ϕ−→ RHom(LC/XS

(logP ),Rπ∗Lπ
∗J).

But J → Rπ∗Lπ
∗J is a quasi-isomorphism by Lemma 3.1.7, so ϕ is

a quasi-isomorphism, and hence Exti(C/C; LC/XS
(logP ), J) is zero for

all i. �



GROMOV–WITTEN INVARIANTS (March 29, 2010) 13

Remark 3.1.9. In fact τ is étale: in addition to being formally étale, it
is representable by algebraic spaces and locally of finite presentation.
However, we will not need that fact in such generality in this paper.

3.1.4. Obstruction theory. If X → Y is a smooth morphism over T of
Deligne–Mumford type it induces a natural obstruction theory for the
morphism M(X/T )→M(Y/T ). Let

X

��
C(X/T ) //

f ..

π

��

C(Y/T ) //

��

Y

��
M(X/T ) // M(Y/T ) // T

be the universal commutative diagram. There is a canonical map in
the derived category of quasi-coherent sheaves on C(X/T ),

f ∗LX/Y → LC(X/T )/C(Y/T ) ' π∗LM(X/T )/M(Y/T ).

By adjunction, we obtain a morphism in the dervied category of quasi-
coherent sheaves on M(X/T ),

π!f
∗LX/Y → LM(X/T )/M(Y/T ).

Here π! is the left adjoint to Lπ∗; it exists by Grothendieck duality and
the invertibility of ωπ. We denote the complex π!f

∗LX/Y on the left by
EM(X/T )/M(Y/T ).

Proposition 3.1.10. The morphism

EM(X/T )/M(Y/T ) → LM(X/T )/M(Y/T )

is a perfect relative obstruction theory of perfect amplitude in [−1, 0].

Proof. To prove this, we can work locally on the base M(Y/T ). Since
M(X/T ) is of Deligne–Mumford type over M(Y/T ), this reduces the
problem to the case of a Deligne–Mumford stack over a base scheme.
The rest of the proof is then very similar to [BF97, Theorem 4.5 and
Proposition 6.3]. We give details in Section A.1. �

Now we place ourselves in the situation of Diagram (3.1.3). The
natural map

τ : M(Y/Y ′T/T )→M(Y/T )

is formally étale, so the obstruction theory for M(X/T ) relative to
M(Y/T ) is also an obstruction theory relative to M(Y/Y ′T/T ). We set

EM(X/T )/M(Y/Y ′T /T ) = EM(X/T )/M(Y/T )
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to emphasize that we are working relative to M(Y/Y ′T/T ). This re-
stricts to a perfect obstruction theory on any open substack U of
M(X/T ), and we write EU/M(Y/Y ′T /T ) for such a restriction; below we

use this for U = M(X/T )∗.

Proposition 3.1.11. Let g : M(X/T )∗ →M(X ′/T ′) be the canonical
morphism. There is a commutative diagram

(3.1.12) g∗EM(X′/T ′)/M(Y ′/T ′)
∼ //

��

EM(X/T )∗/M(Y/Y ′T /T )

��
g∗LM(X′/T ′)/M(Y ′/T ′)

// LM(X/T )∗/M(Y/Y ′T /T )

in which the upper horizontal arrow is an isomorphism and the lower
horizontal arrow is the canonical morphism of cotangent complexes.

Proof. The commutativity of the diagram is not difficult to check, but
it is tedious to carry out in complete detail. We refer readers with the
patience for these details to Appendix A.2.

To complete the proof, we must check that the map in the upper
horizontal arrow of Diagram (3.1.12) is a quasi-isomorphism. Let C be
the universal curve over M(X/T ), let C ′ be the universal curve over
M(X ′/T ′), and let C be the pullback of C ′ to M(X/T )∗, so that the
diagram

C ρ

''

π

##

ε

%%LLLLLLLLLLLL

C
ρ //

π
��

C ′

π′

��

M g,n(X/T )∗
g // M g,n(X ′/T ′)

commutes and has a Cartesian square. Let f ′ : C ′ → X ′ and f : C → X
be the universal maps.

Note the following.

(1) The map q∗TX′/Y ′ → TX/Y is an isomorphism since X ′ → Y ′ is
smooth and X = X ′×Y ′ Y .

(2) We have Rε∗Lε
∗ = id since Rε∗OC = OC by Lemma 3.1.7.

(3) Dualization commutes with pullback for perfect complexes.
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We have

g∗E∨
M(X′/T ′)/Mg,n(Y ′/T ′)

= g∗Rπ′∗f
′∗TX′/Y ′

= Rπ∗ρ
∗f ′
∗
TX′/Y ′

= Rπ∗Rε∗Lε
∗ρ∗f ′

∗
TX′/Y ′

= Rπ∗f
∗TX/Y

= E∨
M(X/T )∗/M(Y/T )

.

�

3.2. Detailed proof of Proposition 3.1.5. In Section 3.1.2 we de-
fined M(X/X ′T/T ) be the substack of points s : S →M(X/X/T ) such
that

ker
(

AutM(X/X′T /T )(s)→ AutM(X′/T ′)(s)
)

is unramified over S. This is the maximal substack of M(X/X ′T/T )
with unramified inertia relative to M(X ′/T ′).

Proposition 3.2.1. (a) Suppose that we have a commutative dia-
gram of algebraic stacks (3.1.3) with X = X ′×Y ′ Y . The natu-
ral map

M(X/X ′T/T )→M(Y/Y ′T/T ) ×
M(Y ′/T ′)

M(X ′/T ′)

is an isomorphism.
(b) Let X ′ and Y ′ be algebraic stacks over T ′ and write X ′T :=

X ′×T ′ T and Y ′T = Y ′×T ′ T . The natural map

M(X/X ′T/T )→M(Y/Y ′T/T ) ×
M(Y ′/T ′)

M(X ′/T ′)

is an isomorphism of stacks.

Proof. (a) Set Y = Y ′T and X = X ′T . By definition, an S-point of
M(Y/Y ′T/T )×M(Y ′/T ′) M(X ′/T ′) is a diagram

C

��

// Y

��
C //

��

X ′ //

��

Y ′

��
S // T // T ′

which clearly induces a unique map C → X = X ′×Y ′ Y .
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(b) If s is a point of M(X/X ′T/T ), then by (a) there is a cartesian
diagram

AutM(X/X′T /T )(s) //

��

AutM(X′/T ′)(s)

��
AutM(Y/Y ′T /T )(s) // AutM(Y ′/T ′)(s).

The induced map between the kernels of the two horizontal
arrows is an isomorphism; one is unramified if and only if the
other is.

�

For the rest of this section, we work in the setting of Proposi-
tion 3.2.1 (b), assuming in addition that X ′ is of Deligne–Mumford
type and X → X ′T is representable.

In Section 3.1, we defined M(X/T )∗ be the locus of maps C → X in
M(X/T ) such that the composed map C → X ′ admits a stabilization.
More precisely, M(X/T )∗ is the locus of maps C → X where either the
homology class of the image of C in X ′ is non-zero or 2g − 2 + n > 0
(with g denotes the genus of C and n its number of marked points).
Since the homology class of C in X ′ and the function 2g − 2 + n are
both locally constant, M(X/T )∗ is open and closed in M(X/T ).

Let γ : M(X/T )∗ →M(X ′/T ′) be the map which sends a map C →
XS over S to the stabilization C of the composed map C → X ′. Since
there is a projection C → C whose stabilization is an isomorphism,
this also induces a section σ : M(X/T )∗ →M(X/X ′T/T ) of τ .

Proposition 3.2.2. Suppose X ′ is a Deligne–Mumford stack. Then
the map

(σ, γ) : M(X/T )∗ →M(X/X ′T/T ) ×
M(X′)

M(X ′/T ′)

is an isomorphism with inverse given by τp1 and it induces an isomor-
phism

(3.2.3) M(X/T )∗ →M(X/X ′T/T ) ×
M(X′/T ′)

M(X ′/T ′)

Proof. Since σ is a section of τ , it is clear that τp1 is left inverse to
(σ, γ). In particular, (σ, γ) is an isomorphism of M(X/T )∗ onto a
substack of M(X/X ′T/T )×M(X′/T ′) M(X ′/T ′). Note that this implies
that, for any s : S →M(X/T )∗, we have

AutM(X/T )(s)→ AutM(X/X′T /T )(s)

is an isomorphism of group schemes over S.



GROMOV–WITTEN INVARIANTS (March 29, 2010) 17

To see that τp1 is also right inverse to (σ, γ), we must show that,
for any S-point (3.1.4) of M(X/X ′T/T ) whose image in M(X ′/T ′) is
contained in M(X ′/T ′), the stabilization of C → X ′ is C. Let C ′

denote the stabilization. Since the stabilization is initial among all
factorizations of C → X ′ through stable maps, there is a map C ′ → C.
On the other hand, C ′ → C is also stable (its automorphism group
being contained in that of C ′ over X ′) and C is the stabilization of
C → C, so we obtain a section C → C ′, which must be an isomorphism
by the universal property. This proves the first claim.

To finish the proof, we must show that s : S → M(X/T )∗ is
in M(X/T )∗ if and only if σs is in M(X/X ′T/T ). For s to lie in
M(X/T )∗ means that AutM(X/T )(s) is unramified over S; for σs to

lie in M(X/X ′T/T ) means that the group K in the exact sequence

0→ K → AutM(X/X′T /T )(s)→ AutM(X′/T ′)(s)

is unramified over S. Since s is in M(X/T )∗, the group AutM(X′/T ′)(s)
is unramified. Thus, K is unramified if and only if AutM(X/X′T /T )(s) is.

But we saw above that AutM(X/X′T /T )(s) is isomorphic to AutM(X/T )(s).

Thus s is in M(X/T )∗ if and only if it is in M(X/X ′T/T ). �

Combining Propositions 3.2.1 and 3.2.2 now yields Proposition 3.1.5.

3.3. Constructing the moduli stacks.

3.3.1. The moduli stack of expanded pairs. The moduli space of targets
T is defined in [Li01, Definition 4.4] (denoted there by Zrel and called
the stack of expanded relative pairs); the notation T , as well as the
name, come from [GV05]. We summarize some properties of T that
are proved in [ACFW].

The stack T admits an étale cover by maps A n → T , n = 0, 1, . . .
such that, for any monotonic injection u : [n] → [m], there is a 2-
isomorphism making the diagram

A n //

!!DDDDDDDD A m

||zzzzzzzz

T

commute, and these 2-isomorphisms are compatible in the obvious
sense. It is also proved in [ACFW] that T is the colimit of the A n,
but we will not use this fact here.

There is a universal expansion A rel of A over T . Setting A [n] =
A rel×T A n, it is shown in [ACFW] that A [n] may be identified with
an open substack of A 2n+1.
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3.3.2. Construction of M(A )′. Recall that a morphism C → A is
equivalent to a line bundle with section on C. Therefore an object of
M0,n(A ) is equivalent to a triple (C,L, s), where C is an n-marked
genus 0 curve over S, with a line bundle L on C, and a section s of L.
Define the open substack M0,n(A )′ ⊆M0,n(A ) as follows.

An object (C,L, s) of M0,n(A ) over a scheme S is an object of
M0,n(A )′ if for every geometric point ξ → S,

MA1 deg(Lξ) =
∑n

i=1 agei(Lξ), where agei denotes the age at the i-th
marked point, and

MA2 for any proper subcurve C ′ ⊂ Cξ, we have −1
2
< deg(L

∣∣
C′

) < 1
2
.

If the geometric fiber Cξ is smooth, with coarse moduli space C,
these imply that the push forward of L to C is OC . In particular,
H1(Cξ, Lξ) = 0 in this case.

These conditions are crucial for the key technical argument in Sec-
tion 4.3.

3.3.3. Construction of Mrel(A ,BGm)′. We construct Mrel(A ,BGm)′

through a series of definitions as follows.
Let

C //

��

A rel

��
S // T

describe an S-point of M(A rel/T ). The distinguished divisor of A rel

pulls back to a closed substack P on C. We say that a diagram as
above is in Mtr(A rel/T ) if the map C → A rel is smooth near the
pre-image of the nodes and near P . The point is that when C → A rel

lifts to an expanded pair C → Xrel with X a scheme, then the map is
an object of Mtr(A rel/T ) if an only if C → Xrel is transversal to the
nodes and boundary divisor of Xrel.

This definition makes Mtr(A rel/T ) an open substack of M(A rel/T ).
We denote its pre-image in M(A rel/AT /T ) by Mtr(A rel/AT /T ). We

define Mrel(A ,BGm)′ = M
tr

(A rel/AT /T ) to be the intersection of
Mtr(A rel/AT /T ) and M(A rel/AT /T ).

3.3.4. Algebraicity properties. We prove here that the stacks considered
above are algebraic. We repeatedly use

Lemma 3.3.1 (cf. [AF, Lemma B.2.1]). Suppose X is a stack with
a morphism to an algebraic stack Y . Assume there is a smooth cover
U → Y by an algebraic stack U such that U ×Y X is an algebraic
stack. Then X is algebraic.
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Proposition 3.3.2.

(1) The stacks M(BGm), M(A ), as well as the stack M(A )′ de-
fined in Section 3.3.2, are algebraic.

(2) The stack M(A rel/T ) is algebraic.
(3) The stack M(A rel/AT /T ) is algebraic.
(4) The stacks Mtr(A rel/T ), as well as Mrel(A ,BGm)′ defined in

Section 3.3.3, are algebraic.
(5) Let X be a Deligne–Mumford stack of finite type over C. Then

the stacks M(X rel/T ) and M
tr

(X rel/T ) are algebraic. Thus

M
tr

(X rel/T ) is a Deligne–Mumford stack.

Proof. (1) To prove the algebraicity of M(BGm), it is sufficient to work
locally in the moduli stack of Deligne–Mumford pre-stable curves M.
It is therefore sufficient to show that for any scheme S and family of
orbifold pre-stable curves C over S, the S-stack HomS(C, S ×BGm) is
algebraic. This follows from [Aok06, page 53] and [Bro09].

Now we may prove that M(A ) is algebraic by working locally in
M(BGm). We must show that for any scheme S, any family of orbifold
pre-stable curves C over S, and any line bundle L over C, the S-sheaf
of sections of L is representable. This is just HomS(C,L)×HomS(C,C) S
where the map S → HomS(C,C) is the one associated to the identity
map on C. This is representable by [Ols06b, Theorem 1.1], since both
C and L are Deligne–Mumford stacks over S.

Finally, M(A )′ is open in M(A ), which completes the proof of (1).
(2) It is sufficient to prove this locally in T . The collection of A n →

T defined in Section 3.3.1 forms an étale cover, so it is sufficient to
prove that M(A rel/T )×T A n is algebraic for each n. We have

M(A rel/T )×
T
/A n ∼= M(A rel×

T
A n/A n)

∼= M(A [n]/A n) ∼= M(A [n]) ×
M(A n)

A n,

and M(A n) ∼= M(A )n is algebraic by (1). Since A n is also algebraic,
it suffices to see that M(A [n]) is algebraic. But A [n] is an open
substack of A 2n+1 so M(A [n]) is an open substack of the algebraic
stack M(A 2n+1), hence is algebrac.

(3) We have a natural morphism M(A rel/AT /T )→M(A rel/T )×T

M(AT /T ). We have shown above that the stack M(A rel/T ) is alge-
braic, and the stack M(AT /T ) = M(A ) × T is algebraic by (1). It
remains to show that

MS := M(A rel/AT /T )×M(A rel/T )×T M(AT /T ) S
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is algebraic whenever S is a scheme. Denote by C → S and C → S
the resulting families of curves as in Diagram (3.1.4). The stack MS

maps to the algebraic stack Homrep
S (C,C) of representable maps. The

locus where these maps have 0-dimensional image is closed, and in
the open (and therefore algebraic) complement the stabilization C →
C ′ → C of C → C is well defined. The stack MS above factors
through the the open (and therefore algebraic) locus where C ′ → C is
an isomorphism. The stack MS itself is therefore the algebraic substack
of sections SectS(D/C) where D = C ×A×A A , where the map on the
right is the diagonal and the maps on the left are C → A rel → A and
C → C → A .

(4) The stack Mtr(A rel/T ) is an open substack of M(A rel/T ),
which is algebraic by (2) above. The stack Mrel(A rel, BGm)′ is an
open substack of M(A rel/AT /T ), which is algebraic by (3) above.

(5) Since X rel = X ×A A rel and the map X rel → T is induced
from A rel → T , we have an isomorphism

M(X rel/T )
∼−→M(X ) ×

M(A )
M(A rel/T ).

But M(X ) is an algebraic stack by [AV02, Theorem 1.4.1 and Sec-
tion 8] and both M(A ) and M(A rel/T ) are algebraic by (1) and (2),
respectively.

By definition, M
tr

(X rel/T ) is an open substack of the maximal
Deligne–Mumford substack of the algebraic stack M(X rel/T ). �

4. Proof of the theorem

In Section 4.1 we reduce the proof of Theorem 2.2 to an application
of Costello’s theorem. The rest of Section 4 will be devoted to the
verification of Costello’s hypotheses.

4.1. The main argument. Let X be a smooth scheme over C with
a smooth divisor D. Let X be the r-th root stack of the line bundle
and section (OX(D), 1) (the value of r will be specified momentarily).
Let D be the r-th root divisor on X .

Proposition 4.1.1. Let X be smooth and D a Cartier divisor, and let
σ : X → A be the corresponding morphism. Then σ is smooth if and
only if D is smooth.

Proof. If σ is smooth then D is smooth as it is the inverse image of the
smooth divisor BGm ⊂ A .

Now we assume D smooth and prove that σ is smooth. The problem
is étale local on X so we may assume D is defined by a local coordi-
nate e1. Completing this to a regular system of parameters (e1, . . . , en)



GROMOV–WITTEN INVARIANTS (March 29, 2010) 21

with n = dimX, we obtain a factorization of σ through the étale map
(e1, . . . , en) : X → An. The map An → A factors through the smooth
projection An → A1 on the first coordinate, and A1 → A is smooth
by definition. �

The proposition implies that the map X → A (determined by the
line bundle and section (OX(D), 1)) is smooth. Since X → A is
obtained from this by base change along the r-th power map, it is
smooth as well. This implies, again by the proposition, that D is
smooth. Therefore the morphism

M0,n(X )→M0,n(A )

has a perfect relative obstruction theory of perfect amplitude in [−1, 0].

We denote the relative virtual class by
[
M0,n(X )/M0,n(A )

]vir
.

Now we select the integer r determining the root stack X . Note
that, as in the proof of Theorem 2.1, this choice in turn determines
a twisting choice r in the sense of [AF, Definition 3.4.1] for relative
stable maps to X of class β, namely r(c1, . . . , ck) = r for every multiset
{c1, . . . , ck} of contact orders occuring in the moduli space.

Definition 4.1.2. Let β be an effective class in H2(X,Z) and let d =
D.β. Set κ = min0≤γ≤βD.γ, the minimum taken over all classes γ
such that both γ and β − γ are effective. Let r be an integer such that

(1) r > 2d,
(2) r > −2κ, and
(3) if j is an integer such that 1 ≤ j ≤ d− κ then j divides r.

Remark 4.1.3. The integer r is chosen carefully for Proposition 4.3.4 to
apply. Since the conditions on r only bound it from below and impose
divisibility, it is clear that an integer r satisfying the conditions exists.

Let Γ stand for the numerical data (g = 0, n, β). The assumptions
on r made above guarantee that the universal curve over MΓ(X ) sat-
isfies Properties MA1 and MA2 of Section 3.3.2, hence that the map
MΓ(X ) → M0,n(A ) factors through M0,n(A )′. We therefore have a
commutative diagram

M
tr

Γ (X rel/T )
ΦX //

��

MΓ(X )

��
Mrel

0,n(A ,BGm)′
ΦA // M0,n(A )′,

which is cartesian by Proposition 3.1.5. This is diagram 2.3.1 with a
more specific notation that includes the relevant discrete data. We will
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apply [Cos06, Theorem 5.0.1] to this diagram. The hypotheses of the
theorem are the following (with numbers corresponding to the bullets
in Costello’s statement):

(1a) M
tr

Γ (X rel/T ) is a Deligne–Mumford stack by Proposition 3.3.2.
(1b) MΓ(X ) is a Deligne–Mumford stack by [AV02, Theorem 1.4.1].

(2,3) M
tr

0,n(A rel/AT /T ) and M0,n(A ) are Artin stacks of the same

pure dimension. The morphism A rel → AT is representable,

so by [AV02, Section 8.3] the morphism M
tr

0,n(A rel/AT /T )→
M0,n(A )′ is of relative Deligne–Mumford type. It is of pure
degree 1 by Proposition 4.1.4).

(4) ΦX is proper by [AF, Corollary 3.4.8].

(5) The obstruction theory forM
tr

Γ (X rel/T )→M
tr

0,n(A rel/AT /T )
on the left is equivalent to the one obtained by pulling back that
of the morphism MΓ(X ) → M0,n(A )′ on the right (Proposi-
tion 3.1.11).

Hypothesis (2,3) is implied by

Proposition 4.1.4. There are dense, unobstructed, open substacks

M
tr

0,n(A rel/AT /T )′′ ⊂M
tr

0,n(A rel/AT /T ) (Section 4.2)

M0,n(A )′′ ⊂M0,n(A )′ (Section 4.3)

on which Φ′A induces an isomorphism.

Proof. For M
tr

0,n(A rel/AT /T )′′ we take the fiber of M
tr

0,n(A rel/AT /T )

above the open point of T . Since A rel and AT are isomorphic over
the open point of T , Diagram (3.1.4) simplifies to

C //

��

A

��
C //

��

A

S.

Since this point lies in M(A rel/AT /T ), it can have no continuous
automorphisms fixing the map C → A . This means that C → C is
stable, hence an isomorphism, since C is the stabilization of the map
C → C. Thus the top line in the diagram above is determined from
the rest of the diagram. This implies that ΦA , which forgets the top

line above, is an embedding on M
tr

(A rel/AT /T )′′.
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By the definition of M
tr

(A rel/AT /T ), a map C → A lies in the
image of ΦA if and only if it is transverse to the divisor BGm ⊂ A , i.e.,
if and only if the map C → A is smooth near the pre-image of BGm.
This is an open condition on M(A )′, hence defines an open substack
M(A )′′ onto which ΦA defines an isomorphism.

To complete the proof, we check in Section 4.2 thatM
tr

(A rel/AT /T )′′

is dense in M
tr

(A rel/AT /T ) and in Section 4.3 that M(A )′′ is dense
in M(A )′. �

In order to check Hypothesis (4), we relate our notation to that

of [AF]. Our stack M
tr

Γ (X rel/T ) is isomorphic to a union of open and
closed substacks Kr

Γ′(X,D) of [AF] where r is equal to our twisting
choice (Definition 4.1.2) and the union is taken as Γ′ ranges among
all “data for a pair” ([AF, Convention 3.1.2]) compatible with Γ (ef-
fectively, over all partitions of {1, . . . , n} into two sets, denoted M
and N in loc.cit.). By [AF, Corollary 3.4.8], each Kr

Γ(X,D) is proper;
since MΓ(X ) is separated ([AV02, Theorem 1.4.1]) this implies ΦX is
proper, which is Hypothesis (4).

We deduce from Costello’s theorem that

Φ∗
[
M

tr

Γ (X rel/T )
/
Mtr

0,n(A rel/T )′
]vir

= [MΓ(X )/M0,n(A )]vir.

where here and later we omit the subscript X of ΦX when no confusion
is likely.

In Section 4.2, we show that Mtr
0,n(A rel/T )′ is smooth, which implies

by a standard compatibility result reviewed in Proposition A.4.1 that[
M

tr

Γ (X rel/T )
/
Mtr

0,n(A rel/T )′
]vir

=
[
M

tr

Γ (X rel/T )
]vir

.

Noting that A → BGm is smooth, we apply a similar compatibil-
ity result reviewed in Proposition A.4.2 to the sequence MΓ(X ) →
M0,n(A )→M0,n(BGm) to conclude[

MΓ(X )
/
M0,n(A )

]vir
=
[
MΓ(X )

/
M0,n(BGm)

]vir
.

Lemma 4.1.5. The stack M(BGm) is smooth and unobstructed.

Proof. The obstructions to deforming a line bundle on C lie inH2(C,OC),
which vanishes if C is a curve. Hence M(BGm) is smooth over M,
which is itself smooth. �

Lemma 4.1.5 permits us again to apply Proposition A.4.1 to the
sequence M0,n(X )→M0,n(BGm)→ (point) and find[

MΓ(X )
/
M0,n(BGm)

]vir
=
[
MΓ(X )

]vir
.
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Taken together, the equalities above imply

Φ∗
[
M

tr

Γ (X rel/T )
]vir

=
[
MΓ(X )

]vir
,

which is the conclusion of Theorem 2.2.
Our remaining task is to complete the proof of Proposition 4.1.4.

4.2. A dense open substack of Mtr
g,n(A rel/AT /T ). We abbreviate

Mtr
g,n(A rel/AT /T ) to M. Let f : C→ A rel be the universal morphism

and write

L := Cone
(
f ∗LA rel/T (logD)→ LC/M(logP )

)
where D is the universal divisor on A rel and P is the divisor of marked
points on C. If π : C → M is the projection, then there is a natural
map

π!L[−1]→ LM/T .

Lemma 4.2.1. This is a relative obstruction theory for M→ T .

This is a standard generalization of [BF97, Proposition 6.3] in com-
bination with [BL00, Proposition A.1]. See Appendix A.3 for more
details.

Proposition 4.2.2. The morphism Mtr
g,n(A rel/AT /T )→ T is smooth

and unobstructed.

Proof. Let E = π!L[−1]. We must show that E has perfect amplitude
in [0, 1]. Since E is certainly perfect, it suffices to see that E∨[−1] =
Rπ∗

(
L∨
)

has perfect amplitude in [0, 1]. By semicontinuity, it is enough

to see that, when S is a geometric point of M and f : C → A rel×T S
is the corresponding morphism, we have

Extp(L
∣∣
C
,OC) = 0

for p ≥ 2 (where L
∣∣
C

denotes the pullback of L to C via the canonical
map C → C).

We use the local-to-global spectral sequence, which gives

Hp(C,Extq(L
∣∣
C
,OC))⇒ Extp+q(L

∣∣
C
,OC).

The proposition will follow once we show

(1) Ext1(L
∣∣
C
,OC) is supported in dimension 0 (which implies that

Hp(C,Ext1(L
∣∣
C
,OC)) = 0 for p > 0), and

(2) Extq(L
∣∣
C
,OC) = 0 for q > 1.
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Indeed, these properties show that the E2 term of the spectral sequence
is concentrated in positions (p, q) ∈ {(0, 0), (0, 1), (1, 0)} which implies
both that it degenerates at the E2 term and that Extp(L

∣∣
C
,OC) = 0

for p ≥ 2.
Let U ⊂ A rel be the complement of D in the smooth locus of the

map A rel → T . Since U is étale over T we have LU/T = 0 and hence

L
∣∣
f−1U

' ΩC .

It is well-known tht Extq(ΩC ,OC) = 0 for q > 1 and is supported on
the nodes for q = 1.

The map C → A rel is transverse to the singularities and to the
distinguished divisor D. Therefore, if x is either a node or the dis-
tinguished divisor of A rel then there is an open neighborhood Vx of x
such that f−1Vx → A rel×T S is smooth. Therefore L

∣∣
f−1Vx

is a vector

bundle, and Extq(L
∣∣
f−1Vx

,OC
∣∣
f−1Vx

) = 0 for q > 0.

Since f−1U and the f−1Vx cover C, this completes the proof. �

Definition 4.2.3. Let Mtr
0,n(A rel/AT /T )′′ ⊂ Mtr

0,n(A rel/AT /T ) be

the pre-image of the open point in T and let M
tr

0,n(A rel/AT /T )′′ be

its intersection with M0,n(A rel/AT /T ).

Corollary 4.2.4. The open inclusions

Mtr
0,n(A rel/AT /T )′′ ⊂M0,n(A rel/AT /T )

M
tr

0,n(A rel/AT /T )′′ ⊂M0,n(A rel/AT /T )

are dense.

Proof. The claim for M
tr

0,n(A rel/AT /T ) follows immediately from that

for Mtr
0,n(A rel/AT /T ). Let t be a point of Mtr

0,n(A rel/AT /T ) that is

not in Mtr
0,n(A rel/AT /T )′′. Choose a scheme T , the spectrum of a

complete Noetherian local ring, and a map T → T whose restriction
to the closed point is the image of t and whose open point maps to
the open point of T . By the proposition, there is a formal section of
Mtr

0,n(A rel/AT /T ) over T , coinciding with t on the closed point. It
suffices to show this section can be algebraized.

Since A [n] is open in A 2n+1, this is a question of algebraizing vector
bundles and their sections. It therefore has an answer by Grothendieck’s
existence theorem. �

4.3. A dense open substack of M(A )′.

Lemma 4.3.1. Let (C,L, s) be a geometric point of M0,n(A )′. Assume
C is smooth. Let C ′ be a square-zero thickening of C with ideal OC.
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Let L′ be an extension of L to C ′. Then s can be extended to a nonzero
section of L′ on C ′.

Proof. The obstruction for this deformation problem lies in H1(C,L);
when the obstruction vanishes, solutions form a torsor under H0(C,L).
To show that a deformation exists it suffices to show that H1(C,L) = 0.
To show that the section can be deformed to be non-zero, we must
show in addition H0(C,L) 6= 0. Our assumptions in Section 3.3.2 on
M0,n(A )′ imply that

L ∼= OC
(∑
y∈C

agey(L)y
)
.

Writing π : C → C for the projection on the coarse moduli space, this
implies that π∗L = OC . But H i(C,L) = H i(C, π∗L) and C has genus
zero, so the lemma follows. �

Lemma 4.3.2. If (C,L, s) is a point of M0,n(A )′ then

(1) if x is a node whose stabilizer group is non-trivial, then s van-
ishes on at least one of the components containing x, and

(2) if x is a node whose stabilizer group is trivial and s(x) = 0,
then s vanishes identically on both components containing x.

Proof. Let (C,L, s) be a point of M0,n(A )′. Suppose that C1 and C2 are
two irreducible components of C meeting at an orbifold node x. Since
agex L

∣∣
C1

+agex L
∣∣
C2

= 1, one of these, say the first, must be at least 1
2
.

But then if s does not vanish on C1, we have degL
∣∣
C1
≥ agex L

∣∣
C1
≥ 1

2
,

contradicting Condition MA2 (Section 3.3.2).
Now let the notation be as above, but assume that x is a node with

trivial stabilizer. If s vanishes at x but does not vanish identically on Ci
then degL

∣∣
Ci
≥ 1, once again contradicting Condition MA2. Thus if s

is an ordinary node, s cannot vanish at x unless it vanishes identically
on both components containing x. �

Definition 4.3.3. Let M0,n(A )′′ ⊆ M0,n(A )′ be the open substack
consisting of triples (C,L, s) such that C is smooth and s is not iden-
tically 0.

Proposition 4.3.4. The substack M0,n(A )′′ ⊂M0,n(A )′ is dense.

Proof. Step 1: smoothing the vanishing locus of s. We will
write M0,n(A )sm.zeros for the open substack consisting of those (C,L, s)
in M0,n(A )′ for which the vanishing locus of s inside C is smooth
(i.e., is a disjoint union of reduced stacky points and smooth curves).
Equivalently, M0,n(A )sm.zeros is the locus where s does not vanish on
two adjacent irreducible components of C.
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By Lemma 4.1.5, a node joining two components of C on which s
vanishes can be smoothed along with the line bundle. The section ex-
tends as the zero section on the resulting smoothed component. It
follows that M0,n(A )sm.zeros is dense in M0,n(A )′. Thus, to prove
Proposition 4.3.4 it remains only to prove that M0,n(A )′′ is dense in
M0,n(A )sm.zeros.

Step 2: smoothing the orbifold nodes: setup. Define the
open substack M0,n(A )ord.nodes ⊂M0,n(A )sm.zeros to be the locus where
C has trivial stack structure at all of its nodes. In Steps 2–7, we will
show that M0,n(A )ord.nodes is dense in M0,n(A )sm.zeros.

On an object (C,L, s) of M0,n(A )sm.zeros having an orbifold node,
the section s vanishes identically on a component C0 of C through
the node. Let C ′ ⊂ C be the locus where s does not vanish and let
C1, . . . , Ck be the connected components of the closure of C ′ that meet
C0. Let pi be the intersection of C0 with Ci. We claim that the nodes
pi can be smoothed simultaneously.

Step 3: Isolating the relevant curve. To obtain this smooth-
ing, it suffices to assume that C is the union of C0, . . . , Ck: any node
connecting Ci to another component of {s = 0} must be twisted, so if
we can deform the section on this subcurve, the deformed section will
automatically vanishes on such nodes. It follows that the deformation
can be glued to a trivial deformation of the rest of the curve.

Step 4: Removing markings way from C0. We further simplify
the object: if there is a twisted marking x ∈ C\C0, then let π : C → C ′

be the morphism which forgets this twisted marking. We can recover
L from π∗L by the formula

L = π∗π∗L⊗OC(agex(L)x).

This can be done in families, so it is equivalent to deform either (C,L, s)
or (C ′, π∗L, π∗s) (where the marked point remains on C ′, but is un-
twisted). So we may assume that all twisted markings of C lie on C0,
though we may no longer assume that −1

2
< degL

∣∣
Ci
< 1

2
for each

i 6= 0.
Step 5: Reduction to positive degree on C0. Choose a gen-

eral point x ∈ C0, and replace C0 with the square root of C0 at x,
replacing L with L ⊗ O(x/2), and s with its image in L ⊗ O(x/2).
By the same argument as before, it suffices to deform this new triple.
Therefore, we can assume that the degree of L restricted to C0 is pos-
itive, and that the total degree of L is less than 1.

Let m be the number of twisted marked points on C0 and define
a1, . . . , am to be the ages of L at these points. For 1 ≤ i ≤ k, let bi
be the age of L

∣∣
Ci

at the node. Since deg(L
∣∣
Ci

) < 1 and L
∣∣
Ci

has a
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nontrivial section, it follows that deg(L
∣∣
Ci

) = bi. Since deg(L) =
∑
ai,

it follows that deg(L
∣∣
C0

) =
∑
ai −

∑
bi.

Step 6: Lifting to a weighted projective space. Choose a
positive integer r̃ such that ai · r̃ ∈ Z and bi · r̃ ∈ Z for all i. Then L⊗r̃

is pulled back from the coarse moduli space of C and has non-negative
degree on each component. The complete linear system of L⊗r̃ together
with the section s define a representable morphism C → PN

H,r̃ of degree

r̃(
∑
ai), where H ⊆ PN is a hyperplane, and PN

H,r̃ = r̃
√

PN , H is the
r̃-th root stack.

The moduli space of twisted stable maps to PN
H,r̃ of genus 0, degree

r̃(
∑
ai), having n marked points, m of which are twisted with contact

types r̃ · a1, . . . , r̃ · am, has expected dimension r̃
∑
aiN + n + N − 3;

see [Cad07a, 3.5.1].
Step 7: Dimension estimate. Now suppose the map C → PN

H,r̃

could not be deformed to a map where C has fewer nodes. We calculate
the dimension of the component of the space of stable maps in which
it lies as follows:

(1) for each i > 0, deformations of Ci → PN
H,r̃ marked by pi are

unobstructed and therefore have dimension precisely r̃biN +
1 +N − 3.

(2) Deformations of C0 → PN
H,r̃ inside H marked by p1, . . . , pk and

the m twisted marked points are identical to deformations of
C0 → PN−1 with as maky marked points, and have precisely
dimension r̃(

∑
ai −

∑
bi)N +m+ k +N − 4.

(3) We have n−m additional untwisted marked points, contributing
as many dimensions to moduli.

(4) The conditions for these maps to glue are independent by Kleiman’s
Bertini argument [Kle74, Theorem 2]. We have N − 1 indepen-
dent conditions for each pi.

We compute:

r̃(
∑

ai −
∑

bi)N +m+ k +N − 4

+
k∑
i=1

(r̃biN + 1 +N − 3− (N − 1)) + n−m

= r̃
∑

aiN + n+ k +N − 4 +
k∑
i=1

(−1)

= r̃
∑

aiN + n+N − 4.
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Since the dimension is greater than or equal to the expected dimen-
sion, it follows that the map C → PN

H,r can be smoothed. We then get

the required deformation of (C,L, s) by pulling back O(H1/r) together
with its tautological section.

It now remains to prove that M0,n(A )′′ is dense in M0,n(A )ord.nodes.
Step 8: smoothing non-orbifold nodes. Now, we show that

M0,n(A )sm, the open substack of M0,n(A )′ consisting of (C,L, s) with
C smooth, is dense in M0,n(A )ord.nodes. By Lemma 4.1.5, there is no
obstruction to deforming L as C is smoothed, and the obstruction to
deforming s as C and L are deformed lies in H1(C,L). But since
(C,L, s) is in M0,n(A )ord.nodes the vanishing locus of s must be discrete
by Lemma 4.3.2. Therefore L must have non-negative degree on every
component of C, whence H1(C,L) = 0. The obstruction to carrying
s along with the deformation of (C,L) therefore vanishes and (C,L, s)
can be deformed into M0,n(A )sm.

Step 9: deforming to a nonzero section. Lemma 4.3.1
implies that M0,n(A )′′ is dense in M0,n(A )sm, which completes the
proof. �

Appendix A. Proofs of standard obstruction results

A.1. Proposition 3.1.10.

Lemma A.1.1. Suppose E → L → F is an exact triangle in D≤s(A)
for some abelian category A. The following are equivalent.

(i) the map Hp(E) → Hp(L) is an isomorphism for p > t and
surjective for p = t,

(ii) F is concentrated in degrees < t,
(iii) for every J ∈ A, the map

Ext−p(L, J)→ Ext−p(E, J)

is an isomorphism for p > t and injective for p = t,
(iv) Ext−p(F, J) = 0 for all p ≥ t and all J ∈ A.

Proof. (i) ⇔(ii) follows immediately by considering the long exact se-
quence in cohomology

· · · → Hs−1(F)→ Hs(E)→ Hs(L)→ Hs(F)→ 0.

Likewise, (iii) ⇔(iv) follows from the long exact sequence

0→ Ext−s(F, J)→ Ext−s(L, J)→ Ext−s(E, J)→ Ext−s+1(F, J)→ · · · .
It is obvious that (ii) implies (iii). For the converse, it is sufficient,

by descending induction, to assume that F ∈ D≤t(A). In that case, it
follows by taking J = H t(F). �
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Proposition A.1.2. Suppose that X → Y is representable morphism
of algebraic stacks. Then the morphism EM(X/T )/M(Y/T ) → LM(X/T )/M(Y/T )

constructed in Section 3.1.4 is an obstruction theory. If X → Y is
smooth then it is of perfect amplitude in [−1, 0].

For brevity, we enote EM(X/T )/M(Y/T ) by E and LM(X/T )/M(Y/T ) by L.
By the Lemma above, it’s enough to prove that

Exti(L, J)→ Exti(E, J)

is injective for i = 1 and bijective for i = 0 and that E is perfect in
degrees [−1, 0] if X → Y is smooth.

The last property is the easiest: assuming X is smooth over Y , we
obtain E as the dual of the derived pushforward of the vector bundle
f ∗TX/Y , where f : C → X is the universal map. Since C has one-
dimensional fibers over M(X/T ), we have H i(π−1s, f ∗TX/Y ) = 0 for
i > 1 and every geometric point s of M(X/T ). The difference of the
ranks of H i(π−1s, f ∗TX/Y ) for i = 0, 1 is the Euler characteristic of
f ∗TX/Y , which is locally constant. Therefore Rπ∗f

∗TX/Y is perfect
of perfect amplitude in [0, 1], hence its dual E is perfect of perfect
amplitude in [−1, 0].

We will reduce the rest of the proof to

Lemma A.1.3. The maps

(A.1.4) Exti(L, J)→ Exti(E, J)

are injective for i = 1 and an isomorphism for i = 0.

Using the lemma we can prove that E is an obstruction theory. The
hypothesis clearly implies the bijectivity of Ext0(L, J) → Ext0(E, J).
On the other hand, we obtain the following commutative diagram with
exact rows from the local-to-global spectral sequence.

0 // H1(Ext0(L, J)) //

A
��

Ext1(L, J) //

B
��

H0(Ext1(L, J))

C
��

0 // H1(Ext0(E, J)) // Ext1(E, J) // H0(Ext1(E, J))

Since A is a bijection, the injectivity of C implies the injectivity of
B. �

The rest of this section will be devoted to a proof of the lemma. We
will interpret the map EM(X/T )/M(Y/T ) → LM(X/T )/M(Y/T ) in terms of
infinitesimal obstructions and deformations. We begin by proving the
injectivity of (A.1.4) in the the case i = 1.

Let S → S ′ be a morphism over M(X/T ) → M(Y/T ), so that S
and S ′ have families of curves C and C ′ over them, with C = C ′×S′ S,
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and there are morphisms f : C → X and C ′ → Y . Let S → S ′′ be an
infinitesimal extension over S ′ with ideal J , inducing an infinitesimal
extension C → C ′′ = C ′×S′ S ′′ with ideal π∗SJ , where πS : C → S
is the projection. Assume that S ′ is a scheme and that S → S ′ is
representable. (This assumption is necessary to apply the results of
[Ols06a].)

We study the relationship between the following two lifting problems.
Consider first the commutative diagram of solid lines

C //

��

X

��
C ′′ //

>>|
|

|
|

Y.

By [Ols06a, Theorem 1.5] there is an obstruction in β ∈ Ext1(f ∗LX/Y , π
∗J)

whose annihilation is equivalent to the existence of a dashed arrow mak-
ing the diagram commute. If a solution exists then the set of solutions
forms a torsor under Ext0(f ∗LX/Y , π

∗J).
Second, we have the diagram

S

��

id // S

��
S ′′ //

=={
{

{
{

S ′.

This lifting problem is obstructed by Ext1(LS/S′ , J) and solutions, if

any exist, form a torsor under Ext0(LS/S′ , J) (again by loc.cit.).
The map ES/S′ → LS/S′ is induced from the diagram

π∗SLS/S′
∼−→ LC/C′ ← LC/Y ← f ∗LX/Y

using the adjunction (πS !, π
∗
S). These induce maps

Exti(LS/S′ , J)→ Exti(π∗SLS/S′ , π
∗
SJ)

∼←− Exti(LC/C′ , π
∗
SJ)

→ Exti(LC/Y , π
∗
SJ)→ Exti(f ∗LX/Y , π

∗
SJ)

for each i. Let α be an element of Ext1(LS/S′ , J).

1. Corresponding to α there is a square-zero thickening S → S ′′

with ideal J . We can view α as the obstruction to the existence
of a lift in the diagram below.

S //

��

S

��
S ′′ //

>>|
|

|
|

S ′
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2. By [Ols06a, Lemma 4.12], the image of α in Ext1(π∗SLS/S′ , π
∗
SJ)

obstructs the lifting problem

C //

��

S

��
C ′′ //

=={
{

{
{

S ′.

3. This obstruction is the image of the standard obstruction to the
lifting problem

C //

��

C

��
C ′′ //

==|
|

|
|

C ′

under the isomorphism Ext1(LC/C′ , π
∗
SJ)

∼−→ Ext1(π∗SLS/S′ , π
∗
SJ).

If C and C ′ were schemes instead of Deligne–Mumford stacks,
this would follow directly from the construction of the obstruc-
tion [Ill71, III.2.2.1.2]; the case of Deligne–Mumford stacks can
be proved either by following Illusie’s construction but work-
ing in the étale site instead of the Zariski site, or by following
Olsson and reducing to the case of schemes by taking simplicial
resolutions. We omit the details.

4. The image of our class along the map Ext1(π∗SLC/C′ , π
∗
SJ) →

Ext1(LC/Y , π
∗
SJ) is the obstruction to lifting

C //

��

C

��
C ′′ //

>>|
|

|
|

Y.

If everything were a scheme, this would be immediate from
the construction of the obstruction. It can be proved in our
context by working with simplicial resolutions by disjoint unions
of affine schemes.

5. And the image of this in Ext1(f ∗LX/Y , π
∗
SJ) obstructs the exis-

tence of a lift for

C //

��

X

��
C ′′ //

>>|
|

|
|

Y.

Again, this is immediate from the definition in the case of
schemes and proved in general by a simplicial resolution.
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Now, suppose that S ′ = M(Y/T ) and that this final obstruction
vanishes. Then there is a map C ′′ → X lifting the diagram above, so
there is a lift for

S //

��

M(X/T )

��

S ′′

::u
u

u
u

u
// M(Y/T ).

Thus the original obstruction α must have been zero. In other words,
the map Ext1(LS/M(Y/T ), J) → Ext1(ES/M(Y/T ), J) is injective. Apply-
ing this with u : S → M(X/T ) varying among smooth maps from
schemes to M(X/T ), we find that

Ext1(LM(X/T )/M(Y/T ), J)→ Ext1(EM(X/T )/M(Y/T ), J)

is injective (since Ext1(LS/M(Y/T ), J) → Ext1(u∗LM(X/T )/M(Y/T ), J) is
an isomorphism, cf. [Ols06a, Lemma 4.7]).

This implies thatH0(Ext1(LM(X/T )/M(Y/T ), J))→ H0(Ext1(EM(X/T )/M(Y/T ), J))
is injective.

Now we turn to the bijectivity of (A.1.4) in the case i = 0. Consider
any element β ∈ Ext0(LS/S′ , J). We may represent this by a choice of
dashed arrow making the diagram

(A.1.5) S //

��

S

��
S[J ]

=={
{

{
{

// S ′

commute. Following the chain of diagrams above with S ′′ replaced by
S[J ] and C ′′ replaced by C[π∗SJ ] we find the image of β in Ext1(f ∗LX/Y , π

∗
SJ)

to be the induced choice of dashed arrow making

(A.1.6) C //

��

X

��
C[π∗SJ ]

;;w
w

w
w

w
// Y

commute. Now putting S ′ = M(Y/T ), any such arrow comes from a
unique dashed arrow

S //

��

M(X/T )

��
S[J ]

::t
t

t
t

t
// M(Y/T )
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(since M(X/T ) is a moduli space!). If S is smooth over M(X/T ) and
affine then this lift is induced from a lift of Diagram (A.1.5). Letting S
vary among all affine schemes smooth over M(X/T ), we deduce that

(A.1.7) Ext0(LM(X/T )/M(Y/T ), J)→ Ext0(EM(X/T )/M(Y/T ), J)

is surjective.
Suppose finally that the lift of Diagram (A.1.6) factors through the

retraction onto C over the retraction of S[J ] onto S (i.e., the image of β
in Ext0(f ∗LX/Y , π

∗
SJ) is zero). Then the map S[J ]→M(X/T ) factors

through S, which is to say that β lies in the image of Ext0(LS/M(X/T ), J)

inside Ext0(LS/M(Y/T ), J). But the exactness of the sequence

0→ Ext0(LS/M(X/T ), J)→ Ext0(LS/M(Y/T ), J)→ Ext0(h∗LM(X/T )/M(Y/T ), J)

where h denotes the map S → M(X/T ), implies that the image of
β in Ext0(h∗LM(X/T )/M(Y/T ), J) vanishes. This implies that the mor-
phism (A.1.7) is injective and completes the proof that EM(X/T )/M(Y/T )

is an obstruction theory. �

A.2. Proposition 3.1.11. This can be proved directly from the defi-
nitions by chasing adjunctions. This is unpleasant, though, so we prefer
to interpret Proposition 3.1.11 in deformation theoretic terms.

To keep the notation readable, we will abbreviate

EX/Y = EMg,n(X/T )/Mg,n(Y /T )

EX/Y = EMg,n(X/T )∗/Mg,n(Y/Y /T ) = EMg,n(X/T )∗/Mg,n(Y/T )

FX/Y = LMg,n(X/T )/Mg,n(Y /T )

FX/Y = FMg,n(X/T )∗/Mg,n(Y/Y /T ) = FMg,n(X/T )∗/Mg,n(Y/T ).

We’ll also omit the /T notation for moduli spaces of maps, since ev-
erything is over T (i.e., M g,n(X) will mean M g,n(X/T )).

We wish to show that the diagram

h∗EX/Y
∼ //

��

EX/Y

��
h∗FX/Y // FX/Y

in D(M g,n(X)) commutes and that the upper horizontal map is an
isomorphism. It is equivalent to show that the maps induced on the
functors that these objects co-represent are the same. By the naturality
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of the local-to-global spectral sequence for Ext, it is therefore enough
to show that the diagram

Extp(FX/Y , J) //

��

Extp(h∗FX/Y , J)

��
Extp(EX/Y , J) // Extp(h∗EX/Y , J)

commutes for all p. Since EX/Y has perfect amplitude within [−1, 0],
it is sufficient to prove this for p = 0, 1.

Since the definition of the obstruction theory is compatible with flat
base change, it is enough to prove this locally with respect to the
moduli spaces in question. We therefore take S and S ′ to be affine and
smooth over M g,n(X/T )∗ and M g,n(X/T ), respectively, fitting into a
commutative diagram

S
g //

u
��

S ′

��

M g,n(X)∗ //

��

M g,n(X)

��
Mg,n(Y ) // Mg,n(Y ).

corresponding to a diagram

X

��

// X

��
C //

��

//

C ′ //

��

Y

��

// Y

��~~~~~~~~

S // S ′ // T

where C and C ′ are twisted curves over S and S ′, respectively.
We must now show that the lower square commutes in the diagram

Extp(LS/Mg,n(Y ), J) //

��

Extp(g∗LS′/Mg,n(Y ), J)

��
Extp(u∗FX/Y , J) //

��

Extp(u∗h∗FX/Y , J)

��
Extp(u∗EX/Y , J) // Extp(u∗h∗EX/Y , J).
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We note, however

1. the vertical maps in the upper square are isomorphisms for
p = 1 since S and S ′ are smooth over M g,n(X)∗ and M g,n(X),
respectively, and

2. by the naturality of the construction of EX/Y (S) (resp. EX/Y (S ′)),
the vertical maps in the outer rectangle are the ones induced by
the maps EX/Y (S)→ LS/Mg,n(Y ) (resp. EX/Y (S ′)→ LS′/Mg,n(Y ))
in Section 3.1.4.

For p = 1, everything therefore comes down to showing that the dia-
gram

Ext1(LS/Mg,n(Y ), J) //

��

Ext1(g∗LS′/Mg,n(Y ), J)

��

Ext1(EX/Y (S), J) // Ext1(EX/Y (S), J)

commutes. A class α ∈ Ext1(LS/S′ , J) can be represented by a square-
zero extension S ′′ of S by J over S ′. The upper horizontal arrow carries
this extension to the (cotangent) obstruction to lifting the diagram

S //

��

S ′

��

S ′′

::v
v

v
v

v
// Mg,n(Y )

and the right vertical arrow carries this to the (cotangent) obstruction
to lifting

(A.2.1) C //

��

C ′ // X

��
C ′′ //

77nnnnnnnn
Y .

On the other hand, the left vertical arrow takes α to the (cotangent)
obstruction to lifting

(A.2.2) C //

��

X

��
C ′′ //

>>|
|

|
|

Y.

The (cotangent) obstruction to lifting (A.2.1) is the one induced from
the cotangent obstruction to lifting (A.2.2), so this proves what we
need for p = 1.
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The p = 0 case is easier. We take S = M(X). Then a class β ∈
Ext0(FX/Y , J) is a lift in the diagram

S //

��

M g,n(Y )

��
S[J ]

::u
u

u
u

u
// Mg,n(Y )

corresponding to a diagram

(A.2.3) X

��

// X

��
C

..

//

��

C[π∗J ]

��

//

;;x
x

x
x

x

Y //

��

Y

����������

S // S[J ] // T.

The dashed arrow is the image of β via the map to Ext0(EX/Y , J). We

obtain the image in Ext0(EX/Y , J) by forgetting the X → Y part of
the diagram.

On the other hand, the map Ext0(FX/Y , J)→ Ext0(g∗FX/Y , J) sends
β to the induced lift of

S //

��

M(X)

��
S[J ] //

::u
u

u
u

u

Mg,n(Y ),

which clearly induces the same lift of the diagram

X

��
C

..

//

��

C[π∗J ]

��

//

<<x
x

x
x

x

Y

��
S // S[J ] // T

as Diagram (A.2.3) did. This completes the proof of the commutativity
of Diagram (3.1.12).
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As for the fact that h∗EX/Y → EX/Y is an isomorphism, note that

h∗E∨
X/Y

= RπS′ !f
∗
TX/Y

E∨X/Y = RπS !f
∗TX/Y

where f : C → X and f : C → X are the structural maps, and the
induced map

RπS !f
∗TX/Y → RπS′ !f

∗
TX/Y

is the natural morphism associated to the isomorphism f ∗TX/Y
∼−→

f
∗
TX/Y ; this is an isomorphism by cohomology and base change.

A.3. Lemma 4.2.1. Here we construct an obstruction theory for M(X/T )
relative to T . First we assume there are no marked points (this is es-
sentially a harmless thing to do since the deformation of marked points
is unobstructed). Let M denote M(X/T ) to keep the notation shorter.

Suppose S is affine and u : S → M is smooth. Let f : C → X
and p : C → S be the corresponding map and curve. We have a
commutative diagram in D(C) with distinguished rows and columns:

f ∗p∗LT
//

��

f ∗LX
//

��

f ∗LX/T

��
p∗LS

//

��

LC
//

��

LC/S

��
p∗LS/T

// LC/X
// LC/XS

.

Shifting the exact triangle in the bottom row gives a map

LC/XS
[−1]→ p∗LS/T

and so by adjunction we have the map in the derived category

E(S) := p!LC/XS
[−1]→ LS/T .

Applying this with S = M, we get E := E(M). Since in general LC/XS

is the pullback of LC/XM
, we have E(S) = u∗E(M). We show that

E(M)→ LM/T is an obstruction theory using the chart S →M.
As in Section A.1, it is sufficient to show that

Ext−1(u∗LM/T , J)→ Ext−1(u∗E, J) is bijective,

Ext0(u∗LM/T , J)→ Ext0(u∗E, J) is bijective, and

Ext1(LS/T , J)→ Ext1(E(S), J) is injective.
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For the second of these, we represent a class α ∈ Ext1(LS/T , J) by a
square-zero extension S ′ of S over T with ideal J . Suppose that the
class induced by α in Ext1(E(S), J) = Ext2(LC/XS

, p∗J) is zero.
The map

Ext1(LS/T , J)→ Ext1(p∗LS/T , p
∗J)

sends α to the class p∗α representing the extension of ringed topoi (in
the étale site of C)

(A.3.1) (C, p−1OS)→ (C, p−1OS′)

over T that is induced by pullback. Our assumption on α implies that
the image of p∗α in Ext1(L[−1], J) is zero. Thus p∗α is the image of
some α′ ∈ Ext1(LC/X , J). But Ext1(LC/X , J) is the group of deforma-
tions

C //___

��

C ′

~~}
}

}
}

X

The image of α′ in Ext1(p∗LS/T , p
∗J) is the extension (A.3.1) obtained

composition with the map X → T , followed by pushout via the map of
ringed topoi (C,OC)→ (C, p−1OS). Thus to say that p∗α is the image
of some α′ means precisely that there is a diagram

C //

��

C ′ //

��

X

��
S // S ′ // T.

Thus the diagram

S //

��

M

��
S ′ //

>>}
}

}
}

T

has a lift. Since α obstructs the existence of such a lift, we conclude
that α is zero. This proves that Ext1(LS/T , J) → Ext1(E(S), J) is
injective.

For the surjectivity in Ext0, suppose that

β ∈ Ext0(u∗E, J) = Ext1(f ∗LC/XM
, p∗J) = Ext1(LC/XS

, p∗J).
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This induces a class in Ext1(LC/X , p
∗J) whose image in Ext1(p∗LS/T , p

∗J)
is trivial. This corresponds to a diagram

C //

��

X

C ′

>>}}}}}}}}

where C ′ is a square-zero extension of C with ideal p∗J . As above, the
map Ext0(LC/X , p

∗J)→ Ext1(p∗LS/T , p
∗J) factors through Ext0(LC/T , p

∗J),
sending the diagram above to the diagram

C //

��

T

C ′

>>~~~~~~~~

This is in turn carried to the extension of ringed topoi

(C, p−1OS) //

��

T

(C,B)

::uuuuuuuuuuu

obtained by pushout. By assumption, this class is trivial, so the oblique
arrow factors through a section of the vertical arrow. In particular,
B ∼= p−1OS + p∗J and we have a commutative diagram

C //

��

C ′ //

��

X

��
S // S[J ] // T.

inducing a lift of the diagram

S //

��

M

��
S[J ] //

==z
z

z
z

T.

This corresponds to a class in Ext0(u∗LM/T , J) that induces β. Thus

the map Ext0(u∗LM/T , J)→ Ext0(u∗E, J) is surjective.
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For the injectivity, note that γ ∈ Ext0(u∗LM/T , J) corresponds to a
lift of the diagram

S //

��

M

��
S[J ]

0 //

==z
z

z
z

T.

The image p∗γ in Ext0(p∗u∗LM/T , p
∗J) is the class of the lift of the

diagram

C //

��

M

��
C[p∗J ]

;;w
w

w
w

// T

induced by composition. The hypothesis that the image of p∗γ in
Ext0(LC/XS

[−1], J) be zero implies that it is induced from some γ′ ∈
Ext0(LC/X , J), which means that there exists a dashed arrow complet-
ing the diagram

C //

��

C[p∗J ] //___

��

0

''
C //

��

X

��
S // S[J ]

0

77// M // T.

Thus the map S[J ] → M is isomorphic to the zero tangent vector at
u : S → M. This shows that γ is zero, so that Ext0(u∗LM/T , J) →
Ext0(u∗EM/T , J) is injective.

Since X may be of Artin type over T , we still need to show that
Ext−1(u∗LM/T , J) → Ext−1(u∗EM/T , J) is bijective. Take the surjec-
tivity first. A class

δ ∈ Ext−1(u∗EM/T , J) = Ext−1(LC/XM
[−1], p∗J) = Ext0(LC/XM

, p∗J)

induces a class in Ext0(f ∗LC/X , J). This class can be viewed as a
commutative diagram

C //

��

C[p∗J ]

0

��
C[p∗J ]

id
::ttttttttt

0
// X

(in other words, a 2-automorphism of the zero map C[p∗J ] → X).
Since the image of this class in Ext0(f ∗π∗LM/T , p

∗J) is zero, we deduce
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that there is a commutative diagram

C //

��

C[p∗J ]
id

// ((

��

C[p∗J ]
0

//

��

X

��
S // S[J ]

id //

0

66S[J ]
0 // T

where the 2-morphism making the triangle on the bottom commute
is the identity. This means precisely that we have a 2-automorphism
of the zero map S[J ] → M such that the induced 2-automorphism
of the zero map S[J ] → T is the identity. This gives us a class in
Ext−1(u∗LM/T , J).

Finally, we check the injectivity of Ext−1(u∗LM/T , J)→ Ext−1(u∗E, J).

Given ε ∈ Ext−1(u∗LM/T , J) we have, as above, a 2-automorphism of
the zero map S[J ]→M inducing the identity on the zero map S[J ]→
T . This induces a 2-automorphism of the zero map C[p∗J ] → M in-
ducing a the identity 2-automorphism over T . This corresponds to the
image of ε in Ext−1(f ∗π∗LM/T , p

∗J) = Ext−1(p∗u∗LM/T , p
∗J). If p∗ε

induces the zero class in Ext−1(u∗E, J) = Ext0(f ∗LC/XM
, p∗J) then it

is the image of some ε′ ∈ Ext−1(LC/X , p
∗J). This corresponds to a

2-automorphism of the zero map C[p∗J ] → C inducing the trivial 2-
automorphism of the zero map C[p∗J ] → X. Since this class induces
p∗ε, the diagram

C[p∗J ]
id

// ((

��

C[p∗J ]
0

//

��

X

��
S[J ]

id // 66S[J ]
0 // T

is (2-)commutative (the 2-morphisms making the upper and lower tri-
angles commute are the respective identity arrows). Thus the 2-automorphism
ε of the zero S[J ] → M that induces the above diagram must be the
identity, and we are done.

A.4. Compatibility of obstruction theories in triangles. The
purpose of this subsection is to prove Proposition A.4.1, comparing
absolute and relative virtual fundamental classes. This would be a
well-known fact if M(A ) were smooth. It is not smooth, but the im-
age of M0,n(X) in M(A ) is LCI, so we are able to show that the two
classes agree.

The following is in Proposition A.1 in [BL00] (see also [KKP03, The-
orem 1], or [Man08]).
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Proposition A.4.1. Suppose X
p−→ Y

q−→ Z is a sequence of morphisms
of Artin stacks, p and qp are of DM type, q is smooth. Suppose that
the morphisms have compatible obstruction theories and the obstruction
theory of q coincides with the cotangent complex. Then p!q! = (qp)!.

Proof. We have a commutative diagram on X:

CX/Y //

��

CX/Z

��
EX/Y

// EX/Z .

It suffices to show that this diagram is Cartesian, for [X/Y ]vir =
0!

EX/Y
[CX/Y ] and [X/Z]vir = 0!

EX/Z
[CX/Z ]. By the compatibility of the

obstruction theories with the canonical obstruction theory, the fiber
of EX/Y → EX/Z is p∗TY/Z ; a straightforward calculation will show
that CX/Y → CX/Z is surjective with fiber p∗TY/Z , which proves that
CX/Y → CX/Z ×EX/Z

EY/Z is an isomorphism. �

In general, if Y → Z is any morphism, the relative obstruction theory
for M(Y )→M(Z) is given by

Ext(C(Y )/M(Y ); f ∗LY/Z ,OC(Y ))
∨.

If Y → Z is smooth, then this is perfect in [−1, 0].

Proposition A.4.2. Let X
p−→ Y

q−→ Z be a sequence of smooth mor-
phisms (could be lci or maybe even general?). Then the relative obstruc-
tion theories in the sequence M(X)→M(Y )→M(Z) are compatible.

Proof. Consider the diagram,

X
p // Y

q // Z

C(X)

f

OO

C(f)
//

α

��

C(Y )
C(g)

//

g

OO

β

��

C(Z)

OO

��
M(X)

M(f)
// M(Y )

M(g)
// M(Z).

If φ is a morphism with a relative dualizing complex ω, denote by φ!

the functor A 7→ Rφ∗(A⊗ ω). This functor is left adjoint to Lφ∗.
Adjunction gives a canonical map α!C(p)∗F → M(p)∗β!F for any

complex of coherent sheaves, F, on C(Y ). If F is a perfect complex
then so is ω⊗ F, so this map is an isomorphism by cohomology and
base change (Mumford, Chapter II, §5, Theorem).
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On C(X), we have a commutative diagram with exact rows,

f ∗p∗LY/Z // f ∗LX/Z //

��

f ∗LX/Y

��

C(p)∗g∗LY/Z

��
C(p)∗LC(Y )/C(Z)

// LC(X)/C(Z)
// LC(X)/C(Y )

C(p)∗β∗LM(Y )/M(Z)

∼
OO

α∗M(p)∗LM(Y )/M(Z)
// α∗LM(X)/M(Z)

//

OO

α∗LM(X)/M(Z)

OO

The vertical arrows in the bottom half of the diagram are equivalences.
Applying the adjunction (π!, π

∗), we get the commutative diagram with
exact rows,

α!C(p)∗g∗LY/Z //

��

α!f
∗LX/Z //

��

α!f
∗LX/Y

��
LM(Y )/M(Z)

// LM(X)/M(Z)
// LM(X)/M(Y ).

As already noted, cohomology and base change an equivalence α!C(p)∗g∗LY/Z '
M(p)∗β!g

∗LY/Z . Moreover, the diagram,

α!C(p)∗g∗LY/Z //

))RRRRRRRRRRRRRR
M(p)∗β!g

∗LY/Z

uukkkkkkkkkkkkkk

M(p)∗LM(Y )/M(Z)

commutes. To prove that this diagram commutes, it is sufficient to
show that the diagram,

α!α
∗M(p)∗F //

''OOOOOOOOOOO
M(p)∗β!β

∗F

wwppppppppppp

M(p)∗F

commutes. But α!α
∗M(p)∗F can be identified with α∗ωC(X)/M(X)⊗M(p)∗F

and M(p)∗β!β
∗F can be identified with M(p)∗(F ⊗ ωC(Y )/M(Y )). Under
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these identifications, the above map is simply the canonical isomor-
phism

α∗ωC(X)/M(X)⊗M(p)∗F
∼−→M(p)∗(β∗ωC(Y )/M(Y )⊗F )

(using C(p)∗ωC(Y )/M(Y ) = ωC(X)/M(X) and the isomorphism M(p)∗β∗ωC(Y )/M(Y ) '
α∗C(p)∗ωC(Y )/M(Y ) by cohomology and base change). �

Appendix B. Obstruction theories and local complete
intersections

Proposition B.1. The map M(A )′ → M(BGm) is a local complete
intersection morphism.

This proposition is not used in the proof of Theorem 2.2, but the
lemma we use to prove it seems to be of independent interest.

Lemma B.2. Let M→N be a representable, finite type morphism of
locally Noetherian algebraic stacks and let E→ LM/N be a perfect rela-
tive obstruction theory. Suppose that N is smooth and that generically,
h−1(E) = 0. Then E → LM/N is an isomorphism, and in particular,
M→N is a local complete intersection morphism.

Proof. We begin by reducing to the case where M → N is an em-
bedding of affine schemes. It suffices to prove the lemma after a base
change by a smooth presentation V → N . Under such a base change,
E → LM/N pulls back to a perfect relative obstruction theory on
M ×N V → V . So we may assume that N = Spec S is an affine
noetherian scheme. Now it suffices to prove the lemma after an étale
base change U → M, where U is an affine scheme of finite type over
S.

Let ι : U → W be an embedding into an affine scheme W = Spec A
which is smooth over N . Let I be the ideal of U in W . Since
ι∗LW/N is a vector bundle in degree 0 and h0(E) → h0(LU/N ) is an
isomorphism, ι∗LW/N → LU/N lifts uniquely to ι∗LW/N → E. Let
F = Cone(ι∗LW/N → E). Then we have a morphism of distinguished
triangles:

ι∗LW/N //

=

��

E //

��

F //

��

ι∗LW/N [1]

=

��
ι∗LW/N // LU/N // LU/W

// ι∗LW/N [1].

By taking long exact sequences, we see that F is represented by a
vector bundle in degree −1 which surjects onto h−1(LU/W ) = I/I2.
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The assumption that h−1(E) is generically 0 implies that there is a
dense open subset of U over which F−1 → I/I2 is an isomorphism.

By restricting to a smaller open set, we may assume that F−1 is free
of rank d. Then a basis of F determines elements x1, . . . , xd ∈ I which
generate I modulo I2. In other words I/(x1, . . . , xd) is generated by the
image of I2. Thus I · I/(x1, . . . , xd) = I/(x1, . . . , xd) and Nakayama’s
lemma implies that there is an element a ∈ A such that a ≡ 1 modulo
I and aI ⊆ (x1, . . . , xd) [Mat89, 2.2]. Since a does not vanish on U , we
may invert a and assume that I = (x1, . . . , xd). To show that x1, . . . , xd
is a regular sequence, it suffices to show that depth(I, A) = d [Mat89,
p.131].

By assumption, U has a dense open set which is a local complete
intersection. It follows that d is the codimension of U in W . But any
proper ideal I of a Cohen-Macaulay ring A has depth(I, A) = ht(I)
[Mat89, 17.4], so U is a local complete intersection and I/I2 is free
with basis x1, . . . , xd. This shows that F−1 → I/I2 is an isomorphism,
which implies that E→ LU/N is an isomorphism. �

Proof of Proposition B.1. By the lemma and the definition of E→ LP ,
it suffices to show that H1(Cs, Ls) = 0 for a general geometric point
s → M(A )′. If Cs is smooth, with coarse moduli space C, then it
follows from the definition of M(A )′ that the pushforward of Ls to C
is OC . In particular, H1(Cs, Ls) = 0 in this case. So it suffices to show
that Cs is smooth for general s, which is Proposition 4.3.4. �

Appendix C. Notation index〈 n∏
i=1

τai
(γi, ki)

〉(X,D)

0,β

relative GW invariant 1.1.0, p.3〈 n∏
i=1

τai
(γi, ki)

〉Xr

0,β

orbifold GW invariant 1.1.0, p.3

M
rel

(X,D) moduli of relative stable maps 1.2.0, p.3

M
orb

(Xr) moduli of orbifold stable maps 1.2.0, p.4
I(Xr) coarse mod. sp. of inertia stack 1.2.0, p.4

M
relorb

(Xr,Dr) relative orbifold moduli space 2.1.0, p.6〈 n∏
i=1

τai
(γi, ki)

〉(Xr,Dr)

0,β

relative orbifold GW invariant 2.1.0, p.6

Mrel(A ,BGm)′ special open subset of M(A ,BGm) 2.3.0, p.8
M(A )′ special open subset of M(A ) 2.3.0, p.8
A moduli of line bundle with section 2.3.0, p.8
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M(A ) curves with line bundle and section 2.3.0, p.8
M(A rel/T ) curves with line bundle, section,

and expansion
2.3.0, p.8

M(X/X ′T/T ) substack of M(X/X ′T/T ) with
unramified inertia relative to
M(X ′/T ′)

3.2.0, p.15

M(X/T )∗ substack of curves M(X/T ) admit-
ting a contraction

3.2.0, p.16

T J. Li’s moduli space of targets 3.3.1, p.17
M0,n(A )′ special open substack of M0,n(A )′ 3.3.2, p.18
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