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Complete Moduli for
Fibered Surfaces

Dan Abramovich∗

Angelo Vistoli∗∗

1 Introduction

All the schemes with which we work will be schemes over the field Q of
rational numbers.1

Most of the results contained here are particular cases of our general
theory of stable maps into algebraic stacks, announced in [ℵ-V1]; the details
will appear in [ℵ-V2]. Here we include a rather thorough discussion of our
particular case, even when it partially overlaps with the above-mentioned
papers; however, the proof of the main theorem, which is very long and
technical, is omitted.

A previous version of this paper appeared as mathAG/9804097 on the
xxx.lanl.gov Mathematics e-Print archive.

1.1 The problem

Fix a base field k of characteristic 0, and let C be a smooth, projective,
geometrically integral curve of genus g. By a fibered surface over C we mean
a morphism X → C, with sections σ1, . . . , σν : C → X forming a family of
stable ν-pointed curves of some genus γ. (This notion will be generalized
below for singular C.)

A fibered surface naturally corresponds to a morphism C →Mγ,ν into
the moduli stack of stable ν-pointed curves of genus γ. In [Vistoli2], the
second author showed that Hom(C,Mγ,ν) has the structure of a Deligne–
Mumford stack. This stack is, in general, clearly not complete. A natural
question to ask is, can one complete it in a meaningful way? Moreover, can
one do this as the source curve C itself moves in a family?

∗Partially supported by NSF grant DMS-9503276 and an Alfred P. Sloan Research
Fellowship.

∗∗Partially supported by the University of Bologna, funds for selected research top-
ics.

1The theory below could be extended to the case that the characteristic is large with
respect to the degrees and genera of the curves involved, but we will not pursue this
here.
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1.2 Our approach

One construction which may spring to mind is that of stable maps. Recall
that if Y ⊂ Pr is a projective variety, there is a complete Deligne–Mumford
stack Mg(Y, d) parametrizing Kontsevich stable maps of degree d from
curves of genus g to Y (see [Kont], [B-M], [F-P]). In order to reduce the
possibility of later confusion, we will use the notation Kd

g(Y ) rather than
Mg(Y, d) for this stack. It admits a projective coarse moduli space Kd

g(Y ).
For instance, if γ = 0, the moduli stack M0,ν is actually a projective

variety. Fixing a projective embedding, we have natural, complete Deligne–
Mumford stacks Kd

g(M0,ν) parametrizing families of stable ν-pointed curves
of genus 0 over nodal curves of genus g, with a suitable stability condition.
We can think of d, the degree of the image of C via the fixed projective
embedding, as an additional measure of complexity of the family of curves.
One is led to ask, is there a complete Deligne–Mumford stack of stable
maps Kd

g(Mγ,ν) in general?
We need to define our terms: given a nodal curve C, define a morphism

f : C → Mγ,ν to be a stable map of degree d if, once projected into the
coarse moduli space, we obtain a stable map f ′ : C →Mγ,ν of degree d:

C Mγ,ν

Mγ,ν

-f

@
@

@@R

f ′

?

As we will see later, these stable maps are parametrized by a Deligne–
Mumford stack. However, this stack fails to perform its first goal: it is not
always complete! This can be seen via the following example:

Consider the case γ = 1, ν = 1 of elliptic curves. It is well known (and
easily follows from the formula of Grothendieck–Riemann–Roch) that given
a family of stable elliptic curves E → C over a curve C, the degree of the
corresponding moduli map jE : C →M1,1 ' P1 is divisible by 12. However,
it is very easy to construct a family of moduli maps jt : Ct → P1, t 6= 0,
where when t → 0 the curve Ct breaks into two components, and the
degrees of the limit map j0 on these components are not divisible by 12.
Thus j0 is not a moduli map of a family of stable curves.

1.3 Compactifying the space of stable maps

Our main goal in this paper is to correct this deficiency. In order to do so,
we will enlarge the category of stable maps into Mγ,ν . The source curve C
of a new stable map C → Mγ,ν will acquire an orbispace structure at its
nodes. Specifically, we endow it with the structure of a Deligne–Mumford
stack.
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To see how these come about, consider again the example of a one-
parameter family of elliptic curves sketched above. Let C → S be the
one-parameter family of base curves, and let Csm be the smooth locus of
this morphism. A fundamental purity lemma (see ?? below) will show that,
after a suitable base change, we can extend the family E of stable elliptic
curves over Csm. On the other hand, if p ∈ C is a node, then on an étale
neighborhood U of p, the curve C looks like

uv = tr,

where t is the parameter on the base. By taking r-th roots,

u = ur
1; v = vr

1

we have a nonsingular covering V0 → U where u1v1 = t. The fundamental
purity lemma applies to V0, so the pullback of E to V0 extends over all of
V0. There is a minimal intermediate covering V0 → V → U such that the
family extends over V . This V gives the orbispace structure C over C.

The precise definitions will follow in section 4. We can define stable
maps f : C → Mγ,ν where C is a Deligne–Mumford stack and f is a rep-
resentable morphism satisfying certain properties; such objects naturally
form a 2-category. Our main theorem states that this 2-category is equiva-
lent to a 1-category Fd

g (γ, ν), which we call the category of fibered surfaces;
this category forms a complete Deligne–Mumford stack (over schemes over
Q), admitting a projective coarse moduli space. Thus the original moduli
problem has a solution of the same nature as that of stable curves.

We provide an explicit description of the category Fd
g (γ, ν) of fibered sur-

faces in terms of charts and atlases over schemes, in analogy to Mumford’s
treatment of Q-varieties in [Mum]. Thus given a stable map C →Mγ,ν we
have a stable pointed curve X → C, which can be described via an atlas of
charts over the associated coarse moduli scheme X → C.

1.4 Comparison with Alexeev’s work

The latter, coarse object X → C, which we call a coarse fibered surface, has
another interpretation: the associated morphism X → Mγ,ν turns out to
be a stable map in the sense of Alexeev (see [Al3]). Alexeev has shown the
existence of complete moduli of (smoothable) surface stable maps, using
the theory of semi-log-canonical surfaces developed in [K-SB] and [Al2].
In the last section we show that, in the case of fibered surfaces, one can
use Alexeev’s approach to obtain a space which coincides with the space
of (smoothable) stable coarse fibered surfaces. We sketch a proof of the
existence of the latter space (even as a stack) which is independent of
Alexeev’s boundedness result.
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1.5 Natural generalizations in forthcoming work

It should be evident from our work that this approach should apply to
stable maps C → M into any Deligne–Mumford stack which admits a
projective coarse moduli scheme; moreover, the source “curve” C should be
allowed to be “pointed” as well. See [ℵ-V1] for a discussion of the general
setup and various applications that will be worked out in [ℵ-V2] and in
[ℵ-C-J-V].

1.6 Gromov–Witten invariants

Originally, the Kontsevich spaces of stable maps were introduced for the
purpose of defining Gromov–Witten invariants. It seems likely that, using
our construction, one could extend the formalism of [BF] and [B] of virtual
fundamental classes to the case of stable maps into an arbitrary Deligne–
Mumford stackM admitting a projective coarse moduli space. This should
allow one to define Gromov–Witten invariants and quantum cohomology in
this generality, which may have interesting applications for specific choices
of stacks M.

1.7 Acknowledgements

We would like to thank Johan de Jong and Rahul Pandharipande for crucial
discussions of ideas in this paper.

2 The purity lemma

There are several results in the literature which give conditions under which
a family of curves can fail to be stable only in pure codimension 1 (see [MB],
[dJ-O]). For our purposes, the following case will be most useful:

Purity Lemma 2.1. LetM be a separated Deligne–Mumford stack,M→
M the coarse moduli space. Let X be a separated scheme of dimension 2
satisfying Serre’s condition S2. Let P ⊂ X be a finite subset consisting of
closed points, U = X P . Assume that the local fundamental groups of U
around the points of P are trivial.

Let f : X →M be a morphism. Suppose there is a lifting f̃U : U →M:

M

U X M
?��������*

f̃U

- -f

(1)
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Then the lifting extends uniquely to X:

M

U X M
?��������*

f̃U

- -fp p p p p p
p p�

f̃ (2)

Remark 2.2. A closely related statement has been obtained by Mochizuki
in [Mo1], [Mo2].

Proof. By descent theory the problem is local in the étale topology, so
we may replace X and M with the spectra of their strict henselizations
at a geometric point; then we can also assume that we have a universal
deformation space V → M which is finite. Now U is the complement
of the closed point, U maps to M, and the pullback of V to U is finite
and étale, so it has a section, because U is simply connected; consider the
corresponding map U → V . Let Y be the scheme-theoretic closure of the
graph of this map in X×MV . Then Y → X is finite and is an isomorphism
on U . Since X satisfies S2, the morphism Y → X is an isomorphism. ¤

Corollary 2.3. Let X be a smooth surface, p ∈ X a closed point with
complement U . Let X →M and U →M be as in the purity lemma. Then
there is a unique lifting X →M.

Corollary 2.4. Let X be a normal crossings surface, namely a surface
which is étale locally isomorphic to Spec k[u, v, t]/(uv). Let p ∈ X be a
closed point with complement U . Let X → M and U → M be as in the
purity lemma. Then there is a unique lifting X →M.

Proof. In both cases X satisfies condition S2 and the local fundamental
group around p is trivial, hence the purity lemma applies. ¤

3 Group actions on nodal curves

Fix two nonnegative integers γ and ν. An important ingredient in the theory
will be formed of data as follows:

1. a diagram
Y

↓ K
V
↓
S

(we think of Y and V as S-schemes);
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2. the morphism ρ : Y → V comes with sections τ1 : V → Y, . . . , τν : V →
Y , forming a family of stable ν-pointed curves of genus γ on V .

Given a finite group Γ, by an action of Γ on ρ we mean a pair of actions
of Γ on V and Y as S-schemes such that the morphisms ρ, τ1, . . . , τν are
Γ-equivariant. Such an action induces a morphism Y/Γ → V/Γ together
with sections V/Γ→ Y/Γ.

We adopt the convention that all families of curves are assumed to be of
finite presentation over the base.

Definition 3.1. Let ρ : Y → V be a family of ν-pointed curves of genus
γ, Γ a finite group. An action of Γ on ρ is called essential if no nontrivial
element of Γ leaves a geometric fiber of ρ fixed.

Another way to state this condition is to require that if γ is an element
of Γ leaving a geometric point v0 of V fixed, then γ acts nontrivially on the
fiber of ρ on v0.

The following lemma will help us replace an action of Γ on ρ by an
essential action on a related family of curves.

Lemma 3.2. Let V be the spectrum of a local ring R, Y → V a flat family
of nodal curves, Γ0 a group acting compatibly on Y and V . Suppose that
the action of Γ0 on the residue field k of R and on the fiber Y0 of Y over
Spec k is trivial. Then Y/Γ0 → V/Γ0 is again a flat family of nodal curves.

Remark 3.3. It is easy to give an example showing that this fails in pos-
itive characteristic.

Proof. We need to show that the map ρ : Y/Γ0 → V/Γ0 is flat, and the
natural map Y0 → ρ−1(Spec k) is an isomorphism. Replacing R with the
completion of its strict henselization we may assume that R is complete
and k is algebraically closed. Choose a rational point p ∈ X(k), and let M
be the completion of the local ring of Y at p. Write M ⊗R k as a quotient
of a power series algebra k[[t1, . . . , tr]] = k[[t]], and lift the images of the ti
in M ⊗R k to invariant elements in M . We get a surjective homomorphism
R[[t]] → M which is equivariant, if we let Γ0 act on R[[t]] leaving the ti
fixed. Then the result follows from the lemma below.

Lemma 3.4. Let M be a finitely generated R[[t]]-module which is flat over
R, such that Γ0 acts trivially on M ⊗R k. Then MΓ0 is flat over RΓ0 , and
the natural homomorphism MΓ0 ⊗RΓ0 R→M is an isomorphism.

Proof. We have R[[t]]Γ0 = RΓ0 [[t]], and from this we see that the state-
ment holds when M is free over R[[t]]. In general, take a finite set of
generators of the finite k[[t]]-module M ⊗R k and lift them to a set of
invariant generators of M . We obtain an equivariant surjective homomor-
phism F →M , where F is a free R[[t]]-module. Let K be the kernel:

0→ K → F →M → 0.
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Note that by the finite presentation assumption on Y → V , K is finitely
generated. Since M is flat we get Tori(K, ·) = Tori+1(M, ·) = 0, thus K is
also flat. Moreover, from the exact sequence

0→ K ⊗R k → F ⊗R k →M ⊗R k → 0

we get that Γ0 acts trivially on K⊗R k. We obtain a commutative diagram
with exact rows

KΓ0 ⊗RΓ0 R −→ FΓ0 ⊗RΓ0 R −→ MΓ0 ⊗RΓ0 R −→ 0
↓ ↓ ↓

0 −→ K −→ F −→ M −→ 0

where the middle column is an isomorphism. It follows that the right col-
umn is surjective; since K is also flat and Γ0 acts trivially on K ⊗R k we
can apply the same argument to K, and it follows that the left column is
also surjective. Therefore the right column is also injective, as desired.

Applying the same argument to the module K, we have that the left
column is also an isomorphism, and the first arrow in the top row is injec-
tive; the flatness of MΓ0 over RΓ0 then follows from Grothendieck’s local
criterion of flatness. ¤

The following lemma will help us identify a situation where an essential
action is free:

Lemma 3.5. Let G be a group of automorphisms of a stable ν-pointed
curve X of genus γ over an algebraically closed field, and assume that the
quotient X/G is also a stable ν-pointed curve of genus γ. Then G is trivial.

Proof. If C is a complete curve we denote by CHi(C) the Chow group of
classes of cycles of codimension i on C; so CH0(C) is a direct sum of n copies
of Z, where n is the number of irreducible components of C, while CH1(C)
is the divisor class group of C. If F is a coherent sheaf on C we denote
by τC(F) ∈ CH(C) its Riemann–Roch class, and by τC

i (F) ∈ CHi(C) its
component of codimension i; τC

0 (F) is the cycle associated with F .
Set Y = X/G, and call π : X → Y the projection. Call ∆X and ∆Y the

divisors corresponding to the distinguished points in X and Y respectively,
ωX and ωY the dualizing sheaves.

A local calculation reveals that χ
(
ωX(∆X)

)
≥ χ

(
π∗ωY (∆Y )

)
. Indeed,

for this calculation we may replace X and Y by their normalization, where
we add markings on the normalized curves at the points above the nodes.
Then the natural pullback π∗ωY nor → ωXnor extends to a homomorphism
of invertible sheaves π∗ωY nor (∆Y nor ) → ωXnor (∆Xnor ) which is injective,
and whose cokernel is supported on the points of ramification of π not in
∆Xnor .
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Thus we get an inequality of Euler characteristics of sheaves:

χ
(
ωX(∆X)

)
≥ χ

(
π∗ωY (∆Y )

)
= χ

(
π∗π

∗ωY (∆Y )
)

= χ
(
ωY (∆Y )⊗ π∗OX

)
= χ

(
ωY (∆Y )

)
+ χ

(
ωY (∆Y )⊗ (π∗OX/OY )

)
.

By hypothesis

χ
(
ωX(∆X)

)
= γ + ν − 1 = χ

(
ωY (∆Y )

)
.

From this, together with the theorem of Grothendieck–Riemann–Roch, we
obtain

0 ≥ χ
(
ωY (∆Y )⊗ (π∗OX/OY )

)
=

∫
Y

ch
(
ωY (∆Y )

)
τY (π∗OX/OY )

=
∫

Y

c1

(
ωY (∆Y )

)
∩ τY

0 (π∗OX/OY ) +
∫

Y

τY
1 (π∗OX/OY )

=
∫

Y

c1

(
ωY (∆Y )

)
∩ (π∗[X]− [Y ]) +

∫
X

τX
1 (OX)−

∫
Y

τY (OY )

=
∫

Y

c1

(
ωY (∆Y )

)
∩ (π∗[X]− [Y ]) + χ(OX)− χ(OY )

=
∫

Y

c1

(
ωY (∆Y )

)
∩ (π∗[X]− [Y ]).

But ωY (∆Y ) is an ample line bundle on Y and π∗[X]− [Y ] is an effective
cycle; the only possibility is that π∗[X] − [Y ] = 0. This implies that π is
birational, so G is trivial. ¤

4 Fibered surfaces: definitions

If C → S is a flat family of nodal curves, we denote by Csm the open
subscheme of C consisting of points where the morphism C → S is smooth.

Definition 4.1. Let C → S be a flat (not necessarily proper) family of
nodal curves, X → C a proper morphism with one-dimensional fibers, and
σ1, . . . , σν : C → X sections of ρ. We will say that

X
↓
C
↓
S
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is a family of generically fibered surfaces if X is flat over S, and the re-
striction of ρ to Csm is a flat family of stable pointed curves. If S is the
spectrum of a field we will refer to X → C as a generically fibered surface.

Remark 4.2. Notice that we do not require the morphism X → C to be
flat.

Definition 4.3. A chart (U, Y → V, Γ) for a family of generically fibered
surfaces X → C → S consists of a diagram

Y X ×C U X

V U C

S

?

-

?

-

?
-

HHHHHHHHHHj

-

@
@

@
@@R ?

together with a group action Γ ⊂ AutS(Y → V ) satisfying:

1. The morphism U → C is étale;

2. V → S is a flat (but not necessarily proper) family of nodal curves;

3. ρ : Y → V is a flat family of stable ν-pointed curves of genus γ,

4. the action of Γ on ρ is essential;

5. we have isomorphisms of S-schemes V/Γ ' U and Y/Γ ' U ×C X
compatible with the projections Y/Γ→ V/Γ and U ×C X → U , such
that the sections U → U ×C X induced by the σi correspond to the
sections V/Γ→ Y/Γ.

Lemma 4.4. Let (U, Y → V, Γ) be a chart for a family of generically
fibered surfaces X → C → S. If S′ → S is an arbitrary morphism, then
(S′×S U, S′×S Y → S′×S V, Γ) (with the obvious definitions of the various
maps and of the action of Γ on S′ ×S Y and S′ ×S V ) is a chart for the
family of generically fibered surfaces S′ ×S X → S′ ×S C → S′.

Proof. Conditions (1) through (4) in the definition are immediately veri-
fied for the pullback diagram. The only point that requires a little care is
to check that (S′×S V )/Γ ' S′×S U and (S′×S Y )/Γ ' (S′×S U)×C X,
which requires the hypothesis that S be a scheme over Q. ¤
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Proposition 4.5. 1. Let (U, Y → V, Γ) be a chart for a family of gener-
ically fibered surfaces X → C → S. Let V ′ ⊂ V be the inverse image
of Csm. Then

(a) the action of Γ on V ′ is free; and

(b) the natural morphism Y |V ′ → V ′ ×S X is an isomorphism.

2. Furthermore, if t0 is a geometric point of S and v0 a nodal point of
the fiber Vt0 of V over t0, then

(a) the stabilizer Γ′ of v0 is a cyclic group which sends each of the
branches of Vt0 to itself.

(b) If n is the order of Γ′, then a generator of Γ′ acts on the tangent
space of each branch by multiplication with a primitive n-th root
of 1.

In particular, V ′ = Vsm.

Proof. The claim (1b), that the natural morphism Y |V ′ → V ′ ×S X is an
isomorphism, is a consequence of the statement (1a).

Let v0 be a geometric point of the inverse image of Usm in V , Γ′ its
stabilizer. By definition Γ′ acts faithfully on the fiber Y0 of Y on v0. The
fiber X0 of X over the image of v0 in C is the quotient of Y0 by Γ′; from
Lemma 3.5 above we get that Γ′ is trivial, as claimed.

For part (2) of the proposition we observe that if the stabilizer Γ′ of
v0 did not preserve the branches of Vt0 then the quotient Vt0/Γ′, which is
étale at the point v0 over the fiber Ut0 , would be smooth over S at v0, so
v0 would be in the inverse image of Usm. From part (1) of the proposition
it would follow that Γ′ is trivial, a contradiction.

So Γ′ acts on each of the two branches individually. The action on each
branch must be faithful because it is free on the complement of the set
of nodes; this means that the representation of Γ′ in each of the tangent
spaces to the branches is faithful, and this implies the final statement. ¤

Definition 4.6. A chart is called balanced if for any nodal point of any
geometric fiber of V , the two roots of 1 describing the action of a generator
of the stabilizer on the tangent spaces to each branch of V are inverse to
each other.

It is easy to see that a chart is balanced if and only if it admits a defor-
mation to a smooth curve.

4.7 The transition scheme of two charts

Let X → C → S be a family of generically fibered surfaces, (U1, Y1 →
V1, Γ1), (U2, Y2 → V2, Γ2) two charts; call pri : V1 ×C V2 → Vi the ith
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projection. Consider the scheme

I = Isom
V1×CV2

(pr∗1Y1, pr∗2Y2)

over V1×C V2 representing the functor of isomorphisms of the two families
pr∗1Y1 and pr∗2Y2. There is a section of I over the inverse image Ṽ of Csm in
V1×C V2 which corresponds to the isomorphism pr∗1Y1|Ṽ ' pr∗2Y2|Ṽ coming
from the fact that both pr∗1Y1 and pr∗2Y2 are pullbacks to Ṽ of the restriction
of X to Csm. We will call the scheme-theoretic closure R of this section in
I the transition scheme from (U1, Y1 → V1, Γ1) to (U2, Y2 → V2, Γ2); it
comes equipped with two projections R → V1 and R → V2. There is also
an action of Γ1 × Γ2 on I, defined as follows. Let (γ1, γ2) ∈ Γ1 × Γ2, and
φ : pr∗1Y1 ' pr∗2Y2 an isomorphism over V1 ×C V2; then define (γ1, γ2) · φ =
γ2 ◦ φ ◦ γ−1

1 . This action of Γ1 × Γ2 on I is compatible with the action of
Γ1 × Γ2 on V1 ×C V2, and leaves R invariant. It follows from the definition
of an essential action that the action of Γ1 = Γ1 × {1} and Γ2 = {1} × Γ2

on I is free.

Definition 4.8. Two charts (U1, Y1 → V1, Γ1) and (U2, Y2 → V2, Γ2) are
compatible if their transition scheme R is étale over V1 and V2.

Let us analyze this definition. Start from two charts (U1, Y1 → V1, Γ1)
and (U2, Y2 → V2, Γ2). Fix two geometric points v1 : Spec Ω → V1 and
v2 : Spec Ω → V2 mapping to the same geometric point v0 : Spec Ω → C,
and call Γ′i ⊆ Γi the stabilizer of vi. Also call V sh

1 , V sh
2 and Csh the spectra

of the strict henselizations of V1, V2 and C at the points v1, v2 and v0

respectively. The action of Γi on Vi induces an action of Γ′i on V sh
i . Also,

call Y sh
i the pullback of Yi to V sh

i ; there is an action of Γ′i on Y sh
i compatible

with the action of Γ′i on Vi.

Proposition 4.9. The two charts are compatible if and only if for any pair
of geometric points v1 and v2 as above there exist an isomorphism of groups
η : Γ′1 ' Γ′2 and two compatible η-equivariant isomorphisms φ : V sh

1 ' V sh
2

and ψ : Y sh
1 → Y sh

2 of schemes over Csh.

Proof. Consider the spectrum (V1 ×C V2)sh of the strict henselization of
V1×CV2 at the point (v1, v2) : Spec Ω→ V1×CV2, and call Rsh the pullback
of R to (V1 ×C V2)sh. Assume that the two charts are compatible. The
action of Γ1 × Γ2 on I described above induces an action of Γ′1 × Γ′2 on
Rsh, compatible with the action of Γ′1 × Γ′2 on (V1 ×C V2)sh. The action of
Γ′1 = Γ′1 × {1} on the inverse image of Csm in Rsh is free, and its quotient
is the inverse image of Csm in V sh

2 ; but Rsh is finite and étale over V sh
2 , so

the action of Γ′1 on all of Rsh is free, and Rsh/Γ′1 = V2. Analogously the
action of Γ′2 on Rsh is free, and Rsh/Γ′2 = V1.

Now, each of the connected components of Rsh maps isomorphically onto
both V1 and V2, because Vi is the spectrum of a strictly henselian ring and
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the projection Rsh → Vi is étale; this implies in particular that the order
of Γ1 is the same as the number n of connected components, and likewise
for Γ2. Fix one of these components, call it Rsh

0 ; then we get isomorphisms
Rsh

0 ' Vi, which yield an isomorphism φ : V1 ' V2.
Call Γ′ the stabilizer of the component Rsh

0 inside Γ′1 × Γ′2; the order
of Γ′ is at least |Γ′1 × Γ′2|/n = n2/n = n. But the action of Γ′2 on Rsh is
free, and so Γ′ ∩ Γ2 = {1}; this implies that the order of Γ′ is n, and the
projection Γ′ → Γ1 is an isomorphism. Likewise the projection Γ′ → Γ2 is
an isomorphism, so from these we get an isomorphism η : Γ1 → Γ2, and it is
easy to check that the isomorphism of schemes φ : V1 ' V2 is η-equivariant.

There is also an isomorphism of the pullbacks of Y sh
1 and Y sh

2 to Rsh
0 ,

coming from the natural morphism Rsh
0 → I, which induces an isomorphism

ψ : Y sh
1 → Y sh

2 . This isomorphism is compatible with φ, and is it also η-
equivariant.

Let us prove the converse. Suppose that there exist η, φ and ψ as above.
Then there is a morphism σ : V sh

1 × Γ′1 → I which sends a point (v1, γ1) of
V sh

1 ×Γ′1 into the point of I lying over the point (v1, φγ1v1) = (v1, η(γ1)φv1)
corresponding to the isomorphism γ1ψ of the fiber of Y1 over v1 with the
fiber of Y2 over φγ1v1. The morphism σ is an isomorphism of V sh

1 ×Γ′1 with
Rsh in the inverse image of Csm; it also follows from the fact that the action
of Γ′ on Y1 → V1 is essential that σ is injective. Since the inverse image of
Csm is scheme-theoretically dense in Rsh and V sh

1 × Γ1 is unramified over
V1 we see that σ is an isomorphism; it follows that Rsh is étale over V sh

1 ;
analogously it is étale over V sh

2 . So R is étale over V1 and V2 at the points
v1 and v2; since this holds for all v1 and v2 mapping to the same point of
C, the conclusion follows. ¤

In 6.14 and 6.15 below, we give two examples of incompatible charts on
the same coarse fibered surface.

4.10 The product chart

Given two compatible charts (U1, Y1 → V1, Γ1) and (U2, Y2 → V2, Γ2), the
graph Y ⊆ (Y1 ×V1 R)×R (R×V2 Y2) over R of the canonical isomorphism
of the two families Y1 ×V1 R and R×V2 Y2 is invariant under the action of
Γ1 × Γ2, and it is a family of pointed curves on R. Then

(U1 ×C U2, Y → R, Γ1 × Γ2)

is a chart, called the product chart. It is compatible with both the original
charts.

Compatibility of charts is stable under base change:

Proposition 4.11. Let (U1, Y1 → V1, Γ1) and (U2, Y2 → V2, Γ2) be two
compatible charts for a family of generically fibered surfaces X → C → S.
If S′ → S is an arbitrary morphism, then

(S′ ×S U1, S
′ ×S Y1 → S′ ×S V1, Γ1)



  

Complete Moduli for Fibered Surfaces 13

and
(S′ ×S U2, S

′ ×S Y2 → S′ ×S V1, Γ2)

are compatible charts for the the family S′ ×S X → S′ ×S C → S′.

This is easy.
We now come to the definition of our basic object:

Definition 4.12. A family of fibered surfaces

X
↓
C
↓
S

is a family of generically fibered surfaces X → C → S such that C →
S is proper, together with a collection {(Uα, Yα → Vα, Γα)} of mutually
compatible charts, such that the images of the Uα cover C.

Such a collection of charts is called an atlas.
A family of fibered surfaces is called balanced if each chart in its atlas is

balanced.
The family of generically fibered surfaces X → C → S supporting the

family of fibered surfaces X → C → S will be called a family of coarse
fibered surfaces.

Lemma 4.13. If two charts for a family of fibered surfaces are compatible
with all the charts in an atlas, they are mutually compatible.

Furthermore, if the family is balanced, then any chart which is compatible
with every chart of the atlas is balanced.

The proof is straightforward.

Remark 4.14. The lemma above allows us to define a family of fibered
surfaces using a maximal atlas, if we want.

Definition 4.15. A morphism of fibered surfaces X → C → S to X ′ →
C′ → S′ is a cartesian diagram of coarse fibered surfaces

X −→ X ′

↓ ↓
C −→ C ′

↓ ↓
S −→ S′,

such that the pullback of the charts of an atlas of X ′ → C′ → S are all
compatible with the atlas of X → C → S.

The composition of morphisms is the obvious one.

We will soon reinterpret this definition of a morphism.
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4.16 Fibered surfaces as stacks

Consider a family of fibered surfaces X → C → S with an atlas {(Uα, Yα →
Vα, Γα)}. For each pair of indices (α, β) let Rαβ be the transition scheme
from (Uα, Yα → Vα, Γα) to (Uβ , Yβ → Vβ , Γβ). Let V be the disjoint union
of the Vα, and let R be the disjoint union of the Rα,β . These have the
following structure:

• there are two projections R→ V , which are étale;

• there is a natural diagonal morphism V → R which sends each Vα to
Rαα; and

• there is a product R ×V R → R, sending each Rαβ ×Vβ
Rβγ to Rαγ

via composition of isomorphisms.

These various maps give R→→V the structure of a groupoid. Since the di-
agonal map R → V ×C V is unramified the groupoid defines a quotient
Deligne–Mumford stack. In a slight abuse of notation, we call this stack C
as well.

A similar groupoid structure can be formed using Yα and their pullback
to Rαβ , endowing X with the structure of a Deligne–Mumford stack as
well. Note that X → C is representable, and the stack X is a family of
stable ν-pointed curves of genus γ over the stack C.

Let us list some properties of X and C:
• There is a moduli morphism C → Mγ,ν associated to the family
X → C.

• The stack C is a proper nodal stack over S, namely, it has an étale
cover, given by the schemes V underlying the charts, which are nodal
over S.

• Over the inverse image of Csm the scheme R is isomorphic to the
fibered product V ×C V , so the quotient stack Csm coincides with
Csm. A similar statement holds for X .

• Since Uα is the schematic quotient of Vα by the action of Γα, and
U → C is étale, it is immediate that C is the schematic quotient
of the groupoid R→→V , in other words, the stack morphism C → C
exhibits C as the coarse moduli scheme of C. Similarly, X is the coarse
moduli scheme of X .

As mentioned above, a fibered surface being balanced is tantamount to
the existence of local smoothing of the fibered surface. It is interesting
to interpret the requirement that the action of Γ is essential within the
language of stacks.

We claim that the action being essential is equivalent to the condition
that the moduli morphism C → Mγ,ν be representable. This follows from
the definition of essential action, using the following well known lemma:
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Lemma 4.17. Let g : G → F be a morphism of Deligne–Mumford stacks.
The following two conditions are equivalent:

1. The morphism g : G → F is representable.

2. For any algebraically closed field k and any ξ ∈ G(k), the natural
group homomorphism Aut(ξ)→ Aut(g(ξ)) is a monomorphism.

4.18 A stack-theoretic formulation of the category of fibered
surfaces

We will now formulate stack-theoretic data similar to that obtained above,
and then compare them to the data of a fibered surface.

Let S be a scheme over Q. Consider a proper Deligne–Mumford stack
C → S, such that its fibers are purely one-dimensional and geometrically
connected, with nodal singularities. Call C the moduli space of C; this
automatically exists as an algebraic space.

Proposition 4.19. The morphism C → S is a flat family of nodal curves.

Proof. First of all let us show that C is flat over S. We may assume that
S is affine; call R its ring. Fix a geometric point c0 → C, and call Csh the
strict henselization of C at c0. Let U be an étale cover of C, let u0 be a
geometric point of U lying over c0, and call U sh the strict henselization of
U at u0. If Γ is the automorphism group of the object of C corresponding
to u0, then Γ acts on U sh, and Csh is the quotient U sh/Γ. Because the
schemes are defined over Q, the ring of Csh is a direct summand of the ring
of Y sh, as an R-module, so it is flat over R.

The fact that the fibers are nodal follows from the fact that, over an
algebraically closed field, the quotient of a nodal curve by a group action
is again a nodal curve. ¤
Definition 4.20. A stack-like family of curves of genus g over a scheme S
consists of a proper stack C → S, whose fibers are purely one-dimensional
and geometrically connected, with nodal singularities, such that:

1. the fibers of the morphism C → S, where C is the moduli space of
C, have genus g;

2. over the inverse image of the smooth locus Csm of the map C → X,
the projection C → C is an isomorphism.

If C → S and C′ → S′ are stack-like families of curves of genus g, a
morphism F : C → C′ consists of a cartesian diagram

C F−→ C′
↓ ↓
S

f−→ S′ .
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The composition of morphisms of stack-like families of curves is defined
in the obvious way. In this way stack-like families of curves of genus g form
a 2-category, 2-arrows being defined in the usual way.

Proposition 4.21. The 2-category of stack-like families of curves of genus
g is equivalent (in the lax sense) to a 1-category.

Proof. This is the same as saying that a 1-arrow in the category cannot
have nontrivial automorphisms. The point here is that the stack C has an
open subscheme which is stack-theoritically dense in C, which is sufficient
by the following lemma.

Lemma 4.22. Let F : X → Y be a representable morphism of Deligne–
Mumford stacks over a scheme S. Assume that there exists an open repre-
sentable substack (i.e. an algebraic space) U ⊆ X and a dense open repre-
sentable substack V ⊆ Y such that F maps U into V . Further assume that
the diagonal Y → Y ×S Y is separated. Then any automorphism of F is
trivial.

Definition 4.23. A stack-like fibered surface f : C →Mγ,ν over a scheme
S is a stack-like family C → S of curves of genus g over S, with projective
coarse moduli space C → S, together with a representable morphism C →
Mγ,ν .

As pointed out above, stack-like fibered surfaces form a 2-category. A
1-arrow Φ = (φ, αΦ) from f : C → Mγ,ν to f ′ : C′ → Mγ,ν consists of
a morphism of stack-like families of curves φ : C → C′, together with an
isomorphism αΦ of the composition of f ′ ◦ φ with f ; the compostion of
1-arrows is defined in the obvious way. A 2-arrow from a 1-arrow Φ from
f : C →Mγ,ν to f ′ : C′ →Mγ,ν to another arrow Ψ with the same domain
and codomain consists of an isomorphism β of the two functors φ and ψ,
with the usual compatibility condition of the isomorphism β with αΦ and
αΨ.

Because of the proposition, this category is equivalent to a nice unprob-
lematic 1-category, which we can think of as the category of stack-like
fibered surfaces, the arrows being given by isomorphism classes of mor-
phisms.

We can now compare the two categories we have defined.

Theorem 4.24. The category of stack-like fibered surfaces over schemes
over Q is equivalent (in the lax sense) to the category of fibered surfaces.

Sketch of proof. The construction in 4.16 shows that a fibered surface
gives rise to a stack-like fibered surface in a functorial way.

To go from stack-like fibered surfaces to honest fibered surfaces, let us
take a stack-like fibered surface C → Mγ,ν , and then take as a family of
pointed nodal curves its coarse moduli space C → S. The charts are given
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by étale morphism from schemes to C. We leave the treatment of morphisms
to the reader. ¤

From now on we will use fibered surfaces and stack-like fibered surfaces
interchangeably.

4.25 Stable fibered surfaces

We first define a moduli morphism on a coarse fibered surface:

Lemma 4.26. Let X → C → S be a family of fibered surfaces. Then the
morphism Csm →Mγ,ν induced by the restriction of X → C to Csm extends
uniquely to a morphism C →Mγ,ν .

Proof. The unicity is clear from the fact that Mγ,ν is separated and Csm

is scheme-theoretically dense in C. To prove the existence of an extension
is a local question in the étale topology; but if {(Uα, Yα → Vα, Γα)} is an
atlas then the families Yα → Vα induce morphisms Vα → Mγ,ν , which
are Γα-equivariant, yielding morphisms Uα →Mγ,ν . These morphisms are
extensions of the restriction to the Uα of the morphism Csm → Mγ,ν .
Therefore they descend to C. ¤

We can use this lemma to define stable fibered surfaces:

Definition 4.27. A family of fibered surfaces X → C → S is stable if the
associated morphism C →Mγ,ν is Kontsevich stable.

4.28 Natural line bundles on a coarse fibered surface

Proposition 4.29. On each family of fibered surfaces X → C → S there
exists a canonically defined line bundle LX on the coarse fibered surface X,
which is relatively ample along the map X → C. This line bundle satisfies:

1. For any morphism of fibered surfaces

X ′ φ−→ X
↓ ↓
C′ −→ C
↓ ↓
S′ −→ S

there is an isomorphism of line bundles σφ : LX′ ' φ∗LX .

2. These isomorphisms satisfy the cocycle condition, in the sense that
σidX

= idLX
for all families of fibered surfaces X → S, and if we
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have two morphisms

X ′′ ψ−→ X ′ φ−→ X
↓ ↓ ↓
C′′ −→ C′ −→ C
↓ ↓ ↓

S′′ −→ S′ −→ S

then
σφψ = ψ∗σφ ◦ σψ : LX′′ −→ (φψ)∗LX = ψ∗φ∗LX .

Proof. Fix an integer N which is divisible by the order of the automor-
phism group of any ν-pointed stable curve of genus γ. The construction
below will depend on the choice of the integer N . For each index α con-
sider the line bundle ωα = ωYα/Vα

(∆α), the relative dualizing sheaf of Yα

over Vα twisted by the divisor ∆α of marked points. This line bundle has
a natural action of Γα, and the stabilizers of all the geometric points act
trivially on the fiber of ω⊗N

α ; therefore ω⊗N
α descends to a line bundle Lα

on X ×C Uα.
Given two indices α and β, let Rαβ be the transition scheme of two

corresponding charts and Yαβ → Rαβ the family of pointed stable curves
constructed above; there is a canonical isomorphism between the pullback
of ωα to Yαβ and the analogous bundle ωαβ on the family Yαβ , so we can
compose these to get isomorphisms between the pullbacks of ωα and ωβ .
These isomorphisms satisfy the cocycle condition and give the collection of
the ωα the structure of a line bundle on the groupoid R→→V .

Passing to the N -th power, the isomorphisms above also descend to
isomorphisms between the pullbacks of Lα and Lβ on the fiber product
X ×C (Uα ×C Uβ) satisfying the cocycle condition, so the Lα are the pull-
back of a well defined line bundle LX , which is the one we want. ¤

Proposition 4.30. On each family of stable fibered surfaces X → C →
S there exists a canonically defined line bundle AX on the coarse fibered
surface X, which is relatively ample along the map X → S. This line bundle
satisfies the properties listed in Proposition 4.29.

Proof. Fix N as in the proof of Proposition 4.29. Fix an ample line bundle
H0 on Mγ,ν , and let H = H⊗3

0 . Let X → C → S be a stable fibered surface,
and let mC : C →Mγ,ν be the associated moduli morphism. Consider the
line bundle AC := (ωC/S ⊗m∗CH)⊗N on C. By the theory of stable maps,
the line bundle AC is ample relative to the morphism C → S. It clearly
satisfies the invariance condition in the proposition. Also, by Kollár’s semi-
positivity lemma (see [Kollár1]) the line bundle LX constructed above is
nef. Set AX = LX⊗f∗AC . By Kleiman’s criterion for ampleness we clearly
have that AX is ample. The invariance conditions follow by construction.



  

Complete Moduli for Fibered Surfaces 19

Remark 4.31. It is important to note that both LX and AX are invari-
ants of the coarse fibered surfaces, independent of the given atlas. This is
because, on the open subscheme U ⊂ X where X → S is Gorenstein, these
coincide with ωN

U/C and ωN
U/S . Since U has a complement of codimension

≥ 2, the extensions to X are unique.

5 The stack of fibered surfaces

Consider the stackMγ,ν of stable ν-pointed curves of genus γ over Q, and
the associated moduli space Mγ,ν ; choose an ample line bundle H on Mγ,ν .
Fix two nonnegative integers g and d.

We define a category Fd
g (γ, ν), fibered over the category Sch /Q of schemes

over Q, as follows. The objects are stable families X → C → S such that
for the associated morphism f : C → Mγ,ν , the degree of the line bundle
f∗H on each fiber of C over S is d. The arrows are morphisms of fibered
surfaces. We also have a subcategory Fd

g (γ, ν)balanced of stable balanced
families.

There is an obvious morphism from Fd
g (γ, ν) to the stack Kd

g

(
Mγ,ν

)
of

Kontsevich-stable maps of genus g and degree d into Mγ,ν which sends each
stable family of fibered surfaces X → C → S to the associated morphism
C →Mγ,ν .

Our main result is:

Theorem 5.1. The category Fd
g (γ, ν) is a complete Deligne–Mumford

stack, admitting a projective coarse moduli space Fd
g(γ, ν). The subcategory

Fd
g (γ, ν)balanced forms an open and closed substack.

This is a very particular case of our general theorem of existence for the
Deligne–Mumford stack of twisted stable maps from a curve into a general
Deligne–Mumford stack with projective moduli space (see [ℵ-V1], [ℵ-V2]).
A proof (a little sketchy at some technical points) can be found in the
previous version of this paper. This is substantially simpler than in the
general case, because it takes advantage of many simplifications afforded
by dealing with families of algebraic curves, rather than by abstract objects
in a Deligne–Mumford stack.

6 Fibered surfaces and Alexeev stable maps

6.1 Semi-log-canonical surfaces

Semi-log-canonical surfaces are introduced in [K-SB] and further studied
in [Al2] and [Al3]. We now review their definition. First, let us define log-
canonical pairs.
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Definition 6.2. Let (X, D) be a pair consisting of a normal variety X and
an effective, reduced Weil divisor D. Denote by Xsm the nonsingular locus
of X. We say that (X, D) is a log canonical pair if the following conditions
hold:

1. (X, D) is log-Q-Gorenstein, namely: for some positive integer m, we
assume that the invertible sheaf (ωXsm(D))m extends to an invertible
sheaf (ωXsm(D))[m] on X.

2. Let r : Y → X be a desingularization, such that the proper transform
of D together with the exceptional locus of Y → X form a normal
crossings divisor. Call this divisor, taken with reduced structure, D′.
Then, we assume that the natural pullback of rational differentials
gives a morphism of sheaves: r∗(ωXsm(D))[m] → (ωY (D′))m. That is,
a logarithmic differential on X pulls back to a logarithmic differential
on Y .

A complete description of log-canonical singularities of surface pairs is
given in [Al1].

Semi-log-canonical surfaces are a natural generalization of the above to
the case of non-normal surfaces.

Definition 6.3. Let X be a surface and D a reduced, pure codimension
1 subscheme such that no component of D lies in Sing(X). We say that
(X, D) is a semi-log-canonical if the following conditions hold.

1. X is Cohen Macaulay and normal crossings in codimension 1. Let
Xnc be the locus where X is either nonsingular or normal crossings.

2. (X, D) is log-Q-Gorenstein, namely: for some positive integer m, we
assume that the invertible sheaf (ωXnc(D))m extends to an invertible
sheaf on X.

3. Let X ′ → X be the normalization, D′ the Weil divisor corresponding
of D on X ′, and C ⊂ X ′ the conductor divisor, namely the divisor
where X ′ → X is not one-to-one, taken with reduced structure. Then
the pair (X ′, D′ + C) is log-canonical.

The unique locally free extension of (ωXnc(D))m is denoted by (ωX(D))[m].
In case D is empty, we just say that X is semi-log-canonical (or “has

semi-log-canonical singularities”).
We will use the following lemma about quotients of semi-log-canonical

surfaces:

Lemma 6.4. Let (Y, D) be a semi-log-canonical surface pair. Let Γ ⊂
Aut(Y, D) be a finite subgroup, and let X = Y/Γ, DX = D/Γ. Then the
following conditions are equivalent:

1. The quotient (X, DX) is semi-log-canonical;



 

Complete Moduli for Fibered Surfaces 21

2. The pair (X, DX) is log-Q-Gorenstein.

The proof is straightforward, see [Kollár2].
The reader is referred to [K-SB] for the refined notions of semismooth,

semi-canonical and semi-log-terminal singularities.

6.5 Nodal families and semi-log-canonical singularities.

A family of nodal curves over a nodal curve is always semi-log-canonical:

Lemma 6.6. Let V be a nodal curve and f : Y → V a nodal family. Then
Y has Gorenstein semi-log-canonical singularities. If, furthermore, D ⊂ Y
is a section which does not meet Sing(f), then (Y, D) is a semi-log-canonical
pair.

Proof. Since any family of nodal curves is a Gorenstein morphism, we have
that both V → Spec k and Y → V are Gorenstein morphisms, therefore Y
is Gorenstein.

Let y ∈ Y and p = f(x) ∈ V . It is convenient to replace Y and V by
their respective formal completions at y and p. The situation falls into one
of the following cases:

1. Both p 6∈ Sing(V ) and y 6∈ Sing(f). Then y ∈ Yns, and there is
nothing to prove.

2. p 6∈ Sing(V ) and y ∈ Sing(f). Choose a regular parameter t at p. By
the deformation theory of a node, we have the description

Y ' Spf k[[u, v, t]]/(uv − h(t)),

with h(0) = 0. If h(t) 6≡ 0 then we may write uv = µtk for some unit
µ ∈ OV,p, in which case (Y, y) is a canonical singularity. If h(t) ≡ 0
then (Y, y) is a normal crossing point, which is semismooth.

3. p ∈ Sing(V ) and y 6∈ Sing(f). Then (Y, y) is a normal crossing point
again.

4. p ∈ Sing(V ) and y ∈ Sing(f). We have

V ' Spf k[[t1, t2]]/(t1t2) and Y ' Spf OV [[u, v]]/(uv−h(t1, t2)).

We can write h(t1, t2) = h1(t1) + h2(t2), with hi(0) = 0.

(a) If neither hi is 0, write hi(ti) = µit
ki
i , with µi units, then (Y, y)

is a degenerate cusp with exceptional locus a cycle of ratio-
nal curves with exactly max (k1 − 1, 1) + max (k2 − 1, 1) com-
ponents.

(b) If, say, only h2 ≡ 0, then we have a degenerate cusp with
max (k1 − 1, 1) + 2 exceptional components.
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(c) If h1 ≡ 0 ≡ h2, then we have a degenerate cusp with 4 compo-
nents.

(See [K-SB] §4, for (4a)–(4c).)

The statement about the pair (Y, D) follows easily, since D meets Sing(Y )
transversally at normal crossing points: locally in the étale topology it is
isomorphic to the pair

(Spec k[t1, t2, u]/(t1t2), Spec k[t1, t2, u]/(t1t2, u)),

which is semi-log-canonical. ¤
For the following lemma assume that the base field is algebraically closed.

Here we are interested in balanced quotients of families of nodal curves over
a nodal base. Studying the resulting singularities becomes easy when we
show that the situation can be deformed, which is shown in this lemma.

Lemma 6.7. Let V be the formal completion of a nodal curve and f :
Y → V the formal completion of a nodal family at a closed point. Let
y ∈ Y be the closed point and assume f(y) = p is a node. Suppose a finite
cyclic group Γy ⊂ Aut(Y → V ) of order r fixes y and acts faithfully on V
stabilizing the two branches of V at p with complementary eigenvalues (in
other words, the action is balanced). Then there exists a smoothing

Y ⊂ Y ′

↓ ↓
V ⊂ V ′

↓ ↓
Spec k ⊂ Spf k[[s]]

and a lifting of the action of Γy to Y ′ → V ′.

Proof.

1. Suppose y 6∈ Sing(f). We may choose a parameter u along the fiber
so that Yy = Spf k[[t1, t2, u]]/(t1t2). It is not hard to choose u as an
eigenvector for Γy. The action is

(t1, t2, u) 7→ (ζt1, ζ
−1t2, ζ

au).

This clearly lifts to the family given by t1t2 = s.

2. Suppose now y ∈ Sing(f). We have the local equation uv = h1(t1) +
h2(t2). It is easy to choose u, v so that uv is an eigenvector.

(a) Suppose neither hi is 0. After a change of coordinates we may
assume our local equation is uv = tk1

1 +tk2
2 , t1t2 = 0 (so r divides

k1 + k2). We can analyse the action of Γy via its action on
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the fiber t1 = t2 = 0. Depending upon whether Γy stabilizes
the branches of u and v or switches them, the action is either
(u, v) 7→ (ζau, ζk1−av) or (u, v) 7→ (v, ζk1u). In either case this
action lifts to the deformation uv = tk1

1 + tk2
2 , t1t2 = s.

(b) Suppose only h2 ≡ 0. We have uv = tk1
1 , t1t2 = 0. Again, the

possible actions are either (u, v) 7→ (ζau, ζk1−av) or (u, v) 7→
(v, ζk1u). As before, the action lifts to the deformation.

(c) If we have uv = t1t2 = 0, the possible actions are either (u, v) 7→
(ζau, ζk−av) or (u, v) 7→ (v, ζku) for some integers k and a. For
any choice of positive k1, k2 such that k1 − k2 ≡ k mod r we
have that this action lifts to the family uv = tk1

1 tk2
2 ; t1t2 = s.

Now we look at quotients. First the case of a fixed point which lies in
the smooth locus of a fiber:

Lemma 6.8. Let V be a nodal curve and f : Y → V a nodal family, and
let y ∈ Y, y 6∈ Sing(f). Let Γ ⊂ AutY be a balanced finite subgroup, fixing
y. Let q : Y/Γ → X be the quotient map and let x = q(y). Then X has
a semi-log-terminal singularity at x. If, furthermore, D ⊂ Y is a section
through y which is Γ-stable, then (X, D/Γ) is a semi-log-canonical pair.

The fact that X has a semi-log-terminal singularity is in [K-SB] 4.23(iii).
The statement with D follows as in Lemma 6.4.

We are left to deal with a fixed point which is a node:

Lemma 6.9. Let V be a nodal curve and f : Y → V a nodal family, and
let y ∈ Y, y ∈ Sing(f). Let Γ ⊂ AutY be a balanced finite subgroup, fixing
y. Let q : Y/Γ → X be the quotient map and let x = q(y). Then X has a
Gorenstein semi-log-canonical singularity at x.

By Lemma 6.4 it is enough to show that X is Gorenstein, and for this
it suffices to show that the quotient of the smoothing Y ′ in Lemma 6.7 is
Gorenstein. The quotient variety Y ′/Γ is clearly Cohen–Macaulay; there-
fore it suffices to show that its canonical divisor class is Cartier. We are
in case (2) of Lemma 6.7. In the cases (2a) and (2b) (respectively (2c)),
the sheaf ωY ′ is generated at y by du∧dv∧dt2

t
k1−1
1

(respectively, du∧dv∧dt2
t
k1−1
1 t

k2
2

). The

generator is easily seen to be Γp-invariant. ¤
We have thus obtained:

Proposition 6.10. Let X → C with sections si : C → X be a coarse
fibered surface, Si = Im(si) and D =

∑
Si. Then (X, D) is a semi-log-

canonical pair.

6.11 Alexeev stable maps

In [Al3], V. Alexeev defined surface stable maps, for which he constructed
complete moduli spaces. Our goal here is to compare our moduli of balanced
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fibered surfaces and coarse balanced fibered surfaces with Alexeev’s moduli
spaces. In particular, we would like to construct a stack of stable balanced
coarse fibered surfaces.

Let X be a reduced, connected projective surface and D ⊂ X a reduced
subscheme of codimension 1. Let M ⊂ Pr be a projective scheme.

A morphism f : X →M is called a stable map of the pair (X, D) to M ,
if

1. the pair (X, D) has only semi-log-canonical singularities; in particu-
lar, for some integer m > 0 the sheaf (ωX(D))[m] is invertible.

2. For a sufficiently large integer n, the sheaf (ωX(D))[m] ⊗ f∗OM (mn)
is ample.

It is easy to see that the property of a morphism f : X →M being stable
is independent of the choice of the projective embedding of M .

Note that, given a stable map f : X →M , one has a well-defined triple
of rational numbers:

A = c1(ωX(D))2; B = c1(ωX(D)) · c1(f∗OM (1)); C = c1(f∗OM (1))2.

One can define a functor of families of stable maps with fixed invari-
ants A, B and C. This is somewhat subtle, since the sheaf ωX(D) is not
invertible, and saturation does not commute with base change. This can
be resolved either by restricting to “allowable” deformations on which the
saturation (ωX(D))[m] does commute with base change (this is discussed
in an unpublished work by Kollár), or by endowing the surface X with
the structure of a Deligne–Mumford stack using the log-Gorenstein covers
(this has not been carried out in the literature). Once the functor is defined,
one can look for a moduli space. The following result of Alexeev gives the
answer:

Theorem 6.12. (Alexeev) Given rationals A, B and C, there is a
Deligne–Mumford stack AlA,B,C(M) admitting a projective coarse moduli
space AlA,B,C(M) for surface stable maps f : X → M with invariants
A, B, C.

Now let X → C → S be a balanced fibered surface and X → C → S the
associated coarse fibered surface. We have a morphism C → Mγ,ν , which
we can compose with X → C and obtain a morphism f : X → Mγ,ν . In
addition to that, we have ν sections C → X. The union of the images of
these sections gives rise to a divisor D ⊂ X. We have already seen that
(X, D) is a semi-log-canonical pair. We now claim:

Proposition 6.13. The morphism f : X → Mγ,ν is a stable map of the
pair (X, D) to Mγ,ν .
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Proof. Fix a projective embedding Mγ,ν ∈ Pr. Since C →Mγ,ν is a stable
map, we have that ωC/S ⊗ f∗OMγ,ν

(n) is ample for n ≥ 3. Moreover, the

line bundle L = ω
[m]
X/C defined in Lemma 4.30 is nef and relatively ample

for X → C. Therefore ω
[m]
X/S ⊗ f∗OMγ,ν

(mn) is an invertible sheaf, which
is relatively ample for X → S. ¤

It is now easy to see that we have a finite morphism

Fd
g (γ, ν)balanced → AlA,B,C(Mγ,ν)

for a suitable A, B, C. The image can be viewed as the stack parametrizing
the underlying surfaces X of the coarse balanced fibered surfaces, along
with the map to Mγ,ν . In many cases one can recover the structure map
X → C, but not always: consider two non-isomorphic smooth stable curves
C1, C2 over a field K which become isomorphic over K̄, and set X =
C1×C2. The surface X has two structures of a stable coarse fibered surface,
defined by X → C1 and X → C2, which both give rise to a the same
constant map to Mγ,ν .

One can avoid this phenomenon in the following manner: the stable map
C →Mγ,ν naturally induces a map C → Kd

g,1(Mγ,ν) (onto the fiber over
the point in Kd

g(Mγ,ν) corresponding to C → Mγ,ν). The family X → C
induces a map to the “universal curve” X → Mγ,ν+1. One can replace
the morphism X → Mγ,ν in the previous consideration by the morphism
X → Kd

g,1(Mγ,ν) ×Mγ,ν+1. One still needs to show that the morphism
X → C is determined by the map, which is not entirely trivial.

Perhaps the most natural approach is to introduce the morphism X →
C into the definition. Consider a pair of objects ((X → S, X → Mγ,ν),
(C → S, C →Mγ,ν)) in AlA,B,C(Mγ,ν)×Kd

g

(
Mγ,ν

)
(S). By the theory of

Hilbert schemes, the functor

Sch /S → Sets
T 7→ HomT (X ×S T, C ×S T )

is representable by a scheme with quasi-projective connected components,
whose formation commutes with base changes. It follows by étale descent
that there is a separated Deligne-Mumford stack T of triples

(
(X →

S, X → Mγ,ν), (C → S, C → Mγ,ν), (X → C)
)
. There is a morphism

Fd
g (γ, ν)balanced → T , and we call the image CF d

g(γ, ν)balanced the stack of
stable balanced coarse fibered surfaces.

Since the proof of Alexeev’s theorem is quite involved, especially showing
boundedness of the stable maps, and since a good resolution of the issue
of the “right” deformation space is not available in the literature, it is
worthwhile to see that in this particular case we can deduce the existence
of the space of stable coarse fibered surfaces from our work so far.

Indeed, the existence of Fd
g (γ, ν)balanced implies that there is a scheme

Z and a finite surjective morphism Z → Fd
g (γ, ν)balanced. Over Z we have
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a family of fibered surfaces, and in particular a family of coarse fibered
surfaces X → C → Z. We have constructed a relatively ample line bundle
L on X; we may replace L by a suitable power and thus assume that L
is relatively ample. After passing to the frame bundle Z ′ of sections of L,
we may assume that the pushforward of L to Z is a free sheaf V . Since
X → Z is flat and embedded in P(V ), we have a morphism Z → Hilb to
a suitable Hilbert scheme. The projective linear group acts with finite sta-
bilizers, therefore the quotient is a Deligne–Mumford stack, parametrizing
the surfaces X underlying our coarse fibered surfaces. We can now apply
the construction above to define CF d

g(γ, ν)balanced.
It is interesting to look for properties of the morphism

Fd
g (γ, ν)balanced → CF d

g(γ, ν)balanced.

For instance, it is clearly birational on the closure of the locus of normal
fibered surfaces. As it turns out, there is little more that one can say:
this morphism fails in general to be one to one, and moreover, it may be
ramified, even on the closure of the locus of normal fibered surfaces. To
show this, one simply needs to produce examples of (deformable) coarse
fibered surfaces admitting incompatible atlases. The following examples
are local, but can be easily globalized.

Example 6.14. Here we give an example of two incompatible balanced
charts for a coarse fibered surface. Fix an algebraically closed field k of
characteristic 0, and set S = Spec k. Take a smooth projective curve W
over k with an automorphism s of order 2 with a fixed point p ∈W (k), and
let Y0 be the curve obtained by attaching two copies of W at p. Consider
the action of a cyclic group Γ of order 2 on X0 where a generator acts like
s on each copy of W ; also let f be the equivariant automorphism of Y0

which acts like s on one copy of W and as the identity on the other. The
point is that f commutes with s, and the automorphism of Y0/Γ induced
by f is the identity.

Let L be a universal deformation space of X0; Γ acts on L. Let V ′ be
a small étale neighborhood of 0 in A1, and let Γ act on V ′, such that a
generator sends t to −t. Choose a non-constant Γ-equivariant map V ′ → L;
this yields a family Y ′ of stable curves on V ′ whose fiber over 0 is exactly
X0; Γ also acts on Y . Let V be the union of two copies of V ′ glued at 0;
there are two families Y1 and Y2 on V obtained by attaching two copies
of Y ′ at X0, one using the identity, the other using f . These will not be
isomorphic in general, not after an automorphism of V , and not even after
going to an étale neighborhood of 0 in V .

Set U = V/Γ and call X the union of two copies of Y ′/Γ along X0/Γ;
we claim that the two generically fibered surfaces X1 = Y1/Γ→ V/Γ = U
and X2 = Y2/Γ→ V/Γ = U are canonically isomorphic to X → U . In fact
the structure sheaf OX′i

fits into an exact sequence

0 −→ OX′i
−→ OY ′ ×OY ′ −→ OX0 −→ 0,
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where the map OY ′ ×OY ′ −→ OX0 is the difference of the two projections
for i = 1, and the difference of one projection with the other projection
twisted by f for i = 2. Now take invariants; we get an exact sequence

0 −→ OX′i/Γ −→ OY ′/Γ ×OY ′/Γ −→ OX0/Γ −→ 0;

where the two maps OY1/Γ ×OY2/Γ → OX0/Γ are equal, because f induces
the identity on OX0/Γ.

So (U, Y1 → V, Γ) and (U, Y2 → V, Γ) are incompatible charts for the
surface X → U . If we call U the union of two disjoint copies of U and V
the union of two disjoint copies of V and Y → V the family of stable curves
which coincides with Y1 on one copy and with Y2 on the other one, we even
obtain an example (U, Y → V, Γ) of a chart that is not compatible with
itself. This is not surprising, because we are using the étale topology, so U
is not in general embedded in C; this could not happen if we were working
over C with the analytic topology.

Example 6.15. We now give an example of two incompatible charts on a
fibered surface over S = Spec k[ε]/(ε2), which coincide modulo ε. We then
globalize this example to a complete curve. This implies, in particular, that
the map Fd

g (γ, ν)→ CF d
g(γ, ν) is not always unramified.

Let F = Spec k[u, w]/(uw). We will use F as a constant fiber in charts
Y → V , so that Y = F ×V . Specifically, consider the following two curves:
V0 = Spec k[z, t, ε]/(zt, ε2) and Vε = Spec k[z, t, ε]/(zt− ε, ε2). Define Y0 =
F × V0 and Yε = F × Vε. We have obvious morphisms Y0 → V0 → S and
Yε → Vε → S. The fibers over Spec k ⊂ B are clearly isomorphic, but Y0

and Yε are clearly non-isomorphic.
We now define an action of C6, the cyclic group of order 6, on these

schemes. Let ζ be a primitive sixth root of 1. We choose a generator of C6

and call it ζ as well; define its action as follows:

(u, w, z, t, ε) 7→ (ζ3u, ζ2w, ζz, ζ−1t, ε)

This clearly defines an action of C6 on both Y0 → V0 → S and
Yε → Vε → S.

Let C0 = V0/C6. Explicitly,

C0 = Spec k[z6, t6, ε]/(z6t6, ε2).

Similarly let Cε = Vε/C6. It is easy to see that we have

Cε = Spec k[z6, t6, ε]/(z6t6, ε2).

Thus we can use the notation

C = V0/C6 = Vε/C6.
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We denote X0 = Y0/C6 and Xε = Yε/C6. Clearly X0 → C → S and
Xε → C → S are coarse fibered surfaces over S. Our main claim is that
they are isomorphic.

We will produce an isomorphism of coarse fibered surfaces by choosing
isomorphisms over suitable open sets, showing that these glue together over
a large open set, and arguing that an isomorphism on the large open set
must extend. Let us first work out the open sets.

We denote by U0 the localization of Y0 at u, . . . , and by Tε the localiza-
tion of Yε at t. Explicitly,

U0 = Spec k[u, u−1, z, t, ε]/(zt, ε2)
W0 = Spec k[w, w−1, z, t, ε]/(zt, ε2)
Z0 = Spec k[u, w, z, z−1, ε]/(uw, ε2)
T0 = Spec k[u, w, t, t−1, ε]/(uw, ε2)
Uε = Spec k[u, u−1, z, t, ε]/(zt− ε, ε2)
Wε = Spec k[w, w−1, z, t, ε]/(zt− ε, ε2)
Zε = Spec k[u, w, z, z−1, ε]/(uw, ε2)
Tε = Spec k[u, w, t, t−1, ε]/(uw, ε2)

These open sets are clearly stable under the action of C6.
The expressions above immediately give isomorphisms Z0 ' Zε and T0 '

Tε. These canonically induce isomorphisms Z0/C6 ' Zε/C6 and Z0/C6 '
Zε/C6.

Let us address the open sets U0 and Uε. These are clearly nonisomor-
phic, but we claim that their quotients by the subgroup of two elemets are
isomorphic. Indeed, note that ζ3 acts trivially on u, u−1. Therefore

Uε/C2 ' Spec k[u, u−1]× Vε/C2

= Spec k[u, u−1]× Spec k[z2, t2, zt, ε]/(zt− ε, ε2)
= Spec k[u, u−1]× Spec k[z2, t2, ε]/(ε2)
' Spec k[u, u−1]× V0/C2

' U0.

Taking the quotient by the residual C3 action, this isomorphism clearly
induces an isomorphism

Uε/C6 ' U0/C6.

Note that on the intersections Uε/C2∩Zε/C2 and U0/C2∩Z0/C2 the iso-
morphism above coincides with the restriction of the isomorphism Zε/C2 '
Z0/C2. Indeed, both are given by identifiying the variables u, z2 and ε.
Therefore these isomorphisms coincide on Uε/C6∩Zε/C6 as well. A similar
situation is obtained by replacing Zε by Tε.
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We now address the open sets Wε and W0 in a similar manner, noting
that this time C3 acts trivially on the variable w. Thus

Wε/C3 ' Spec k[w, w−1]× Vε/C3

= Spec k[w, w−1]× Spec k[z3, t3, zt, ε]/(zt− ε, ε2)
= Spec k[w, w−1]× Spec k[z3, t3, ε]/(ε2)
' Spec k[w, w−1]× V0/C3

' W0.

Again, it is easy to check that this isomorphism agrees on the intersec-
tions with the open sets Zε and Tε. We note that all these isomorphisms are
isomorphisms over the curve C, which coincide with the identity modulo ε.

Let X ′ε be the open subscheme which is the complement of the image
of the point u = w = z = t = 0 on Yε; define X ′0 in an analogous way.
Thus far we have obtained an isomorphism φ′ : X ′ε → X ′0. The closure
Σ ⊂ Xε×C X0 of the graph of φ′ is a subscheme supported along the graph
of the identity (Xε)Spec k = (X0)Spec k. Therefore the projections pε : Σ→
Xε and p0 : Σ→ X0 are finite. Note also pε and p0 are isomorphic along a
dense open set. Since the schemes X0 and Xε satisfy Serre’s condition S2,
these projection admit sections, giving rise to a morphism φ : Xε → X0,
which by the same reason is an isomorphism.
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