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Preface

Starting with the middle of the 1980s, there has been a growing and fruitful
interaction between algebraic geometry and certain areas of theoretical high-
energy physics, especially the various versions of string theory. In particular,
physical heuristics have provided inspiration for new mathematical definitions
(such as that of Gromov–Witten invariants) leading in turn to the solution of
(sometimes classical) problems in enumerative geometry. Conversely, the avail-
ability of mathematically rigorous definitions and theorems has benefitted the
physics research by providing needed evidence, in fields where experimental
testing seems still very far in the future.

This process is still ongoing in the present day, and actually expanding.
A partial reflection of it can be found in the courses of the CIME session
Enumerative invariants in algebraic geometry and string theory. The session
took place in Cetraro from June 6 to June 11, 2005 with the following courses:

• Dan Abramovich (Brown University): Gromov–Witten Invariants for Orb-
ifolds. (5 h)

• Marcos Mariño (CERN): Open Strings. (5 h)
• Michael Thaddeus (Columbia University): Moduli of Sheaves. (5 h)
• Ravi Vakil (Stanford University): Gromov–Witten Theory and the Moduli

Space of Curves. (5 h)

Moreover, the following two talks were given as complementary material
to the course of Abramovich.

• Jim Bryan (University of British Columbia): Quantum cohomology of orb-
ifolds and their crepant resolutions.

• Barbara Fantechi (Sissa): Virtual fundamental class.

Orbifolds are a natural generalization of complex manifolds, where local
charts are given not by open subsets of a complex vector space but by their
quotients by finite groups. There are two natural descriptions, one in terms
of charts (which actually works in symplectic geometry) and one in algebraic
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geometry as smooth complex Deligne–Mumford stacks. Physicists have long
suggested treating orbifolds analogously to manifolds; this has led to the de-
velopment of an orbifold Euler characteristic, rather than of orbifold Hodge
numbers, and finally (due to Chen–Ruan, in 2000) of an orbifold cohomology,
induced by a full theory of Gromov Witten invariants for orbifolds. The course
of Dan Abramovich has presented the foundations, laid down in a series of pa-
pers by Abramovich, Vistoli and others, of the definition of Gromov–Witten
invariants for orbifolds in the algebraic setting.

The course of Marcos Mariño presented explicit enumerative computations
by manipulation of formal power series, based on the physical idea of trans-
forming an open string theory to a closed string theory. The aim was to de-
rive explicit relationships between Gromov–Witten, Donaldson–Thomas and
Chern Simons invariants. In particular, the technique of the topological vertex
was explained, which allows a cut-and-paste approach to the determination
of such invariants. These methods have only partially received mathematical
proofs; they are therefore an important source of conjectures and methods for
further developments.

Enumerative geometry computations on moduli spaces of sheaves have
long been extremely useful both in physics and in mathematics; for instance
we may recall the definition of Donaldson and (more recently) Donaldson–
Thomas invariants, for surfaces and (some) threefolds respectively. The course
by Michael Thaddeus has been a very broad overview of this kind of tech-
niques, with a particular accent on the definition of the Donaldson–Thomas
invariants and the recent conjectures that relate them to Gromov–Witten in-
variants for Calabi Yau threefolds; evidence for the conjectures and examples
illustrating their significance have also been included.

One of the more established parts of the algebraic geometry – high energy
physics interaction has been the rigorous definition and the computation of
Gromov–Witten invariants for smooth projective varieties. At the basis of
the very definition there is the existence and properness of the moduli stack
Mg,n of stable curves. Surprisingly, in recent years it has been possible to
deduce theorems about Mg,n using the results of the Gromov–Witten theory.
The course of Ravi Vakil gave a general introduction to this area of research,
starting at a comparatively elementary level and then reaching proofs of some
conjectures of C. Faber on the tautological cohomology ring of Mg,n.

We acknowledge the COFIN 2003 “Spazi di moduli e teoria di Lie” for the
partial financial support given to this C.I.M.E. session.

We express our deep gratitude to Barbara Fantechi, for her very active role
in the organization, for help and for precious scientific advices to the second
editor.

Kai Behrend
Marco Manetti
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Lectures on Gromov–Witten Invariants
of Orbifolds

D. Abramovich

Department of Mathematics, Box 1917, Brown University
Providence, RI 02912, USA
abrmovic@math.brown.edu

1 Introduction

1.1 What This Is

This text came out of my CIME minicourse at Cetraro, June 6–11, 2005.
I kept the text relatively close to what actually happened in the course. In
particular, because of last minutes changes in schedule, the lectures on usual
Gromov–Witten theory started after I gave two lectures, so I decided to give
a sort of introduction to non-orbifold Gromov–Witten theory, including an
exposition of Kontsevich’s formula for rational plane curves. From here the
gradient of difficulty is relatively high, but I still hope different readers of
rather spread-out backgrounds will get something out of it. I gave few com-
putational examples at the end, partly because of lack of time. An additional
lecture was given by Jim Bryan on his work on the crepant resolution con-
jecture with Graber and with Pandharipande, with what I find very exciting
computations, and I make some comments on this in the last lecture. In a
way, this is the original reason for the existence of orbifold Gromov–Witten
theory.

1.2 Introspection

One of the organizers’ not-so-secret reasons for inviting me to give these lec-
tures was to push me and my collaborators to finish the paper [3]. The or-
ganizers were only partially successful: the paper, already years overdue, was
only being circulated in rough form upon demand at the time of these lectures.
Hopefully it will be made fully available by the time these notes are published.
Whether they meant it or not, one of the outcomes of this intention of the
organizers is that these lectures are centered completely around the paper [3].
I am not sure I did wisely by focussing so much on our work and not bringing
in approaches and beautiful applications so many others have contributed,
but this is the outcome and I hope it serves well enough.

K. Behrend, M. Manetti (eds.), Enumerative Invariants in Algebraic Geometry 1
and String Theory. Lecture Notes in Mathematics 1947,
c© Springer-Verlag Berlin Heidelberg 2008
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1.3 Where Does All This Come From?

Gromov–Witten invariants of orbifolds first appeared, in response to string
theory – in particular Zaslow’s pioneering [41] – in the inspiring work of
W. Chen and Y. Ruan (see, e.g. [15]). The special case of orbifold cohomology
of finite quotient orbifolds was treated in a paper of Fantechi-Göttsche [20],
and the special case of that for symmetric product orbifolds was also dis-
covered by Uribe [39]. In the algebraic setting, the underlying construction
of moduli spaces was undertaken in [4], [5], and the algebraic analogue of
the work of Chen-Ruan was worked out in [2] and the forthcoming [3]. The
case of finite quotient orbifolds was developed in work of Jarvis–Kauffmann–
Kimura [25]. Among the many applications I note the work of Cadman [11],
which has a theoretical importance later in these lectures.

In an amusing twist of events, Gromov–Witten invariants of orbifolds were
destined to be introduced by Kontsevich but failed to do so – I tell the story
in the appendix.

1.4 Acknowledgements

First I’d like to thank my collaborators Tom Graber and Angelo Vistoli, whose
joint work is presented here, hopefully adequately. I thank the organizers of
the summer school – Kai Behrend, Barbara Fantechi and Marco Manetti – for
inviting me to give these lectures. Thanks to Barbara Fantechi and Damiano
Fulghesu whose notes taken at Cetraro were of great value for the preparation
of this text. Thanks are due to Maxim Kontsevich and Lev Borisov who
gave permission to include their correspondence. Finally, it is a pleasure to
acknowledge that this particular project was inspired by the aforementioned
work of W. Chen and Ruan.

2 Gromov–Witten Theory

2.1 Kontsevich’s Formula

Before talking of orbifolds, let us step back to the story of Gromov–Witten
invariants. Of course these first came to be famous due to their role in mirror
symmetry. But this failed to be excite me, a narrow-minded algebraic geometer
such as I am, until Kontsevich [28] gave his formula for the number of rational
plane curves.

This is a piece of magic which I will not resist describing.

Setup

Fix an integer d > 0. Fix points p1, . . . p3d−1 in general position in the plane.
Look at the following number:

dan
Cross-Out
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Definition 2.1.1.

Nd = #
⎧
⎨

⎩

C ⊂ P
2 a rational curve,

degC = d, and
p1, . . . p3d−1 ∈ C

⎫
⎬

⎭
.

Remark 2.1.1. One sees that 3d − 1 is the right number of points using an
elementary dimension count: a degree d map of P

1 to the plane is parametrized
by three forms of degree d (with 3(d+1) parameters). Rescaling the forms (one
parameter) and automorphisms of P

1 (three parameters) should be crossed out,
giving 3(d+ 1)− 1− 3 = 3d− 1.

Statement

Theorem 2.1.1 (Kontsevich). For d > 1 we have

Nd =
∑

d = d1 + d2

d1, d2 > 0

Nd1Nd2

(

d2
1d

2
2

(
3d− 4
3d1 − 2

)

− d3
1d2

(
3d− 4
3d1 − 1

))

.

Remark 2.1.2. The first few numbers are

N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87304.

The first two are elementary, the third is classical, but N4 and N5 are non-
trivial.

Remark 2.1.3. The first nontrivial analogous number in P
3 is the number of

lined meeting four other lines in general position (the answer is 2, which is
the beginning of Schubert calculus).

2.2 Set-Up for a Streamlined Proof

M0,4

We need one elementary moduli space: the compactified space of ordered
four-tuples of points on a line, which we describe in the following unorthodox
manner :

M0,4 =
{

p1, p2, q, r ∈ L
∣
∣
∣
L � P

1

p1, p2, q, r distinct

}

The open set M0,4 indicated in the braces is isomorphic to P
1

�{0, 1,∞}, the
coordinate corresponding to the cross ratio
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CR(p1, p2, q, r) =
p1 − p2

p1 − r

q − r

q − p2
.

The three points in the compactification, denoted

0 = (p1, p2 | q, r),
1 = (p1, q | p2, r), and
∞ = (p1, r | p2, q),

0 1 ∞

p1

p2

r

p1p1

p2

q

r

q

q

p2

r

describing the three different ways to split the four points in two pairs and
position them on a nodal curve with two rational components.

A One-Parameter Family

We now look at our points p1, . . . p3d−1 in the plane.
We pass two lines �1, �2 with general slope through the last point p3d−1 and

consider the following family of rational plane curves in C → B parametrized
by a curve B:

• Each curve Cb contains p1, . . . p3d−2 (but not necessarily p3d−1).
• One point q ∈ Cb ∩ �1 is marked.
• One point r ∈ Cb ∩ �2 is marked.

In fact, we have a family of rational curves C → B parametrized by B,
most of them smooth, but finitely many have a single node, and a morphism
f : C → P

2 immersing the fibers in the plane.

dan
Cross-Out

dan
Replacement Text
describe
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q

r

p3d−2

p2

p1

�1

�2

The Geometric Equation

We have a cross-ratio map

B
λ−→ M0,4

C �→ CR(p1, p2, q, r)

Since points on P
1 are homologically equivalent we get

degB λ
−1(p1, p2|q, r) = degB λ

−1(p1, q|p2, r).

The Right-Hand Side

Now, each curve counted in degB λ
−1(p1, q|p2, r) is of the following form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying d1 +
d2 = d.

• We have p1 ∈ C1 as well as 3d1 − 2 other points among the 3d− 4 points
p3, . . . p3d−2.

• We have p2 ∈ C2 as well as the remaining 3d2−2 points from p3, . . . p3d−2.
• We select one point z ∈ C1 ∩ C2. where the two abstract curves are at-

tached.
• We mark one point q ∈ C1 ∩ �1 and one point r ∈ C2 ∩ �2.

dan
Cross-Out



U
nc

or
re

ct
ed

 P
ro

of

6 D. Abramovich

�1

�2

C1

C2

p1
p2

zr

q

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−2

)
ways to choose

the set of 3d1 − 2 points on C1 from the 3d− 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d2 for r. This gives the term

degB λ
−1(p1, q|p2, r) =

∑

d = d1 + d2

d1, d2 > 0

(
3d− 4
3d1 − 2

)

· Nd1 Nd2 · d1d2 · d1 ·d2.

A simple computation in deformation theory shows that each of these
curves actually occurs in a fiber of the family C → B, and it occurs exactly
once with multiplicity 1.

The Left-Hand Side

Curves counted in degB λ
−1(p1, p2|q, r) come in two flavors: there are irre-

ducible curves passing through q = r = �1 ∩ �2. This is precisely Nd.

�1

�2q = r = p3d−1

p2 p1
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Now, each reducible curve counted in degB λ
−1(p1, p2|q, r) is of the follow-

ing form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying d1 +
d2 = d.

• We have 3d1 − 1 points among the 3d− 4 points p3, . . . p3d−2 are on C1.
• We have p1, p2 ∈ C2 as well as the remaining 3d2 − 2 points from

p3, . . . p3d−2.
• We select one point z ∈ C1 ∩ C2. where the two abstract curves are at-

tached.
• We mark one point q ∈ C1 ∩ �1 and one point r ∈ C1 ∩ �2.

�1

�2

r

q

z

p1 p2

C2

C1

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−1

)
ways to choose

the set of 3d1 − 1 points on C1 from the 3d− 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d1 for r. This gives

degB λ
−1(p1,p2|q, r)

= Nd +
∑

d = d1 + d2

d1, d2 > 0

(
3d− 4
3d1 − 1

)

· Nd1 Nd2 · d1d2 · d2
1

Equating the two sides and rearranging we get the formula. �	

2.3 The Space of Stable Maps

Gromov–Witten theory allows one to systematically carry out the argument
in general, without sweeping things under the rug as I have done above.

Kontsevich introduced the moduli space Mg,n(X,β) of stable maps, a basic
tool in Gromov–Witten theory. As it turned out later, it is a useful moduli
space for other purposes.
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Fixing a complex projective variety X, two integers g, n ≥ 0 and β ∈
H2(X,Z), one defines:

Mg,n(X,β) = {(f : C → X, p1, . . . , pn ∈ C)} ,

where

• C is a nodal connected projective curve.
• f : C → X is a morphism with f∗[C] = β.
• pi are n distinct points on the smooth locus of C.
• The group of automorphisms of f fixing all the pi is finite.

Here an automorphism of f means an automorphism σ : C → C such that
f = f ◦ σ, namely a commutative diagram:

C

σ

��

f

���
��

��
��

�

C
f

�� X.

Remark 2.3.1. if X = a point, then Mg,n(X, 0) = Mg,n, the Deligne–
Mumford stack of stable curves.

Remark 2.3.2. It is not too difficult to see that the stability condition on
finiteness of automorphisms is equivalent to either of the following:

• The sheaf ωC(p1 + · · · + pn) ⊗ f∗M is ample for any sufficiently ample
sheaf M on C.

• We say that a point on the normalization of C is special if it is either a
marked point or lies over a node of C. The condition is that any rational
component C0 of the normalization of C such that f(C0) is a point, has
at least three special points, and any such elliptic component has at least
one special point.

The basic result, treated among other places in [30], [21], is

Theorem 2.3.1. Mg,n(X,β) is a proper Deligne–Mumford stack with projec-
tive coarse moduli space.

2.4 Natural Maps

The moduli spaces come with a rich structure of maps tying them, and X,
together.

Evaluation

First, for any 1 ≤ i ≤ n we have natural morphisms, called evaluation mor-
phisms
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Mg,n(X,β) ei−→ X

(C
f→ X, p1, . . . , pn) �→ f(pi)

Contraction

Next, given a morphism φ : X → Y and n > m we get an induced morphism

Mg,n(X,β) −→ Mg,m(Y, φ∗β)

(C
f→ X, p1, . . . , pn) �→ stabilization of (C

φ◦f→ Y, p1, . . . , pm).

Here in the stabilization we contract those rational components of C which
are mapped to a point by φ ◦ f and have fewer than three special points. This
is well defined if either φ∗β �= 0 or 2g − 2 + n > 0.

For instance, if n > 4 we get a morphism M0,n(X,β) → M0,4.

2.5 Boundary of Moduli

Understanding the subspace of maps with degenerate source curve C is key
to Gromov–Witten theory.

Fixed Degenerate Curve

Suppose we have a degenerate curve

C1 C2

p

C = C1

p
∪C2.

So C is a fibered coproduct of two curves. By the universal property of co-
products

Hom(C,X) = Hom(C1,X) ×
Hom(p,X)

Hom(C2,X)

= Hom(C1,X) ×
X

Hom(C2,X)

Varying Degenerate Curve: The Boundary of Moduli

We can work this out in the fibers of universal the families. If we set g = g1+g2,
n = n1 + n2 and β = β1 + β2 we get a morphism

Mg1,n1+1(X,β1)×X Mg2,n2+1(X,β2) −→ Mg,n(X,β),

dan
Cross-Out

dan
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3

dan
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dan
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with the fibered product over en1+1 on the left and en2+1 on the right. On the
level of points this is obtained by gluing curves C1 at point n1 + 1 with C2 at
point n2 + 1 and matching the maps f1, f2. This is a finite unramified map,
and we can think of the product on the left as a space of stable n-pointed
maps of genus g and class β with a distinguished marked node.

Compatibility with Evaluation Maps

This map is automatically compatible with the other “unused” evaluation
maps. For instance if i ≤ n1 we get a commutative diagram

Mg1,n1+1(X,β1)×
X

Mg2,n2+1(X,β2) ��

π1

��

Mg,n(X,β)

ei

��
Mg1,n1+1(X,β1)

ei �� X.

As these tend to get complicated we will give the marking their “individ-
ual labels” rather than a number (which may change through the gluing or
contraction maps).

2.6 Gromov–Witten Classes

We start with some simplifying assumptions:

• g = 0.
• X is “convex” [21]: no map of rational curve to X is obstructed. Examples:

X = P
r, or any homogeneous space.

We simplify notation: M = M0,n+1(X,β). We take γi ∈ H∗(X,Q)even to
avoid sign issues.

We now define Gromov–Witten classes:

Definition 2.6.1.

〈γ1, . . . , γn, ∗〉Xβ := en+1 ∗(e∗(γ1 × . . .× γn) ∩ [M ])) ∈ H∗(X).

Here the notation is e := e1 × · · · × en : M → Xn:

M
en+1 ��

e:=e1×···×en

��

X

Xn.

When X is fixed we will suppress the superscript X from the notation.

dan
Cross-Out

dan
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2.7 The WDVV Equations

The main formula in genus 0 Gromov–Witten theory is the Witten–Dijkgraaf–
Verlinde–Verlinde (or WDVV) formula. It is simplest to state for n = 3:

Theorem 2.7.1.
∑

β1+β2=β

〈
〈γ1, γ2, ∗〉β1 , γ3, ∗

〉

β2

=
∑

β1+β2=β

〈
〈γ1, γ3, ∗〉β1 , γ2, ∗

〉

β2

.

For general n ≥ 3 it is convenient to label the markings by a finite set I
to avoid confusion with numbering. The formula is

∑

β1+β2=β

∑

A�B=I

〈
〈γ1, γ2, δA1 , . . . , δAk

, ∗〉β1 , γ3, δB1 , . . . , δBm
, ∗
〉

β2

=
∑

β1+β2=β

∑

A�B=I

〈
〈γ1, γ3, δA1 , . . . , δAk

, ∗〉β1 , γ2, δB1 , . . . , δBm
, ∗
〉

β2

Note that the only thing changed between the last two lines is the placement
of γ2 and γ3.

This formalism of Gromov–Witten classes and the WDVV equations is
taken from a yet unpublished paper of Graber and Pandharipande. One ad-
vantage is that it works with cohomology replaced by Chow groups.

Gromov–Witten Numbers

The formalism that came to us from the physics world is equivalent, though
different, and involves Gromov–Witten numbers, defined as follows:

Definition 2.7.1.

〈γ1, . . . , γn〉Xβ :=
∫

M

e∗(γ1 × . . .× γn),

where this time M = M0,n(X,β).

The following elementary lemma allows one to go back and forth between
these formalisms:

Lemma 2.7.1.

1. 〈γ1, . . . , γn, γn+1〉β =
∫

X

〈γ1, . . . , γn, ∗〉β ∪ γn+1

2. Choose a basis {αi} for H∗(X,Q). Write the intersection matrix
∫

X
αi ∪

αj = gij, and denote the inverse matrix entries by gij. Then

〈γ1, . . . , γn, ∗〉β =
∑

i,j

〈γ1, . . . , γn, αi〉β gij αj .
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The WDVV equations then take the form
∑

β1+β2=β

∑

A�B=I

∑

i,j

〈γ1, γ2, δA, αi〉β1 gij 〈αj , γ3, δB , γ4〉β2

=
∑

β1+β2=β

∑

A�B=I

∑

i,j

〈γ1, γ3, δA, αi〉β1 gij 〈αj , γ2, δB , γ4〉β2

2.8 Proof of WDVV

We sketch the proof of WDVV, in the formalism of Gromov–Witten classes,
under strong assumptions:

• ei : M −→ X is smooth.
• The contraction M −→ M0,4 is smooth, and moreover each node can be

smoothed out independently.

These assumptions hold for the so-called convex varieties discussed by
Fulton and Pandharipande.

Setup

Now, it would be terribly confusing to use the usual numbering for the mark-
ings, the evaluation maps and the cohomology classes pulled back by the
corresponding evaluation marks, as we will use the structure of the boundary
discussed above. Instead we give them names.

The first moduli space we need is the space of genus 0 pointed stable maps
to X with class β1. The markings are used in three ways:

1. The first two are used to pull back γ1, γ2 on the left hand side (and γ1, γ3

on the right).
2. The next bunch is used to pull back the δAi

.
3. The last is used to push forward.

It is convenient to put together the first two sets of and call the result Â. The
last marking will be denoted by the symbol �, suggesting something is to be
glued on the right. For short notation we will use

M1 = M0,Â��(X,β1).

We also use shorthand for the cohomology and homology classes:

η1 = e∗
Â
(γ1 × γ2 × δA)

ξ1 = η1 ∩ [M1]

The second moduli space we need is the space of genus 0 pointed stable
maps to X with class β2. The markings are used in four ways:
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1. The first will be used to pull back 〈γ1, γ2, δA1 , . . . , δAk
, ∗〉β1 . It is the

marking used for gluing and is accordingly denoted �.
2. The next one is used to pull back γ3 on the left hand side (and γ2 on the

right).
3. The next bunch is used to pull back the δBi

.
4. The last is used to push forward.

We leave the first one alone, we put together the next two sets of and call the
result B̂. The last marking will be denoted by the symbol •. The notation we
will use is

M2 = M0,��B̂�•(X,β1).

The shorthand for the cohomology and homology classes is:

η2 = e∗
B̂

(γ3 × δB)

ξ1 = η2 ∩ [M2]

The key to the proof of WDVV is to express the class on either side in
terms of something symmetric on the glued moduli space. We use the notation

M1 ×X M1 −→ M := M0,Â�B̂�•(X,β),

where the gluing is done with respect to e� : M1 → X on the left, and
e� : M2 → X on the right. A relevant symmetric class which comes up as a
bridge between the two sides of the formula is

η12 = e∗
Â�B̂

(
γ1 × γ2 × δA × γ3 × δB

)
.

The Fibered Product Diagram

Consider the diagram

M1 ×X M2

p2 ��

p1

��

M2

e• ��

e�

��

X

M1

e� �� X.

It is important that e� is smooth, in particular flat. We suppress Poincaré
duality isomorphisms in the notation.

We now have by definition
〈
〈γ1, γ2, δA, ∗〉β1 , γ3, δB , ∗

〉

β2

= e• ∗
(
e∗� (e� ∗ξ1) ∩ ξ2

)

and the projection formula gives

= (e• ◦ p2)∗
(
p∗1η1 ∪ p∗2η2 ∩ [M1 ×X M2]

)

So we need to understand the class p∗1η1∪p∗2η2∩ [M1×X M2] on the fibered
product.



U
nc

or
re

ct
ed

 P
ro

of

14 D. Abramovich

End of Proof

Since we have a big sum in the WDVV equation, we need to take the union
of all these fibered products. They are put together by the gluing maps, as in
the following fiber diagram:

∐

β1+β2=β

∐

A�B=I

M1 ×X M2 ��

�

��∆X
(12|3•)

� � ��

��

M

st

��
{(12|3•)} � � �� M0,4

where the markings in M0,4 are denoted 1, 2, 3, and • to match with our other
notation. The subscheme ∆X

(12|3•) ⊂ M is defined by this diagram.
The smoothness assumption on the stabilization/contraction map

st : M → M0,4

guarantees that the gluing map

j :
∐

β1+β2=β

∐

A�B=I

M1 ×X M2 → ∆X
(12|3•)

is finite and birational, and in fact we have an equality in Chow classes:

�∗

⎡

⎣
∐

β1+β2=β

∐

A�B=I

M1 ×X M2

⎤

⎦ = st∗ [{(12|3•)}] .

We can now complete our equation:
∑∑〈

〈γ1, γ2, δA, ∗〉β1 , γ3, δB , ∗
〉

β2

=
∑∑

(e• ◦ p2)∗
(
p∗1η1 ∪ p∗2η2 ∩ [M1 ×X M2]

)

=
∑∑

(e• ◦ p2)∗
(
�∗η12 ∩ [M1 ×X M2]

)

= e• ∗
(
η12 ∩ st∗[{(12|3•)}]

)
,

where the last evaluation map is e• : M → M0,4.
The latter expression is evidently symmetric and therefore the order of γ2

and γ3 is immaterial. The formula follows. �	
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2.9 About the General Case

The WDVV equation holds in general when one replaces fundamental classes
of moduli space in the smooth case with virtual fundamental classes, some-
thing that takes care of the non-smoothness in an organized manner. The
drawback of virtual fundamental classes is that in general one loses the enu-
merative nature of Gromov–Witten classes. However the flexibility of the for-
malism allows one to compute cases where the classes are enumerative by
going through cases where they are not.

I will definitely not try to get into the details here – they belong in a
different lecture series. However I cannot ignore the subject completely – in
the orbifold situation virtual fundamental classes are always necessary! Let
me just indicate the principles.

First, the smoothness assumption of stabilization holds in the “universal
case” – by which I mean to say that it holds for the moduli stacks of pre-stable
curves introduced by Behrend [6]. We in fact have a fiber diagram extending
the above:

∐

β1+β2=β

∐

A�B=I

M1 ×X M2 ��

�

��

��

∆X
(12|3•)

� � ��

��

M

forgetful
��

M03 ×M0,3
�� D0,4

��

��

M0,4

st

��
{(12|3•)} � � �� M0,4

where st : M0,4 −→ M0,4 is flat. This is a situation where refined pull-backs
can be used.

The formalism of algebraic virtual fundamental classes works for an arbi-
trary smooth projective X. It requires the definition of classes [M]vir in the
Chow group of each moduli space M. The key property that this satisfies is
summarized as follows:

Consider the diagram

M1 ×M2

��

M1 ×X M2
��

��

� � �� 	M1 ×X M2
��

��

M

��
X ×X X

∆
�� M03 ×M0,3

gl �� M0,4.

The condition is:
∑

β1+β2=β

∑

A�B=I

∆!
(
[M1]vir × [M2]vir

)
= gl

![M]vir.
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For a complete algebraic treatment and an explanation why this is the
necessary equation see [7].

The main theorem is
Theorem 2.9.1. This equation holds for the class associated to obstruction
theory

[M]vir = (M, E)
with

E = Rπ∗f∗TX

coming from the diagram of the universal curve

C

π

��

f �� X

M

3 Orbifolds/Stacks

3.1 Geometric Orbifolds

One can spend an entire lecture series laying down the foundations of orbifolds
or stacks. Since I do not have the luxury, I’ll stick to a somewhat intuitive,
and necessarily imprecise, presentation. The big drawback is that people who
do not know the subject get only a taste of what it is about, and have to look
things up to really understand what is going on. Apart from the standard
references, one may consult the appendix of [40] or [18] for an introduction to
the subject.

I will use the two words “orbifold” and “stack” almost interchangeably.
Geometrically, an orbifold X is locally given as a quotient of a space, or

manifold, Y by the action of a finite group, giving a chart [Y/G] → X. The
key is to remember something about the action.

A good general way to do this is to think of X as the equivalence class of
a groupoid

R
t−→−→
s

V

where

• s, t are étale morphisms or, more generally, smooth morphisms.
• The morphism s× t : R→ V is required to be finite.

The notation used is X � [R−→−→V ]. You think of R as an equivalence
relation on the points of V , and of X as the “space of equivalence classes”.

This notation of a groupoid and its associated orbifold is very much a
shorthand – the complete data requires a composition map

R ×
tV s

R → R
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as well as an identity morphism V → R, satisfying standard axioms I will not
write in detail. They are inspired by the case of a quotient:

A quotient is the orbifold associate to the following groupoid: [V/G] =
[R−→−→V ], where R = G× V , the source map s : G× V is the projection, and
the target map t : R→ V is the action.

I have not described the notion of equivalence of groupoids, neither did I
describe the notion of a morphism of orbifolfds presented by groupoids. It is
a rather complicated issue which I had rather avoid. The moduli discussion
below will shed some light on it.

3.2 Moduli Stacks

Orbifolds come about rather frequently in the theory of moduli. In fact, the
correct definition of an algebraic stack is as a sort of tautological solution to
a moduli problem.

An algebraic stack X is by definition a category, and implicitly the category
of families of those object we want to parametrize. It comes with a “structure
functor” X → Sch to the category of scheme, which to each family associates
the base of the family. A morphism of stacks is a functor commuting with the
structure functor.

Here is the key example: Mg – the moduli stack of curves. The category
Mg has as its objects ⎧

⎨

⎩

C

↓
B

⎫
⎬

⎭

where each C → B is a family of curves of genus g. The structure functor
Mg → Sch of course sends the object C → B to the base scheme B. It is
instructive to understand what arrows we need. Of course we want to classify
families up to isomorphisms, so isomorphisms

C

��

∼ �� C′

��
B B

must be included. But it is not hard to fathom that pullbacks are important
as well, and indeed a morphism in Mg is defined to be a fiber diagram

C

��

�� C′

��
B �� B′

That’s why you’ll hear the term “fibered category” used.
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How is a scheme thought of as a special case of a stack? A scheme X is
the moduli space of its own points. So an object is “a family of points of X
parametrized by B”, i.e. a morphism B → X. So the stack associated to X is
just the category of schemes over X.

Here is another example: consider a quotient orbifold [Y/G], where Y is a
variety and G a finite group. How do we think of it as a category? A point of
the orbit space Y/G should be an orbit of G in Y , and you can think of an
orbit as the image of an equivariant map of a principal homogeneous G-space
P to Y . We make this the definition:

• An object of [Y/G] over a base scheme B is a principal homogeneous G-
space P → B together with a G-equivariant map P → Y :

P

��

�� Y

B.

• An arrow is a fiber diagram:

P

��

�� ��
P1

��

��

Y

B �� B1.

An important special case is when Y is a point, giving the classifying stack
of G, denoted

BG := [{pt}/G].

Objects are just principal G-bundles, and morphisms are fiber diagrams.
Kai Behrend gave an elegant description of the stack associated to a

groupoid in general. First we note the following: for any scheme X and any
étale surjective V → X, one can write RV = V ×X V and the two projections
give a groupoid RV

−→−→V . If, as suggested above, RV is to be considered as an
equivalence relation on V , then clearly the equivalence classes are just points
of X, so we had better define things so that X = [RV

−→−→V ].
Now given a general groupoid R−→−→V , an object over a base scheme B is

very much like a principal homogeneous space: it consists of an étale covering
U → B, giving rise to RU

−→−→U as above, together with maps U → V and
RU → R making the following diagram (and all its implicit siblings) cartesian:

RU
��

����

R

����
U ��

��

V

B
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There is an important object of X = [R−→−→V ] with the scheme V as its
base: you take U = R above, with the two maps U → B and U → V being the
source and target maps R→ V respectively. What it does is it gives an étale
covering V → X. The existence of such a thing is in fact an axiom required of
a fibered category to be a Deligne–Mumford algebraic stack, but since I have
not gotten into details you’ll need to study this elsewhere. The requirement
says in essence that every object should have a universal deformation space.

Some words you will see:

• An algebraic space is a stack of the form [R−→−→V ] with R → V × V
injective. This is where “stacks” meet “sheaves”.

• An Artin stack, also known as a general algebraic stack, is what you get
when you only require the source and target maps R → V to be smooth,
and do not require R→ V × V to be proper either. You can’t quite think
of an Artin stack as “locally the quotient of a scheme by a group action”
– the categorical viewpoint is necessary.

3.3 Where Do Stacks Come Up?

Moduli, Of Course

The first place where you meet stacks is when trying to build moduli spaces.
Commonly, fine moduli spaces do not exist because objects have automor-
phisms, and stacks are the right replacement.

Hidden Smoothness

But even if you are not too excited by moduli spaces, stacks, in their incarna-
tion as orbifolds, are here to stay. The reason is, it is often desirable to view
varieties with finite quotient singularities as if it were smooth, and indeed to
every such variety there is a relevant stack, which is indeed smooth.

This feature comes up, and increasing in appearance, in many topics in
geometry: the minimal model program, mirror symmetry, geometry of three-
manifolds, the McKay correspondence, and even in Haiman’s n! theorem
(though this is not the way Haiman would present it).

3.4 Attributes of Orbifolds

If one is to study orbifolds along with varieties or manifolds, one would like
to have tools similar to ones available for varieties and manifolds.

Indeed, the theory is well developed:

• Orbifolds have homology and cohomology groups, and cohomology of
smooth orbifolds satisfies Poincaré duality with rational coefficients.
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• Chow groups with rational coefficients for Deligne–Mumford stacks were
constructed by Vistoli and Gillet independently in the 80s. More recently
Kresch showed in his thesis that they have Chow groups with integer
coefficients.

• One can talk about sheaves, K-theory and derived categories of stacks.
That’s a natural framework for the McKay correspondence.

• Smooth Deligne–Mumford stack have a dualizing invertible sheaf.
• Laumon and Moret-Bailly introduced the cotangent complex LX of an

algebraic stack. This is rather easy for Deligne–Mumford stacks, but their
construction was found to be flawed for Artin stack. This problem was
recently corrected by Martin Olsson [34].

• Deligne–Mumford stacks have coarse moduli spaces – this is a theorem
of Keel and Mori [27]. For [Y/G] the moduli space is just the geometric
quotient Y/G, namely the orbit space. In general this is an algebraic space
X with a morphism X → X which is universal, and moreover such that
X(k)/ Isom → X(k) is bijective whenever k is an algebraically closed field.

• The inertia stack: this is a natural stack associated to X, which in a way
points to where X fails to be a space. Every object ξ of X has its auto-
morphism group Aut(ξ), and these can be put together in one stack I(X),
whose objects are pairs (ξ, σ), with ξ an object of X and σ ∈ Aut(ξ). One
needs to know that this is an algebraic stack when X is, a Deligne–Mumford
stack when X is, etc. This follows from the abstract and not – too – illu-
minating formula

I(X) = X ×
X×X

X,

where the product is taken relative to the diagonal map on both sides.
As an example, if X = BG then I(X) = [G/G], where G acts on itself by
conjugation.

There is one feature which one likes to ignore, but there comes a point
where one needs to face the facts of life: stacks are not a category! They are
a 2-category: arrows are functors, 2-arrows are natural transformations.

3.5 Étale Gerbes

This is a class of stacks which will come up in our constructions.
Informally, an étale gerbe is a stack which locally (in the étale topology)

looks like X ×BG, with G a finite group.
Formally (but maybe not so intuitively), it is a Deligne–Mumford stack X

such that the morphisms I(X) → X → X are all finite étale.
We need to tie this thing better with a group G. We will only need to

consider the case where G is abelian.
An étale gerbe G → X is said to be banded by the finite abelian group G

if one is given, for every object ξ ∈ G(S), an isomorphism G(S) � Aut(ξ) in
a functorial manner.

dan
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Gerbes banded by G can be thought of as principal homogeneous spaces
under the “group stack” BG. As such, they are classified by the “next cohomol-
ogy group over”, H2

ét(X,G). This led Giraud in his thesis under Grothendieck
to define the non-abelian second cohomology groups using non-abelian gerbes,
but this goes too far afield for us.

4 Twisted Stable Maps

4.1 Stable Maps to a Stack

Consider a semistable elliptic surface, with base B and a section. We can
naturally view this as a map B → M1,1. Angelo Vistoli, when he was on
sabbatical at Harvard in 1996, asked the following beautiful, and to me very
inspiring, question: what’s a good way to compactify the moduli of elliptic
surfaces? can one use stable maps to get a good compactification?

Now consider in general:

X

��

Deligne–Mumford stack with

X projective coarse moduli space

In analogy to Mg,n(X,β), we want a compact moduli space of maps C → X.
One can define stable maps as in the scheme case, but there is a problem:

the result is not compact. As Angelo Vistoli likes to put it, trying to work
with a non-compact moduli space is like trying to keep your coins when you
have holes in your pockets. The solution that comes naturally is that

the source curve C must acquire a stack structure as well as it degen-
erates!

Both problem and solution are clearly present in the following example,
which is “universal” in the sense that we take X to be a one parameter family
of curves itself:

Consider P
1 × P

1 with coordinates x, s near the origin and the projection
with coordinate s onto P

1. Blowing up the origin we get a family of curves,
with general fiber P

1 and special fiber a nodal curve, with local equation
xy = t at the node. Taking base change P

1 → P
1 of degree 2 with equation

t2 = s we get a singular scheme X with a map X → P
1 given by coordinate

s. This is again a family of P
1s with nodal special fiber, but local equation

xy = s2.
This is a quotient singularity, and using the chart [A2/(Z/2Z)] with

coordinates u, v satisfying u2 = x, v2 = y we get a smooth orbifold X, with
coarse moduli space X and a map X → P

1. It is a family of P
1s parametrized

by P
1, degenerating to an orbifold curve.
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X

↓

If you think about the family of stable maps P
1 → X parametrized by

P
1
�{0} given by the embedding of P

1 in the corresponding fiber, there simply
isn’t any stable map from a nodal curve that can be fit over the missing point
{0}! The only reasonable thing to fit in there is the fiber itself, which is an
orbifold nodal curve. We call these twisted curves.

4.2 Twisted Curves

This is what happens in general: degenerations force us to allow stacky (or
twisted) structure at the nodes. Thinking ahead about gluing curves we see
that we had better allow these structures at markings as well.

A twisted curve is a gadget as follows:

Σi ⊂ C

↓
C.

twisted node
twisted marking

Here

• C is a nodal curve.
• C is a Deligne–Mumford stack with C as its coarse moduli space.
• Over a node xy = 0 of C, the twisted curve C has a chart

[{uv = 0}/µr]

where the action of the cyclotomic group µr is described by

(u, v) �→ (ζu, ζ−1v).

We call this kind of action, with two inverse weights ζ, ζ−1, a balanced
action. It is necessary for the existence of smoothing of C! In this chart,
the map C → C is given by x = ur, y = vr.
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• At a marking, C has a chart [A1/µr], with standard action u �→ ζu, and
the map is x = ur.

• The substack Σi at the i-th marking is locally defined by u = 0. This stack
Σi is canonically an étale gerbe banded by µr.

Note that we introduce stacky structure only at isolated points of C and never
on whole components. Had we added stack structures along components, we
would get in an essential manner a 2-stack, and I don’t really know how to
handle these.

As defined, twisted curves form a 2-category, but it is not too hard to show
it is equivalent to a category, so we are on safe grounds.

The automorphism group of a twisted curve is a fascinating object – I’ll
revisit it later.

This notion of twisted curves was developed in [5]. As we discovered later,
a similar idea appeared in Ekedahl’s [19].

4.3 Twisted Stable Maps

Definition 4.3.1. A twisted stable map consists of

(f : C → X, Σ1, . . . , Σn),

where

• Σi ⊂ C gives a pointed twisted curve.
• C

f→ X is a representable morphism.
• The automorphism group AutX(f,Σi) of f fixing Σi is finite.

I need to say something about the last two stability condition, necessary for
the moduli problem being separated.

Representability of f : C → X means that for any point x of C the associ-
ated map

Aut(x) → Aut(f(x))

on automorphisms is injective. So the orbifold structure on C is the “most
economical” possible, in that we do not add unnecessary automorphisms.

The second condition is in analogy with the usual stable map case, and
indeed it can be replaced by conditions on ampleness of a suitable sheaf or
number of special points on rational and elliptic components. Most conve-
niently, it is equivalent to the following schematic condition: the map of course
moduli spaces

f : C → X

is stable.
But as I defined things I have not told you what an element of AutX(f,Σi)

is! In fact, to make this into a stack I need a category of families of such twisted
stable maps.
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Definition 4.3.2. A map from (f : C → X, Σ1, . . . , Σn) over S to (f ′ : C′ →
X′, Σ′

1, . . . , Σ
′
n) over S′ is the following:

C
F

��

��

f

��
C′

f ′
��

��

X

S �� S′,

consisting of

• A fiber diagram with morphism F as above
• A 2-isomorphism α : f → f ′ ◦ F

Note that the notion of automorphisms is more subtle than the case of
stable maps to a scheme, even if C is a scheme. For instance, in the case
X = Mg, a map C → X is equivalent to a fibered surface S → C with fibers
of genus g, and S can easily have automorphisms acting on the fibers and
keeping C fixed, for instance if the fibers are hyperelliptic!

4.4 Transparency 25: The Stack of Twisted Stable Maps

The Stack of Twisted Stable Maps

The first nontrivial fact that we have here is the following: the collection of
twisted stable maps is again a 2-category, simply because twisted curves are
naturally a 2-subcategory of the 2-category of stacks. But there is a simple
lemma saying that every 2-morphism between 1-morphisms is unique and
invertible when it exists. This is precisely the condition guaranteeing the fol-
lowing:

Fact. The 2-category of twisted stable maps is equivalent to a category.

Here we come to a sticky point: This category is a generalization of
Mg,n(X,β). But in our applications we wish to sometimes insert moduli spaces
denoted M in there for X – our original application was X = M1,1! We made
a decision to avoid confusion and denote the category

Kg,n(X, β),

after Kontsevich. Some people have objected quite vocally, but I think the
choice is sound and the objections are not too convincing and a bit too late
for us. But you are perfectly welcome to use notation of your choice.

The main result is:

Theorem 4.4.1. The category Kg,n(X, β) is a proper Deligne–Mumford stack
with projective coarse moduli space.

Here β is simply the class of the curve f∗[C] on the coarse moduli space X.
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On the Proof

To prove this, Vistoli and I had to go through several chambers of hell. As far
as I can see, the complete symplectic proof (using Fukaya-Ono) is not easier.

Our main difficulty was the fact that a basic tool like Hilbert schemes was
not available for our construction. Now a much better approach, due almost
entirely to Martin Olsson, is available. I will sketch is now, because I think
it is beautiful. Readers who are not keen on subtleties of constructing moduli
stacks might prefer to skip this and take the theorem entirely on faith.

Olsson’s proof has the following components:

• He first constructs rather explicitly the stack of twisted curves with its
universal family [36]:

Ctw
g,n

↓
Mtw

g,n.

• In great generality he constructs [35] a stack of morphisms between two
given stacks, and identifies the substack

Kg,n(X, β) ⊂ HomMtw
g,n

(Ctw
g,n,X).

• He further shows in the same paper that when passing to coarse moduli
spaces, the natural morphism

HomMtw
g,n

(Ctw
g,n,X) −→ HomMtw

g,n
(Cg,n,X)

is of finite type, implying the same for Kg,n(X, β) → Mg,n(X,β).
• To prove properness one can use the valuative criterion, whose proof in [5]

is appropriate. In the same paper one counts and sees that Kg,n(X, β) →
Mg,n(X,β) has finite fibers, implying projectivity.

4.5 Twisted Curves and Roots

Martin Olsson constructs the stack of twisted curves in general using logarith-
mic structures [36]. This is a very nice construction, but it would have been
too much to introduce yet another big theory in these lectures. What I want
to do here is describe a variant of this using root stacks, which works nicely in
the case of tree-like curves – i.e. where the dual graph is a tree, equivalently
every node separates the curve in two connected components.

The construction was first invented by Angelo Vistoli, but his treatment
has not yet appeared in print. I lectured on this at ICTP, but did not include
in the lecture notes. Charles Cadman discovered this construction indepen-
dently and used it to great advantage in his thesis [11], where a treatment is
published.

dan
Inserted Text
 (see [3], Appendix B)



U
nc

or
re

ct
ed

 P
ro

of

26 D. Abramovich

Definition 4.5.1. Consider a scheme X, a line bundle L, a section s ∈
Γ (X,L), and a positive integer r. Define a stack

r
√

(L/X, s)

whose objects over a scheme Y are (f : Y → X,M,φ, t) where

• M is a line bundle on Y and t ∈ Γ (Y,M).
• φ : M⊗r ∼−→ L.
• φ(tr) = s.

Arrows are fiber diagrams as usual.
For a Cartier divisor D, Vistoli uses the notation

r
√

(X,D) := r
√

(OX(D)/X,1D).

Cadman uses the notation XD,r.
This stack r

√
(X,D) or XD,r is isomorphic to X away from the zero set

D of the section, and canonically introduces a stack structure with index r
along D, which is “minimal” if D is smooth. This immediately enables us to
define the stacky structure of a twisted curve at a marking starting with the
coarse curve:

(C, p) � C = r
√

(C, p) = Cp,r.

The case of a node is more subtle, and is best treated universally. Here
we need to assume that the nodes are separating to use root stacks directly,
otherwise one needs either subtle descent or logarithmic structures.

Assume given:

• A versal deformation space of nodal curves C → V , with V a polydisk or
a strictly henselian scheme

• D ⊂ V the smooth divisor where a particular node in the fibers is preserved
• Z ⊂ C the locus of these nodes, assumed separating
• E1, E2 ⊂ C the two connected components of the preimage of D separated

by Z

D

Z

E1

E2

↓
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We have the structure morphism V → M := Mg,n. Denote by Mtw
r the

locus in Mtw
g,n where the given node is given stacky structure of index r, and

Ctw
r the universal twisted curve. Then we have

V ×
M

Mtw
r = r

√
(V,D)

V ×
M

Ctw
r = r

√
(C,E1) ×

C

r
√

(C,E2).

One can pore over these formulas for a long time to understand them. One
thing I like to harvest from the first formula is a description of automorphisms:
since Mtw

r → M is birational, but the versal deformation is branched with
index r over D, this branching is accounted for by automorphisms of the
twisted curve. We deduce that the automorphism group of a twisted curve
fixing C is

AutC(C) =
∏

s∈Sing C

Γs,

where Γs � µrs
is the stabilizer of the corresponding node.

These automorphisms acting trivially on C are completely absent from
the simple-minded orbifold picture, as in [15]. Alessio Corti calls them ghost
automorphisms, and their understanding is a key to the paper [1].

4.6 Valuative Criterion for Properness

Vistoli’s Purity Lemma

The key ingredient in proving the valuative criterion for properness is the
following lemma, stated and proven by Vistoli:

Lemma 4.6.1 (Vistoli). Consider the following commutative diagram:

X

��
U

� � ��

fU

����������������
S

∃? f

��

f

�� X

where

• X is a Deligne–Mumford stack and π : X → X is the coarse moduli space
map.

• S is a smooth variety and U ⊂ S is open with compliment of codimension
≥ 2.

Then there exists f : S → X making the diagram commutative, unique up to
a unique isomorphism.

I love this lemma (and its proof). It seems that the lemma loves me back,
as it has carried me through half my career!

Related ideas appeared in Mochizuki’s [33].
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Proof of the Lemma

For the proof, we may assume (working analytically) that S is a 2-disc and U
is a punctured 2-disc. Hence U is simply connected. We can make X smaller
as well and assume that X = [V/G] where G is a finite group fixing the origin,
chosen so that its image in X is the image via f̄ of S � U = p.

V ×X U ��

��

V ×X S ��

��

V

��
X×X U

��

X

��
U

fU

		∃





� � �� S

∃? f

��

f

�� X

Note that V ×X U → X ×X U is étale and proper, hence the section
U → X ×X U lifts to V ×X U because U is simply connected. Let Ū be the
closure of the image of U in V ×X S.

Ū

��

�� X

��
U

��

� � �� S

∃


∃ f

��

f

�� X

We obtain by projection Ū → S which is finite birational and since S is
smooth it has a section. Composing with Ū → X yields f .

Proof of the Valuative Criterion

Let me sketch how the valuative criterion for properness of Kg,n(X, β) follows.
Consider a punctured smooth curve V ⊂ B and a family of stable maps

CV
f ��

��

X

V.

By properness of Mg,n(X,β) we may assume this extends to a family of stable
maps

C
f ��

��

X

B.
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Using properness of X and base change (and abhyankar’s lemma on funda-
mental groups – characteristic 0 is essential!) we may assume that the map
C → X lifts to C ��� X defined on a neighborhood of the generic point of
every component of the fiber C0. So it is defined on an open set U ⊂ C whose
complement has codimension 2. The purity lemma says that this map extends
on the regular locus of C.

We are left to deal with singular points, where C is described locally as
xy = tr for some r. The purity lemma says this extends over the local universal
cover given by uv = t, where ur = x and vr = y, and the fundamental group
of the punctured neighborhood is cyclic of order r. Of course r changes when
you do base change, but there is a smallest r′ such that the map extends over
the cover given by ur′

= x, vr′
= y, and this one is representable.

5 Gromov–Witten Classes

5.1 Contractions

Many of the features of the stacks of stable maps are still true for twisted
stable maps. For instance, of one has a morphism f : X → Y and m < n, then
as long as either 2g − 2 +m > 0 or f∗β �= 0 we have a canonical map

Kg,n(X, β) → Kg,m(Y, fβ),

the construction of which is just a bit more subtle than the classical stabiliza-
tion procedure.

5.2 Gluing and Rigidified Inertia

Much more subtle is the issue of gluing, and the related evaluation maps. To
understand it we consider a nodal twisted curve with a separating node:

C = C1

Σ
	C2.

As expected, one can prove that C is a coproduct in a suitable stack-
theoretic sense, and therefore

Hom(C,X) = Hom(C1,X) ×
Hom(Σ,X)

Hom(C2,X).

but Σ is no longer a point but a gerbe! We must ask:

• How can we understand Hom(Σ,X)?
• What is the universal picture?

Since Σ is a gerbe banded by µr, the nature of Hom(Σ,X) definitely
depends on r.
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Definition 5.2.1. Define a category

I(X) =
∐

r

Ir(X),

where each component has objects

Ir(X)(T ) =

⎧
⎨

⎩

G
φ−→ X

↓
T

⎫
⎬

⎭

where

• G → T is a gerbe banded by µr.
• φ : G → X is representable.

A priori this is again a 2-category, but again and for a different reason, it
is equivalent to a category. In fact we have

Theorem 5.2.1. I(X) is a Deligne–Mumford stack.

There is a close relationship between I(X) and the inertia stack I(X). In fact
it is not too difficult to see that there is a diagram

I(X)

��

�� X

I(X)

making I(X) the universal gerbe over I(X)! The stack Ir(X) can be constructed
as the rigidification of the order r part

Ir(X) = {(ξ, g)|g ∈ Autξ, g of order r}

of the inertia stack by removing the action of the cyclic group 〈g〉 of order
r from the picture. This is analogous to the construction of Picard scheme,
where the C

∗ automorphisms are removed from the picture. This is discussed
in [1] and in [37], and the notation is

Ir(X) = Ir(X)��� µr.

In a 2-categorical sense, this is the same as saying that the group-stack Bµr

acts 2-freely on Ir(X) and in fact

Ir(X) = Ir(X)/Bµr,

but this tends to make me dizzy.
The name we give I(X) is the rigidified inertia stack.

dan
Inserted Text
 , [3]
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The following example may be illuminating: consider the global quotient
stack X = [Y/G]. Then a simple analysis shows:

I(X) =
∐

(g)

[
Y g
/
C(g)
]
,

where the union is over conjugacy classes (g) and C(g) denotes the centralizer
of g. But by definition the cyclic group 〈g〉 acts trivially on Y g, therefore the
action of C(g) factors through

C(g) := C(g)/〈g〉.

We have
I(X) =

∐

(g)

[
Y g
/
C(g)
]
.

5.3 Evaluation Maps

We now have a natural evaluation map

Kg,n(X, β) ei−→ I(X)

(f : C → X, Σ1, . . . Σn) �→ Σi

fΣi−→ X

One point needs to be clarified: the gerbe Σi needs to be banded in order
to give an object of I(X). This is automatic – as µr canonically acts on the
tangent space of C at Σi, this gives a canonical identification of the automor-
phism group of a point on Σi with µr!

There is a subtle feature we have to add here: when gluing curves we need
to make the glued curve balanced. Therefore on one branch the banding has
to be inverse to the other. We wire this into the definitions as follows. There
is a natural involution

I(X) ι−→ I(X)

(ξ, σ) �→ (ξ, σ−1)

which gives rise to an involution, denoted by the same symbol, ι : I(X) → I(X).
On the level of gerbes, it sends G → X to itself, but for an object y of G

changes the isomorphism µr � Aut(Y ) by composing with the homomorphism
µr → µr sending ζr �→ ζ−1

r .
We define a new twisted evaluation map

ěi = ι ◦ ei : Kg,n(X, β) −→ I(X).
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5.4 The Boundary of Moduli

We can finally answer the tow questions asked before:

Given a nodal curve C = C1

Σ
	C2, we have

Hom(C,X) = Hom(C1,X) ×
I(X)

Hom(C2,X).

where the fibered product is with respect to ě� : C1 → I(X) on the left and
e� : C2 → I(X) on the right.

We can apply this principle on universal curves, and obtain, just as in the
case of usual stable maps, and obtain a morphism

Kg1,n1+�(X, β1) ×
I(X)

Kg2,n2+�(X, β2) −→ Kg,n(X,β),

with the fibered product over the twisted evaluation map ě� on the left and
the non-twisted e� on the right. Again this is compatible with the other
evaluations, e.g. for i ≤ n1 we have a commutative diagram

Kg1,n1+�(X, β1) ×
I(X)

Kg2,n2+�(X, β2) ��

π1

��

Kg,n(X, β)

ei

��
Kg1,n1+�(X, β1)

ei �� I(X) .

We now come to a central observation of orbifold Gromov–Witten theory:

Since evaluation maps lie in I(X), Gromov–Witten classes operate on
the cohomology of I(X), and not of X!!

Of course X is part of the picture:

X = I1(X) ⊂ I(X).

The other pieces of I(X) are known as twisted sectors (yet another meaning
of “twisting” in geometry), and arise in various places in mathematics and
physics for different reasons. But from the point of view of Gromov–Witten
theory, the reason they arise is just the observation above, which comes down
to the fact that a nodal twisted curve is glued along a gerbe, not a point.

5.5 Orbifold Gromov–Witten Classes

First, an easy technicality: we have a locally constant function

r : I(X) −→ Z

defined by sending
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Ir(X) �→ r

On the level of the non-rigidified inertia stack I(X), it simply means that

(ξ, σ) �→ the order of σ.

A locally constant function gives an element of H0(I(X),Z), and therefore
we can multiply any cohomology class by this r.

Now, as observed above, Gromov–Witten theory operates on H∗(I(X)).
Because of its role in Gromov–Witten theory, the cohomology space H∗(I(X))
got a special name – it is commonly known as the orbifold cohomology of X,
denoted by

H∗
orb(X) := H∗(I(X)).

We again simplify notation: K = K0,n+1(X, β), and take γi ∈ H∗
orb(X)even

to avoid sign issues.
We now define Gromov–Witten classes:

Definition 5.5.1.

〈γ1, . . . , γn, ∗〉Xβ := r · ěn+1 ∗(e∗(γ1 ∪ . . . ∪ γn) ∩ [K]vir)) ∈ H∗
orb(X).

I’m going to claim that WDVV works for these classes just as before, but
any reasonable person will object – this factor of r must enter somewhere,
and I had better explain why it is there and how it works out!

There are two ways I want to answer this. First – on a formal level, this fac-
tor r is needed because of the following: consider the stack D(12|34)tw → Mtw

0,4

consisting of twisted nodal curves where markings numbered 1, 2 are separated
from 3, 4 by a node. This is not the fibered product (M0,3×M0,3)×M0,4 Mtw

0,4,
and there is exactly a multiplicity r involved – I explain this below. (In [2]
we used a slightly different formalism, replacing the moduli stacks Kg,n(X, β)
with the universal gerbes, and a different correction is necessary.)

The second answer is important at least from a practical point of view. The
Gromov–Witten theory of X wants to behave as if there is a lifted evaluation
map ẽi : Kg,n(X, β) → I(X), lifting ei : Kg,n(X, β) → I(X).

I(X)

π

��
Kg,n(X, β)

ei

��


∃ ẽi

��

I(X)

Of course pulling back gives a multiplicative isomorphism

π∗ : H∗(I(X),Q) → H∗(I(X),Q),

but a cohomological lifting of, say ẽi ∗ of ei ∗ is obtained rather by composing
with the non-multiplicative isomorphism
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(π∗)−1 : H∗(I(X),Q) → H∗(I(X),Q),

and (π∗)−1 = r · π∗, so

ẽi ∗ = (π∗)−1 ◦ ei ∗ = rπ∗ ◦ ei ∗.

Similarly we define
ẽ∗i = e∗i ◦ (π∗)−1.

Since (π∗)−1 = r ·π∗ we can also write ẽ∗i = r ·e∗i ◦π∗.1 The factor r is cancelled
out beautifully in WDVV, and one has all the formula as in the classical case.
I’ll indicate how this works in an example below.

I must admit that I am not entirely satisfied with this situation. I wish
there were some true map standing for ẽi. This might be very simple (why
not replace I(X) by I(X)×Bµr?), but the 2-categorical issues make my head
spin when I think about it.

I also need to say something [K]vir.

5.6 Fundamental Classes

Let us see now where the differences and similarities are in the statement and
formal proof.

The virtual fundamental class is again defined by the relative obstruction
theory

E = Rπ∗f∗TX

coming from the diagram of the universal curve

C

π

��

f �� X

K.

It satisfies the Behrend–Fantechi relationship
∑

β1+β2=β

∑

A�B=I

∆!
(
[K1]vir × [K2]vir

)
= gl

![K]vir.

as in the diagram

K1 ×K2

��

K1 ×I(X) K2��

��

� � �� 	K1 ×I(X) K2 ��

��

K

��
I(X)× I(X) I(X)

∆
�� Dtw(12|3•) gl �� M0,4.

1 Notice that the latter formula was written incorrectly in [2], Sect. 4.5. We are
indebted to Charles Cadman for noting this error. He also used these “cohomo-
logical evaluation maps” very effectively in his work.
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The proof of this relationship is almost the same as that of Behrend–
Fantechi, with one added ingredient: in comparing E with Ei = Rπi ∗f

∗
i TX

coming from

Ci

π

��

f �� X

Ki,

the “difference” is accounted for by πΣ ∗f
∗
ΣTX as in

Σ

π

��

f �� X

K1 ×I(X) K2.

The crucial step in proving the basic relationship is the following “tangent
bundle lemma”:

Lemma 5.6.1. Assume e : S → I(X) corresponds to

G

π

��

f �� X

S.

Then there is a canonical isomorphism

e∗TI(X)
∼−→ π∗f

∗TX.

I will not prove the lemma here, but I wish to avow that it is a wonderful
proof (which almost fits in the margins).

6 WDVV, Grading and Computations

6.1 The Formula

The WDVV formula says again:

Theorem 6.1.1.
∑

β1+β2=β

∑

A�B=I

〈
〈γ1, γ2, δA1 , . . . , δAk

, ∗〉β1 , γ3, δB1 , . . . , δBm
, ∗
〉

β2

=
∑

β1+β2=β

∑

A�B=I

〈
〈γ1, γ3, δA1 , . . . , δAk

, ∗〉β1 , γ2, δB1 , . . . , δBm
, ∗
〉

β2
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The fibered product diagram looks like this:

K1 ×I(X) K2
p2 ��

p1

��

K2
ě• ��

e�
��

I(X)

K1

ě� �� I(X).

We now have by definition
〈
〈γ1, γ2, δA, ∗〉β1 , γ3, δB , ∗

〉

β2

= rě• ∗
(
e∗� (rě� ∗ξ1) ∩ ξ2

)

and the projection formula gives

= (rě• ◦ p2)∗
(
rp∗1η1 ∪ p∗2η2 ∩∆![K1 ×K2]

)

where the r inside the parentheses is pulled back from the glued markings.
The overall factor r is the same on all terms of the equation so it can be
crossed out in the proof.

The real difference comes in the divisor diagram, which becomes the fol-
lowing fiber diagram:

∐
K1 ×

I(X)

K2
� ��

φ

��

K

��
D(12|3•)tw i �� �

��

�� Mtw
0,4

��
M0,3 ×M0,3

j �� � ��

��

M0,4

��
{pt} �� M0,4.

Now the map j is still birational, but i has degree 1/r, which exactly
cancels the factor r we introduced in the definition of Gromov–Witten classes.

6.2 Quantum Cohomology and Its Grading

Small Quantum Cohomology

In order to make explicit calculations with Gromov–Witten classes it is useful
to have a guiding formalism. Consider, for instance the small quantum coho-
mology product. Let N+(X) be the monoid of homology classes of effective
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curves on X. Consider the formal monoid-algebra Q[[N+(X)]] in which we
represent a generator corresponding to β ∈ N+(X) multiplicatively as qβ .
Define a bilinear map on QH∗(X) := H∗(I(X),Q) ⊗ Q[[N+(X)]] by the fol-
lowing rule on generators γi ∈ H∗(I(X),Q):

γ1 ∗ γ2 =
∑

β∈N+(X)

〈γ1, γ2, ∗〉β · qβ .

This is a skew-commutative ring and as in the non-orbifold case, WDVV gives
its associativity.

A somewhat simpler ring, but still exotic, is obtained by setting all qβ = 0
for nonzero β. The product becomes

γ1 · γ2 = 〈γ1, γ2, ∗〉0.

This is the so-called orbifold cohomology ring (or string cohomology, according
to Kontsevich). We denote it H∗

orb(X). The underlying group is H∗(I(X),Q).
But one very very useful fact is that these are graded rings, and the grad-

ing, discovered by physicists, is fascinating.

Age of a Representation

A homomorphism ρ : µr → Gm is determined by an integer 0 ≤ k ≤ r− 1, as
ρ(ζr) = ζa

r . We define

age(ρ) := k/r.

This extends by linearity to a function on the representation ring age :
Rµ → Q.

Age of a Gerbe in X

Now consider a morphism e : T → I(X) corresponding to

G
f ��

��

X

T.

The pullback f∗TX is a representation of µr, and we can define age(e) :=
age(TX).

We can thus define a locally constant function age : I(X) → Q, the value
on any component being the age of any object e evaluating in this component.

dan
Cross-Out

dan
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\mu_r
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Orbifold Riemann–Roch

There are numerous justifications for the definition of age in the literature,
some look a bit like voodoo. In fact, the true natural justification for the
definition of age is Riemann–Roch on orbifold curves.

Consider a twisted curve C and a locally free sheaf E on C. There is a well
defined notion of degree deg E ∈ Q. It can be defined by the property that if
D is a curve and φ : D → C is surjective of degree k on each component, then
degC E = degD φ∗E/k

Riemann–Roch says the following:

Theorem 6.2.1.

χ(C,E) = rank(E) · χ(C,OC) + deg E −
∑

pi marked
agepi

E

This is easy to show for a smooth twisted curve, and not very difficult for a
nodal one as well.

6.3 Grading the Rings

We now define
Hi

orb(X) =
⊕

Ω

Hi − 2 age(Ω)(Ω,Q),

where the sum is over connected components Ω ⊂ I(X).
We also define

deg qβ = 2 β′ · c1(TX)

where β′ is any class satisfying π∗β′ = β.
Here is the result:

Theorem 6.3.1.

1. H∗
orb(X) is a graded ring.

2. The product on QH∗(X) is homogeneous, so it is a “pro-graded” ring.

6.4 Examples

Example 6.4.1. Consider X = BG. In this case

I(X) = [G/G] =
∐

(g)

B(C(g))

where G acts on itself by conjugation. This case is simple as there are no
nonzero curve classes and QH∗(X) = H∗

orb(X) = ⊕(g)Q. Since the tangent
bundle is zero the ages are all 0, and all obstruction bundles vanish – i.e. the
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virtual fundamental class equals the fundamental class. Also, since I(X) →
I(X) has a section, we have lifted evaluation maps ẽi : K0,3(BG, 0) → I(X).

Let us identify the components of K0,3(BG, 0):
There is one component K(g,h) for each conjugacy class of triple

g, h, (gh)−1, describing the monodromy of a G-covering of P
1 branched at

0, 1,∞. The automorphism group of such a cover is C(g) ∩ C(h), thus
K(g,h) � B(C(g) ∩ C(h)). The third (twisted, lifted) evaluation map is

ˇ̃e3 : Kg,h → B(C(gh))

of degree

deg ˇ̃e3 =
|C(gh)|

|C(g) ∩ C(h))| .

Therefore we get

x(g) · x(h) =
∑

(g,h)

|C(gh)|
|C(g) ∩ C(h)|x(gh)

where the sum runs over all simultaneous conjugacy classes of the pair (g, h).
In other words, QH∗

orb(BG) = Z(Q[G]), the center of the group ring of G.

Example 6.4.2. Maybe the simplest nontrivial case is the following, but al-
ready here we can see some of the subtleties of the subject. I’ll give these in
full detail here – once you get the hang of it, it gets pretty fast!

We take X = P(p, 1) where p is a prime. It is known as the teardrop
projective line, a name inspired by imagining this to be a Riemann sphere
with a “slightly pinched” north pole, with conformal angle 2π/p.

∞

0

It is defined to be the quotient of C
2
�{0} by the C

∗ action λ(x, y) = (λpx, λy).
In this case H2(X) is cyclic with a unique positive generator β1, and writing
q = qβ1 we have deg q = 2(p + 1)/p (in general for the weighted projective
space P(a, b), with a, b coprime we have deg q = 2(1/a+ 1/b)).

We can describe the inertia stack as follows:

I(X) = X 	
p−1∐

i=1

B(Z/pZ).
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The rigidified inertia stack is therefore

I(X) = X 	
p−1∐

i=1

Ωi,

where the rigidified twisted sectors Ωi are just points. Since Ωi corresponds
to the element i ∈ Z/pZ, and i acts on the tangent space of X via ζi

p, its age
is i/p.

Ω1

Ωp−1

...

0 ∞

Choose as generator of H2(X) the class x = c1(OX(1)); we have deg x = 1/p.
Choose also generators Ai to be each a generator of H0(Ωi) for 1 ≤ i ≤ p−1.
Since the age is i/p, it is positioned in degree 2i/p in H∗

orb(X). We conclude
that the orbifold cohomology group, with grading, looks as follows:

degree 0 2/p . . . 2(p− 1)/p 2
Q ⊕ QA1 ⊕ . . . ⊕ QAp−1 ⊕ Qx

This is a good case to work out the difference between working with ei :
K0,3(X, β) → I(X) and the lifted ẽi : K0,3(X, β) → I(X) (which still exists on
the relevant components of K0,3(X, β) in this example).

Consider for instance the product Ai ∗ A1 when i < p − 1. In order to
match the degrees, the result must be a multiple of Ai+1, and the only curve
class β possible is 0. The component of K0,3(X, 0) evaluating at i, 1 and the
inverse p− i− 1 of i+ 1 is, just as in the first example, the classifying stack
of the joint centralizer of 1 and i, which is just B(Z/pZ). Since A1 and A− i
are fundamental classes, the pullback e∗1Ai ∪ e∗2A1 is the fundamental class.

But how about the virtual fundamental class? Here we use a fundamental
fact about the virtual fundamental class: if it a multiple of the fundamen-
tal class, then it coincides with the fundamental class. We calculate

ě3 ∗(e∗1Ai ∪ e∗2A1) = 1/pAi+1,

since the degree of ě3 is 1/p. Since r = p we get

Ai ∗A1 = Ai ·A1 = Ai+1.

Note that, had we used ẽi instead of ei and replaced Ai by Ãi = π∗Ai, the
change in the degrees of the maps ei would cancel out with the factor r and
we would get the same formula:
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Ãi ∗ Ã1 = Ãi · Ã1 = Ãi+1.

Back to the calculation. By associativity, it follows that Ai∗Aj = Ai ·Aj =
Ai+j as long as i+ j < p.

The next product to calculate is A1 ∗ Ap−1. The result must be a multiple
of x, again the only class β involved is β = 0. Again the virtual fundamental
class is the fundamental class, and we have

ě3 ∗(e∗1A1 ∪ e∗2Ap−1) = x,

as it has degree 1/p. This time r = 1 so

A1 ∗Ap−1 = A1 ·Ap−1 = x.

The interesting product is x ∗ A1. It is easy to see that x · A1 = 0 because
there is nothing in degree 2 + 2/p in H∗

orb(X), and the only possible contri-
bution to x ∗ A1 comes with β = β1 of degree 2(1 + 1/p). What do we see in
K0,3(X, β1)? Maps evaluating in Ω1, parametrize twisted curves generically of
the form X, with one (in our case, the second) marking over the orbifold point
and two freely roaming around X. If we represent x by 1/p · [z], with z one of
the non-stacky points, then the class e∗1x ∪ e∗1A1 is represented by a family of
twisted stable maps parametrized by the position of the third marking – that
is a copy of X! The restriction of the virtual fundamental class to the locus
e−1
1 z is again the fundamental class, and e3 = ě3 is an isomorphism. We get

[z] ∗A1 = q, or x ∗A1 = p−1q. which completely determines the ring as

QH∗(X) = Q[[q]][A1]/(pA
p+1
1 − q).

Again, had we used ẽi instead of ei and replaced Ai by Ãi = π∗Ai, the
change in the degrees of the maps ei would cancel out with the factor r and we
would get the same ring Q[[q]][Ã1]/(pÃ

p+1
1 − q). This is Cadman’s preferred

formalism.

The more general case of P(a, b) will be included in [3].

6.5 Other Work

Already in their original papers, Chen and Ruan gave a good number of ex-
amples of orbifold cohomology rings. Much work has been done on orbifold
cohomology since, and I have no chance of doing justice to all the contri-
butions. I’ll mention a few which come to my rather incomplete memory:
Fantechi and Göttsche [20] introduced a method for calculating orbifold co-
homology of global quotients and figured out key examples; Uribe [39] also
studied symmetric powers; Borisov, Chen and Smith [8] described the orbifold
cohomology of toric stacks; Jarvis, Kaufmann and Kimura [26] and Goldin,
Holm and Knutson [24] following Chen and Hu [14] described orbifold coho-
mology directly without recourse to Gromov–Witten theory.
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Computations in Gromov–Witten theory of stacks beyond orbifold coho-
mology are not as numerous. C. Cadman [11, 12] computed Gromov–Witten
invariants of r

√
(P2, C) with C a smooth cubic, and derived the number of

rational plane curves of degree d with tangency conditions to the cubic C.
H.-H. Tseng [38] generalized the work of Givental and Coates on the mirror
predictions to the case of orbifolds, a subject I’ll comment on next.

6.6 Mirror Symmetry and the Crepant Resolution Conjecture

When string theorists first came up with the idea of mirror symmetry [13],
the basic example was that of the quintic threefold Q and its mirror X,
which happens to have Gorenstein quotient singularities. Mirror symmetry
equates period integrals on the moduli space of complex structures on X with
Gromov–Witten numbers of Q, and vice versa. String theorists had no prob-
lem dealing with orbifolds [16], [17], but they also had the insight of replacing
X, or the stack X, by a crepant resolution f : Y → X. (Recall that a bi-
rational map of Gorenstein normal varieties is crepant if f∗KX = KY . The
unique person who could possibly come up with such jocular terms – standing
for “zero discrepancies” – is Miles Reid.) Thus, string theorists posited that
period integrals on the moduli space of Y equal Gromov–Witten numbers of
Q, and vice versa.

One direction – relating period integrals of Y with Gromov–Witten invari-
ants of Q, was proven, through elaborate direct computations, independently
by Givental [23] and Lian-Liu-Yau [32]. Unfortunately this endeavor is marred
by a disgusting and rather unnecessary controversy, which I will avoid alto-
gether. One important point here is that the period integrals on the moduli
space complex structures on Y coincide almost trivially with those of X, as
any deformation of X persists with the same quotient singularities and the
crepant resolution deforms along. So there is not a great issue of passing from
X, or X, to Y .

The other side is different: do we want to compare period integrals for Q
with Gromov–Witten invariants of X, or of Y ? The first question that comes
up is, does there exist a crepant resolution? The answer for threefolds is yes,
one way to show it is using Nakajima’s G-Hilbert scheme – and my favorite ap-
proach is that of Bridgeland, King and Reid [9]. In higher dimensions crepant
resolutions may not exist and one needs to work directly on X. It was Tseng
in his thesis [38] who addressed the mirror prediction computations directly
on the orbifold.

But the question remains, should we work with X or Y , and which Y for
that matter? String theorists claim that it doesn’t matter – Mirror symmetry
works for both. We get the following crepant resolution conjecture:

Conjecture 6.6.1 (Ruan). The Gromov–Witten theories of X and Y are
equivalent.
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Moreover, it is conjectured that an explicit procedure of a particular type
allows passing from X to Y and back.

This was Ruan’s original impetus for developing orbifold cohomology!
There is a growing body of work on this exciting subject. See Li–Qin–Wang

[31] and Bryan–Graber–Pandharipande [10].

A The Legend of String Cohomology: Two Letters
of Maxim Kontsevich to Lev Borisov

A.1 The Legend of String Cohomology

On December 7, 1995 Kontsevich delivered a history-making lecture at Orsay,
titled String Cohomology. “String cohomology” is the name Kontsevich chose
to give what we know now, after Chen-Ruan, as orbifold cohomology, and
Kontsevich’s lecture notes described the orbifold and quantum cohomology of
a global quotient orbifold. Twisted sectors, the age grading, and a version of
orbifold stable maps for global quotients are all there.

Kontsevich never did publish his work on string cohomology. I met him in
1999 to discuss my work with Vistoli on twisted stable maps, and he told me
a few hints about the Gromov–Witten theory of orbifolds (including the fact
that the cohomology of the inertia stack is the model for quantum cohomol-
ogy of X) which I could not appreciate at the time. He was also aware that
Chen and Ruan were pursuing the subject so he had no intention to publish.
We do, however, have written evidence in the form of two electronic mail let-
ters he sent Lev Borisov in July 1996. These letters are reproduced below –
verbatim with the exception of typographics – with Kontsevich and Borisov’s
permission.

What’s more – Kontsevich never lectured about string cohomology after
all! When I said he delivered a history-making lecture at Orsay, titled String
Cohomology, I did not lie. The way François Loeser tells the story, this seems
like an instance of the Heisenberg Uncertainty Principle: Loeser heard at the
time Kontsevich had discovered a complex analogue of p-adic integration,
and called Kontsevich to ask about it. In response Kontsevich told him to
attend his December 7 lecture at Orsay on String Cohomology. Thus the
lecture Kontsevich did deliver was indeed a history-making lecture on motivic
integration.

For years people speculated what is this “String Cohomology”, which they
supposed Kontsevich aimed to develop out of Motivic Integration . . . .

Needless to say, Kontsevich never did publish his work on motivic integra-
tion either. A four-page set of notes is available in [29]. Of course that theory
is by now fully developed.
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A.2 The Archaeological Letters

Following are the two electronic mail letters of Kontsevich to Borisov from
July 1996. I have trimmed the mailer headings, and, following Kontsevich’s
request, corrected typographical errors. I also added typesetting commands.
Otherwise the text is Kontsevich’s text verbatim.

The theory sketched here is the Gromov–Witten theory of a global quotient
orbifold, a theory treated in great detail in [25].

Letter of 23 July 1996

Date: Tue, 23 Jul 96 12:39:42 +0200
From: maxim@ihes.fr (Maxim Kontsevich)
To: lborisov@msri.org
Subject: Re: stable maps to orbifolds

Dear Lev,
I didn’t write yet anywhere the definition of stable maps to orbifolds,

although I am planning to do it.
Here is it:

1. For an orbifold X = Y/G (G is a finite group) we define a new orbifold
X1 as the quotient of

Y1 := {(x, g)|x ∈ X, g ∈ G, gx = x}

by the action of G:
f(x, g) := (fx, fgf−1).

Y1 is a manifold consisting of parts of different dimensions, including Y
itself (for g = 1).

2. String cohomology of X, say HS(X) are defined as usual rational coho-
mology of X1. I consider it for a moment only as a Z/2-graded vector
space (super space).
One can also easily define HS for orbifolds which are not global quotients
of smooth manifolds.

3. Let Y be an almost complex manifold. Denote by Curves(Y ) the stack of
triples (C,S, φ) where
• C is a nonempty compact complex curve with may be double points.
• C is not necessarily connected.
• S is a finite subset of the smooth part of C.
• φ is a holomorphic map from C to Y .
Stability condition is the absence of infinitesimal automorphisms.
The stack Curves(Y ) consists of infinitely many components which are
products of symmetric powers of usual moduli stacks of stable maps.
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4. We define Pre-Curves(X) for X = Y/G as the stack quotient of Curves(Y )
by the obvious action of G.2 Precisely it means that we consider quadru-
ples (C,S, φ,A) where first three terms are as above and A is the action
of G on (C,S, φ). In other words, we consider curves with G action and
marked points and equivariant maps to X. We define Curves(X) as the
subset of Pre-Curves(X) consisting of things where G acts FREELY on
C minus {singular points and smooth points}. This is the essential part
of the definition.3

Lemma: Curves(X) is open and closed substack in Pre-Curves(X).
As usual we can define the virtual fundamental class of each connected
component of Curves(X).

5. For a curve from Curves(X) we can say when it is “connected”: when
the quotient curve C/G is connected. For “connected” curves we define
their genus as genus of C/G, and the set of marked points as S/G. We
define numbered stable map to X as a “connected” curve with numbered
“marked points”.

The evaluation map from the stable curve with numbered marked points
takes value in the auxiliary orbifold X1 (see 1, 2).

Thus we have a lot of symmetric tensors in HS(X), and they all sat-
isfy axioms from my paper with Manin. The interesting thing is the grading
on HS:

It comes from the dimensions of virtual fundamental cycles. After working
out the corresponding formula I get that one should define a new Q-grading
on HS(X).

If Z is a connected component of X1 we will define the rational number

age(Z) =
1

2πi

∑
(log eigenvalues of the action of g on Tx),

where (x, g) is any point from Z.
The new Q-degree of the component Hk(Z) of HS(X) I define as

k + 2 ∗ age.

Notice that the Z/2 grading (superstructure) is the old one, and has now
nothing to do with the Q-grading. Poincaré duality on HS comes from dual-
ities on each H(Z).

That’s all, and I am a bit tired of typing by now.
Please write me if something is not clear.
There are some useful examples:

2 This is not the standard notion of stack quotient. The next sentence explains
what Kontsevich meant – D.A.

3 Kontsevich omitted here the condition that G should not switch the branches at
a node and have balanced action. It is automatic on things that can be smoothed
– D.A.
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Y = 2dim torus, G = Z/2 with antipodal action.
Then rk(HS) = 6.
Another case: Y = (complex surface S)n, G = symmetric group Sn.
HS(Y ) = H(Hilbert scheme of S

resolving singularities in the symmetric power of S).4

All the best,
Maxim Kontsevich

Letter of 31 July 1996

Date: Wed, 31 Jul 96 11:21:35 +0200
From: maxim@ihes.fr (Maxim Kontsevich)
To: lborisov@msri.org
Subject: Re: stable maps to orbifolds

Dear Lev,
First of all, there was a misprint in the definition of X1 as you noticed.5

I forgot in my letter to give the definition of the evaluation map. Namely,
if S1 is an orbit of G acting on the curve, we chose first a point p from S1.
The stabilizer A of p is a cyclic group because it acts freely on a punctured
neighborhood of p. Also, this cyclic group has a canonical generator g which
rotates the tangent space to p to the minimal angle in the anti-clockwise
direction. I associate with the orbit S1 the point (φ(p), g) modulo G in X1.
This point is independent of the choice of p in S1.

Best,
Maxim Kontsevich
P.S. Please call me Maxim, not Professor
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Boston, Boston, MA, 1995.

29. M. Kontsevich, Grothendieck ring of motives and related rings, notes for the
lecture “String Cohomology” at Orsay, December 7, 1995.
http://www.mabli.org/jet-preprints/Kontsevich-MotIntNotes.pdf

30. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology,
and enumerative geometry. Comm. Math. Phys. 164 (1994), no. 3, 525–562.

31. Li W.-P., Qin Z., and Wang W., The cohomology rings of Hilbert schemes via
Jack polynomials, preprint math.AG/0411255

32. Lian B., Liu K., Yau S.-T., Mirror principle I Asian J. Math. 1 (1997), no. 4,
729–763.

33. S. Mochizuki, Extending families of curves over log regular schemes. J. Reine
Angew. Math. 511 (1999), 43–71.

34. M. Olsson, Sheaves on Artin stacks, preprint
http://www.ma.utexas.edu/users/molsson/qcohrevised.pdf

35. –, Hom–stacks and restriction of scalars, preprint
http://www.ma.utexas.edu/users/molsson/homstackfinal.pdf

36. –, On (log) twisted curves, preprint
http://www.ma.utexas.edu/users/molsson/Logcurves.pdf

37. M. Romagny, Group actions on stacks and applications. Michigan Math. J. 53
(2005), no. 1, 209–236.

38. Tseng H.-H., Orbifold Quantum Riemann–Roch, Lefschetz and Serre, preprint
math.AG/0506111

39. B. Uribe, Orbifold cohomology of the symmetric product. Comm. Anal. Geom.
13 (2005), no. 1, 113–128.

40. A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces.
Invent. Math. 97 (1989), no. 3, 613-670.

41. E. Zaslow, Topological orbifold models and quantum cohomology rings. Comm.
Math. Phys. 156 (1993), no. 2, 301–331.

dan
Cross-Out

dan
Replacement Text
 Algebraic structures and moduli spaces,  249--258, CRM Proc. Lecture Notes, 38, Amer. Math. Soc., Providence, RI, 2004.

dan
Cross-Out

dan
Replacement Text
 J. Reine Angew. Math.  603  (2007), 55--112.

dan
Cross-Out

dan
Replacement Text
 Duke Math. J.  134  (2006),  no. 1, 139--164.

dan
Cross-Out

dan
Replacement Text
 Compos. Math.  143  (2007),  no. 2, 476--494. 



U
nc

or
re

ct
ed

 P
ro

of

Lectures on the Topological Vertex

M. Mariño∗

Department of Physics, Theory Division, CERN, University of Geneva
1211 Geneva, Switzerland
marcos@mail.cern.ch

Marcos.Marino.Beiras@cern.ch

1 Introduction and Overview

The theory of Gromov–Witten invariants was largely motivated by the study
of string theory on Calabi–Yau manifolds, and has now developed into one of
the most dynamic fields of algebraic geometry. During the last years there has
been enormous progress in the development of the theory and of its computa-
tional techniques. Roughly speaking, and restricting ourselves to Calabi–Yau
threefolds, we have the following mathematical approaches to the computation
of Gromov–Witten invariants:

1. Localization. This was first proposed by Kontsevich, and requires torus
actions in the Calabi–Yau in order to work. Localization provides a priori
a complete solution of the theory on toric (hence non-compact) Calabi–
Yau manifolds, and reduces the computation of Gromov–Witten invariants
to the calculation of Hodge integrals in Deligne–Mumford moduli space.
Localization techniques make also possible to solve the theory at genus
zero on a wide class of compact manifolds, see for example Cox and Katz
(1999) for a review.

2. Deformation and topological approach. This has been developed more re-
cently and relies on relative Gromov–Witten invariants. It provides a cut-
and-paste approach to the calculation of the invariants and seems to be
the most powerful approach to higher genus Gromov–Witten invariants
in the compact case.

3. D-brane moduli spaces. Gromov–Witten invariants can be reformulated in
terms of the so-called Gopakumar–Vafa invariants (see Hori et al. (2003)
for a summary of these). Heuristic techniques to compute them in terms
of Euler characteristics of moduli space of embedded surfaces, and one
can recover to a large extent the original information of Gromov–Witten
theory. The equivalence between these two invariants remains however

∗ Also at Departamento de Matemática, IST, Lisboa, Portugal

K. Behrend, M. Manetti (eds.), Enumerative Invariants in Algebraic Geometry 49
and String Theory. Lecture Notes in Mathematics 1947,
c© Springer-Verlag Berlin Heidelberg 2008
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conjectural, and a general, rigorous definition of the Gopakumar–Vafa
invariants in terms of appropriate moduli spaces is still not known. There
is another set of invariants, the so-called Donaldson–Thomas invariants,
that are also related to D-brane moduli spaces, which can be rigorously
defined and have been conjectured to be equivalent to Gromov–Witten
invariants by Maulik, Nekrasov, Okounkov and Pandharipande (2003).

Gromov–Witten invariants are closely related to string theory. It turns out
that type IIA theory on a Calabi–Yau manifold X leads to a four-dimensional
supersymmetric theory whose Lagrangian contains moduli-dependent cou-
plings Fg(t), where t denotes the Kähler moduli of the Calabi–Yau. When
these couplings are expanded in the large radius limit, they are of the form

(1) Fg(t) =
∑

β∈H2(X)

Ng,β e−β·t,

where Ng,β are the Gromov–Witten invariants for the class β at genus g (see
Sect. 3 below for details on this). It turns out that there is a simplified version
of string theory, called topological string theory, which captures precisely the
information contained in these couplings. Topological string theory comes in
two versions, called the A and the B model (see Hori et al. (2003) and Mariño
(2005) for a review). Type A topological string theory is related to Gromov–
Witten theory, and its free energy at genus g is precisely given by (1). Type
B topological string theory is related to the deformation theory of complex
structures of the Calabi–Yau manifold. In the last years, various dualities of
string theory have led to powerful techniques to compute these couplings,
hence Gromov–Witten invariants:

1. Mirror symmetry. Mirror symmetry relates type A theory on a Calabi–
Yau manifold X to type B theory on the mirror manifold X̃. When the
mirror of the Calabi–Yau X is known, this leads to a complete solution at
genus zero in terms of variation of the complex structures of X̃. For genus
g ≥ 1, mirror symmetry can be combined with the holomorphic anomaly
equations of Bershadsky et al. (1994) to obtain Fg(t). However, this does
not provide the full solution to the model due to the so-called holomorphic
ambiguity. On the other hand, mirror symmetry and the holomorphic
anomaly equation are very general and work for both compact and non-
compact Calabi–Yau manifolds.

2. Large N dualities. Large N dualities lead to a computation of the Fg(t)
couplings in terms of correlation functions and partition functions in
Chern–Simons theory. Although this was formulated originally only for
the resolved conifold, one ends up with a general theory – the theory of
the topological vertex, introduced in Aganagic et al. (2005) – which leads
to a complete solution on toric Calabi–Yau manifolds. The theory of the
topological vertex is closely related to localization and to Hodge integrals,
and it can be formulated in a rigorous mathematical way (see Li et al.
2004).
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3. Heterotic duality. When the Calabi–Yau manifold has the structure of a
K3 fibration, type IIA theory often has a heterotic dual, and the evaluation
of Fg(t) restricted to the K3 fiber can be reduced to a one-loop integral
in heterotic string theory. This leads to explicit, conjectural formulae for
Gromov–Witten invariants in terms of modular forms.

In this lectures, I will summarize the approach to Gromov–Witten invari-
ants on toric Calabi–Yau threefolds based on large N dualities. Since the large
N duality/topological vertex approach computes Gromov–Witten invariants
in terms of Chern–Simons knot and link invariants, Sect. 2 is devoted to a
review of these. Section 3 reviews topological strings and Gromov–Witten in-
variants, and gives some information about the open string case. Section 4
introduces the class of geometries we will deal with, namely toric (noncom-
pact) Calabi–Yau manifolds, and we present a useful graphical way to rep-
resent these manifolds which constitutes the geometric core of the theory of
the topological vertex. Finally, in Sect. 5, we define the vertex and present
some explicit formulae for it and some simple applications. A brief Appendix
contains useful information about symmetric polynomials.

It has not been possible to present all the relevant background and physical
derivations in this set of lectures. However, these topics have been extensively
reviewed for example in the book Mariño (2005), to which we refer for further
information and/or references.

2 Chern–Simons Theory

2.1 Basic Ingredients

In a groundbreaking paper, Witten (1989) showed that Chern–Simons gauge
theory, which is a quantum field theory in three dimensions, provides a phys-
ical description of a wide class of invariants of three-manifolds and of knots
and links in three-manifolds.1 The Chern–Simons action with gauge group G
on a generic three-manifold M is defined by

(2) S =
k

4π

∫

M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
.

Here, k is the coupling constant, and A is a G-gauge connection on the trivial
bundle over M . In the following, we will mostly consider Chern–Simons theory

AQ: We have
followed continuous
numbering for
equations. Please
check if it is ok.with gauge group G = U(N).

Chern–Simons theory is an example of a topological field theory. The reason
is that the Chern–Simons theory action does not involve the metric of M in
order to be defined, and the partition function

(3) Z(M) =
∫

[DA]eiS

1 This was also conjectured by Schwarz (1987).
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should define a topological invariant of the manifold M . The fact, however,
that the classical Lagrangian is metric independent is not, in general, suf-
ficient to guarantee that the quantum theory will preserve this invariance,
since there could be anomalies in the quantization process that spoil the clas-
sical symmetry. A detailed analysis due to Witten (1989) shows that, in the
case of Chern–Simons theory, topological invariance is preserved quantum me-
chanically, but with an extra subtlety: the invariant depends not only on the
three-manifold but also on a choice of framing, i.e. a choice of trivialization
of the bundle TM ⊕ TM . The choice of framing changes the value of the
partition function in a very precise way: if the framing is changed by n units,
the partition function Z(M) changes as follows:

(4) Z(M) → exp
[πinc

12

]
Z(M),

where

(5) c =
kd

k + y
.

In this equation, d and y are, respectively, the dimension and the dual Coxeter
number of the group G (for G = U(N), y = N). As explained by Atiyah
(1990), for every three-manifold there is in fact a canonical choice of framing,
and the different choices are labelled by an integer s ∈ Z in such a way that
s = 0 corresponds to the canonical framing. In the following, unless otherwise
stated, all the results for the partition functions of Chern–Simons theory will
be presented in the canonical framing.

Besides providing invariants of three-manifolds, Chern–Simons theory also
provides invariants of knots and links inside three-manifolds (for a survey of
modern knot theory, see Lickorish 1998, and Prasolov and Sossinsky 1997).
Some examples of knots and links are depicted in Fig. 1. Given an oriented
knot K in S3, we can consider the trace of the holonomy of the gauge con-
nection around K in a given irreducible representation R of U(N). This gives
the Wilson loop operator:

(6) WK
R (A) = TrRUK,

where

(7) UK = P exp
∮

K

A

is the holonomy around the knot. The operator in equation (6) is a gauge-
invariant operator whose definition does not involve the metric on the three-
manifold, therefore it is an observable of Chern–Simons theory regarded as
a topological field theory. The irreducible representations of U(N) will be
labelled by highest weights or equivalently by the lengths of rows in a Young
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31

21
2 41

2

41

51 61

Fig. 1. Some knots and links. In the notation xL
n , x indicates the number of crossings,

L the number of components (when it is a link with L > 1) and n is a number used
to enumerate knots and links in a given set characterized by x and L. The knot 31

is also known as the trefoil knot, while 41 is known as the figure-eight knot. The
link 22

1 is called the Hopf link

tableau, li, where l1 ≥ l2 ≥ · · · . If we now consider a link L with components
Kα, α = 1, · · · , L, we can in principle compute the normalized correlation
function,

(8) WR1···RL
(L) = 〈WK1

R1
· · ·WKL

RL
〉 =

1
Z(M)

∫

[DA]
( L∏

α=1

WKα

Rα

)
eiS .

The unnormalized correlation function will be denoted by ZR1···RL
(L). The

topological character of the action, and the fact that the Wilson loop operators
can be defined without using any metric on the three-manifold, indicate that
(8) is a topological invariant of the link L. Similarly to what happens with the
partition function, in order to define the invariant of the link we need some
extra information due to quantum ambiguities in the correlation function (8).



U
nc

or
re

ct
ed

 P
ro

of

54 M. Mariño

For further use we notice that, given two linked oriented knots K1, K2,
one can define an elementary topological invariant, the linking number, by

(9) lk(K1,K2) =
1
2

∑

p

ε(p),

where the sum is over all crossing points, and ε(p) = ±1 is a sign associated
to the crossings as indicated in Fig. 2. The linking number of a link L with
components Kα, α = 1, · · · , L, is defined by

(10) lk(L) =
∑

α<β

lk(Kα,Kβ).

For example, once an orientation is chosen for the two components of the Hopf

+1 −1

Fig. 2. When computing the linking number of two knots, the crossings are assigned
a sign ±1 as indicated in the figure

link 22
1 shown in Fig. 1, one finds two inequivalent oriented links with linking

numbers ±1.
Some of the correlation functions of Wilson loops in Chern–Simons theory

turn out to be closely related to important polynomial invariants of knots and
links. For example, one of the most important polynomial invariants of a link
L is the HOMFLY polynomial PL(q, λ), which depends on two variables q
and λ and was introduced by Freyd et al. (1985). This polynomial turns out
to be related to the correlation function (8) when the gauge group is U(N)
and all the components are in the fundamental representation Rα = . More
precisely, we have

(11) W ··· (L) = λlk(L)

(
λ

1
2 − λ−

1
2

q
1
2 − q−

1
2

)

PL(q, λ)

where lk(L) is the linking number of L, and the variables q and λ are related
to the Chern–Simons variables as

(12) q = ex, x =
2πi

k +N
, λ = qN .
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When N = 2 the HOMFLY polynomial reduces to a one-variable polyno-
mial, the Jones polynomial. When the gauge group of Chern–Simons theory
is SO(N), W ··· (L) is closely related to the Kauffman polynomial. For the
mathematical definition and properties of these polynomials, see, for example,
Lickorish (1998).

2.2 Perturbative Approach

The partition function and correlation functions of Wilson loops in Chern–
Simons theory can be computed in a variety of ways. We will here present the
basic results of Chern–Simons perturbation theory for the partition function.
Since our main interest will be the non-perturbative results of Witten (1989),
we will be rather sketchy. For more information on Chern–Simons perturba-
tion theory, we refer the reader to Dijkgraaf (1995) and Labastida (1999) for
a physical point of view, and Bar-Natan (1995) and Ohtsuki (2003), for a AQ: Reference

Ohtsuki (2003) is
not given in the
reference list. Please
provide.

mathematical perspective.
In the computation of the partition function in perturbation theory, we

have first to find the classical solutions of the Chern–Simons equations of
motion. If we write A =

∑
aA

aTa, where Ta is a basis of the Lie algebra,
we find

δS

δAa
µ

=
k

4π
εµνρF a

νρ,

therefore the classical solutions are just flat connections on M . Flat connec-
tions are in one-to-one correspondence with group homomorphisms

(13) π1(M) → G.

For example, if M = S3/Zp is the lens space L(p, 1), one has π1(L(p, 1)) = Zp,
and flat connections are labelled by homomorphisms Zp → G. Let us assume
that the flat connections on M are a discrete set of points (this happens,
for example, if M is a rational homology sphere, since in that case π1(M)
is a finite group). In that situation, one expresses Z(M) as a sum of terms
associated to stationary points:

(14) Z(M) =
∑

c

Z(c)(M),

where c labels the different flat connections A(c) on M . Each of the Z(c)(M)
will be an asympotic series in 1/k of the form

(15) Z(c)(M) = Z
(c)
1−loop(M) exp

{ ∞∑

�=1

S
(c)
� x�

}

.

In this equation, x is the effective expansion parameter:

(16) x =
2πi
k + y

,
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which takes into account a quantum shift k → k+y due to finite renormaliza-
tion effects. The one-loop correction Z(c)

1−loop(M) was first analyzed by Witten
(1989), and has been studied in great detail since then (Freed and Gompf
1991; Jeffrey 1992; Rozansky 1995). It has the form

(17) Z
(c)
1−loop(M) =

(2πx)
1
2 (dimH0

c−dimH1
c )

vol(Hc)
e−

1
x SCS(A(c))− iπ

4 ϕ

√

|τ (c)
R |,

where H0,1
c are the cohomology groups with values in the Lie algebra of G

associated to the flat connection A(c), τ (c)
R is the Reidemeister–Ray–Singer

torsion of A(c), Hc is the isotropy group of A(c), and ϕ is a certain phase.
Notice that, for the trivial flat connection A(c) = 0, Hc = G.

Let us focus on the terms in (15) corresponding to the trivial connection,
which will be denoted by S�. Diagramatically, the free energy is computed by
connected bubble diagrams made out of trivalent vertices (since the interaction
in the Chern–Simons action is cubic). We will refer to these diagrams as
connected trivalent graphs. S� is the contribution of connected trivalent graphs
with 2� vertices and �+1 loops. For each of these graphs we have to compute
a group factor and a Feynman integral. However, not all these graphs are
independent, since the underlying Lie algebra structure imposes the Jacobi
identity:

(18)
∑

e

(
fabefedc + fdaefebc + facefedb

)
= 0.

This leads to the graph relation known as the IHX relation. Also, anti-
symmetry of fabc leads to the so-called AS relation (see, for example,
Bar-Natan 1995; Dijkgraaf 1995; Ohtsuki 2002). The existence of these
relations suggests to define an equivalence relation in the space of connected
trivalent graphs by quotienting by the IHX and the AS relations, and this
gives the so-called graph homology. The space of homology classes of con-
nected diagrams will be denoted by A(∅)conn. This space is graded by half
the number of vertices �, and this number gives the degree of the graph. The
space of homology classes of graphs at degree � is then denoted by A(∅)conn

� .
For every �, this is a finite-dimensional vector space of dimension d(�). The
dimensions of these spaces are explicitly known for low degrees, see, for ex-
ample, Bar-Natan (1995), and we have listed some of them in Table 1. Given
any group G, we have a map

(19) rG : A(∅)conn −→ R

that associates to every graph Γ its group theory factor rG(Γ ). This map
is of course well defined, since different graphs in the same homology class
A(∅)conn lead by definition to the same group factor. This map is an example
of a weight system for A(∅)conn. Every gauge group gives a weight system
for A(∅)conn, but one may, in principle, find weight systems not associated to
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gauge groups, although so far the only known example is the one constructed
by Rozansky and Witten (1997), which instead uses hyperKähler manifolds.
We can now state very precisely what is the structure of the S� appearing in
(15): since the Feynman diagrams can be grouped into homology classes, we
have

Table 1. Dimensions d(�) of A(∅)conn
� up to � = 10

� 1 2 3 4 5 6 7 8 9 10

d(�) 1 1 1 2 2 3 4 5 6 8

(20) S� =
∑

Γ∈A(∅)conn
�

rG(Γ )IΓ (M).

The factors IΓ (M) appearing in (20) are certain sums of integrals of prop-
agators over M . It was shown by Axelrod and Singer (1992) that these are
differentiable invariants of the three-manifold M , and since the dependence
on the gauge group has been factored out, they only capture topological in-
formation of M , in contrast to Z(M), which also depends on the choice of
the gauge group. These are the universal perturbative invariants defined by
Chern–Simons theory. Notice that, at every order � in perturbation theory,
there are d(�) independent perturbative invariants. Of course, these invariants
inherit from A(∅)conn

� the structure of a finite-dimensional vector space, and
in particular one can choose a basis of trivalent graphs. A possible choice for
� ≤ 5 is the following (Sawon 2004):

� = 1 :
� = 2 :
� = 3 :
� = 4 :
� = 5 : .

(21)

We will denote the graphs with k circles joined by lines by θk. Therefore, the
graph corresponding to � = 1 will be denoted by θ, the graph corresponding
to � = 2 will be denoted θ2, and so on.

Notice that Chern–Simons theory detects the graph homology through
the weight system associated to Lie algebras, so in principle it could happen
that there is an element of graph homology that is not detected by these
weight systems. There is, however, a very elegant mathematical definition of
the universal perturbative invariant of a three-manifold that works directly in
the graph homology. This is called the LMO invariant (Le et al. 1998) and it
is a formal linear combination of homology graphs with rational coefficients:
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(22) ω(M) =
∑

Γ∈A(∅)conn

ILMO
Γ (M)Γ ∈ A(∅)conn[Q].

It is believed that the universal invariants extracted from Chern–Simons per-
turbation theory agree with the LMO invariant. More precisely, since the LMO
invariant ω(M) is taken to be 0 for S3, we have:

(23) ILMO
Γ (M) = IΓ (M)− IΓ (S3),

as long as the graph Γ is detected by Lie algebra weight systems. In that sense
the LMO invariant is more refined than the universal perturbative invariants
extracted from Chern–Simons theory; see Ohtsuki (2002) for a detailed intro-
duction to the LMO invariant and its properties.

The computation of S� involves the evaluation of group factors of Feynman
diagrams, which we have denoted by rG(Γ ) above. Here, we give some details
about how to evaluate these factors when G = U(N), following the diagram-
matic techniques of Cvitanovic (1976) and Bar-Natan (1995). A systematic
discussion of these techniques can be found in Cvitanovic (2004).

a

i j

Fig. 3. Graphic representation of the generator (Ta)ij of a Lie algebra

The basic idea to evaluate group factors is very similar to the double-line
notation of ’t Hooft (1974), and it amounts to expressing indices in the adjoint
representation in terms of indices in the fundamental (and anti-fundamental)
representation. The resulting diagrams are often called fatgraphs. In the case of
U(N), the adjoint representation is just the tensor product of the fundamental
and the anti-fundamental representation. Let us first normalize the trace in
the fundamental representation by setting

a b
= δab

Fig. 4. Graphic representation of the normalization condition (24)
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(24) Tr (Ta Tb) = δab, a, b = 1, · · · , N2.

One can then see that

(25)
∑

a

(Ta)ij(Ta)kl = δilδkj .

If we represent the generator (Ta)ij as in Fig. 3, the relation (25) can in
turn be represented as Fig. 5. This is simply the statement that the adjoint
representation of U(N) is given by VN ⊗ V ∗

N . Similarly, the normalization
condition (24) is graphically represented as Fig. 4. The evaluation of group

i

j

k

l

=

i k

j l

Fig. 5. Graphic representation of (25)

factors of Feynman diagrams involves, of course, the structure constants of
the Lie algebra fabc, associated to the cubic vertex. By tracing the defining
relation of the structure constants we find

(26) fabc = Tr (TaTbTc)− Tr (TbTaTc),

which we represent as Fig. 6. Putting this together with Fig. 5, we obtain the

= −

Fig. 6. Graphic representation of the relation (26) between structure constants and
generators
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graphical rule represented in Fig. 7. We can interpret this as a rule that tells us
how to split a single-line Feynman diagram of the U(N) theory into fatgraphs:
given a Feynman diagram, we substitute each vertex by the double line vertex
without twists, minus the double-line vertex with twists in all edges. If the
diagram has 2� vertices, we will generate 4� fatgraphs (some of them may
be equal), with a ± sign, which can be interpreted as Riemann surfaces with
holes. The group factor of a fatgraph with h holes is simply Nh.

Example. As an example of the above procedure, One can use the above
rules to compute the group factor of the two-loop Feynman diagram

(27) .

= −

Fig. 7. Graphic rule to transform Feynman diagrams into double-line diagrams

By resolving the two vertices we obtain two different fatgraphs: the graph
in Fig. 8 with weight 2, and the graph in Fig. 9 with weight −2. One then
finds:

(28) rU(N)(θ) = 2N(N2 − 1).

Similarly, the same procedure gives

(29) rU(N)(θ2) = 4N2(N2 − 1).

Fig. 8. A fatgraph obtained from the Feynman diagram (27)
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Fig. 9. Another fatgraph obtained from (27)

It is easy to see from the evaluation of group factors that the perturba-
tive expansion of the free energy of Chern–Simons theory around the trivial
connection can be written in the form

(30) F =
∞∑

g=0

∞∑

h=1

Fg,hx
2g−2+hNh.

In fact, this structure for the partition function holds for any quantum theory
containing only fields in the adjoint representation (’t Hooft 1974). One can
also reorganize the perturbative series (30) as

(31) F =
∞∑

g=0

Fg(t)g2g−2
s ,

where t is called the ’t Hooft coupling of Chern–Simons theory and it is
given by

(32) t = Nx,

and Fg(t) is defined by summing over all holes keeping the genus g fixed:

(33) Fg(t) =
∞∑

h=1

Fg,ht
h.

We will see later in this section how to compute the coefficients Fg,h and the
function Fg(t) for Chern–Simons theory on S3.

2.3 Non-Perturbative Solution

As was shown by Witten (1989), Chern–Simons theory is exactly solvable by
using non-perturbative methods and the relation to the Wess–Zumino–Witten
(WZW) model. In order to present this solution, it is convenient to recall some
basic facts about the canonical quantization of the model.

Let M be a three-manifold with boundary given by a Riemann surface
Σ. We can insert a general operator O in M , which will, in general, be a
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product of Wilson loops along different knots and in arbitrary representations
of the gauge group. We will consider the case in which the Wilson loops do
not intersect the surface Σ. The path integral over the three-manifold with
boundary M gives a wavefunction ΨM,O(A) that is a functional of the values
of the field on Σ. Schematically, we have:

(34) ΨM,O(A) = 〈A|ΨM,O〉 =
∫

A|Σ=A

DA eiS O.

In fact, associated to the Riemann surface Σ we have a Hilbert space H(Σ),
which can be obtained by doing canonical quantization of Chern–Simons the-
ory on Σ × R. Before spelling out in detail the structure of these Hilbert
spaces, let us make some general considerations about the computation of
physical quantities.

In the context of canonical quantization, the partition function can be com-
puted as follows. We first perform a Heegaard splitting of the three-manifold,
i.e. we represent it as the connected sum of two three-manifolds M1 and M2

sharing a common boundary Σ, where Σ is a Riemann surface. If f : Σ → Σ
is a homeomorphism, we will write M = M1 ∪f M2, so that M is obtained by
gluing M1 to M2 through their common boundary and using the homeomor-
phism f . This is represented in Fig. 10. We can then compute the full path
integral (3) over M by computing first the path integral over M1 to obtain a
state |ΨM1〉 in H(Σ). The boundary of M2 is also Σ, but with opposite ori-
entation, so its Hilbert space is the dual space H∗(Σ). The path integral over
M2 then produces a state 〈ΨM2 | ∈ H∗(Σ). The homeomorphism f : Σ → Σ
will be represented by an operator acting on H(Σ),

(35) Uf : H(Σ) → H(Σ).

and the partition function can be finally evaluated as

(36) Z(M) = 〈ΨM2 |Uf |ΨM1〉.

Therefore, if we know explicitly what the wavefunctions and the operators
associated to homeomorphisms are, we can compute the partition function.
The result of the computation is, of course, independent of the particular
Heegaard splitting of M .

Σ

M1M2

Fig. 10. Heegaard splitting of a three-manifold M into two three-manifolds M1 and
M2 with a common boundary Σ
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One of the most fundamental results of Witten (1989) is a precise descrip-
tion of H(Σ): it is the space of conformal blocks of a WZW model on Σ with
gauge group G and level k (for an extensive review of the WZW model, see,
for example, Di Francesco et al. 1997). In particular, H(Σ) has finite dimen-
sion. We will not review here the derivation of this fundamental result. Instead
we will use the relevant information from the WZW model in order to solve
Chern–Simons theory in some important cases.

The description of the space of conformal blocks on Riemann surfaces can
be made very explicit when Σ is a sphere or a torus. For Σ = S2, the space of
conformal blocks is one-dimensional, so H(S2) is spanned by a single element.
For Σ = T2, the space of conformal blocks is in one-to-one correspondence
with the integrable representations of the affine Lie algebra associated to G at
level k. We will use the following notations: the fundamental weights of G will
be denoted by λi, and the simple roots by αi, i = 1, · · · , r, where r denotes
the rank of G. The weight and root lattices of G are denoted by Λw and Λr,
respectively, and |∆+| denotes the number of positive roots. The fundamental
chamber Fl is given by Λw/lΛr, modded out by the action of the Weyl group.
For example, in SU(N) a weight p =

∑r
i=1 piλi is in Fl if

(37)
r∑

i=1

pi < l, and pi > 0, i = 1, · · · , r.

We recall that a representation given by a highest weight Λ is integrable if ρ+Λ
is in the fundamental chamber Fl, where l = k+y (ρ denotes as usual the Weyl
vector, given by the sum of the fundamental weights). In the following, the
states in the Hilbert state of the torus H(T2) will be denoted by |p〉 = |ρ+Λ〉
where ρ + Λ ∈ Fl, as we have stated, is an integrable representation of the
WZW model at level k. We will also denote these states by |R〉, where R is
the representation associated to Λ. The state |ρ〉 will be denoted by |0〉. The
states |R〉 can be chosen to be orthonormal (Witten 1989; Elitzur et al. 1989;
Labastida and Ramallo 1989), so we have

(38) 〈R|R′〉 = δRR′ .

There is a special class of homeomorphisms of T2 that have a simple expression
as operators in H(T2); these are the SL(2,Z) transformations. Recall that
the group SL(2,Z) consists of 2 × 2 matrices with integer entries and unit
determinant. If (1, 0) and (0, 1) denote the two one-cycles of T2, we can specify
the action of an SL(2,Z) transformation on the torus by giving its action on
this homology basis. The SL(2,Z) group is generated by the transformations
T and S, which are given by

(39) T =
(

1 1
0 1

)

, S =
(

0 −1
1 0

)

.

Notice that the S transformation exchanges the one-cycles of the torus. These
transformations can be lifted to H(T2), and they have the following matrix
elements in the basis of integrable representations:
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Tpp′ = δp,p′e2πi(hp−c/24),

Spp′ =
i|∆+|

(k + y)r/2

(
VolΛw

VolΛr

) 1
2 ∑

w∈W

ε(w) exp
(
− 2πi
k + y

p · w(p′)
)
.(40)

In the first equation, c is the central charge of the WZW model, and hp is the
conformal weight of the primary field associated to p:

(41) hp =
p2 − ρ2

2(k + y)
,

where we recall that p is of the form ρ+Λ. In the second equation, the sum over
w is a sum over the elements of the Weyl group W, ε(w) is the signature of the
element w, and VolΛw(VolΛr) denote, respectively, the volume of the weight
(root) lattice. We will often write SRR′ for Spp′ , where p = ρ+Λ, p′ = ρ+Λ′

and Λ, Λ′ are the highest weights corresponding to the representations R, R′.

R

Fig. 11. Performing the path integral on a solid torus with a Wilson line in repre-
sentation R gives the state |R〉 in H(T2)

What is the description of the states |R〉 in H(T2) from the point of view
of canonical quantization? Consider the solid torus T = D × S1, where D is
a disc in R2. This is a three-manifold whose boundary is a T2, and it has a
non-contractible cycle given by the S1. Let us now consider the Chern–Simons
path integral on the solid torus, with the insertion of the operator OR = TrRU
given by a Wilson loop in the representation R around the non-contractible
cycle, as shown in Fig. 11. In this way, one obtains a state in H(T2), and
one has

(42) |ΨT,OR
〉 = |R〉.

In particular, the path integral over the solid torus with no operator insertion
gives |0〉, the ‘vacuum’ state.

These results allow us to compute the partition function of any three-
manifold that admits a Heegaard splitting along a torus. Imagine, for example,
that we take two solid tori and we glue them along their boundary with the
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identity map. Since a solid torus is a disc times a circle, D×S1, by performing
this operation we get a manifold that is S1 times the two discs glued together
along their boundaries. Therefore, with this surgery we obtain S2 × S1, and
(36) then gives

(43) Z(S2 × S1) = 〈0|0〉 = 1.

If we do the gluing, however, after performing an S-transformation on the T2

the resulting manifold is instead S3. To see this, notice that the complement
to a solid torus inside S3 is indeed another solid torus whose non-contractible
cycle is homologous to the contractible cycle in the first torus. We then find

(44) Z(S3) = 〈0|S|0〉 = S00.

By using Weyl’s denominator formula,

(45)
∑

w∈W

ε(w)ew(ρ) =
∏

α>0

2 sinh
α

2
,

where α > 0 are positive roots, one finds

(46) Z(S3) =
1

(k + y)r/2

(
VolΛw

VolΛr

) 1
2 ∏

α>0

2 sin
(π(α · ρ)
k + y

)
.

The above result can be generalized in order to compute path integrals
in S3 with some knots and links. Consider a solid torus where a Wilson line
in representation R has been inserted. The corresponding state is |R〉, as we
explained before. If we now glue this to an empty solid torus after an S-
transformation, we obtain a trivial knot, or unknot, in S3. The path integral
with the insertion is then,

(47) ZR = 〈0|S|R〉.

It follows that the normalized vacuum expectation value for the unknot in S3,
in representation R, is given by

(48) WR(unknot) =
S0R

S00
=
∑

w∈W ε(w) e−
2πi
k+y ρ·w(Λ+ρ)

∑
w∈W ε(w) e−

2πi
k+y ρ·w(ρ)

.

This expression can be written in terms of characters of the group G. Re-
member that the character of the representation R, evaluated on an element
a ∈ Λw ⊗R is defined by

(49) chR(a) =
∑

µ∈MR

ea·µ,

where MR is the set of weights associated to the irreducible representation R.
By using Weyl’s character formula we can write
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(50) WR(unknot) = chR

[
− 2πi
k + y

ρ
]
.

Moreover, using (45), we finally obtain

(51) WR(unknot) =
∏

α>0

sin
(

π
k+yα · (Λ+ ρ)

)

sin
(

π
k+yα · ρ

) .

This quantity is often called the quantum dimension of R, and it is denoted
by dimqR.

We can also consider a solid torus with a Wilson loop in representation
R, glued to another solid torus with the representation R′ through an S-
transformation. What we obtain is clearly a link in S3 with two components,
which is the Hopf link shown in Fig. 1. Carefully taking into account the
orientation, we find that this is the Hopf link with linking number +1. The
path integral with this insertion is:

(52) ZRR′ = 〈R′|S|R〉,

so the normalized vacuum expectation value is

(53) WRR′ ≡WRR′(Hopf+1) =
SR

′
R

S00
=
S−1

R′R

S00
,

where the superscript +1 refers to the linking number. Here, we have used that
the bras 〈R| are canonically associated to conjugate representations R, and
that SR

′
R = S−1

R′R (see for example Di Francesco et al. 1997). Therefore, the
Chern–Simons invariant of the Hopf link is essentially an S-matrix element.
In order to obtain the invariant of the Hopf link with linking number −1, we
notice that the two Hopf links can be related by changing the orientation of one
of the components. Since this is equivalent to conjugating the representation,
we find

(54) WRR′(Hopf−1) =
SR′R

S00
.

When we take G = U(N), the above vacuum expectation values for unknots
and Hopf links can be evaluated very explicitly in terms of Schur polynomials.
It is well known that the character of the unitary group in the representation
R is given by the Schur polynomial sR (see for example Fulton and Harris
1991). There is a precise relation between the element a on which one evaluates
the character in (49) and the variables entering the Schur polynomial. Let µi,
i = 1, · · · , N , be the weights associated to the fundamental representation of
U(N). Notice that, if R is given by a Young tableau whose rows have lengths
l1 ≥ · · · ≥ lN , then ΛR =

∑
i liµi. We also have

(55) ρ =
N∑

i=1

1
2
(N − 2i+ 1)µi.
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Let a ∈ Λw ⊗R be given by

(56) a =
N∑

i=1

aiµi.

Then,

(57) chR[a] = sR(xi = eai).

For example, in the case of the quantum dimension, one has dimqR = dimqR,
and we find

(58) dimqR = sR(xi = q
1
2 (N−2i+1)),

where q is given in (12). By using that sR is homogeneous of degree �(R) in
the variables xi we finally obtain

dimqR = λ�(R)/2sR(xi = q−i+ 1
2 )

where λ = qN as in (12), and there areN variables xi. The quantum dimension
can be written very explicitly in terms of the q-numbers:

(59) [a] = q
a
2 − q−

a
2 , [a]λ = λ

1
2 q

a
2 − λ−

1
2 q−

a
2 .

If R corresponds to a Young tableau with cR rows of lengths li, i = 1, · · · , cR,
the quantum dimension is given by:

(60) dimqR =
∏

1≤i<j≤cR

[li − lj + j − i]
[j − i]

cR∏

i=1

∏li−i
v=−i+1[v]λ

∏li
v=1[v − i+ cR]

.

It is easy to check that in the limit k + N → ∞ (i.e. in the semi-classical
limit) the quantum dimension becomes the dimension of the representation
R. Notice that the quantum dimension is a rational function of q±

1
2 , λ±

1
2 .

This is a general property of all normalized vacuum expectation values of
knots and links in S3.

The S-matrix elements that appear in (53) and (54) can be evaluated
through the explicit expression (40), by using the relation between U(N)
characters and Schur functions that we explained above. Notice first that

(61)
S−1

R1R2

S00
= chR1

[ 2πi
k + y

(ΛR2 + ρ)
]
chR2

[ 2πi
k + y

ρ
]
.

If we denote by lR2
i , i = 1, · · · , cR2 the lengths of rows for the Young tableau

corresponding to R2, it is easy to see that

(62) WR1R2(q, λ) = (λq)
�(R1)

2 sR1(xi = ql
R2
i −i)dimqR2,



U
nc

or
re

ct
ed

 P
ro

of

68 M. Mariño

where we set lR2
i = 0 for i > cR2 . A convenient way to evaluate sR1(xi =

qlRi −i) for a partition {lRi }{i=1,··· ,cR} associated to R is to use the Jacobi–Trudi
formula (188). It is easy to show that the generating functional of elementary
symmetric functions (184) for this specialization is given by

(63) ER(t) = E∅(t)
cR∏

j=1

1 + qlRj −jt

1 + q−jt
,

where

(64) E∅(t) = 1 +
∞∑

n=1

ant
n,

and the coefficients an are defined by

(65) an =
n∏

r=1

1− λ−1qr−1

qr − 1
.

The formula (62), together with the expressions above for ER(t), provides an
explicit expression for (53) as a rational function of q±

1
2 , λ±

1
2 , and it was first

written down by Morton and Lukac (2003).

2.4 Framing Dependence

In the above discussion on the correlation functions of Wilson loops we have
glossed over an important ingredient. We already mentioned that, in order to
define the partition function of Chern–Simons theory at the quantum level,
one has to specify a framing of the three-manifold. It turns out that the
evaluation of correlation functions like (8) also involves a choice of framing of
the knots, as discovered by Witten (1989).

A good starting point to understand the framing is to take Chern–Simons
theory with gauge group U(1). The Abelian Chern–Simons theory turns out
to be extremely simple, since the cubic term in (2) drops out, and we are left
with a Gaussian theory (Polyakov 1988). U(1) representations are labelled by
integers, and the correlation function (8) can be computed exactly. In order
to do that, however, one has to choose a framing for each of the knots Kα.
This arises as follows: in evaluating the correlation function, contractions of
the holonomies corresponding to different Kα produce the following integral:

(66) lk(Kα,Kβ) =
1
4π

∮

Kα

dxµ

∮

Kβ

dyνεµνρ
(x− y)ρ

|x− y|3 .

This is a topological invariant, i.e. it is invariant under deformations of the
knots Kα, Kβ , and it is, in fact, the Gauss integral representation of their
linking number lk(Kα,Kβ) defined in (9). On the other hand, contractions of
the holonomies corresponding to the same knot K involve the integral
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(67) φ(K) =
1
4π

∮

K

dxµ

∮

K

dyνεµνρ
(x− y)ρ

|x− y|3 .

This integral is well defined and finite (see, for example, Guadagnini et al.
1990), and it is called the cotorsion or writhe of K. It gives the self-linking
number of K: if we project K on a plane, and we denote by n±(K) the number
of positive (negative) crossings as indicated in Fig. 2, then we have that

(68) φ(K) = n+(K)− n−(K).

The problem is that the cotorsion is not invariant under deformations of the
knot. In order to preserve topological invariance of the correlation function,
one has to choose another definition of the composite operator (

∮

K
A)2 by

means of a framing. A framing of the knot consists of choosing another knot
Kf around K, specified by a normal vector field n. The cotorsion φ(K) then
becomes

(69) φf (K) =
1
4π

∮

K

dxµ

∮

Kf

dyνεµνρ
(x− y)ρ

|x− y|3 = lk(K,Kf ).

The correlation function that we obtain in this way is a topological invariant
(since it only involves linking numbers) but the price that we have to pay is
that our regularization depends on a set of integers pα = lk(Kα,K

f
α) (one for

each knot). The correlation function (8) can now be computed, after choosing
the framings, as follows:

(70)
〈
∏

α

exp
(
nα

∮

Kα

A
)
〉

= exp
{
πi
k

(∑

α

n2
αpα +
∑

α
=β

nαnβ lk(Kα,Kβ)
)}

.

This regularization is simply the ‘point-splitting’ method familiar in the con-
text of quantum field theory.

Let us now consider Chern–Simons theory with gauge group U(N), and
suppose that we are interested in the computation of (8), in the context of
perturbation theory. It is easy to see that self-contractions of the holonomies
lead to the same kind of ambiguities that we found in the Abelian case, i.e.
a choice of framing has to be made for each knot Kα. The only difference
from the Abelian case is that the self-contraction of Kα gives a group fac-
tor TrRα

(TaTa), where Ta is a basis of the Lie algebra (see, for example,
Guadagnini et al. 1990). The precise result can be better stated as the effect
on the correlation function (8) under a change of framing, and it says that,
under a change of framing of Kα by pα units, the vacuum expectation value
of the product of Wilson loops changes as follows (Witten 1989):

(71) WR1···RL
→ exp
[

2πi
L∑

α=1

pαhRα

]

WR1···RL
.

In this equation, hR is the conformal weight of the WZW primary field cor-
responding to the representation R. One can write (41) as
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(72) hR =
CR

2(k +N)
,

where CR = TrR(TaTa) is the quadratic Casimir in the representation R. For
U(N) one has

(73) CR = N�(R) + κR,

where �(R) is the total number of boxes in the tableau, and

(74) κR = �(R) +
∑

i

(
l2i − 2ili

)
.

In terms of the variables (12) the change under framing (71) can be written
as

(75) WR1···RL
→ q

1
2

∑L
α=1 κRα pαλ

1
2

∑L
α=1 �(Rα)pαWR1···RL

.

Therefore, the evaluation of vacuum expectation values of Wilson loop opera-
tors in Chern–Simons theory depends on a choice of framing for knots. It turns
out that for knots and links in S3, there is a standard or canonical framing,
defined by requiring that the self-linking number is zero. The expressions we
have given before for the Chern–Simons invariant of the unknot and the Hopf
link are all in the standard framing. Once the value of the invariant is known
in the standard framing, the value in any other framing specified by non-zero
integers pα can be easily obtained from (71).

2.5 The 1/N Expansion in Chern–Simons Theory

As we explained above, the perturbative series of Chern–Simons theory around
the trivial connection can be re-expressed in terms of fatgraphs. In particular,
one should be able to study the free energy of Chern–Simons theory on the
three-sphere in the 1/N expansion, i.e. to expand it as in (30) and to resum
all fatgraphs of fixed genus in this expansion to obtain the quantities Fg(t). In
this section we will obtain closed expressions for Fg,h and Fg(t) in the case of
Chern–Simons theory defined on S3, following Gopakumar and Vafa (1998a,
1999). For earlier work on the 1/N expansion of Chern–Simons theory, see
Camperi et al. (1990), Periwal (1993) and Correale and Guadagnini (1994).

A direct computation of Fg,h from perturbation theory is difficult, since it
involves the evaluation of integrals of products of propagators over the three-
sphere. However, in the case of S3 we have an exact expression for the partition
function and we can expand it in both x and N to obtain the coefficients of
(30). The partition function of CS with gauge group U(N) on the three-sphere
can be obtained from the formula (46) for SU(N) after multiplying it by an
overall N1/2/(k + N)1/2, which is the partition function of the U(1) factor.
The final result is
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(76) Z =
1

(k +N)N/2

∏

α>0

2 sin
(π(α · ρ)
k +N

)
.

Using the explicit description of the positive roots of SU(N), one gets

(77) F = logZ = −N
2

log(k +N) +
N−1∑

j=1

(N − j) log
[

2 sin
πj

k +N

]

.

We can now write the sin as

(78) sinπz = πz

∞∏

n=1

(

1− z2

n2

)

,

and we find that the free energy is the sum of two parts. We will call the first
one the non-perturbative part:

(79) F np = −N
2

2
log(k +N) +

1
2
N(N − 1) log 2π +

N−1∑

j=1

(N − j) log j,

and the other part will be called the perturbative part:

(80) F p =
N∑

j=1

(N − j)
∞∑

n=1

log
[

1− j2g2
s

4π2n2

]

,

where we have denoted

(81) gs =
2π

k +N
,

which, as we will see later, coincides with the open string coupling constant
under the gauge/string theory duality.

To see that (79) has a non-perturbative origin, we rewrite it as

(82) F np = log
(2πgs)

1
2 N2

vol(U(N))
,

where we used the explicit formula

(83) vol(U(N)) =
(2π)

1
2 N(N+1)

G2(N + 1)
,

and G2(N) is Barnes function. This indeed corresponds to the volume of the
gauge group in the one-loop contribution (17), where A(c) is in this case the
trivial flat connection. Therefore, F np is the log of the prefactor of the path
integral, which is not captured by Feynman diagrams.
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Let us now work out the perturbative part (80), following Gopakumar and
Vafa (1998a, 1999). By expanding the log, using that

∑∞
n=1 n

−2k = ζ(2k), and
the formula

(84)
N∑

j=1

jk =
1

k + 1

k+1∑

l=1

(−1)k−l+1

(
k + 1
l

)

Bk+1−lN
l,

where Bn are Bernoulli numbers, we find that (80) can be written as

(85) F p =
∞∑

g=0

∞∑

h=2

F p
g,hg

2g−2+h
s Nh,

where F p
g,h is given by:

F p
0,h = − |Bh−2|

(h− 2)h!
, h ≥ 4,

F p
1,h =

1
12

|Bh|
hh!

.(86)

Notice that F p
0,h vanishes for h ≤ 3. For g ≥ 2 one obtains

(87) F p
g,h =

ζ(2g − 2 + h)
(2π)2g−3+h

(
2g − 3 + h

h

)
B2g

2g(2g − 2)
.

This gives the contribution of connected diagrams with two loops and be-
yond to the free energy of Chern–Simons theory on the sphere. The non-
perturbative part also admits an asymptotic expansion that can be easily
worked out by expanding the Barnes function that appears in the volume
factor (Periwal 1993; Ooguri and Vafa 2002). One gets:

(88) F np =
N2

2

(
log(Ngs)−

3
2

)
− 1

12
logN + ζ ′(−1)+

∞∑

g=2

B2g

2g(2g − 2)
N2−2g.

In order to find Fg(t) we have to sum over the holes, as in (33). The ’t
Hooft parameter is given by t = xN = igsN , and

(89) F p
g (t) =

∞∑

h=1

F p
g,h(−it)h.

Let us first focus on g ≥ 2. To perform the sum explicitly, we again write the
ζ function as ζ(2g − 2 + 2p) =

∑∞
n=1 n

2−2g−2p, and use the binomial series,

(90)
1

(1− z)q
=

∞∑

n=0

(
q + n− 1

n

)

zn
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to obtain:

(91) F p
g (t) =

(−1)g|B2gB2g−2|
2g(2g − 2)(2g − 2)!

+
B2g

2g(2g − 2)

∑

n∈Z

′ 1
(−it+ 2πn)2g−2

,

where ′ means that we omit n = 0. Now we notice that, if we write

(92) F np =
∞∑

g=0

F np
g (t)g2g−2

s ,

then for, g ≥ 2, F np
g (t) = B2g/(2g(2g − 2)(−it)2g−2, which is precisely the

n = 0 term missing in (91). We then define:

(93) Fg(t) = F p
g (t) + F np

g (t).

Finally, since

(94)
∑

n∈Z

1
n+ z

=
2πi

1− e−2πiz
,

by taking derivatives w.r.t. z we can write

(95) Fg(t) =
(−1)g|B2gB2g−2|

2g(2g − 2)(2g − 2)!
+

|B2g|
2g(2g − 2)!

Li3−2g(e−t),

again for g ≥ 2. The function Lij appearing in this equation is the polyloga-
rithm of index j, defined by

(96) Lij(x) =
∞∑

n=1

xn

nj
.

The computation for g = 0, 1 is very similar, and one obtains:

(97)
F0(t) =− t3

12
+
π2t

6
+ ζ(3) + Li3(e−t),

F1(t) =
t

24
+

1
12

log (1− e−t).

This gives the resummed functions Fg(t) introduced in (33) for all g ≥ 0.

3 Topological Strings

In this section we give a rough presentation of Gromov–Witten invariants.
Detailed definitions and constructions can be found for example in Cox and
Katz (1999).
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3.1 Topological Strings and Gromov–Witten Invariants

In order to define Gromov–Witten invariants, the starting point is the moduli
space of possible metrics (or equivalently, complex structures) on a Riemann
surface with punctures, which is the famous Deligne-Mumford space Mg,n of
n-pointed stable curves (the definition of what stable means can be found
for example in Harris and Morrison 1998). Let X be a Kähler manifold. The
relevant moduli space in Gromov–Witten theory is denoted by

(98) Mg,n(X,β)

where β ∈ H2(X). This is a generalization of Mg,n, and depends on a choice
of a two-homology class β in X. Very roughly, a point in Mg,n(X,β) can
be written as (f,Σg, p1, · · · , pn) and is given by (a) a point in Mg,n, i.e. a
Riemann surface with n punctures, (Σg, p1, · · · , pn), together with a choice
of complex structure on Σg, and (b) a map f : Σg → X that is holomorphic
with respect to this choice of complex structure and such that f∗[Σg] = β. The
set of all such points forms a good moduli space provided a certain number
of conditions are satisfied (see for example Cox and Katz (1999) and Hori
et al. (2003) for a detailed discussion of these issues). Mg,n(X,β) is the basic
moduli space we will need in the theory of topological strings. Its complex
virtual dimension is given by

(99) (1− g)(d− 3) + n+
∫

Σg

f∗(c1(X)).

We also have two natural maps

π1 : Mg,n(X,β) −→ Xn,

π2 : Mg,n(X,β) −→ Mg,n.(100)

The first map is easy to define: given a point (f,Σg, p1, · · · , pn) in Mg,n(X,β),
we just compute (f(p1), · · · , f(pn)). The second map essentially sends (f,Σg,
p1, · · · , pn) to (Σg, p1, · · · , pn), i.e. forgets the information about the map and
keeps the information about the punctured curve.

We can now formally define the Gromov–Witten invariant Ig,n,β as follows.
Let us consider cohomology classes φ1, · · · , φn in H∗(X). If we pull back their
tensor product to H∗(Mg,n(X,β)) via π1, we get a differential form on the
moduli space of maps that we can integrate (as long as there is a well-defined
fundamental class for this space):

(101) Ig,n,β(φ1, · · · , φn) =
∫

Mg,n(X,β)

π∗
1(φ1 ⊗ · · · ⊗ φn).

The Gromov–Witten invariant Ig,n,β(φ1, · · · , φn) vanishes unless the degree
of the form equals the dimension of the moduli space. Therefore, we have the
following constraint:
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(102)
1
2

n∑

i=1

deg(φi) = (1− g)(d− 3) + n+
∫

Σg

f∗(c1(X)).

Notice that Calabi–Yau threefolds play a special role in the theory, since for
those targets the virtual dimension only depends on the number of punctures,
and therefore the above condition is always satisfied if the formsφi have degree 2.

When n = 0, one gets an invariant Ig,0,β that does not require any inser-
tions. This is the Gromov–Witten invariant on which we will focus, and we
will denote it by Ng,β . Notice that these invariants are in general rational, due
to the orbifold character of the moduli spaces involved. It is very convenient
to introduce the generating functional of these invariants at fixed genus. This
is defined as follows. First, choose a basis [Σi] ∈ H2(X) in such a way that

(103) β =
h1,1(X)∑

i=1

βi[Σi].

We also introduce h1,1(X) complexified Kähler parameters ti. They are de-
fined as

(104) ti =
∫

Σi

ω.

In this equation, ω is the complexified Kähler class,

(105) ω = J + iB,

where J is the Kähler class and B is the B-field. Finally, we introduce

(106) β · t =
h1,1(X)∑

i=1

βiti =
∫

β

ω.

With these ingredients, we define the topological string amplitude at genus g
as the generating functional

(107) Fg(t) =
∑

β∈H2(X)

Ng,βe−β·t.

The total topological string amplitude sums this to all genera,

(108) F (gs, t) =
∞∑

g=0

Fg(t)g2g−2
s .

It is also convenient to consider the exponentiated functional, which is called
the topological string partition function,

(109) Z(gs, t) = exp F (gs, t).
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An important goal in Gromov–Witten theory is to provide effective tools for
the computation of these quantities. The main reason why physics is useful in
doing this is because the Fg(t) are couplings in type II string theory, and can be
also obtained as free energies of topological string theory, a topological version
of string theory which is obtained by coupling topological sigma models to
topological gravity (hence the name of topological string quantities for these
quantities). For an exposition of some of the relevant physics background, see
Mariño (2005).

3.2 Integrality Properties and Gopakumar–Vafa Invariants

It was shown by Gopakumar and Vafa (1998b) that the total free energy
F (gs, t) can be expressed in terms of integer numbers ng

β as follows

(110) F (gs, t) =
∞∑

g=0

∑

β

∞∑

d=1

ng
β

1
d

(

2 sin
dgs

2

)2g−2

Qdβ .

The integers ng
β are known as Gopakumar–Vafa invariants. They are true

invariants of the Calabi–Yau manifold X, in the sense that they do not depend
on smooth deformations of the target geometry, This is in contrast to the
quantities n(jL,jR)

β , which do depend on deformations. As usual, by tracing
over a non-invariant quantity with signs we obtain an invariant quantity.

The structure result (110) implies that Gromov–Witten invariants of closed
strings, which are in general rational, can be written in terms of these integer
invariants. In fact, by knowing the Gromov–Witten invariants Ng,β we can
explicitly compute the Gopakumar–Vafa invariants from (110) (an explicit
inversion formula can be found in Bryan and Pandharipande 2001). By ex-
panding in gs, it is easy to show that the Gopakumar–Vafa formula (110)
predicts the following expression for Fg(t):
(111)

Fg(t) =
∑

β

( |B2g|n0
β

2g(2g − 2)!
+

2(−1)gn2
β

(2g − 2)!
± · · · − g − 2

12
ng−1

β + ng
β

)

Li3−2g(Qβ),

where Lij is the polylogarithm defined in (96). The appearance of the poly-
logarithm of order 3 − 2g in Fg was first predicted from type IIA/heterotic
string duality by Mariño and Moore (1999).AQ: Reference

Mariño and Moore
(1999) is not given
in the reference list.
Please provide.

The structure found by Gopakumar and Vafa solves some longstanding is-
sues in the theory of Gromov–Witten invariants, in particular the enumerative
meaning of the invariants. Two obstructions to finding obvious enumerative
meaning to Gromov–Witten invariants are multicovering and bubbling. Multi-
covering arises as follows. Suppose one finds a holomorphic map x : P

1 → X
in genus zero and in the class β. Then, simply by composing this with a de-
gree d cover P

1 → P
1, one can find another holomorphic map in the class dβ.

Therefore, at every degree, in order to count the actual number of ‘primitive’
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holomorphic curves, one should subtract from the corresponding Gromov–
Witten invariant the contributions coming from multicovering of curves with
lower degree. Another geometric effect that has to be taken into account is
bubbling (see, for example, Bershadsky et al. 1993, 1994). Imagine that one
finds a map x : Σg → X from a genus g Riemann surface to a Calabi–Yau
threefold. By gluing to Σg a small Riemann surface of genus h, and making
it very small, one can find an approximate holomorphic map from a Riemann
surface whose genus is topologically g+h. This means that ‘primitive’ maps at
genus g contribute to all genera g′ > g, and in order to count curves properly
one should take this effect into account.

The formula (111) gives a precise answer to these questions. Consider, for
example, the structure of F0. According to the above formula, the contribution
of a Gopakumar–Vafa invariant is given by the function Li3:

(112)
∞∑

d=1

Qdβ

d3
.

This gives the contribution of all the multicoverings of a given ‘primitive’
curve, where d is the degree of the multicovering. In addition, it says that
each cover has a weight 1/d3. Therefore, the invariant n0

β corresponds to
primitive holomorphic maps, and the non-integrality of genus-zero Gromov–
Witten invariants is due to the effects of multicovering. The multicovering
phenomenon in genus 0 was found experimentally in Candelas et al. (1991)
and later derived in the context of Gromov–Witten theory by Aspinwall and
Morrison (1993). The structure result of Gopakumar and Vafa also predicts
that the multicovering of degree d of a genus g curve contributes with a
weight d3−2g (coming from Li3−2g). Moreover, the formula (111) implies that
a genus h < g Gopakumar–Vafa invariant contributes to Fg(t) with a precise
weight, and this corresponds to the bubbling effects we mentioned before. For
example, a genus 0 Gopakumar–Vafa invariant contributes to Fg with a weight
|B2g|/(2g(2g − 2)!).

3.3 Open Topological Strings

So far we have discussed the Gromov–Witten theory for the case of closed
Riemann surfaces, but the theory can be (at least formally) extended to the
open case. The natural starting point is to consider maps from a Riemann
surface Σg,h of genus g with h holes. Such models were analysed in detail by
Witten (1995). The main issue is, of course, to specify boundary conditions
for the maps f : Σg,h → X. It turns out that the relevant boundary conditions
are Dirichlet and given by Lagrangian submanifolds of the Calabi–Yau X. A
Lagrangian submanifold L is a cycle on which the Kähler form vanishes:

(113) J |L = 0.



U
nc

or
re

ct
ed

 P
ro

of

78 M. Mariño

If we denote by Ci, i = 1, · · · , h, the boundaries of Σg,h we have to pick a
Lagrangian submanifold L, and consider holomorphic maps such that

(114) f(Ci) ⊂ L.

Once boundary conditions have been specified, we look at holomorphic
maps from open Riemann surfaces of genus g and with h holes to the Calabi–
Yau X, with Dirichlet boundary conditions specified by L. These holomorphic
maps are called open string instantons, and can also be classified topologically.
The topological sector of an open string instanton is given by two different
kinds of data: the boundary part and the bulk part. For the bulk part, the
topological sector is labelled by relative homology classes, since we are requir-
ing the boundaries of f∗[Σg,h] to end on L. Therefore, we will set

(115) f∗[Σg,h] = β ∈ H2(X,L).

To specify the topological sector of the boundary, we will assume that
b1(L)=1, so that H1(L) is generated by a non-trivial one-cycle γ. We then
have

(116) f∗[Ci] = wiγ, wi ∈ Z, i = 1, · · · , h,

in other words, wi is the winding number associated to the map f restricted
to Ci. We will collect these integers into a single h-uple denoted by w =
(w1, · · · , wh).

The free energy of open topological string theory at fixed genus and bound-
ary data w, which we denote by Fw,g(t), can be computed as a sum over open
string instantons labelled by the bulk classes:

(117) Fw,g(t) =
∑

β

Fw,g,β e−β·t.

In this equation, the sum is over relative homology classes β ∈ H2(X,L). The
quantities Fw,g,β are open Gromov–Witten invariants. They ‘count’ in an ap-
propriate sense the number of holomorphically embedded Riemann surfaces of
genus g in X with Lagrangian boundary conditions specified by L, and in the
class represented by β,w. They are in general rational numbers. In contrast to
conventional Gromov–Witten invariants, a rigorous theory of open Gromov–
Witten invariants is not yet available. However, localization techniques make
it possible to compute them in some situations (Katz and Liu 2002; Li and
Song 2002; Graber and Zaslow 2002; Mayr 2002).

In order to consider all topological sectors, we have to introduce the string
coupling constant gs, which takes care of the genus, as well as a Hermitian
M ×M matrix V , which takes care of the different winding numbers w. The
total free energy is defined by

(118) F (V ) =
∞∑

g=0

∞∑

h=1

∑

w1,··· ,wh

ih

h!
g2g−2+h

s Fw,g(t)TrV w1 · · ·TrV wh .
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The factor ih is introduced for convenience, while h! is a symmetry factor
which takes into account that the holes are indistinguishable. Notice that, in
order to distinguish all possible topological sectors, one has to take V to have
infinite rank, and formally we can think about the different traces in (118) as
symmetric functions in an infinite number of variables.

If the winding numbers wi in (118) are all positive, the product of traces
of V in (118) can be written in terms of TrR V for representations R with a
small number of boxes:

(119) F (V ) =
∑

R

FR(gs, t)TrRV,

Negative winding numbers can be introduced through another set of repre-
sentations. We have also assumed that the boundary conditions are specified
by a single Lagrangian submanifold with a single non-trivial one-cycle. When
there are more one-cycles in the geometry, say L, providing possible boundary
conditions for the open strings, the above formalism has to be generalized in
an obvious way: one needs to specify L sets of winding numbers w(α), and the
generating functional (119) depends on L different matrices Vα, α = 1, · · · , L.
The total partition function is the formal exponential of the total free energy
and it has the structure

(120) Z(Vi) =
∑

R1,··· ,R2L

ZR1···R2L
(gs, t)

2L∏

α=1

TrRα
Vα,

where the R2α−1, R2α correspond to positive and negative winding numbers,
respectively, for the α-th cycle.

4 Toric Geometry and Calabi–Yau Threefolds

4.1 Non-Compact Calabi–Yau Geometries: An Introduction

One of the main insights in the study of Gromov–Witten theory on Calabi–Yau
threefolds is that the simplest models to study are associated to non-compact
Calabi–Yau geometries based on manifolds of lower dimension. To construct
these geometries, we start with complex manifolds in one or two complex
dimensions, which in general will have a non-zero first Chern class. We then
consider vector bundles over them (with the appropriate rank and curvature)
that lead to a total three-dimensional space with zero first Chern class. In this
way, we obtain Calabi–Yau threefolds whose non-trivial geometry is encoded
in a lower-dimensional manifold, and therefore they are easier to study.

Let us first consider non-compact Calabi–Yau manifolds whose building
block is a one-dimensional compact manifold. These manifolds will be given
by a Riemann surface together with an appropriate bundle over it, and geomet-
rically they can be regarded as the local geometry of an embedded Riemann
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surface in a general Calabi–Yau space. Indeed, consider a Riemann surface Σg

holomorphically embedded inside a Calabi–Yau threefold X, and let us look
at the holomorphic tangent bundle of X restricted to Σg. We have

(121) TX|Σg
= TΣg ⊕NΣg

,

where NΣg
is a holomorphic rank-two complex vector bundle over Σg, called

the normal bundle of Σg, and the Calabi–Yau condition c1(X) = 0 gives

(122) c1(NΣg
) = 2g − 2.

The Calabi–Yau X ‘near Σg’ then looks like the total space of the bundle

(123) N → Σg,

where N is regarded here as a rank-two bundle over Σg satisfying (122). The
non-compact space (123) is an example of a local Calabi–Yau threefold.

When g = 0 and Σg = P
1 it is possible to be more precise about the bundle

N. A theorem due to Grothendieck says that any holomorphic bundle over P
1

splits into a direct sum of line bundles (for a proof, see for example Griffiths
and Harris 1977, pp. 516–7). Line bundles over P

1 are all of the form O(n),
where n ∈ Z. The bundle O(n) can be easily described in terms of two charts
on P

1: the north-pole chart, with co-ordinates z, Φ for the base and the fibre,
respectively, and the south-pole chart, with co-ordinates z′, Φ′. The change of
co-ordinates is given by

(124) z′ = 1/z, Φ′ = z−nΦ.

We also have that c1(O(n)) = n. We then find that local Calabi–Yau manifolds
that are made out of a two-sphere together with a bundle over it are all of
the form

(125) O(−a)⊕ O(a− 2) → P
1,

since the degrees of the bundles have to sum up to −2 due to (122). An
important case occurs when a = 1. The resulting non-compact manifold,

(126) O(−1)⊕ O(−1) → P
1,

is called the resolved conifold for reasons that will be explained later.
We can also consider non-compact Calabi–Yau threefolds based on com-

pact complex surfaces. Consider a complex surface S embedded in a Calabi–
Yau manifold X. As before, we can split the tangent bundle as

(127) TX|S = TS ⊕NS ,

where the normal bundle NS is now of rank one. The Calabi–Yau condition
leads to
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(128) c1(NS) = c1(KS),

where KS is the canonical line bundle over S, and we used that c1(TS) =
−c1(KS). Therefore, we have NS = KS . The Calabi–Yau X ‘near S’ looks
like the total space of the bundle

(129) KS → S.

This construction gives a whole family of non-compact Calabi–Yau manifolds
that are also referred to as local Calabi–Yau manifolds. A well-known example
is S = P

2, the two-dimensional projective space, which leads to the Calabi–
Yau manifold

(130) O(−3) → P
2,

also known as local P
2. Another important example is S = P

1 × P
1, which

leads to local P
1 × P

1.

4.2 Constructing Toric Calabi–Yau Manifolds

Many of the examples of non-compact Calabi–Yau threefolds considered above
are toric, i.e. they have the structure of a torus fibration, and can be con-
structed in a systematic way by a ‘cut and paste’ procedure. In this section
we will develop these techniques, following the approach of Aganagic et al.
(2005).

C3

The elementary building block for the technique we want to develop is a very
simple non-compact Calabi–Yau threefold, namely C3. We will now exhibit
its structure as a T2×R fibration over R

3, and we will encode this information
in a simple trivalent, planar graph.

Let zi be complex co-ordinates on C3, i = 1, 2, 3. We introduce three
functions or Hamiltonians

rα(z) = |z1|2 − |z3|2,
rβ(z) = |z2|2 − |z3|2,
rγ(z) = Im(z1z2z3).(131)

These Hamiltonians generate three flows on C3 via the standard symplectic
form ω = i

∑
j dzj ∧ dzj on C3 and the Poisson brackets

(132) ∂υzi = {rυ, zi}ω, υ = α, β, γ.

This gives the fibration structure that we were looking for: the base of the
fibration, R

3, is parameterized by the Hamiltonians (131), while the fibre T2×
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R is parameterized by the flows associated to the Hamiltonians. In particular,
the T2 fibre is generated by the circle actions

(133) eαrα+βrβ : (z1, z2, z3) → (eiαz1, eiβz2, e−i(α+β)z3),

while rγ generates the real line R. We will call the cycle generated by rα the
(0, 1) cycle, and the cycle generated by rβ the (1, 0) cycle.

Notice that the (0, 1) cycle degenerates over the subspace of C3 described
by z1 = 0 = z3, which is the subspace of the base R

3 given by rα = rγ = 0,
rβ ≥ 0. Similarly, over z2 = 0 = z3 the (1, 0)-cycle degenerates over the
subspace rβ = rγ = 0 and rα ≥ 0. Finally, the one-cycle parameterized by
α+ β degenerates over z1 = 0 = z2, where rα − rβ = 0 = rγ and rα ≤ 0.

We will represent the C3 geometry by a graph that encodes the degen-
eration loci in the R

3 base. In fact, it is useful to have a planar graph by
taking rγ = 0 and drawing the lines in the rα − rβ plane. The degeneration
locus will then be straight lines described by the equation prα + qrβ = const.
Over this line the (−q, p) cycle of the T2 degenerates. Therefore we corre-
late the degenerating cycles unambiguously with the lines in the graph (up
to (q, p) → (−q,−p)). This yields the graph in Fig. 12, drawn in the rγ = 0
plane.

(−1, −1)

(1,0)

(0,1)

Fig. 12. This graph represents the degeneration locus of the T2 × R fibration of
C3 in the base R

3 parameterized by (rα, rβ , rγ)

There is a symmetry in the C3 geometry that makes it possible to find
other representations by different toric graphs. These graphs are characterized
by three vectors vi that are obtained from those in Fig. 12 by an SL(2,Z)
transformation. The vectors have to satisfy
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(134)
∑

i

vi = 0.

The SL(2,Z) symmetry is inherited from the SL(2,Z) symmetry of T2 that
appeared in Sect. 2 in the context of Chern–Simons theory. In the above dis-
cussion the generators H1(T2) have been chosen to be the one-cycles associ-
ated to rα and rβ , but there are other choices that differ from this one by an
SL(2,Z) transformation on the T2. For example, we can choose rα to generate
a (p, q) one-cycle and rβ a (t, s) one-cycle, provided that ps − qt = 1. These
different choices give different trivalent graphs. As we will see in the examples
below, the construction of general toric geometries requires these more general
graphs representing C3.

The General Case

The non-compact, toric Calabi–Yau threefolds that we will study can be de-
scribed as symplectic quotients. Let us consider the complex linear space
CN+3, described by N + 3 co-ordinates z1, · · · , zN+3, and let us introduce
N real equations of the form

(135) µA =
N+3∑

j=1

Qj
A|zj |2 = tA, A = 1, · · · , N.

In this equation, Qj
A are integers satisfying

(136)
N+3∑

j=1

Qj
A = 0.

This condition is equivalent to c1(X) = 0, i.e. to the Calabi–Yau condition.
We consider the action of the group GN = U(1)N on the zs where the A-th
U(1) acts on zj by

zj → exp(iQj
A αA)zj .

The space defined by (135), quotiented by the group action GN ,

(137) X =
N⋂

A=1

µ−1
A (tA)/GN

turns out to be a Calabi–Yau manifold (it can be seen that the condition
(136) is equivalent to the Calabi–Yau condition). The N parameters tA are
Kähler moduli of the Calabi–Yau. This mathematical description of X ap-
pears in the study of the two-dimensional linear sigma model with N = (2, 2)
supersymmetry (Witten 1993). The theory has N +3 chiral fields, whose low-
est components are the zs and are charged under N vector multiplets with



U
nc

or
re

ct
ed

 P
ro

of

84 M. Mariño

charges Qj
A. The equations (135) are the D-term equations, and after dividing

by the U(1)N gauge group we obtain the Higgs branch of the theory.
The Calabi–Yau manifold X defined in (137) can be described by C3

geometries glued together in an appropriate way. Since each of these C3s is
represented by the trivalent vertex depicted in Fig. 12, we will be able to
encode the geometry of (137) into a trivalent graph. In order to provide this
description, we must first find a decomposition of the set of all co-ordinates
{zj}N+3

j=1 into triplets Ua = (zia
, zja

, zka
) that correspond to the decomposition

of X into C3 patches. We pick one of the patches and we associate to it two
Hamiltonians rα, rβ as we did for C3 before. These two co-ordinates will
be global co-ordinates in the base R

3, therefore they will generate a globally
defined T2 fibre. The third co-ordinate in the base is rγ = Im(

∏N+3
j=1 zj), which

is manifestly gauge invariant and moreover, patch by patch, can be identified
with the co-ordinate used in the C3 example above. Equation (135) can then
be used to find the action of rα,β on the other patches.

We will now exemplify this procedure with two important examples: the
resolved conifold and the local P

2 geometry, which were introduced before as
local Calabi–Yau geometries.

Example. The resolved conifold. The resolved conifold (126) has a de-
scription of the form (137), with N = 1. There is only one constraint given by

(−1,0)

(0,−1)

(1,1)

(−1,−1)

(1,0)

(0,1)

U1

U4

Fig. 13. The graph associated to the resolved conifold O(−1)⊕O(−1) → P
1. This

manifold is made out of two C3 patches glued through a common edge

(138) |z1|2 + |z4|2 − |z2|2 − |z3|2 = t,

and the U(1) group acts as

(139) z1, z2, z3, z4 → eiαz1, e−iαz2, e−iαz3, eiαz4.
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Notice that, for z2 = z3 = 0, (138) describes a P
1 whose area is proportional

to t. Therefore, (z1, z4) can be taken as homogeneous co-ordinates of the P
1

that is the basis of the fibration, while z2, z3 can be regarded as co-ordinates
for the fibres.

Let us now give a description in terms of C3 patches glued together. The
first patch will be defined by z4 �= 0. Using (138) we can solve for the modulus
of z4 in terms of the other co-ordinates, and using the U(1) action we can gauge
away its phase. Therefore, the patch will be parameterized by U4 = (z1, z2, z3).
The Hamiltonians will be, in this case,

rα(z) = |z2|2 − |z1|2,
rβ(z) = |z3|2 − |z1|2,(140)

which generate the actions

(141) eαrα+βrβ : (z1, z2, z3) → (e−i(α+β)z1, eiαz2, eiβz3).

This patch will be represented by the same graph that we found for C3. The
other patch will be defined by z1 �= 0, therefore we can write it as U1 =
(z4, z2, z3). However, in this patch z1 is no longer a natural co-ordinate, but
we can use (138) to rewrite the Hamiltonians as

rα(z) = |z4|2 − |z3|2 − t,

rβ(z) = |z4|2 − |z2|2 − t,(142)

generating the action

(143) eαrα+βrβ : (z4, z2, z3) → (ei(α+β)z4, e−iβz2, e−iαz3).

The degeneration loci in this patch are the following: (1) z4 = 0 = z2,
corresponding to the line rβ = −t where a (−1, 0) cycle degenerates; (2)
z4 = 0 = z3, corresponding to the line rα = −t, and with a (0, 1) cycle de-
generating; (3) finally, z2 = 0 = z3, where rα − rβ = 0, and a (1, 1) cycle
degenerates. This patch is identical to the first one, and they are joined to-
gether through the common edge where z2 = 0 = z3. The full construction is
represented in Fig. 13. Notice that the common edge of the graphs represents
the P

1 of the resolved conifold: along this edge, one of the S1s of T2 has de-
generated, while the other only degenerates at the endpoints. An S1 fibration
of an interval that degenerates at its endpoints is simply a two-sphere. The
length of the edge is t, the Kähler parameter associated to the P

1.
Example. Local P

2. Let us now consider a more complicated example,
namely local P

2, which is the total space of the bundle (130). We can describe
it again as in (137) with N = 1. There are four complex variables, z0, · · · , z3,
and the constraint (135) now reads

(144) |z1|2 + |z2|2 + |z3|2 − 3|z0|2 = t.
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The U(1) action on the zs is

(145) (z0, z1, z2, z3) → (e−3iαz0, eiαz1, eiαz2, eiαz3).

Notice that z1,2,3 describe the basis P
2, while z0 parameterizes the complex

direction of the fibre.
Let us now give a description in terms of glued C3 patches. There are

three patches Ui defined by zi �= 0, for i = 1, 2, 3, since at least one of these
three co-ordinates must be non-zero in X. All of these three patches look like
C3. For example, for z3 �= 0, we can ‘solve’ again for z3 in terms of the other
three unconstrained co-ordinates that then parameterize C3: U3 = (z0, z1, z2).
Similar statements hold for the other two patches. Let us now construct the
corresponding degeneration graph. In the U3 = (z0, z1, z2) patch we take as
our Hamiltonians

rα = |z1|2 − |z0|2,
rβ = |z2|2 − |z0|2.(146)

The graph of the degenerate fibres in the rα − rβ plane is the same as in the
C3 example, Fig. 12. The third direction in the base, rγ is now given by the
gauge invariant product rγ = Im(z0z1z2z3). The same two Hamiltonians rα,β

U3

U2

U1
(−1,−1)

(0,1)

(1,0) (−1,0)

(1,−1)

(−1,2)

(−1,1)

(0,−1)

(2,−1)

Fig. 14. The graph of O(−3) → P
2. This manifold is built out of three C3 patches

generate the action in the U2 = (z0, z1, z3) patch, and we use the constraint
(144) to rewrite them as follows: since both z0 and z1 are co-ordinates of this
patch rα does not change. On the other hand, rβ must be rewritten since z2
is not a natural co-ordinate here. We then find:
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rα = |z1|2 − |z0|2,
rβ = t+ 2|z0|2 − |z1|2 − |z3|2,(147)

hence
eαrα+βrβ : (z0, z1, z3) → (ei(−α+2β)z0, ei(α−β)z1, e−iβz3).

We see from the above that the fibres degenerate over three lines (1) rα +rβ =
t, corresponding to z0 = 0 = z3, and where a (−1, 1) cycle degenerates; (2)
there is a line over which a (−1, 2) cycle degenerates where z1 = 0 = z3,
2rα + rβ = t, and finally, (3) there is a line over which rα = 0, and a (0, 1)-
cycle degenerates. The U1 patch is similar, and we end up with the graph for
O(−3) → P

2 shown in Fig. 14.
Example. Lagrangian submanifolds. In order to consider open string am-

plitudes in the above Calabi–Yau geometries, we have to construct Lagrangian
submanifolds providing boundary conditions, as we explained in Sect. 4.4. Let
us start by considering the C3 geometry discussed above. In this case, one can
easily construct Lagrangian submanifolds following the work of Harvey and
Lawson (1982). In terms of the Hamiltonians in (131), we have three types of
them:

L1 : rα = 0, rβ = r1, rγ ≥ 0.
L2 : rα = r2, rβ = 0, rγ ≥ 0.
L3 : rα = rβ = r3, rγ ≥ 0,(148)

where ri, i = 1, 2, 3, are constants. It is not difficult to check that the above
submanifolds are indeed Lagrangian (they turn out to be Special Lagrangian
as well). In terms of the graph description we developed above, they corre-
spond to points in the edges of the planar graph spanned by (rα, rβ), and
they project to semi-infinite straight lines on the basis of the fibration, R3,
parameterized by rγ ≥ 0. Since they are located at the edges, where one of
the circles of the fibration degenerates, they have the topology of C× S1.

It is easy to generalize the construction to other toric geometries, like the
resolved conifold or local P

2: Lagrangian submanifolds with the topology of
C × S1 are just given by points on the edges of the planar graphs. Such La-
grangian submanifolds were first considered in the context of open topological
string theory by Aganagic and Vafa (2000), and further studied by Aganagic
et al. (2002).

4.3 Examples of Closed String Amplitudes

Now that we have presented some detailed constructions of Calabi–Yau three-
folds, we can come back totopological string amplitudes, or equivalently to
Gromov–Witten invariants. The Gromov–Witten invariants of Calabi–Yau
threefolds can be computed in a variety of ways. A powerful technique that
can be made mathematically rigorous is the localization technique pioneered
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by Kontsevich (1995). For compact Calabi–Yau manifolds, only Ng=0,β have
been computed in detail, but for non-compact, toric Calabi–Yau manifolds
localization techniques make it possible to compute Ng,β for arbitrary genus.
We will now present some results for the topological string amplitudes Fg of
the geometries we described above.

The resolved conifold O(−1)⊕O(−1) → P
1 has a single Kähler parameter

t corresponding to the P
1 in the base, and its total free energy is given by

(149) F (gs, t) =
∞∑

d=1

1

d
(
2 sin dgs

2

)2Q
d,

where Q = e−t. We see that the only non-zero Gopakumar–Vafa invariant
occurs at degree one and genus zero and is given by n0

1 = 1. On the other
hand, this model already has an infinite number of non-trivial Ng,β invariants,
which can be obtained by expanding the above expression in powers of gs.
The above expression was obtained in Gromov–Witten theory by Faber and
Pandharipande (2000).

The space O(−3) → P
2 also has one single Kähler parameter, correspond-

ing to the hyperplane class of P
2. By using the localization techniques of

Kontsevich, adapted to the non-compact case, one finds (Chiang et al. 1999;
Klemm and Zaslow 2001)

F0(t) = − t3

18
+ 3Q− 45Q2

8
+

244Q3

9
− 12333Q4

64
· · ·

F1(t) = − t

12
+
Q

4
− 3Q2

8
− 23Q3

3
+

3437Q4

16
· · ·

F2(t) =
χ(X)
5720

+
Q

80
+

3Q3

20
+

514Q4

5
· · · ,(150)

and so on. In (150), t is the Kähler class of the manifold, Q = e−t, and
χ(X) = 2 is the Euler characteristic of local P

2. The first term in F0 is
proportional to the intersection number H3 of the hyperplane class, while the
first term in F1 is proportional to the intersection number H ·c2(X). The first
term in F2 is the contribution of constant maps.

As we explained above, we can express the closed string amplitudes in
terms of Gopakumar–Vafa invariants. Let us introduce a generating functional
for integer invariants as follows:

(151) f(z,Q) =
∑

g,β

ng
βz

gQβ ,

where z is a formal parameter. For local P
2 one finds

(152)
f(z,Q) = 3Q−6Q2+(27−10 z)Q3−(192−231 z+102 z2−15 z3)Q4+O(Q5).
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It should be mentioned that there is a very powerful method to compute
the amplitudes Fg, namely mirror symmetry. In the mirror symmetric com-
putation, the Fg amplitudes are deeply related to the variation of complex
structures on the Calabi–Yau manifold (Kodaira–Spencer theory) and can be
computed through the holomorphic anomaly equations of Bershadsky et al.
(1993, 1994). Gromov–Witten invariants of non-compact, toric Calabi–Yau
threefolds have been computed with mirror symmetry by Chiang et al. (1999),
Klemm and Zaslow (2001) and Katz et al. (1999).

5 The Topological Vertex

5.1 The Gopakumar–Vafa Duality

For topological string theory on the resolved conifold, the result in (149)
shows that there is only one nontrivial Gopakumar–Vafa invariant. If we now
take into account (111), we see that the free energies Fg(t) are precisely the
resummed functions (33) of Chern–Simons theory, after we identify the string
coupling constant gs with the gauge theory coupling constant as in (81), and
the Kähler parameter of the resolved conifold is identified with the ’t Hooft
coupling

(153) t = igsN = xN.

Based on this and other evidence, Gopakumar and Vafa (1998b) conjectured
that Chern–Simons theory on S3 is equivalent to closed topological string the-
ory on the resolved conifold.

From the point of view of topological string theory, this equivalence only
illuminates the resolved conifold geometry, which on the other hand is easy
to compute. The fundamental question is: can we use this duality to obtain
information about more general Calabi–Yau threefolds? The answer is yes, and
the underlying reasoning is heavily based on the idea of geometric transitions,
which we won’t explain here (see Mariño 2005, for a detailed exposition). This
line of reasoning leads directly to the idea of the topological vertex.

5.2 Framing of Topological Open String Amplitudes

As we will see, the topological vertex is an open string amplitude, and in
order to understand it properly we have to discuss one aspect of open string
amplitudes that we have not addressed yet: the framing ambiguity. The fram-
ing ambiguity was discovered by Aganagic et al. (2002). They realized that
when the boundary conditions are specified by non-compact Lagrangian sub-
manifolds like the ones described in (148), the corresponding topological open
string amplitudes are not unambiguously defined: they depend on a choice of
an integer (more precisely, one integer for each boundary). For the Lagrangian
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submanifolds considered in Sect. 5, the framing ambiguity can be specified by
specifying a vector f = (p, q) attached to the edge where the submanifold is
located (see for example Mariño (2005) for a full justification of this). The
procedure is illustrated in Fig. 15. It is useful to introduce the symplectic

Fig. 15. Specifying a framing

product of two vectors v = (v1, v2) and w = (w1, w2) as

(154) v ∧ w = v1w2 − v2w1.

This product is invariant under SL(2,Z) transformations. If the original La-
grangian submanifold is located at an edge v, the choice of framing has to
satisfy

(155) f ∧ v = 1.

Clearly, if f satisfies (155), so does f − nv for any integer n. The choice of
the integer n is precisely the framing ambiguity found by Aganagic et al.
(2002). In the case of the Lagrangian submanifolds of C3 that we constructed
in Sect. 5, A particular choice of framing that will be very important in the
following is shown in Fig. 16.

What is the effect of a change of framing on open topological string am-
plitudes? A proposal for this was made by Aganagic et al. (2002) and further
studied by Mariño and Vafa (2002), based on the duality with Chern–Simons
theory. As pointed out by Ooguri and Vafa (2000), vacuum expectation values
of Wilson loops in Chern–Simons theory on S3 compute open string ampli-
tudes. On the other hand, we explained in Sect. 2 that Wilson loop correlation
functions depend on a choice of framing. This suggests that the framing am-
biguity of Chern–Simons theory corresponds to the ambiguity of topological
open string amplitudes that we have just described. This also leads to a very
precise prescription to compute the effect of a change of framing for open
string amplitudes. Let us consider for simplicity an open string amplitude
involving a single Lagrangian submanifold, computed for a framing f . If we
now consider the framing f − nv, the coefficients ZR of the total partition
function (120) change as follows
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(156) ZR → (−1)n�(R)q
nκR

2 ZR,

where κR was defined in (74), and q = eigs . This is essentially the behaviour of
Chern–Simons invariants under change of framing spelled out in (75). The ex-
tra sign in (156) is crucial to guarantee integrality of the resulting amplitudes,
as was verified in Aganagic et al. (2002) and Mariño and Vafa (2002). If the
open string amplitudes involves L boundaries, one has to specify L different
framings nα, and (156) is generalized to

(157) ZR1···RL
→ (−1)

∑L
α=1 nα�(Rα)q

∑L
α=1 nακRα /2ZR1···RL

.

5.3 Definition of the Topological Vertex

In Sect. 5 we showed that we can construct one Lagrangian submanifold in
each of the vertices of the toric diagram of C3. Since each of these submanifolds
has the topology of C × S1, we can consider the topological open string am-
plitude associated to this geometry. The total open string partition function
will be given by

(158) Z(Vi) =
∑

R1,R2,R3

CR1R2R3

3∏

i=1

TrRi
Vi,

where Vi is a matrix source associated to the i-th Lagrangian submanifold.
The amplitude CR1R2R3 is a function of the string coupling constant gs and,
in the genus expansion, it contains information about maps from Riemann
surfaces of arbitrary genera into C3 with boundaries on Li. This open string
amplitude is called the topological vertex, and it is the basic object from which,
by gluing, one can obtain closed and open string amplitudes on arbitrary toric
geometries. Since the vertex is an open string amplitude, it will depend on
a choice of three different framings. As we explained in the previous section,
this choice will be given by three different vectors f1, f2 and f3. Let us see
how to introduce this choice.

We saw in Sect. 5 that the C3 geometry can be represented by graphs
involving three vectors vi. These vectors can be obtained from the set in Fig. 12
by an SL(2,Z) transformation, and satisfy (134). We will then introduce a
topological vertex amplitude C(vi,fi)

R1R2R3
that depends on both a choice of three

vectors vi for the edges and a choice of three vectors fi for the framings. Due
to (155) we require

fi ∧ vi = 1.

We will orient the edges vi in a clockwise way. Since wedge products are
preserved by SL(2,Z), we also have

(159) v2 ∧ v1 = v3 ∧ v2 = v1 ∧ v3 = 1.
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However, not all of these choices give independent amplitudes. First of all,
there is an underlying SL(2,Z) symmetry relating the choices: if g ∈ SL(2,Z),
then the amplitudes are invariant under

(fi, vi) → (g · fi, g · vi).

Moreover, if the topological vertex amplitude C(vi,fi)
R1R2R3

is known for a set of
framings fi, then it can be obtained for any set of the form fi − nivi, and it
is given by the general rule (157)

(160) C
(vi,fi−nvi)
R1R2R3

= (−1)
∑

i ni�(Ri)q
∑

i niκRi
/2C

(vi,fi)
R1R2R3

,

for all admissible choices of the vectors vi. Since any two choices of framing
can be related through (160), it is useful to pick a convenient set of fi for
any given choice of vi, which we will define as the canonical framing of the
topological vertex. This canonical framing turns out to be

(f1, f2, f3) = (v2, v3, v1).

Due to the SL(2,Z) symmetry and the transformation rule (160), any topo-
logical vertex amplitude can be obtained from the amplitude computed for
a fixed choice of vi in the canonical framing. A useful choice of the vi is
v1 = (−1,−1), v2 = (0, 1), v3 = (1, 0), as in Fig. 12. The vertex amplitude for
the canonical choice of vi and in the canonical framing will be simply denoted
by CR1R2R3 . Any other choice of framing will be characterized by framing
vectors of the form fi − nivi, and the corresponding vertex amplitude will be
denoted by

Cn1,n2,n3
R1R2R3

.

Notice that ni = fi ∧ vi+1 (where i runs mod 3).

f2

f1

f3

Fig. 16. The canonical choice of framing for the topological vertex
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One of the most important properties of CR1R2R3 is its cyclic symmetry.
To see this, notice that the SL(2,Z) transformation g = TS−1 takes

(vi, fi) → (vi+1, fi+1),

where again i runs mod 3. It then follows that

(161) CR1R2R3 = CR3R1R2 = CR2R3R1 .

Finally, it will sometimes be useful to consider the vertex in the basis of
conjugacy classes Ck(1)k(2)k(3) , which is obtained from CR1R2R3 by

(162) Ck(1)k(2)k(3) =
∑

Ri

3∏

i=1

χRi
(C(k(i)))CR1R2R3 .

5.4 Gluing Rules

We saw in Sect. 5 that any non-compact toric geometry can be encoded in
a planar graph that can be obtained by gluing trivalent vertices. It is then
natural to expect that the string amplitudes associated to such a diagram
can be computed by gluing the open topological string amplitudes associated
to the trivalent vertices, in the same way that one computes amplitudes in
perturbative quantum field theory by gluing vertices through propagators.
This idea was suggested by Aganagic et al. (2004) and Iqbal (2002), and was
developed into a complete set of rules by Aganagic et al. (2005). The gluing
rules for the topological vertex turn out to be quite simple. Here we will state
three rules (for a change of orientation in one edge, for the propagator, and
for the matching of framings in the gluing) which make it possible to compute
any closed string amplitude on toric, non-compact Calabi–Yau threefolds.
They also make it possible to compute open string amplitudes for Lagrangian
submanifolds on edges that go to infinity. The case of Lagrangian submanifolds
on inner edges is also very easy to analyze, but we refer the reader to the paper
by Aganagic, Klemm, Mariño, and Vafa (2005) for the details. A mathematical
point of view on the gluing rules can be found in Diaconescu and Florea (2005)
and Li et al. (2004):

1) Orientation. Trivalent vertices are glued along their edges, and this cor-
responds to gluing curves with holes along their boundaries. In order to do
that, the boundaries must have opposite orientations. This change of orienta-
tion will be represented as an inversion of the edge vector, therefore in gluing
the vertices we will have an outgoing edge on one side, say v1, and an ingoing
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edge on the other side, −v1. It can be shown that the under this operation
the topological vertex changes as

CR1R2R3 → (−1)�(R1)CRt
1R2R3

.

Of course, a similar equation follows for the other vi.
2) Propagator. Since gluing the edges corresponds to gluing curves with

holes along their boundaries, we must have matching of the number of holes
and winding numbers along the edge. After taking into account the change
of orientation discussed above, and after a simple analysis (Aganagic et al.
2005), one finds that the propagator for gluing edges with representations R1,
R2 is given by

(163) (−1)�(R1)e−�(R1)tδR1Rt
2
,

where t is the Kähler parameter that corresponds to the P
1 represented by

the gluing edge.
3) Framing. When gluing two vertices, the framings of the two edges in-

volved in the gluing have to match. This means that, in general, we will have
to change the framing of one of the vertices. Let us consider the case in which
we glue together two vertices with outgoing vectors (vi, vj , vk) and (v′i, v

′
j , v

′
k),

respectively, and let us assume that we glue them through the vectors vi,
v′i = −vi. We also assume that both vertices are canonically framed, so that
fi = vj , f ′i = v′j . In order to match the framings we have to change the fram-
ing of, say, v′i, so that the new framing is −fi (the opposite sign is again due
to the change of orientation). There is an integer ni such that f ′i −niv

′
i = −fi

(since fi∧vi = f ′i ∧v′i = 1, fi +f ′i is parallel to vi), and it is easy to check that

ni = v′j ∧ vj .

The gluing of the two vertex amplitudes is then given by

(164)
∑

Ri

CRjRkRi
e−�(Ri)ti(−1)(ni+1)�(Ri)q−niκRi

/2CRt
iR′

jR′
k
,

where we have taken into account the change of orientation in the (v′i, v
′
j , v

′
k)

to perform the gluing, and ti is the Kähler parameter associated to the edge.
Given then a planar trivalent graph representing a non-compact Calabi–

Yau manifold, we can compute the closed string amplitude as follows: we give
a presentation of the graph in terms of vertices glued together, as we did
in Sect. 5. We associate the appropriate amplitude to each trivalent vertex
(labelled by representations), and we use the above gluing rules. The edges
that go to infinity carry the trivial representation, and we finally sum over all
possible representations along the inner edges. The resulting quantity is the
total partition function Zclosed = eF for closed string amplitudes.
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5.5 Explicit Expression for the Topological Vertex

Once we have defined the topological vertex, we need an explicit expression
for it. This turns out to be a difficult problem which can however be explicitly
solved. The basic idea is to use an extension of the Gopakumar–Vafa dual-
ity to open string amplitudes. As shown by Ooguri and Vafa (2000), the duality
between Chern–Simons theory and the resolved conifold leads to a correspon-
dence between Chern–Simons invariants for knots in S3 and open topological
string amplitudes with Lagrangian boundary conditions in the resolved coni-
fold. This idea applies in principle to Lagrangian submanifolds in the resolved
conifold, but one can extend it to other contexts, and in particular to the con-
figuration considered above involving three Lagrangian submanifolds in C3.

It turns out that the open topological string amplitude for the three
Lagrangian submanifolds in C3 can be written by using only the Chern–
Simons invariant of the Hopf link that we studied in Sect. 2. Let WR1R2 is the
Hopf link invariant defined in (54) and evaluated in (62). We now consider
the limit

(165) WR1R2 = lim
t→∞

e−
�(R1)+�(R2)

2 tWR1R2 .

This limit exists, since WR1R2 is of the form λ
�(R1)+�(R2)

2 WR1R2 +O(e−t) (recall
that λ = et). The quantityWR1R2 , which is the ‘leading’ coefficient of the Hopf
link invariant (54), is the building block of the topological vertex amplitude. It
is a rational function of q±

1
2 , therefore it only depends on the string coupling

constant. We will also denote WR = WR0. The limit (165) was first considered
by Aganagic et al. (2004). The final expression for the vertex, in the canonical
framing defined above, is

(166) CR1R2R3 = q
κR2

+κR3
2

∑

Q1,Q3,Q

N R1
QQ1

N
Rt

3
QQ3

WRt
2Q1

WR2Q3

WR2

,

where NR
R1R2

is the Littlewood–Richardson coefficient which gives the multi-
plicity of R in the tensor product R1 ⊗R2.

Let us now give some more explicit formulae for the vertex. The basic
ingredient in (166) is the quantity WR1R2 defined in (165). Using (62) it is
possible to give an explicit expression for WR1R2 that is useful in computa-
tions. It is easy to see that the leading coefficient of λ in (62) is obtained by
taking the leading coefficient of λ in dimqR2 and the λ-independent piece in
(65). The generating function of elementary symmetric polynomials (63) then
becomes

(167) S(t)
cR∏

j=1

1 + qlRj −jt

1 + q−jt
,
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where

(168) S(t) =
∞∏

j=1

(1 + q−jt) = 1 +
∞∑

r=1

q−
r(r+1)

2 tr
∏r

m=1[m]
.

Notice that (167) is the generating function of elementary symmetric polyno-
mials for an infinite number of variables given by xj = ql

R1
j −j , j = 1, 2, · · · .

One then deduces that the λ → ∞ limit of q�(R1)/2sR1(xi = ql
R2
i −i) is given

by the Schur polynomial

sR1(xi = ql
R2
i −i+ 1

2 ),

which now involves an infinite number of variables xi. This finally leads to
the following expression for WR1R2 :

(169) WR1R2(q) = sR1(xi = ql
R2
i −i+ 1

2 )sR2(xi = q−i+ 1
2 ).

We will also write this as

(170) WR1R2(q) = sR1(q
ρ+lR2 )sR2(q

ρ),

where the arguments of the Schur functions indicate the above values for the
polynomial variables xi. Using (170) one can write (166) in terms of skew
Schur polynomials (Okounkov et al. 2003):

(171) CR1R2R3 = q
1
2 (κR2+κR3 )sRt

2
(qρ)
∑

Q

sR1/Q(q�(Rt
2)+ρ)sRt

3/Q(q�(R2)+ρ).

5.6 Applications

We will now present some examples of computation of topological string am-
plitudes by using the topological vertex.

Example. Resolved conifold. The toric diagram for the resolved conifold
geometry is depicted in Fig. 13. Our rules give immediately:

(172) ZP1 =
∑

R

C00Rt(−1)�(R)e−�(R)tCR00.

Since CR00 = WR = sR(xi = q−i+ 1
2 ), we can use well–known formulae for

Schur polynomials to obtain

(173) ZP1 = exp
{

−
∞∑

d=1

e−dt

d(q
d
2 − q−

d
2 )2

}

,

in agreement with the known result (149).
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Example. Local P
2. The toric diagram is depicted in Fig. 14. Using again

the rules explained above, we find the total partition function

(174) ZP2 =
∑

R1,R2,R3

(−1)
∑

i �(Ri)e−
∑

i �(Ri)tq−
∑

i κRiC0Rt
2R3

C0Rt
1R2

C0Rt
3R1

,

where t is the Kähler parameter corresponding to the hyperplane class in
P

2. Using that C0R2Rt
3

= WR2R3q
−κR3/2 one recovers the expression for ZP2

first obtained by Aganagic et al. (2004). Notice that the free energy has the
structure

(175) FP2 = log
{

1 +
∞∑

�=1

a�(q)e−�t

}

=
∞∑

�=1

a
(c)
� (q)e−�t.

The coefficients a�(q), a
(c)
� (q) can be easily obtained in terms of WR1R2 . One

finds, for example,

a
(c)
1 (q) = a1(q) = − 3

(q
1
2 − q−

1
2 )2

,

a
(c)
2 (q) =

6
(q

1
2 − q−

1
2 )2

+
1
2
a1(q2).(176)

If we compare to (110) and take into account the effects of multicovering, we
find the following values for the Gopakumar–Vafa invariants of O(−3) → P

2:

n0
1 = 3, ng

1 = 0 for g > 0,
n0

2 = −6, ng
2 = 0 for g > 0,(177)

in agreement with the results listed in (152). In fact, one can go much further
with this method and compute the Gopakumar–Vafa invariants to high degree.
We again see that the use of exact results in Chern–Simons theory leads
to the topological string amplitudes to all genera. A complete listing of the
Gopakumar–Vafa invariants up to degree 12 can be found in Aganagic et al.
(2004). The partition function (174) can also be computed in Gromov–Witten
theory by using localization techniques, and one finds indeed the same result
(Zhou 2003).

t2

t2

t1 t1

Fig. 17. The toric diagram of local P
1 × P

1
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Example. Local P
1 × P

1. The local P
1 × P

1 geometry is the non-compact
Calabi–Yau manifold given by the four-manifold P

1 × P
1 together with its

anti-canonical bundle. It also admits a symplectic quotient description of the
form (137), this time with N = 2 and two Kähler parameters t1, t2. The
charges Qj

1,2, j = 1, · · · , 5 can be grouped into two vectors

Q1 = (−2, 1, 1, 0, 0),
Q2 = (−2, 0, 0, 1, 1).(178)

The toric diagram for this geometry can be easily worked out from this de-
scription, and it is represented in Fig. 17. Using the gluing rules we find the
closed string partition function

ZP1×P1 =
∑

Ri

e−(�(R1)+�(R3))t1−(�(R2)+�(R4))t2q
∑

i κRi
/2

×C0R4Rt
1
C0R1Rt

2
C0R2Rt

3
C0R3Rt

4
.(179)

This amplitude can be written as

ZP1×P1 =
∑

Ri

e−(�(R1)+�(R3))t1−(�(R2)+�(R4))t2

×WR4R1WR1R2WR2R3WR3R4 .(180)

This is the expression first obtained by Aganagic et al. (2004). It has been
shown to agree with Gromov–Witten theory by Zhou (2003).

Example. The closed topological vertex. Consider the Calabi–Yau geome-
try whose toric diagram is depicted in Fig. 18. It contains three P

1 touching at
a single point. The local Gromov–Witten theory of this geometry was studied
by Bryan and Karp (2005), who called it the closed topological vertex, and
also by Karp et al. (2005). The vertex rules give the following expression for
the total partition function:

(181)

Z(t1, t2, t3) =
∑

R1,R2,R3

CR1R2R3WRt
1
WRt

2
WRt

3
(−1)�(R1)+�(R2)+�(R3)e−

∑3
i=1 �(Ri)ti .

t3

t2t1

Fig. 18. The toric diagram of the closed topological vertex
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It turns out that this can be evaluated in closed form (Karp et al. 2005)

(182)
Z(t1, t2, t3) = exp

(

−
∞∑

d=1

1

d(q
d
2 − q−

d
2 )

(
e−dt1 + e−dt2 + e−dt3

− e−d(t1+t2) − e−d(t1+t3) − e−d(t2+t3) + e−d(t1+t2+t3)
)
)

,

in agreement with the algebro-geometric results of Bryan and Karp (2005).
Notice from the above expression that there is only a finite number of non-
vanishing Gopakumar–Vafa invariants for the above geometry.

A Symmetric Polynomials

In this brief Appendix we summarize some useful ingredients of the elementary
theory of symmetric functions. A standard reference is Macdonald (1995).

Let x1, · · · , xN denote a set of N variables. The elementary symmetric
polynomials in these variables, em(x), are defined as:

(183) em(x) =
∑

i1<···<im

xi1 · · ·xim
.

The generating function of these polynomials is given by

(184) E(t) =
∑

m≥0

em(x)tm =
N∏

i=1

(1 + xit).

The complete symmetric function hm can be defined in terms of its generating
function

(185) H(t) =
∑

m≥0

hmt
m =

N∏

i=1

(1− xit)−1,

and one has

(186) E(t)H(−t) = 1.

The products of elementary symmetric polynomials and of complete symmet-
ric functions provide two different basis for the symmetric functions of N
variables.

Another basis is given by the Schur polynomials, sR(x), which are labelled
by representations R. We will always express these representations in terms
of Young tableaux, so R is given by a partition (l1, l2, · · · , lcR

), where li is the
number of boxes of the i-th row of the tableau, and we have l1 ≥ l2 ≥ · · · ≥ lcR

.



U
nc

or
re

ct
ed

 P
ro

of

100 M. Mariño

The total number of boxes of a tableau will be denoted by �(R) =
∑

i li. The
Schur polynomials are defined as quotients of determinants,

(187) sR(x) =
detxli+N−i

j

detxN−i
j

.

They can be written in terms of the symmetric polynomials ei(x1, · · · , xN ),
i ≥ 1, as follows:

(188) sR = detMR,

where
M ij

R = (elti+j−i).

MR is an r × r matrix, with r = cRt , and Rt denotes the transposed Young
tableau with row lengths lti . To evaluate sR we put e0 = 1, ek = 0 for k < 0.
The expression (188) is known as the Jacobi–Trudi identity.

A third set of symmetric functions is given by the Newton polynomials
Pk(x). These are labelled by vectors k = (k1, k2, · · · ), where the kj are non-
negative integers, and are defined as

(189) Pk(x) =
p∏

j

P
kj

j (x),

where

(190) Pj(x) =
N∑

i=1

xj
i ,

are power sums. The Newton polynomials are homogeneous of degree � =∑
j jkj and give a basis for the symmetric functions in x1, · · · , xN with ra-

tional coefficients. They are related to the Schur polynomials through the
Frobenius formula

(191) Pk(x) =
∑

R

χR(C(k))sR(x),

where the sum is over all tableaux such that �(R) = �.
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This is a written account of expository lectures delivered at the summer
school on “Enumerative invariants in algebraic geometry and string theory”
of the Centro Internazionale Matematico Estivo, held in Cetraro in June
2005. However, it differs considerably from the lectures as they were actually
given. Three of the lectures in the series were devoted to the recent work
of Donaldson–Thomas, Maulik–Nekrasov–Okounkov–Pandharipande, and
Nakajima–Yoshioka. Since this is well documented in the literature, it seemed
needless to write it up again. Instead, what follows is a greatly expanded
version of the other lectures, which were a little more speculative and the
least strictly confined to algebraic geometry. However, they should interest
algebraic geometers who have been contemplating orbifold cohomology and
its close relative, the so-called Fantechi–Göttsche ring, which are discussed in
the final portion of these notes.

Indeed, we intend to argue that orbifold cohomology is essentially the
same as a symplectic cohomology theory, namely Floer cohomology. More
specifically, the quantum product structures on Floer cohomology and on
the Fantechi–Göttsche ring should coincide. None of this should come as a
surprise, since orbifold cohomology arose chiefly from the work of Chen–Ruan
in the symplectic setting, and since the differentials in both theories involve
the counting of holomorphic curves. Nevertheless, the links between the two
theories are worth spelling out.

To illustrate this theme further, we will explain how both the Floer and
orbifold theories can be enriched by introducing a flat U(1)-gerbe. Such a
gerbe on a manifold (or orbifold) induces flat line bundles on its loop space
and on its inertia stack, leading to Floer and orbifold cohomology theories with
local coefficients. We will again argue that these two theories correspond. To
explain all of this properly, an extended digression on the basic definitions and
properties of gerbes is needed; it comprises the second of the three lectures.

∗ Supported by NSF grant DMS–0401128.

K. Behrend, M. Manetti (eds.), Enumerative Invariants in Algebraic Geometry 105
and String Theory. Lecture Notes in Mathematics 1947,
c© Springer-Verlag Berlin Heidelberg 2008
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The plan of these notes is simple: the first lecture is a review of Floer
cohomology; the second is a review of gerbes, as promised a moment ago; and
the third introduces orbifold cohomology and its relatives, discusses how to
add a gerbe, and interprets these constructions in terms of Floer theory. We
conclude with some notes on the literature.

Since these are lecture notes, no attempt has been made to include rig-
orous proofs. But many aspects of Floer cohomology, especially its product
structures, are not well documented in the literature either, so the reader is
cautioned to take what is said about Floer cohomology with a grain of salt.
The same goes for the proposed identification between the quantum product
structures. It is mildly speculative but presumably should not be impossible
to prove by following what has been done for the case of the identity map.
Anyhow, for the moment we content ourselves with a genial narrative of a
heuristic nature, making no great demands upon the reader. It presents many
more definitions than theorems, but it aspires to provide a framework in which
theorems may be built.

In the third lecture, I assume some familiarity with the basic definitions
and properties of quantum cohomology, as given for example in the Clay Insti-
tute volume Mirror Symmetry (see the notes on the literature for a reference).

Acknowledgements: I thank Kai Behrend, Barbara Fantechi, and Marco
Manetti for their kind invitation to speak in Cetraro, and for their patience
in awaiting these notes. I am also grateful to Jim Bryan and the University
of British Columbia for their hospitality while the notes were written, and
to Dan Abramovich, Behrang Noohi, and Hsian-Hua Tseng for very helpful
conversations and advice.

1 Lecture 1: Floer Cohomology

This is an optimist’s account of the Floer cohomology of symplectic manifolds:
its origins, its construction, the main theorems, and the algebraic structures
into which it naturally fits. Let me emphasize that, as an optimist’s account,
it presents Floer cohomology as we would like it to be, not necessarily as it is.
For example, Floer proved the Arnold conjecture only in the presence of some
ugly technical hypotheses, which later mathematicians have labored tirelessly
to eradicate. The present account pretends that they never existed.

Floer introduced his cohomology (in fact he used homology, but never
mind) to prove the Arnold conjecture on the number of fixed points of an
exact Hamiltonian flow. Like so much of symplectic geometry, this problem is
rooted in classical mechanics.

1.1 Newton’s Second Law

Suppose a particle is moving in a time-dependent force field F(t,q). Here we
regard F : R ×R3 → R3 as a time-dependent vector field. Newton’s second
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law says that the trajectory q(t) satisfies F = ma, or, taking m = 1 for
simplicity,

F (t, q(t)) =
d2

dt2
q(t).

This is a second-order differential equation for q(t). It can be easier to solve,
and perhaps even visualize, such equations by the standard trick of introducing
a triple of extra variables p and regarding the above as a first-order equation
for (p, q) ∈ R6:

{
F (t, q(t)) = d

dt p(t)

p(t) = d
dt q(t).

The solutions are flows along the time-dependent vector field on R6 whose
value at (p, q) is (F (t, q), p).

Notice that q describes the particle’s position, and p describes its velocity
or momentum. The space R6 of all (p, q) can therefore be regarded as the
space of all initial conditions for the particle.

1.2 The Hamiltonian Formalism

Hamiltonian mechanics takes off from here. The idea is to cast the construction
above in terms of the symplectic form on R6 = T ∗R3, and generalize it to an
arbitrary symplectic manifold.

So let M be a symplectic manifold with symplectic form ω: call it the
phase space. Let H : R ×M → R be any time-dependent smooth function
on M : call it the Hamiltonian. The symplectic form induces an isomorphism
T ∗M ∼= TM ; use this to make the exterior derivative dH ∈ Γ (T ∗M) into a
vector field VH ∈ Γ (TM). Since H can depend on the time t ∈ R, VH is really
a time-dependent vector field VH(t).

The exact Hamiltonian flow of H is the 1-parameter family of symplecto-
morphisms of M

Φ : R×M →M

such that dΦ/dt = VH(t) and Φ(0, x) = x. Its existence and uniqueness are
guaranteed by the standard theory of ODEs (at least for small t, or for M
compact).

What makes this formalism so great is that it correctly describes the actual
time evolution of a mechanical system when (1) the phase spaceM is the space
of initial conditions of our system (i.e. possible positions and momenta) and
(2) the Hamiltonian is the total energy, potential plus kinetic. The phase space
will have a canonical symplectic form. Typically, it is of the form M = T ∗Q
where Q parametrizes the possible configurations of the system. So one can
choose (at least locally) position variables qi and momentum variables pi, the
symplectic form is

∑
dpi ∧ dqi, and kinetic energy (being essentially 1

2mv
2) is

some quadratic function of the momenta.
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For example, from a time-independent quadratic potential on R, you
should get the simple harmonic oscillator. Or for a force F = ∇ψ on R3

with time-dependent potential ψ(q1, q2, q3), you can recover the first-order
equation of the previous section by taking H = ψ(q1, q2, q3)+ 1

2 (p2
1 + p2

2 + p2
3).

Or, of course, you could look at n particles moving in R3; then the phase
space will be R6n.

Parenthetically, let’s clear up a confusing detail: why is the phase space M
typically identified with a cotangent bundle T ∗Q and not a tangent bundle
TQ? That is, why should momenta be considered cotangent vectors rather
than tangent vectors? Of course, in physics we typically have a metric inducing
an isomorphism between the two. Still, we may have muddied the waters
somewhat by setting the mass equal to 1. The point is that momentum is a
vector-valued quantity with units of g cm s−1; it should be regarded as pairing
with velocity, a vector with units of cm s−1, to give energy, a scalar with units
of g cm2 sec−2.

1.3 The Arnold Conjecture

Arnold was interested in applications of Hamiltonian mechanics to real-life
many-body problems, such as the long-term stability of the solar system. Then
one is of course particularly interested in points in phase spaces that flow back
to themselves, that is, Φ(t, x) = x for some t > 0, say t = 1. From now on
let’s write φt(x) = Φ(t, x), so that φt : M →M is a symplectomorphism.

Phase spaces in problems of physical interest are almost always noncom-
pact, but Arnold realized that stronger statements might hold in the compact
case. He conjectured the following:

If M is compact and φ1 as above has nondegenerate fixed points, then the
number of those fixed points is at least the sum of the Betti numbers of M .

Nondegeneracy of a fixed point x here means that dφ1(x) − id is nonsin-
gular. A more general version of the Arnold conjecture, which we omit, deals
with the degenerate case.

In this situation the Lefschetz fixed-point formula implies that the number
of fixed points is at least the Euler characteristic, that is, the alternating sum
of the Betti numbers. Hence the Arnold conjecture gives a stronger lower
bound in the exact Hamiltonian case, as long as some odd Betti number is
nonzero. On the other hand, if we replace the exact form dH used to define an
exact Hamiltonian flow by a general closed form (you might call this a closed
Hamiltonian flow, but you can easily check that all 1-parameter families of
symplectomorphisms starting at the identity are of this kind), then the Arnold
conjecture is false. Just consider the linear flow on a torus.

1.4 Floer’s Proof

Floer defines cohomology groups HF ∗(φ) associated to any symplectomor-
phism, and shows:
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(1) That HF ∗(id) = H∗(M).
(2) That for φ with nondegenerate fixed points, HF ∗(φ) can be calculated

from a complex whose chains are formal linear combinations of fixed points.
(3) That HF ∗(φ) is, in a suitable sense, invariant under composition with

an exact Hamiltonian flow.
The Arnold conjecture is an immediate consequence, as the dimension of

a chain complex must be at least the dimension of its cohomology.
The chain complex leading to this cohomology theory is an infinite-

dimensional analogue of the Morse complex, so let’s pause first to review
the salient points about that.

1.5 Morse Theory

Let X be a compact oriented manifold of finite dimension n. A Morse function
f : X → R is a smooth function with isolated critical points, at each of which
the Hessian is nondegenerate. The Hessian is the matrix of second partials,
but never mind: just recall instead that, according to the Morse lemma, this
nondegeneracy is equivalent to the existence of local coordinates x1, . . . , xn in
which

f(x1, . . . , xn) = −x2
1 − x2

2 − · · · − x2
m + x2

m+1 + · · ·+ x2
n.

The number of negative terms is called the Morse index.
Let C be the set of formal linear combinations of the critical points xi

(with, say, complex coefficients). This is a finite-dimensional vector space,
and the Morse index m(i) provides a grading. We can define a differential
d : C → C by

d(xi) =
∑

j |m(j)−m(i)=1

#(i, j)xj ,

where #(i, j) denotes the number of gradient flow lines from xi to xj , counted
with the appropriate signs. This means the following. Choose a Riemannian
metric on X, so that the gradient ∇f is a vector field. The downward gra-
dient flow from xi and the upward gradient flow from xj are submanifolds
of dimension m(i) and n −m(j) respectively. For a sufficiently general met-
ric, they intersect transversely. The index difference being 1 then implies that
they intersect in a finite number of flow lines. Choose an orientation of each
downward flow; this induces an orientation of each upward flow. Each flow
line from xi to xj then acquires a sign by comparing four orientations: those
of X, the upward and downward flows, and the flow line itself.

It is easy to check that the choice of orientations makes no significant
difference. A much harder fact is that d2 = 0. One has to look at flows
between critical points of index difference 2: instead of being parametrized
by a finite set (= compact 0-manifold) as above, these are parametrized by
a disjoint union of closed intervals (= compact 1-manifold), and the crucial



U
nc

or
re

ct
ed

 P
ro

of

110 M. Thaddeus

point is that there are 0 points in the boundary, when they are counted with
the appropriate signs.

So now we have a chain complex, and can take cohomology in the usual
way. The amazing fact is that what we get is naturally isomorphic to the
rational cohomology of the manifold X!

Notice that this immediately implies the Arnold conjecture in the time-
independent case. For the nondegeneracy is then equivalent to the time-
independent Hamiltonian H : M → M being a Morse function, and the
fixed points of φ1 are the critical points of H.

1.6 Bott–Morse Theory

Morse functions always exist; in fact, they are dense among all smooth func-
tions. Nevertheless, suppose fate has endowed us with some smooth f : X → R
which is not a Morse function. Can we still use it to determine the cohomology
of X? We could try perturbing f to get a Morse function. But often there is
no choice of a perturbation which is practical for calculation.

There is one case where we still get some useful information. This is when
f is a Bott–Morse function: that is, the critical points are a disjoint union
of submanifolds, on whose normal bundles the Hessian is nondegenerate. In
other words, near every critical point there exist local coordinates in which
f can be expressed as before, except that some of the coordinates may be
entirely absent. A good example is the pullback of a Morse function by the
projection in a fiber bundle.

In the Bott–Morse case, there exists a spectral sequence whose E2 term
is the cohomology of the critical set, bigraded by the Morse index and the
degree of the cohomology. It abuts to the cohomology of X. An easy exercise
is to show that, in the original Morse case, this boils down to the cochain
complex described before. A harder exercise is to show that, in the example
of the previous paragraph, it boils down to the Leray spectral sequence.

1.7 Morse Theory on the Loop Space

Now let’s return to our Floer set-up: a symplectomorphism φ : M → M .
We might as well assume that M is connected. Let the loop space LM be
the set of all smooth maps from the circle S1 to M . In the case φ = id, we
will define Floer cohomology to be essentially the Morse cohomology of LM ,
with a “symplectic action function” F playing the role of the Morse function.
The loop space is in some sense a manifold, but it is infinite-dimensional, and
the upward and downward flows from the critical sets will both be infinite-
dimensional as well, so it is lucky that we are optimists.

What is this function F? Suppose first that π1(M) = 1, so that LM
is connected too. For any � ∈ LM , � : S1 → M , choose a map �̄ : D2 → M
extending �, where D2 is the disc, and let F (�) =

∫

D2 �̄
∗ω. This is only defined

modulo the integrals of ω on spheres in M , but we can pass to the covering
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space L̃M determined by the quotient π1(LM) → π2(M), and there F is
defined without ambiguity. Indeed, L̃M can be regarded as the space of loops
plus homotopy classes of extensions �̄.

If π1(M) �= 1, then LM has several components, and if we fix a loop in
each, we can extend � to a cylinder agreeing with the fixed loop on the other
end, and proceed as before.

As a matter of fact, for general φ we can do something similar: let the
twisted loop space be

LφM = {� : R →M | �(t+ 1) = φ(�(t))},

and fix a twisted loop in each connected component. A path from any twisted
loop � to the fixed one is a smooth map �̄ : R× [0, 1] →M satisfying the obvi-
ous periodicity and boundary properties, and we define F (�) =

∫

[0,1]×[0,1]
�̄∗ω

as one would expect.
This function F is a very natural one. Indeed, we can define a symplectic

form Ω on LφM as follows. The tangent space to LφM at � consists of sections
of �∗TM which are periodic in a suitable sense. Define Ω(u, v) =

∫ 1
0
ω(u, v) dt.

Then the Hamiltonian flow of F is exactly reparametrization of twisted loops
by time translations.

Consequently, the critical points are exactly the constant loops: these must
take values in the fixed-point setXφ by the definition of the twisted loop space,
so the critical set can be identified with Xφ. Paths in the twisted loop space
are, of course, maps R×R →M with the appropriate periodicity in the first
factor. The gradient flow lines turn out to be exactly the pseudo-holomorphic
maps, that is, maps whose derivatives are linear over C. (For brevity we refer
to them henceforth as holomorphic.) Here the choice of an almost complex
structure on M compatible with ω has induced a metric g on M and hence a
metric G on LφM .

Here is a sketch of why the gradient flows are exactly the holomorphic
maps. Let t+ iu be coordinates on R2 = C. A map � : R2 →M is a gradient
flow if ∂�/∂u ∈ T�LφM is dual under the metric G to dF , that is, if for all
ν ∈ T�LφM ,

G

(
∂�

∂u
, ν

)

= dF (ν)

or
∫ 1

0

g

(
∂�

∂u
, ν

)

dt =
∫ 1

0

ω

(
∂�

∂t
, ν

)

dt.

Since ω(µ, ν) = g(iµ, ν), this is equivalent to

i
∂�

∂t
=
∂�

∂u
,

which is the complex linearity of the derivative.
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If everything is sufficiently generic, F is a Morse function. Then we can go
ahead and define our Morse complex, where the differential d counts holomor-
phic maps. The key claims are that we can make things sufficiently generic
by composing with some exact Hamiltonian flow, that d2 = 0 as in the finite-
dimensional case, and that the cohomology we get does not depend on the
flow.

In many cases, F is not sufficiently generic, but it is still a Bott–Morse
function: that is, the critical points are a union of submanifolds, and the
Hessian is (in some infinite-dimensional sense!) nondegenerate on each normal
bundle. Then we’re going to get our spectral sequence. We presume that the
Floer cohomology can be calculated from it: a highly nontrivial presumption,
of course! This is not Floer’s actual approach, but it is still a good way to
think about it.

For example, if φ = id again, then there is just one critical submanifold,
identified with M itself. Hence the E2 term of the spectral sequence is sup-
ported in a single row, so we immediately conclude that HF ∗(id) = H∗(M),
provided that our presumption is correct.

That sounds very nice, but only because we cheated. We neglected to
pass to the cover L̃M . Up there, there are many critical submanifolds, all
diffeomorphic to M but interchanged by deck transformations π2(M). If the
Morse indices are different, the spectral sequence won’t be supported in a
single row, so we need another argument to ensure that the differentials vanish.
This is indeed true, but won’t be justified, even heuristically, until we discuss
the finite-order case a little later on.

So a more truthful statement is that HF ∗(id) is a direct sum of many
copies of H∗(M,C), one for each element of π2(M). This is conveniently writ-
ten by introducing Λ = C[π2(M)], the group algebra of π2(M). For example,
if π2(M) ∼= Z, then Λ ∼= C[q, q−1]. More generally, there will be variables
q1, q2, . . . corresponding to generators β1, β2, . . . of π2(M). Then we have an
isomorphism HF ∗(id) ∼= H∗(M,Λ). We’ve glossed over the correct definition
of the index, but suffice it to say that the correct grading of qi ∈ H0(M,Λ) is
c1(TM)[βi]. Here the almost complex structure on M has made the tangent
bundle TM into a complex vector bundle.

1.8 Re-Interpretation #1: Sections of the Symplectic Mapping
Torus

If you don’t like the periodicity condition on our holomorphic maps, here is
another way to look at the flow lines. Let the integers act on C×M , on the
first factor by translation by Z ⊂ C, on the second by iterating φ. This acts
freely and symplectically, so the quotient Mφ is a symplectic manifold. It is
a bundle over the cylinder whose fiber is M , and it admits a canonical flat
connection whose monodromy is φ. For that reason we call it the symplectic
mapping torus.
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Fixed points of φ precisely correspond to flat sections of this bundle.
Gradient flow lines of F correspond to holomorphic sections: indeed, both
correspond to periodic maps � : R2 →M as in the previous section. And the
convergence of a flow line to two given fixed points at its ends corresponds to
the convergence of the holomorphic section to two given flat sections as we
move toward the two ends of the cylinder.

The periodic Floer homology of Hutchings is a generalization of this in
the case where M is a surface: one looks not only at fixed points, but at
unordered k-tuples fixed by φ, and the differential consists of k-valued sections,
possibly ramified. It is conjectured to be related to Seiberg–Witten Floer
cohomology.

1.9 Re-Interpretation #2: Two Lagrangian Submanifolds

Another flavor of Floer cohomology takes as its data a compact symplectic
manifold N and two Lagrangian submanifolds L1, L2 ⊂ N . Act on one of them
by an exact Hamiltonian flow until L1 intersects L2 transversely (exercise: this
is possible). Then consider the Morse cohomology of the space of paths from
L1 to L2.

That is, define chains to be formal linear combinations of points xi ∈
L1 ∩ L2. And define a differential as before, but where #(i, j) now counts
holomorphic maps from the strip [0, 1] × R to N such that the two ends of
the strip converge to xi and xj . Once again, the grading is contrived in such a
way that, if m(i)−m(j) = 1, we expect a finite number of such maps (modulo
translations of the strip).

This flavor has to do with Floer’s work on 3-manifold topology. For ex-
ample, given a Heegaard decomposition of a 3-manifold, let N be the space
of irreducible flat SU(2)-connections on the bounding surface, and let L1, L2

be the connections that extend as flat connections over the two handlebodies.
This satisfies the conditions of the previous paragraph except that N is not
compact. Optimistically ignoring this technicality, we may state the Atiyah–
Floer conjecture which claims that the symplectic Floer cohomology of this
N agrees with the instanton Floer cohomology of the 3-manifold, also defined
by Floer. We won’t discuss it here except to say that it is roughly the Morse
cohomology of the Chern–Simons function on the space of connections on the
3-manifold.

But we digress. Let’s see how the previous flavor of Floer cohomology can
be regarded as a special case of this one. Just take N = M ×M with the
symplectic form π∗

1ω − π∗
2ω where π1, π2 are projections, and let L1, L2 be

the diagonal and the graph of φ. The minus sign is chosen so that these will
be Lagrangian. To see how the holomorphic curves in the two alternatives
correspond, start with a section of the symplectic mapping torus, project the
cylinder 2:1 onto a strip [0, 1]×R (branched over the boundary components
0 × R and 1 × R), trivialize the mapping torus in the natural way over the
complement of 1×R, and define a map [0, 1]×R →M×M taking a point on
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the strip to the values of the section at the two points of the cylinder above
it, relative to this trivialization. An explicit formula is easy to write down,
but why bother?

1.10 Product Structures

Both of the alternatives above suggest a way to introduce a product structure
on Floer cohomology. In fact, what we’re going to define is a linear func-
tional on

HF ∗(φ1)⊗HF ∗(φ2)⊗HF ∗(φ3)

for any symplectomorphisms satisfying φ1φ2φ3 = id. (Technical detail: since
infinitely many powers of q may appear in this element, we may have to
pass to a slightly larger coefficient ring Λ̄, the Novikov ring. For example, if
Λ = C[q, q−1], then Λ̄ = C[[q]][q−1].)

Notice that the chains defining Floer cohomology for φ and φ−1 are formal
linear combinations of the same fixed points. If one uses the Kronecker delta
to define a nondegenerate pairing between these chains, this descends to a
nondegenerate pairing HF ∗(φ)⊗HF ∗(φ−1) → C. The linear functional above
can then be regarded as a linear map

HF ∗(φ1)⊗HF ∗(φ2) −→ HF ∗(φ1φ2).

This ought to satisfy some kind of relation like associativity. In particular, for
φ1 = φ2 = id, it ought to define an associative product on HF ∗(id) = H∗(M).
For φ1 = id, it makes any HF ∗(φ) into a module over HF ∗(id). And so on.

In fact, it has been proved that the Floer product on HF ∗(id) coincides
with the quantum product coming from Gromov–Witten theory. So we can
regard each HF ∗(φ) as a module over the quantum cohomology.

Now, what is the linear functional we promised to define? In analogy with
alternative #1, it’s given by counting sections of a bundle over a sphere minus
three points. (The cylinder was a sphere minus two points.) Call this surface
S; then π1(S) is free on two generators. Let Mφ1,φ2 = (S̃×M)/π1(S), where S̃
is the universal cover and π1(S) acts on M via φ1 and φ2. This is a symplectic
bundle over S with fiber M . Now count holomorphic curves asymptotic to
fixed points xj , xk, x� of φ1, φ2, φ3 on the three ends.

One has to prove that this induces a homomorphism of complexes. The
proof is supposed to be a gluing argument. So is the proof of associativity.
The idea is to take a sphere minus three (resp. four) discs, and shrink a loop
encircling one (resp. two) of the discs to a point. Then study the limiting
behavior of holomorphic sections of the bundles with this base and fiber M
as the loop shrinks.

By the way, how can all this be phrased in terms of alternative #2? It’s easy
to convince yourself that the product functional counts holomorphic triangles
in M×M whose edges lie on the graphs of id, φ1, and φ1φ2. More generally, if
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HF ∗(L1, L2) denotes the Floer cohomology of two Lagrangian submanifolds,
then there is supposed to be a product operation

HF ∗(L1, L2)⊗HF ∗(L2, L3) −→ HF ∗(L1, L3)

which counts holomorphic triangles with edges in L1, L2, L3.
From either point of view, it’s clear that there is no reason to stop with

three punctures. One can include any number, working with a sphere mi-
nus n points in alternative 1, or an n-gon in alternative 2, and they will
induce (n − 1)-ary operations on the chain complexes which will descend to
Massey products on the cohomology. The compatibility between these opera-
tions seems to be what Fukaya is describing in his definition of an A∞ category.
There’s a substantial literature about complexes equipped with such opera-
tions, which it would be quite interesting to apply to Floer cohomology. E.g.
the Massey products on a compact Kähler manifold are known to vanish. Is
this true of the Floer Massey products?

If you want to go even further, there’s no need to insist that S be a
punctured sphere: it could be a surface of any genus. Correspondingly, instead
of n-gons, you could look at non-simply-connected domains.

1.11 The Finite-Order Case

If φ has finite order, say φk = id, then LφM can be regarded as a subspace
of LM just by speeding up the path by a factor of k. The symplectic action
function on L̃M restricts to the one on L̃φM , up to a scalar multiple. The
Hamiltonian flow of F is reparametrization by time translations, but transla-
tions by integer values now act trivially, so the flow induces a circle action. In
this situation – when the Hamiltonian flow of F induces a circle action – we
say that F is the moment map for the action.

Now in finite dimensions, it is well known that moment maps for circle
actions are perfect Bott–Morse functions, meaning that the differentials in the
associated spectral sequence are all zero, or equivalently, that the associated
Morse inequalities are equalities. Let’s suppose that this remains true in our
infinite-dimensional setting. If so, we conclude that if φ has finite order, then

HF ∗(φ) ∼= H∗(Mφ).

The author has been informed by Hutchings that, under some technical hy-
potheses, this result can be proved rigorously. It is, of course, a generalization
of Floer’s result that HF ∗(id) = H∗(M).

1.12 Givental’s Philosophy

Givental’s philosophy is that Floer cohomology leads in a natural way to
differential equations, and to solutions of those equations. These solutions are
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in some sense generating functions for numbers of rational curves on M ; for
example, when M is the quintic threefold, we get the famous Picard–Fuchs
equation predicted by mirror symmetry.

Givental considers equivariant Floer cohomology (even though this is hard
to define rigorously): the circle S1 acts on LM by rotating the loop. He denotes
the generator of H∗(BS1) by �. Every symplectic form ω on M induces an
equivariantly closed 2-form p on L̃M . Indeed, with respect to the symplectic
form Ω on LM defined earlier, the circle action given by reparametrization is
Hamiltonian when we pass to the cover L̃M , and the moment map is exactly
the action function F . It is part of the usual package of ideas in equivariant
cohomology that p = Ω+F can be regarded as an equivariantly closed 2-form,
the Duistermaat–Heckman form.

Suppose for simplicity that M is simply connected. Then π2(M) =
H2(M,Z) by the Hurewicz theorem. If this has rank k, let ω1, . . . , ωk be a
basis consisting of integral symplectic forms, and let q1, . . . , qk be the deck
transformations of L̃M corresponding to the dual basis of H2(M,Z). We can
act on the Floer cohomology HF ∗(id) by multiplication by pi, or by pullback
by qi. These operations all turn out to commute, except that

piqi − qipi = �qi.

The noncommutative algebra D over C generated by pi and qi (and q−1
i , since

this is the inverse deck transformation), with these relations, is a familiar one.
At any rate, it can be regarded as an algebra of differential operators if we
set qi = eti and pi = � ∂/∂ti.

So we should think of a D-module, such as HF ∗(id), as a sheaf on a
torus (C×)k equipped with a connection (or rather, a 1-parameter family of
connections parametrized by �). As a C[qi]-module, HF ∗(id) is free, so the
sheaf is a trivial bundle. Only the connection is nontrivial. What we want to
know is encoded in the flat sections of the bundle, which are functions of the
qi (and �) with values in H∗(M).

Suppose we are in the good case where H∗(M) is generated by H2. Then
HF ∗(id) is a principal D-module generated by 1 ∈ H0(M): this is plausible,
since pi tends to the cup product with ωi as qi → 0. So there is a canonical
surjection of D-modules D → HF ∗(id). Its kernel K is generated by a finite
number of differential operators, and setting these to zero gives the differential
equations that determine what we want to know.

Indeed, knowing the flat sections is the same as knowing
HomD(HF ∗(id),O), where O is the sheaf of regular functions on the torus,
for such homomorphisms are just the constant maps in terms of a basis of
flat sections. On the other hand, such a thing is also the same as a module
homomorphism D → O which kills K. It is determined by its value at 1, and
this consists of a function which satisfies all the differential equations in K.

This heuristic argument inspired Givental’s approach to determining the
Gromov–Witten invariants for the quintic threefold, and more generally for
Calabi–Yau complete intersections in toric varieties. Instead of using the loop
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space, he uses spaces of stable maps, which he regards as finite-dimensional
approximations to the loop space.

2 Lecture 2: Gerbes

And now for something completely different: the definition of a gerbe. The
motivation for introducing them is quite simple. We want to consider Floer
cohomology with local coefficients in a flat U(1)-bundle over the loop space
LM (and its twisted variants). This bundle should of course come from some
kind of geometric structure onM , and a U(1)-gerbe will be the best candidate.

Here is the first clue to what a gerbe should be. Isomorphism classes of flat
line bundles on LM correspond to H1(LM,U(1)). There is a natural trans-
gression map H2(M,U(1)) → H1(LM,U(1)) given by taking the Künneth
component in H1⊗H1 of the pullback by the evaluation map LM×S1 →M .
So we might expect gerbes to be objects whose isomorphism classes correspond
to H2(M,U(1)).

The good news: such objects exist. They were created in the 1960s by
Giraud, who was chiefly interested in nonabelian structure groups. Abelian
gerbes were discussed in more detail by Brylinski in a book some 25 years
later. The bad news: gerbes rely on the theory of stacks, which we now review
in the briefest possible terms.

2.1 Definition of Stacks

Let T be the category of topological spaces (and continuous maps). The cat-
egory S of principal G-bundles (and bundle maps) has an obvious covari-
ant functor to T, namely passing to the base space. It enjoys the following
properties:

(a) Inverses: any bundle map over the identity X → X is an isomorphism.
(b) Pullbacks: given any P over X and any continuous f : Y → X, there

exists Q over Y with a bundle map Q → P , namely the pullback Q = f∗P .
It is unique up to unique isomorphism, and it satisfies the obvious universal
property for bundle maps over some Z → X factoring through Y .

(c) Gluing of bundles: given an open cover Uα of X, bundles Pα over Uα,
and isomorphisms fαβ on the double overlaps (with fαα := id) satisfying
fαβfβγfγα = id on the triple overlaps, there exists a bundle P over X with
isomorphisms gα over Uα to each Pα satisfying fαβgβ = gα.

(d) Gluing of bundle isomorphisms: given two bundles P,P ′ over X, an
open cover Uα, and isomorphisms from P to P ′ over each Uα agreeing on the
double overlaps, there is a unique global isomorphism from P to P ′ agreeing
with all the given ones. (Note this implies that gluing of bundles is unique up
to isomorphism.)

A stack over T is simply any category S, equipped with a covariant functor
to T, that satisfies properties (a), (b), (c), (d). Here, of course, “bundle” should
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be replaced by “object” and “bundle map” by “morphism.” In this setting
the properties have new, alarming names: (a) and (b) make S a category
fibered in groupoids; (c) says that descent data are effective and (d) says that
automorphisms are a sheaf. Notice, by the way, that (c) and (d) implicitly
use (b).

You don’t really need the base category to be that of topological spaces,
of course. It can be any category where the objects are equipped with a
Grothendieck topology, such as schemes with the étale topology, which allows
us to make sense of open covers.

2.2 Examples of Stacks

(1) The stack of principal G-bundles described above is called the classifying
stack and denoted BG.

(2) The stack of flat principal G-bundles, that is, G-bundles equipped with
an atlas whose transition functions are locally constant, with the obvious
notion of flat bundle maps. In a flat bundle, nearby fibers (i.e. those in a
contractible neighborhood) may be canonically identified.

(3) For a fixed space X, the category whose objects are continuous maps
Y → X and whose morphisms are commutative triangles ending at X. The
covariant functor takes a map to its domain. This is a stack, denoted [X] or
simply X. Note that in this case (d) becomes trivial, because isomorphism is
just equality.

(4) For a topological groupG acting onX, the category whose objects lying
over Y are pairs consisting of principal G-bundles P → Y and G-equivariant
maps P → X. We leave it to the reader to figure out what the morphisms are.
This is a stack, denoted [X/G]. Notice that this simultaneously generalizes
(1), which is the case [·/G], and (3), which is the case [X/·], where · denotes
a point.

(5) A more exotic example: for a fixed line bundle L → X and a fixed
integer n, the category whose objects are triples consisting of a map f : Y →
X, a line bundle M → Y , and an isomorphism M⊗n ∼= f∗L. This was studied
by Cadman, who called it the stack of nth roots.

(6) For any two stacks, there is a Cartesian product stack whose objects are
pairs of objects lying over the same space. For example, an object of X ×BG
is a map Y → G and a principal G-bundle P → Y .

2.3 Morphisms and 2-Morphisms

In the theory of categories, much mischief is caused by our inability to declare
that two given objects are equal. In the category of finite-dimensional complex
vector spaces, for example, we can’t say that V ∗∗ = V . The only accurate
statement is that they are naturally isomorphic. So if D is the functor taking
a vector space to its dual, we can’t say that DD = id. We can only say that
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there is a natural transformation of functors DD ⇒ id. We encounter similar
mischief in the theory of stacks.

A morphism of stacks S′ → S is a functor between categories compatible
with the covariant functors to T. A stack equipped with a morphism to S is
called a stack over S.

But, if F, F ′ : S′ → S are both morphisms of stacks, we also have the mind-
expanding concept of a 2-morphism of morphisms Θ : F ⇒ F ′, which is a nat-
ural transformation of the corresponding functors. Likewise, a 2-isomorphism
of morphisms is a natural isomorphism of the corresponding functors. For ex-
ample, ifBGL(n) is the stack of (frame bundles of) rank n complex vector bun-
dles, then taking the dual bundle defines a morphism D : BGL(n) → BGL(n)
of stacks, and there exists a 2-isomorphism DD ⇒ id.

(Exercise: show that, for X a space and S a stack, the category of stack
morphisms X → S and 2-morphisms is equivalent to the category of objects
of S lying over X and morphisms of S lying over id : X → X.)

(Another exercise: show that the category of automorphisms of BG is
equivalent to the category of G-bitorsors, that is, G-bundles over a point
equipped with a left G-action commuting with the usual right G-action. Hint:
define a G-bundle over a stack and observe that any functor on G-bundles
over spaces extends canonically to G-bundles over stacks; then consider the
image of the tautological G-bundle over BG.)

As a consequence of the mischief, many of the familiar concepts we have in
the category of spaces extend to stacks in a more convoluted fashion than one
might expect. The basic point is that, instead of just requiring that two objects
be equal, we have to choose an isomorphism. We give four key examples.

(1) The fibered product. If R and R′ are stacks with morphisms F and F ′

to S, the fibered product R ×S R′ consists of triples: an object R of R, an
object R′ of R′, and a choice of an isomorphism F (R) → F ′(R′). (Exercise:
express Cadman’s stack of nth roots as a fibered product. Another exercise:
a 2-automorphism of F induces an automorphism of the fibered product.)

(2) Commutative diagrams. A diagram of stack morphisms isn’t just com-
mutative: we have to make it so by choosing a 2-isomorphism. With a triangle
of stacks, for instance, we write the symbol ⇓Θ inside the triangle:

R

↗ ⇓Θ ↘
Q −→ S

to indicate that there is a 2-isomorphism Θ between the two stack mor-
phisms Q → S. When four such triangles with 2-isomorphisms fit together
to form a tetrahedron, there is a natural compatibility condition between
the 2-isomorphisms (which we leave to the alert reader to work out). If it is
satisfied, the tetrahedron is said to be commutative.

(3) Group actions on stacks. Let Γ be a finite group. A Γ -action on a
stack S consists not only of morphisms Fγ : S → S for each γ ∈ Γ (with
Fe := id), but also of 2-isomorphisms Θγ,γ′ : FγFγ′ ⇒ Fγγ′ such that, for
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any three γ, γ′, γ′′ ∈ Γ , the four 2-isomorphisms Θγ,γ′ , Θγ′,γ′′ , Θγγ′,γ′′ , and
Θγ,γ′γ′′ form a commutative tetrahedron in the sense alluded to above.

(Exercise: show that the category of Γ -actions on BG is equivalent to the
category of extensions of Γ by G. Hint: use the previous exercise.)

(4) Gluing of stacks. Let X =
⋃
Xα be a space with an open cover. Recall

that a collection of spaces πα : Sα → Xα may be glued along the open subsets
Sαβ = π−1

α (Xβ) using homeomorphisms fαβ : Sβα → Sαβ (with fαα := id),
provided that they satisfy fαβfβγfγα = id on the triple overlaps. Here is the
analogous statement for stacks. If Sα are stacks over Xα, then they may be
glued along Sαβ = Sα ×X Xβ using isomorphisms Fαβ : Sβα → Sαβ with
Fαα = id, provided that there exist 2-isomorphisms Θαβγ : FαβFβγFγα ⇒ id
which in turn form a commutative tetrahedron over the quadruple overlaps.

In the last two examples, the choices of 2-isomorphisms had to satisfy
a further condition, namely the commutativity of a tetrahedron. One might
ask: why is this adequate? Why isn’t some further choice of 3-isomorphisms
necessary, and so on? The answer is that categories aren’t the most abstract
possible structure. In a category, the collection of morphisms between two
fixed objects is assumed to be a set. Consequently, it is meaningful to speak
of two given 2-isomorphisms as being equal (in contrast to 1-morphisms),
since a 2-morphism F ⇒ G consists of an element of the set of morphisms
F (C) → G(C) for each object C.

One can, of course, define a more abstract entity, a 2-category, where even
the morphisms between fixed objects merely comprise a category. Continuing
recursively, one can even define 3-categories, 4-categories, and so on, with
their corresponding 2-stacks, 3-stacks, 4-stacks. . . . Luckily, we will not have
to enter this dizzying hall of mirrors.

2.4 Definition of Gerbes

Let’s return to the definition of stacks given a while back, and to the prin-
cipal example BG. This stack actually satisfies two more properties, clearly
analogous to (c) and (d):

(c′): Local existence of bundles: given any space Y , there is an open cover
Uα of Y such that Uα is the base space of a G-bundle.

(d′): Local existence of bundle isomorphisms: given two bundles P and P ′

over Y , there is an open cover Uα such that P |Uα
∼= P ′|Uα

.
Of course, (c′) could not be more trivial for BG, since the trivial cover and

the trivial bundle will do. However, the relative versions of both properties
are interesting.

A stack S over a space X is said to be a gerbe over X if:
(c′) for any f : Y → X there is an open cover Uα of Y so that there exists

an object of S lying over each restriction f |Uα
; and

(d′) for any f : Y → X and any two objects P,P ′ of S lying over f , there
exists an open cover Uα of Y so that P |Uα

∼= P ′|Uα
.
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For example, BG is a gerbe over a point. We wish to exhibit nontrivial
examples of gerbes over larger spaces.

2.5 The Gerbe of Liftings

To do this, recall first that for any homomorphism ρ : G→ H of Lie groups,
one defines the extension of structure group of a principal G-bundle P → X
to be the twisted quotient Pρ = (P × H)/G, where G acts on H via ρ.
It is a principal H-bundle over X. As our main example, let ρ : GL(n) →
PGL(n) be the projection; then extension by ρ takes a vector bundle to its
projectivization. (Here we have intentionally blurred the distinction between
the equivalent categories of vector bundles and of frame bundles.)

Now let X be a topological space and P a principal H-bundle. Consider
the category of triples consisting of (a) A map f : Y → X; (b) A principal
G-bundle Q→ Y ; (c) An isomorphism Qρ → f∗P . It is easily verified that this
is a gerbe B over X; call it the gerbe of liftings of P . In the main example, Q is
a vector bundle over Y whose projectivization is identified with the pullback
of a given projective bundle P .

We recognize these triples, don’t we? They resemble the triples defining
the fibered product two sections back. Indeed, extension of structure group
by ρ defines a natural transformation from G-bundles to H-bundles, hence
a morphism Bρ : BG → BH; on the other hand, P defines a morphism
X → BH, and our gerbe of liftings is nothing but X ×BH BG.

It is easiest to understand this gerbe in the case where ρ is surjective, so
that we have a short exact sequence

1 −→ A
σ−→ G

ρ−→ H −→ 1

with A normal. Consider first the case where P is trivialized. Then Q is
a principal G-bundle with Qρ trivialized, and this precisely means that its
structure group is reduced to A, that is, we get a bundle R with Rσ = Q.
Conversely any such R gives Q with Qρ trivialized. Hence in this case the
gerbe B ∼= X ×BA.

On the other hand, if P is nontrivial, the gerbe may not be such a product.
For example, if P is a projective bundle which does not lift to a vector bundle,
then B has no global objects over the identity X → X, but X ×BA does.

In light of all this, a gerbe of liftings is a locally trivial bundle, in the
category of stacks, with base X and fiber BA. At least morally speaking, one
would like to say that H acts on BA, and that the gerbe is the associated
BA-bundle to P . (Exercise: prove this when H is finite. Hint: use the previous
exercise.) However, general group actions in the category of stacks turn out
to be very slippery.

If the extension of groups is central, that is, A ⊂ Z(G), then things be-
come much simpler, at least at a conceptual level. To begin with, A must be
abelian, and “an abelian group is a group in the category of groups,” that
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is, the group operations of multiplication and inversion are group homomor-
phisms A × A → A and A → A, respectively. Consequently, there are good
notions of tensor product, and of dual, for A-bundles: namely, the extension
of structure group by these homomorphisms. This in turn implies that there
are natural morphisms BA×BA→ BA and BA→ BA making BA into an
abelian group stack in some sense. The central extension can be regarded as a
principal A-bundle over H determining a morphism H → BA, and this mor-
phism is a homomorphism of group stacks. The gerbe of liftings is therefore
a principal BA-bundle in this case. However, all this is not as easy to formu-
late rigorously as it seems, as the precise definition of a group stack is very
confusing: associativity need not hold exactly, but only up to 2-isomorphisms
which themselves must satisfy compatibility conditions. . . .

2.6 The Lien of a Gerbe

Roughly speaking, an arbitrary gerbe may be described as in the previous
section, except that A, instead of being a fixed group, may be a sheaf of
groups on X. This sheaf is called the lien or band of the gerbe. However, since
nonabelian phenomena introduce some subtleties, we will discuss only the
case analogous to the central extension of the last paragraph. This completely
obscures the nonabelian motivation of the founders of the subject, but it is
nevertheless sufficient for our purposes.

So let F be a sheaf of abelian groups over X. An F-torsor is a sheaf of sets
over X equipped with an atlas of local isomorphisms to F whose transition
functions are given by multiplication by sections of F. An F-isomorphism of
two F-torsors is an isomorphism of sheaves locally given by multiplication by
sections of F.

Hence an F-torsor is acted on by F itself, and indeed is locally isomorphic
to F as an F-sheaf, but without a choice of an identity element. For example, if
F is the sheaf of continuous functions with values in an abelian group A, then
an F-torsor is a principal A-bundle. Or if F is the sheaf of locally constant
functions with values in A, then an F-torsor is a flat A-bundle.

There is a binary operation on F-torsors taking L and L′ to (L×X L′)/F
(with the antidiagonal action), which we denote L ⊗ L′. For principal A-
bundles, it agrees with the tensor product defined before.

Notice, if L,L′ are fixed F-torsors, that the sheaf of F-isomorphisms
Isom(L,L′) is itself an F-torsor, and the sheaf of F-automorphisms AutL =
Isom(L,L) is canonically isomorphic to F itself.

The collection of all F-torsors forms a stack, indeed a gerbe, BF over X.
More precisely, an object of BF consists of a map g : Y → X and a g∗F-torsor.

An F-gerbe, then, is defined analogously to a torsor: it is a gerbe over X
equipped with an atlas of local isomorphisms to BF whose transition functions
are given by tensor product by sections of BF, that is, torsors on the double
overlaps.
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For example, the gerbe of liftings of a central extension of H by A is an
A-gerbe.

An F-morphism of F-gerbes is defined in the obvious way, as is an F-2-
morphism. To simplify notation, from now on morphism will always refer to
an F-morphism where F-gerbes are concerned, and likewise for 2-morphisms.
Note that this is a nontrivial restriction: for example, passage to the dual
defines an automorphism of BA, but not an A-automorphism. (Exercise: in
terms of the previous exercises, A-automorphisms correspond to the subcate-
gory of bitorsors isomorphic to the trivial one.)

With this convention, an automorphism of an F-gerbe, more or less by
definition, is given by L⊗ (that is, tensor product with L) for a fixed F-torsor
L. This induces an equivalence of categories, so the 2-morphisms L⊗ ⇒ L′⊗
(of gerbe automorphisms) correspond to morphisms L → L′ (of torsors). In
particular, the 2-automorphisms L⊗ ⇒ L⊗ correspond naturally to sections
of F itself.

We can recover the lien from the gerbe. Suppose we are given a gerbe
all of whose objects have abelian automorphism groups. Then the sheaves of
automorphisms of any two objects are canonically isomorphic, so they glue
together to give a globally defined sheaf F of abelian groups. It is easy to show
that the gerbe is then an F-gerbe. However, if some automorphism groups are
nonabelian, this gives rise to the complications ominously alluded to above.

2.7 Classification of Gerbes

At last we are in the position to state a classification result. To avoid compli-
cations we confine ourselves to the abelian case, as before.

Theorem (Giraud). The group of isomorphism classes of F-gerbes is
isomorphic to H2(X,F).

Sketch of proof: Trivialize the gerbe on a cover by open sets Xα. The
transition functors Fαβ then correspond to F-torsors Lαβ on Xαβ = Xα∩Xβ .
After refining the cover if necessary, we may choose trivializations of these
torsors. But, on the triple overlaps Xαβγ , we also have the trivializations
of Lαβ ⊗ Lβγ ⊗ Lγα given by the 2-isomorphisms FαβFβγFγα ⇒ id. These
then determine sections of F on Xαβγ which constitute a Čech 2-cochain.
The tetrahedron condition on the 2-isomorphisms precisely implies that this
is closed; and changing the trivializations of the torsors Lαβ adds an exact
cocycle.

2.8 Allowing the Base Space to Be a Stack

A general philosophy is that everything that can be done for manifolds should
also be attempted for orbifolds. More broadly, everything that can be done
for spaces should also be attempted for stacks. In this spirit, we describe here
what is meant by a sheaf, a torsor, or a gerbe whose base space is itself a
stack. The definition resembles that of a characteristic class.
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Let S be a stack. A sheaf over S is a functor F, over the category of
topological spaces, from S to the category of sheaves. That is, it assigns to
every object of S over Y a sheaf F over Y , and to every morphism of objects
over g : Y → Y ′ an isomorphism F ∼= g∗F ′. A torsor for a given sheaf is
defined similarly.

However, we won’t define a gerbe over S in the same way, for gerbes (like
all stacks) don’t just constitute a category, but rather a 2-category. Instead,
a gerbe B over S is a stack over S such that for all objects of S over Y , the
fibered product Y ×S B is a gerbe over Y . An F-gerbe is defined similarly for
a sheaf F over S.

(Exercise: a sheaf of abelian groups over BG corresponds naturally to an
abelian group A with a G-action by group automorphisms. A gerbe over BG
with lien A corresponds naturally to an extension of G by A so that the action
of G on A in the extension is the given one.)

2.9 Definition of Orbifolds

We want to conclude this lecture with a description of the Strominger–Yau–
Zaslow proposal for mirror symmetry. To do so, we need two more definitions:
of orbifolds and of twisted vector bundles.

First, orbifolds. Roughly speaking, these are stacks locally isomorphic to
a quotient of a manifold by a finite group. Readers are cautioned that this
definition may differ in a few respects from those in the literature.

Let S be a space. An orbispace S with coarse moduli space S is a stack over
S so that there exists an open cover S =

⋃
Sα satisfying Sα ×S S ∼= [Xα/Γα],

where Γα is a finite group, and the induced map Xα/Γα → Sα of spaces is a
homeomorphism. It is an orbifold if each Xα is a manifold.

A smooth structure on an orbifold is a choice of smooth structure on each
Xα so that Xα and Xβ induce the same smooth structure on the covering
spaceXα×SXβ . (Exercise: this implies that each Γα acts smoothly.) A complex
structure on an orbifold is defined similarly.

2.10 Twisted Vector Bundles

Let B be a gerbe over X with structure group U(1). As we have seen, B is
a fiber bundle over X with fiber BU(1). A twisted vector bundle for B is a
vector bundle over B whose restriction to each fiber is a representation of
U(1) (using the last exercise) of pure weight 1.

These are called “twisted” since they can be regarded as locally trivial on
open sets Xα ⊂ X, with transition functions fαβ : Xαβ → GL(n). Instead of
the usual cocycle condition, we require that fαβfβγfγα = bαβγ id where b is a
cocycle representative for the isomorphism class of B in H2(X,U(1)).

The same applies to flat gerbes and flat vector bundles.
Twisted vector bundles for a given gerbe clearly form an abelian category,

so a twisted K-theory may be defined. If the gerbe is trivial, we recover ordinary
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K-theory. However, twisted K-theory for a fixed gerbe does not admit a tensor
product: rather, we would have to sum over all gerbes, or at least all powers
of the fixed one.

2.11 Strominger–Yau–Zaslow

The proposal of Strominger–Yau–Zaslow on mirror symmetry can be described
in the language of gerbes and orbifolds. Their remarkable idea is that mirror
partners should be Calabi–Yau orbifolds M and M̂ of complex dimension n
which admit proper maps to the same orbifold Z of real dimension n:

M M̂
π ↘ ↙ π̂

Z

so that, if z is a regular value of π and π̂, the fibers Lz = π−1(z) and L̂z =
π̂−1(z) are special Lagrangian tori which are in some sense dual to each other.
Here Lagrangian means Lagrangian with respect to the Kähler form, and
special means that the imaginary part of the nonzero holomorphic n-form
that exists on any Calabi–Yau vanishes on the torus.

The duality between the tori can be required in a strong sense originally
envisioned by SYZ, or in a more general sense proposed by Hitchin and in-
volving flat gerbes.

In the original formulation of SYZ, the maps π and π̂ are assumed to
have special Lagrangian sections, giving a basepoint for each Lz and L̂z. This
canonically makes them into Lie groups, since a choice of a basis for T ∗

z Z
determines, via the Kähler form, n commuting vector fields on Lz and L̂z

whose flows define a diffeomorphism to (S1)n. We then ask for isomorphisms
of Lie groups (smoothly depending on z)

L̂z
∼= Hom(π1(Lz),U(1))

and vice versa. That is, the tori parametrize isomorphism classes of flat U(1)-
bundles on each other.

This formulation was generalized by Hitchin to the case of torus families
without sections. It turns out that the absence of a section on M reflects the
non-triviality of a gerbe on M̂ , and vice versa.

So suppose now that M (resp. M̂) is equipped with a flat orbifold U(1)-
gerbe B (resp. B̂) trivial on the fibers of π (resp. π̂). We can now ask each
torus to parametrize isomorphism classes of twisted flat U(1)-bundles on the
other torus. More than that, we can ask B|Lz

to be identified with the stack
of twisted flat U(1)-bundles on L̂z, and vice versa. Of course, we want this
identification to depend smoothly on z ∈ Z, and we leave it to the reader to
specify exactly what this means.

It is extremely difficult to find examples of special Lagrangian tori on
Calabi–Yau manifolds. The consensus in the field seems to be that the require-
ments of SYZ as stated above are too stringent, and that perhaps they must
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only be satisfied in some limiting sense, say near the “large complex structure
limit” in the moduli space of complex structures on the Calabi–Yau. However,
the author has studied a few cases where for relatively straightforward reasons
(because the metric is, say, hyperkähler or flat) the requirements of SYZ, in
the gerbe sense, are seen to be satisfied precisely.

3 Lecture 3: Orbifold Cohomology and Its Relatives

What kind of cohomology can be defined for orbifolds? The simplest answer is
given in the first section below. Cohomology can be defined for any coefficient
ring, or indeed, any sheaf on a stack, in such a way that, if M is an orbifold
with coarse moduli space M ,

H∗(M,C) = H∗(M,C).

However, it has been known for a long time that, for the purposes of
string theory, mirror symmetry, and so on, a more refined form of cohomology
is preferable. This is the orbifold cohomology theory H∗

orb(M,C), which as a
vector space is

H∗
orb(M) = H∗(IM).

Here IM is the so-called inertia stack, to be introduced shortly.
We did not specify what coefficient ring to take on the right-hand side,

but suppose we choose the Novikov ring from Lecture 1, which is the coeffi-
cient ring for Floer cohomology. Then orbifold cohomology admits a quantum
cup product whose associativity is a deep and significant fact. Indeed, this is
the main reason for studying orbifold cohomology. However, we won’t delve
into the construction of the product or the proof of associativity. Rather, af-
ter defining orbifold cohomology, we will introduce some of its variants and
relatives – the version with a flat U(1)-gerbe, for example, and the Fantechi–
Göttsche ring defined for a global quotient [X/Γ ] – and then explain how we
expect all of these structures to be related to Floer theory.

3.1 Cohomology of Sheaves on Stacks

Just as a sheaf F on a stack S is a rule assigning to each object S of S over Y a
sheaf FS over Y , we can define a cohomology class for F to be a rule assigning
to each S an element of H∗(Y, FS) in a manner compatible with pullbacks. In
more fancy categorical language, this is the limit of the functor H∗ ◦ F from
S to the category of abelian groups. It is clear that this is a group provided
that it is a set! For reasonable sheaves and stacks, this will be true.

For example, if [X/Γ ] is an orbifold with a sheaf F regarded as an equivari-
ant sheaf on X, then clearly

H∗([X/Γ ],F) = H∗(X,F)Γ ,
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where the superscript on the right-hand side denotes the invariant part. If K
is a field of characteristic 0, then a theorem of Grothendieck gives a canonical
isomorphism

H∗(X,K)Γ ∼= H∗(X/Γ,K),

so the cohomology of a global quotient (with coefficients in K) coincides with
the cohomology of its coarse moduli space.

We can then conclude that the same is true for an arbitrary orbifold M by
using the Mayer–Vietoris spectral sequence. Use a countable atlas where every
open set is a global quotient [Xα/Γα]; then the natural map [X/Γ ] → X/Γ
induces isomorphisms H∗([Xα/Γα],K) ∼= H∗(Xα/Γα,K), and similarly for
double overlaps, triple overlaps, and so on. Hence it induces isomorphisms
between the double complexes that appear in the Mayer–Vietoris spectral
sequences for M and its coarse moduli space M , and so we conclude that it
induces an isomorphism

H∗(M,K) ∼= H∗(M,K)

when K is a field of characteristic 0.
(Exercise: show that for an arbitrary topological group G and coefficient

ring R, there is a natural isomorphism H∗([X/G], R) ∼= H∗
G(X,R) where the

right-hand side is equivariant cohomology.)

3.2 The Inertia Stack

Let S be a stack. We can associate to it another stack, the inertia stack IS.
This is defined to be the stack whose objects over Y are pairs consisting of
an object of S over Y and an automorphism of that object over the identity
on Y , and whose morphisms are commutative squares.

If the stack is a quotient by a finite group, the inertia stack can be described
explicitly.

Proposition. There is a natural isomorphism

I[X/Γ ] ∼=
⊔

[γ]

[Xγ/C(γ)],

where the disjoint union runs over conjugacy classes in Γ , Xγ = {x ∈ X | γx =
x} is the fixed-point set, and C(γ) denotes the centralizer of γ ∈ Γ .

Sketch of proof. An object of [X/Γ ] consists of a principal Γ -bundle P → Y
together with a Γ -equivariant map P → X. Hence an object of I[X/Γ ] consists
of those two things plus an automorphism of P preserving the equivariant
map. Since Γ is discrete, any automorphism is given by the right action of
some γ ∈ Γ commuting with the monodromy group, that is, the image of
π1(Y ) → Γ . Thus the structure group is reduced to C(γ), so we get a principal
C(γ)-bundle and an equivariant map to X which, since it is preserved by γ,
must have image in Xγ .
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It follows directly that, if M is an orbifold, then so is IM (though with
components of different dimensions).

(Exercise: prove that there is a natural isomorphism IS ∼= S×S×S S for any
stack S.)

3.3 Orbifold Cohomology

Henceforth, assume that our orbifold M is Kähler, that is, locally [Xα/Γα] with
Xα a Kähler manifold so that Xα and Xβ induce the same Kähler structure
on the covering space Xα×MXβ . We may then define the orbifold cohomology
of M to be

H∗
orb(M,C) = H∗(IM,C).

To be more precise, the grading on the orbifold cohomology is not the
usual one. Rather, the different connected components have the degrees of
their cohomology shifted by different amounts. For a connected component
of [Xγ/C(γ)] ⊂ I[X/Γ ], the so-called fermionic shift is defined as follows.
Since γ has finite order, it acts on the tangent space TxX at a point x ∈ Xγ

with weights e2πiw1 , . . . , e2πiwn for some rational numbers w1, . . . , wn ∈ [0, 1).
(This is why we need M Kähler, or at least complex: so that the wj will
be well defined.) Then let F (γ) =

∑
j wj . The notation suggests that F (γ)

is the same on all connected components of Xγ/C(γ), which is true in most
interesting cases. In any case, the grading of the cohomology of the component
of Xγ/C(γ) containing x should be increased by 2F (γ). For example, the
correct grading for H∗

orb[X/Γ ] is

Hk
orb[X/Γ ] =

⊕

[γ]

Hk−2F (γ)(Xγ ,C)C(γ).

Warning: the fermionic shift may not be an integer! But it will be in many
interesting cases, like that of a global quotient [X/Γ ] provided that the canon-
ical bundle of X has a nowhere vanishing section preserved by Γ (which we
might call a Calabi–Yau orbifold).

(Exercise: prove that the orbifold Betti numbers of a compact complex
orbifold satisfy Poincaré duality. If this is too hard, do it only for [X/Γ ].)

As we mentioned before, the main interest of orbifold cohomology is that
H∗

orb(M, Λ̄) = H∗
orb(M,C)⊗CΛ̄ admits an associative quantum product, where

Λ̄ is the Novikov ring from Lecture 1. Indeed, stacks of stable maps to the
orbifold M have been constructed, as discussed in the notes of Abramovich
in this volume, and their evaluation maps naturally take values in IM. So
Gromov–Witten invariants provide structure constants for a quantum cup
product on H∗(IM).

There are, of course, algebra homomorphisms C → Λ̄ → C (the latter
given by taking the constant term), and it is tempting to use these, together
with the quantum product on H∗

orb(M, Λ̄), to define a product on H∗
orb(M,C).
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This is the so-called orbifold product, which in fact slightly predates the orb-
ifold quantum product. It involves only the contributions of stable maps of
degree 0. Nevertheless, it usually differs from the standard cup product, as
there usually exist stable maps which have degree 0 (indeed, their images in
the coarse moduli space are just points) but whose evaluations at different
marked points lie in different components of IM.

3.4 Twisted Orbifold Cohomology

Suppose, now, that we have a flat U(1)-gerbe B on our orbifold M. This
immediately induces a flat U(1)-torsor on IM. Indeed, each object of IM

consists of an object of M (say over Y ) and an automorphism of that object
(over id : Y → Y ), hence an automorphism of the U(1)-gerbe Y ×M B over
Y , hence a U(1)-torsor on Y .

Let LB be the flat complex line bundle over IM associated to this torsor.
Now define the twisted orbifold cohomology to be simply

H∗
orb(M, B) = H∗(IM, LB),

where the right-hand side refers to cohomology with local coefficients.
The degree should be again adjusted by the fermionic shift, which is the

same as before. For a trivial gerbe, we recover the previous notion of orbifold
cohomology.

Let’s spell out what this is for a global quotient M = [X/Γ ]. The line
bundle LB over IM can be regarded as a collection, indexed by γ ∈ Γ , of
C(γ)-equivariant line bundles LγB over Xγ ; that is,

LγB = LB|[Xγ/C(γ)].

Then
H∗

orb(M, B) =
⊕

[γ]

H∗(Xγ , LγB)C(γ).

Again, there should be a notion of quantum product on this twisted orb-
ifold cohomology after we tensor with the Novikov ring. What is needed is to
show that the flat line bundles agree under the pullbacks to stable map spaces
by the relevant evaluation maps.

3.5 The Case of Discrete Torsion

One particularly attractive case has received the most attention in the lit-
erature: that of a global quotient [X/Γ ] with a flat U(1)-gerbe pulled back
Γ -equivariantly from a point, that is, a flat U(1)-gerbe pulled back from BΓ .
These are classified, as we saw, by H2(BΓ,U(1)). This group is known in the
physics literature as the discrete torsion, and in the mathematics literature
as the Schur multiplier. It may be interpreted (and computed) as the group
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cohomology of Γ with coefficients in the trivial module U(1). It can also be
regarded as classifying central extensions

1 −→ U(1) −→ Γ̃ −→ Γ −→ 1.

What makes such gerbes attractive is, firstly, that they are relatively plen-
tiful: for example, H2(Zn × Zn,U(1)) ∼= Zn. But also, the flat line bundles
LγB can be calculated over a point and then pulled back toXγ . Consequently,
the underlying line bundles are trivial; only the action of the centralizer C(γ)
is nontrivial. In the literature, this is sometimes called the phase: a homomor-
phism C(γ) → U(1).

One can easily show, if 〈 , 〉 : Γ × Γ → U(1) is a 2-cocycle representing an
element B of discrete torsion in group cohomology, that the phase is given by

δ �→ 〈γ, δ〉
〈δ, γ〉 .

Hence the summand H∗(Xγ , LγB)C(γ) that appears in the definition of
H∗

orb([X/Γ ], B) is simply the isotypical summand of H∗(Xγ ,C), regarded
as a representation of C(γ), that transforms according to the inverse of the
phase above.

3.6 The Fantechi–Göttsche Ring

In fact, for a global quotient [X/Γ ] there is supposed to be a larger ring,
equipped with a Γ -action, so that the orbifold cohomology can be recovered
as the invariant part. This is the Fantechi–Göttsche ring.

Additively it is quite simple: just take

HFG∗(X,Γ ) =
⊕

γ∈Γ

H∗(Xγ , Λ̄).

Notice that the sum runs over group elements, not just conjugacy classes.
As a representation of Γ it is also quite simple: for each δ ∈ Γ , there is

a natural isomorphism Xγ → Xδγδ−1
, hence a pullback on the cohomology

that induces an automorphism of HFG∗(X,Γ ). These fit together to give a
Γ -action that acts on the Γ -grading by conjugation.

The nontrivial part is the quantum multiplication. The claim is that there
are spaces, akin to those of stable maps, but somehow rigidified so that Γ acts
nontrivially on them, and so that the evaluation map goes to

⊔
γ X

γ instead
of just the inertia stack. One should then use these spaces, as in the usual
definition of quantum cohomology, to define maps H∗(Xγ , Λ̄)⊗H∗(Xγ′

, Λ̄) →
H∗(Xγγ′

, Λ̄).
These spaces, and their virtual classes, are constructed by Fantechi and

Göttsche for stable maps of degree 0. As a result, they obtain a ring with
degree 0 terms only, whose invariant part carries the orbifold product. But
there is every reason to expect a quantum product in this setting.
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3.7 Twisting the Fantechi–Göttsche Ring with Discrete Torsion

As the reader may be suspecting, we would like a version of the Fantechi–
Göttsche ring which involves a flat unitary gerbe. Let’s first indicate how to
do this for an element of discrete torsion.

As before, represent our element of discrete torsion by a 2-cocycle 〈 , 〉 :
Γ×Γ→U(1). Being closed under the differential means that for all f, g, h ∈ Γ ,

〈f, g〉〈fg, h〉
〈f, gh〉〈g, h〉 = 1.

Now for any two elements ag ∈ H∗(Xg) and bh ∈ H∗(Xh), regarded as
summands of HFG∗(X,Γ ), we have the usual quantum Fantechi–Göttsche
product ag · bh ∈ H∗(Xgh). Now define a new product by

ag ∗ bh = 〈g, h〉 ag · bh.

This need not be commutative or even super-commutative, but it is associa-
tive: in fact closedness precisely guarantees this.

The action of Γ on HFG∗(X,Γ ) given above is no longer a ring homo-
morphism for the ∗ product. Instead, we need to twist the action as follows:
the action of h ∈ Γ takes H∗(Xg) to H∗(Xhgh−1

) by the same map as before,
but multiplied by the rather odd factor

〈h, g〉〈hg, h−1〉
〈h, h−1〉 .

The justification for this is that first of all, it now acts by ring homomorphisms
for the ∗ product, and second of all, the part invariant under all h ∈ Γ is now
twisted orbifold cohomology in the sense defined above.

3.8 Twisting It with an Arbitrary Flat Unitary Gerbe

Next, let’s see how the previous section is a special case of putting in an
equivariant flat U(1)-gerbe. So let B be such a gerbe on X, equivariant un-
der Γ , or equivalently, a gerbe on [X/Γ ]. As before we get a flat line bundle
LgB over Xg, with a lifting of the C(g)-action. Additively, we define

HFG∗(X,Γ ;B) =
⊕

g∈Γ

H∗(Xg, LgB),

where the terms on the right are cohomology with local coefficients.
As before, to extend the quantum Fantechi–Göttsche product to this

twisted case, one would have to show that the flat line bundles agree under
the pullbacks, by the relevant evaluation maps, to the spaces akin to those
of stable maps. (Exercise: carry this out for degree 0 maps. This amounts to
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showing that when restricted to Xg,h = Xg ∩Xh, there is a natural isomor-
phism LghB ∼= LgB ⊗ LhB.)

There is also, of course, a natural isomorphism induced by h ∈ Γ ,

H∗(Xg, LgB) −→ H∗(Xhgh−1
, Lhgh−1B),

and so Γ acts onHFG∗(X,Γ ;B), and the invariant part is the twisted orbifold
cohomology. Let’s check that, in the case when B is discrete torsion, this
isomorphism is simply the one induced by the identification Xg → Xhgh−1

,
times the rather odd factor.

Let π : Γ̃ → Γ be the central extension determined by B. The automor-
phism of the category BU(1) induced by multiplication by g is, of course, just
tensorization by the U(1)-torsor π−1(g): that is, there is a canonical isomor-
phism LgB ∼= π−1(g). Now, once a cocycle representative is chosen for B, we
can identify Γ̃ with the product Γ × U(1), and hence π−1(g) with U(1), but
this does not respect the group operation. Nevertheless, let’s write {g, t} for
an element of Γ ×U(1) = Γ̃ . In terms of this, the map π−1(g) → π−1(hgh−1)
is given by conjugation by any element of π−1(h), so we might as well take
{h, 1}. Then what we need to compute is

{h, 1} {g, t} {h, 1}−1 = {h, 1} {g, t} {h−1, 1/〈h, h−1〉}
= {hg, 〈h, g〉t} {h−1, 1/〈h, h−1〉}

=
{

hgh−1,
〈h, g〉 〈hg, h−1〉

〈h, h−1〉 t

}

which shows that, in terms of the identification of Γ̃ as a product, the action
of h multiplies π−1(g) by the rather odd factor.

3.9 The Loop Space of an Orbifold

It is high time to explain what all of these rings are supposed to have to do
with Floer cohomology. The claim is that each one can be realized as the Morse
cohomology of a symplectic action function on an appropriate analogue of the
loop space. Associated to each flat U(1)-gerbe will be a flat line bundle on
the loop space, and we should take Floer cohomology with local coefficients.
The multiplications defined on orbifold and Floer cohomology should then
coincide.

Let’s begin with the untwisted Fantechi–Göttsche cohomology. Here, all
the pieces are already in place. Observe that, since Γ is a finite group, every
element acts on X as a finite-order symplectomorphism, so according to the
conjecture from Lecture 1, additively

HFG∗(X,Γ ) =
⊕

γ∈Γ

H∗(Xγ , Λ̄) =
⊕

γ∈Γ

HF ∗(γ).
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But both sides also carry a product: on the right, this is thanks to the linear
map

HF ∗(γ)⊗HF ∗(γ′) −→ HF ∗(γγ′)

discussed in Lecture 1. The conjecture is that this Floer product agrees with
the quantum Fantechi–Göttsche product.

To express this in terms of loop spaces, let LΓX =
⊔

γ∈Γ LγX, where on
the right-hand side γ is regarded as a symplectomorphism ofX and LγX is the
twisted loop space as in Lecture 1. The group Γ acts on LΓX by δ ·� = δ�; this
takes LγX to Lδγδ−1X. But since γm = id for m = |Γ |, there is also an action
of S1 = R/mZ by translating the parameter. We refer to this as rotating the
twisted loops. This action commutes with that of Γ , and its moment map is
exactly the symplectic action function. The fixed-point set is

⊔
γ∈Γ X

γ . So
the Fantechi–Göttsche ring is supposed to be the Morse cohomology of LΓX
with respect to the action function, which is a perfect Bott–Morse function.

One relatively tractable aspect of this conjecture should be the grading.
We have explained how the Fantechi–Göttsche ring is graded: by the usual
grading on cohomology corrected by the fermionic shift. On the other hand,
Floer cohomology also carries a grading. Under the proposed isomorphism,
these gradings presumably agree. Recall, though, that the fermionic shift can
be fractional: this is already the case for the obvious action of Zn on the
Riemann sphere. We artfully evaded discussing the Floer grading for nontrivial
symplectomorphisms, but it evidently would have to take account of this.

Now, let’s move on to consider orbifold cohomology. For an orbifold M,
the space of maps S1 → M, in the sense of stacks, can be regarded as a stack
LM in a natural way. An object of LM over Y is, of course, nothing but
an object of M over Y × S1. Indeed, we wish to regard LM as an infinite-
dimensional symplectic orbifold, just as the loop space of a manifold is an
infinite-dimensional symplectic manifold. We won’t attempt to justify this
beyond observing that, for a global quotient, we have L[X/Γ ] = (LΓX)/Γ .

Once again a circle acts on LM, and now the fixed-point stack of the circle
action can be identified with the inertia stack IM. Again, these statements
have to be considered imprecise since we haven’t defined circle actions on
stacks. But it is clear what we mean in the case of a global quotient, where
we just have a circle action commuting with the Γ -action, and the inertial
stack is

I [X/Γ ] =
(
⊔

γ∈Γ

Xγ

)/

Γ.

So our claim is, once again, that we should regard H∗
orb(M) as the Morse

cohomology of LM, and that the product structures in the Floer and orb-
ifold settings should coincide. Here new technical obstacles would present
themselves, for we are asking to do Morse theory on an orbifold, which is
problematic even in finite dimensions.

Nevertheless, at a heuristic level, our claims are certainly very plausi-
ble. Both the Floer and orbifold cohomologies are defined by “counting”
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holomorphic maps from a thrice-punctured sphere to the orbifold. The differ-
ence lies in what we do to make this formal definition into a mathematically
rigorous count. In algebraic geometry, one has the machinery of Gromov–
Witten theory, with virtual classes and so on.

In symplectic geometry, on the other hand, one has to perturb the equa-
tions and their solutions. As we saw, with a single symplectomorphism φ, to
define HF ∗(φ) one should perturb with exact Hamiltonians until the fixed
points are isolated. For three symplectomorphisms satisfying φ1φ2φ3 = id, to
define the map HF ∗(φ1) ⊗ HF ∗(φ2) → HF ∗(φ−1

3 ) one should presumably
perturb all three simultaneously so that their product remains trivial, but so
that all three have isolated fixed points. Any map from a thrice-punctured
sphere to a global quotient has monodromy of this form, so this indicates how
to define the Floer product on a global quotient. On a general orbifold the
situation is not so clear. However, Gromov–Witten invariants of orbifolds have
been defined in the symplectic literature.

3.10 Addition of the Gerbe

Now suppose that M , a compact Kähler orbifold, carries a flat U(1)-gerbe B.
Consider a map � : S1 → M . This induces a flat U(1)-gerbe �∗B on S1.

This in turn induces a flat U(1)-gerbe on the universal cover R, together
with an automorphism covering the translation t �→ t+ 1. But any flat U(1)-
gerbe on R is trivial, and the trivialization determines another automorphism
covering t �→ t+ 1. Comparing the two gives a U(1)-torsor over a point.

The same construction works in families, so any map S1 × Y →M deter-
mines a flat U(1)-torsor over Y . In particular, there is a flat U(1)-torsor LB
over LM . The isomorphism class of LB is the image of the isomorphism class
of B under the transgression map H2(M,U(1)) → H1(LM,U(1)) defined at
the beginning of Lecture 2.

Now, let T be a trinion, a sphere minus three disjoint disks, and con-
sider a map T → M . Again this induces a flat U(1)-gerbe on the universal
cover T̃ , but now (since π1(T ) has three generators whose product is 1) this
leads to three automorphisms f1, f2, f3 of the trivial gerbe on a point and a
2-isomorphism f1f2f3 ⇒ id. The 2-isomorphism induces a trivialization of the
tensor product L1 ⊗ L2 ⊗ L3 of the three torsors coming from the boundary
components.

Again this works in families, so if Y is any space of maps from the trinion
to M , we get a trivialization of ev∗

1LB ⊗ ev∗
2LB ⊗ ev∗

3LB, where the evalu-
ation maps evi : Y → LM are given by restriction to the boundary circles.
This is why the quantum product makes sense with local coefficients in LB:
when we pull back classes by ev1 and ev2 and cup them together, they push
forward under ev3 to a class with the appropriate local coefficients. (Note that
reversing the orientation of a circle will dualize the relevant torsor.)
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3.11 The Non-Orbifold Case

Let’s see how this plays out in the case where M is simply a compact Kähler
manifold. The isomorphism classes of gerbes then sit in the long exact sequence

H2(M,Z) → H2(M,R) → H2(M,U(1)) → H3(M,Z) → H3(M,R).

The map from integral to real cohomology has as kernel the torsion classes
and as image a full lattice, so this boils down to

0 −→ H2(M,R)
H2(M,Z)

−→ H2(M,U(1)) −→ TorsH3(M,Z) −→ 0,

which of course splits, though not canonically. Consider first what hap-
pens as the gerbe B ranges over the torus H2(M,R)/H2(M,Z). In this
case the following notation is convenient: for any β ∈ H2(M,Z), write
Bβ = exp 2πiB(β) ∈ U(1). The torsor LB restricted to the constant loops
M ⊂ LM is, of course, canonically trivial. But, if F : T → M is any map
from the trinion to M taking the boundary circles to constant loops, the
trivialization of ev∗

1LB ⊗ ev∗
2LB ⊗ ev∗

3LB does not agree with the canonical
one. Rather, as is easily checked, they differ by the scalar factor Bβ , where
β = F∗[T ] is the homology class of F (well defined since F is constant on
boundary components).

This introduces an additional weighting factor of Bβ in the contributions
of degree β holomorphic maps T → M to the Floer product. Since these are
already weighted by qβ , we conclude that the Floer products parametrized by
B ∈ H2(M,R)/H2(M,Z) can be all be obtained from the usual one by the
change of variables q �→ Bq.

In fact, this story extends to the full group H2(M,U(1)), including
TorsH3(M,Z). For by the universal coefficient theorem H2(M,U(1)) =
Hom(H2(M,Z),U(1)), so any element whatsoever ofH2(M,U(1)) can be used
to introduce a weighting factor on the homology classes of holomorphic maps.
Nontrivial torsion in H3(M,Z) is equivalent to nontrivial torsion in H2(M,Z)
and can be used to provide additional new weightings.

So in the non-equivariant case gerbes do not produce any real novelty. We
just recover the usual family of weighting factors on homology classes of stable
maps given us by quantum cohomology. This is not really surprising: the gerbe
was supposed to produce local systems on LM , but then we passed to a cover
L̃M which trivialized those local systems. However, in the equivariant case
we do get something new, namely the twisted quantum products.

3.12 The Equivariant Case

Much as before, if B is a U(1)-gerbe on X, φ : X → X a symplectomorphism,
and an isomorphism φ∗B ∼= B is given, then a U(1)-torsor LφB is naturally
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induced on the twisted loop space LφX. Now it is no longer true that the
restriction of LφB to the constant loops Xφ ⊂ LφX must be trivial.

On the loop space L[XΓ ] = (LΓX)/Γ of a global quotient, then, we get
a torsor LB extending the torsor on the inertia stack discussed before. The
same thing is presumably true for an orbifold M that is not a global quotient.
For any space of maps from the trinion to M, there should be a trivialization
of ev∗

1LB ⊗ ev∗
2LB ⊗ ev∗

3LB, and this should allow a twisted Floer product
to be defined. At this point it should be clear: we conjecture that this agrees
with the twisted orbifold quantum product.

An intriguing question: for the Lagrangian-intersection flavorHF ∗(L1, L2)
of Floer cohomology, is there any analogous way to put in a gerbe?

3.13 A Concluding Puzzle

A basic theorem in K-theory asserts that, on a compact manifoldX, the Chern
character induces an isomorphism

K(X)⊗C ∼= H∗(X,C).

If a finite group Γ acts on X, then there is a similar theorem for the
equivariant K-theory:

KΓ (X)⊗C ∼=
⊕

[γ]

H∗(Xγ ,C)C(γ),

where the sum runs over conjugacy classes. The right-hand side is exactly what
we have been callingH∗

orb(X/Γ,C). This can also be made a ring isomorphism,
provided that the product structure is appropriately defined on both sides.
But it seems to be complicated: the usual product on K-theory goes over to
the usual product on the cohomology of the inertia stack (not the orbifold
cohomology), so to get a ring homomorphism to orbifold cohomology we have
to adjust the operation on K-theory, which we might prefer not to do.

As we have discussed, both sides can be generalized by twisting with a
Γ -equivariant gerbe B, so we might hope for something like

KΓ (X,B)⊗C ∼=
⊕

[γ]

H∗(Xγ , LγB)C(γ).

But now the natural multiplicative structures on the two sides are of com-
pletely different types. The twisted K-theory on the left-hand side is a module
over the untwisted K-theory KΓ (X), while the right-hand side is a ring in its
own right. Can these two algebraic structures be related in any reasonable
way?
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4 Notes on the Literature

4.1 Notes to Lecture 1

Although it is a textbook that does not purport to give all technical de-
tails, the best source for further reading on Floer homology is: D. McDuff and
D.A. Salamon, J-holomorphic curves and symplectic topology, AMS, 2004, ref-
erenced hereinafter as McDuff–Salamon. This is a greatly expanded version
of J-holomorphic curves and quantum cohomology, AMS, 1994. The same au-
thors have also written a wider survey of symplectic geometry: Introduction
to symplectic topology, Oxford, 1998.

The Hamiltonian Formalism: See V.I. Arnold, Mathematical meth-
ods of classical mechanics, Grad. Texts in Math. 60, Springer, 1989, or
V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge,
1984.

The Arnold Conjecture: Floer’s original papers are Morse theory for
Lagrangian intersections, J. Differential Geom. 28 (1988) 513–547; The un-
regularized gradient flow of the symplectic action, Comm. Pure Appl. Math.
41 (1988) 775–813; Witten’s complex and infinite-dimensional Morse theory,
J. Differential Geom. 30 (1989) 207–221; Symplectic fixed points and holo-
morphic spheres, Comm. Math. Phys. 120 (1989) 575–611. The monotone
hypothesis, a technical condition on the first Chern class of the tangent bun-
dle, was removed by H. Hofer and D.A. Salamon, Floer homology and Novikov
rings, The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, and
by G. Liu and G. Tian, Floer homology and Arnold conjecture, J. Differential
Geom. 49 (1998) 1–74. For the Lefschetz fixed-point formula, see Sect. 11.26
of R. Bott and L.W. Tu, Differential forms in algebraic topology, Grad. Texts
in Math. 82, Springer, 1982.

Morse Theory: The classic reference is J. Milnor, Morse theory, Prince-
ton, 1963. The point of view in which the differential counts flow lines did
not become popular until the 1980s; for a winsome account from that era, see
R. Bott, Morse theory indomitable, Publ. Math. IHES 68 (1988) 99–114.

Bott–Morse Theory: The spectral sequence was introduced by Bott in
An application of the Morse theory to the topology of Lie-groups, Bull. Math.
Soc. France 84 (1956) 251–281. See the author’s A perfect Morse function on
the moduli space of flat connections, Topology 39 (2000) 773–787 for a con-
cise account. A thorough discussion of Bott–Morse theory is in D.M. Austin
and P.J. Braam, Morse-Bott theory and equivariant cohomology, The Floer
memorial volume, Progr. Math. 133, Birkhäuser, 1995.

Morse Theory on the Loop Space: See Floer’s original papers. The
Morse index in the Floer theory is called the Conley-Zehnder or Maslov index:
see McDuff–Salamon, Sect. 12.1.

Re-Interpretations: An inspiring exposition on the various forms
of Floer homology is by M.F. Atiyah, New invariants of three- and
four-dimensional manifolds, The mathematical heritage of Hermann Weyl
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(Durham, NC, 1987), Proc. Sympos. Pure Math. 48, AMS, 1988. Another is
by J.-C. Sikorav, Homologie associée à une fonctionnelle (d’après A. Floer),
Astérisque 201-203 (1991) 115–141. For the periodic Floer homology of
Hutchings, see M. Hutchings, An index inequality for embedded pseudoholo-
morphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313–361, or
M. Hutchings and M. Sullivan, The periodic Floer homology of a Dehn twist,
Algebr. Geom. Topol. 5 (2005) 301–354.

Product Structures: Proofs that the Floer product on HF ∗(id) coin-
cides with the quantum product are given by S. Piunikhin, D. Salamon, and M.
Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Con-
tact and symplectic geometry (Cambridge, 1994), Cambridge, 1996, and by
G. Liu and G. Tian, On the equivalence of multiplicative structures in Floer
homology and quantum homology, Acta Math. Sin. (Engl. Ser.) 15 (1999)
53–80.

There are no details in the literature of the product structures for arbitrary
symplectomorphisms. But there is a sketch in McDuff–Salamon, Sect. 12.6.
And the case where M is a Riemann surface has been the subject of sev-
eral papers, e.g. R. Gautschi, Floer homology of algebraically finite mapping
classes, J. Sympl. Geom. 1 (2003) 715–765, and P. Seidel, The symplectic
Floer homology of a Dehn twist, Math. Res. Lett. 3 (1996) 829–834. For the
Novikov ring, see McDuff–Salamon Sect. 11.1. For the Fukaya category, see
many of Fukaya’s papers such as K. Fukaya, Floer homology and mirror sym-
metry I, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian
Submanifolds, AMS/IP Stud. Adv. Math. 23, AMS, 2001, or K. Fukaya and
P. Seidel, Floer homology, A∞-categories and topological field theory, Geom-
etry and physics (Aarhus, 1995), Dekker, 1997.

The vanishing of the Massey products on a Kähler manifold is proved in
P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of
Kähler manifolds, Invent. Math. 29 (1975) 245–274.

The Finite-Order Case: On moment maps and perfect Bott–Morse
functions, see F.C. Kirwan, Cohomology of quotients in symplectic and al-
gebraic geometry, Princeton, 1984. On the finite-order case, a clearly relevant
paper is that of A.B. Givental, Periodic mappings in symplectic topology,
Funct. Anal. Appl. 23 (1989) 287–300.

Givental’s Philosophy is most fully laid out in Homological geometry
and mirror symmetry, Proceedings of the International Congress of Mathe-
maticians (Zürich, 1994), vol. 1, Birkhäuser, 1995. But see also his Equivariant
Gromov–Witten invariants, Internat. Math. Res. Notices 1996 (1996) 613–663,
as well as A.B. Givental and B. Kim, Quantum cohomology of flag manifolds
and Toda lattices, Comm. Math. Phys. 168 (1995), 609–641.

For the “usual package of ideas in equivariant cohomology,” see the elegant
exposition of M.F. Atiyah and R. Bott, The moment map and equivariant
cohomology, Topology 23 (1984) 1–28.
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4.2 Notes to Lecture 2

Much of the basic information on stacks is lifted from B. Fantechi, Stacks
for everybody, European Congress of Mathematics (Barcelona, 2000), vol. 1,
Progr. Math. 201, Birkhäuser, 2001, and from W. Fulton, What is a stack?
Lecture notes available from www.msri.org/publications/ln/msri/2002/
introstacks/fulton/1/index.html.

Some other readable sources are D. Edidin, B. Hassett, A. Kresch, and
A. Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001)
761-777 and A. Vistoli’s appendix to Intersection theory on algebraic stacks
and on their moduli spaces, Invent. Math. 97 (1989) 613–670. Much more
formidable and comprehensive is the book of G. Laumon and L. Moret-Bailly,
Champs algébriques, Ergebnisse Math. 39, Springer, 2000.

Examples of Stacks: The stack of nth roots is discussed by C. Cadman,
Using stacks to impose tangency conditions on curves, Amer. J. Math., to
appear.

Morphisms and 2-Morphisms: A good basic reference on the relevant
category theory is Appendix A of C. Weibel, An introduction to homological
algebra, Cambridge, 1994. For bitorsors, the tetrahedron condition, and so
on, see the book of L. Breen, On the classification of 2-gerbes and 2-stacks,
Astérisque 225 (1994). Group actions on stacks are meticulously treated by
M. Romagny, Group actions on stacks and applications, Michigan Math. J.
53 (2005) 209–236.

Definition of Gerbes and the following four sections: The earliest and
most comprehensive treatment of gerbes is in the book of J. Giraud, Co-
homologie non abélienne, Grund. Math. Wiss. 179, Springer, 1971. Abelian
gerbes are readably discussed by J.-L. Brylinski, Loop spaces, characteristic
classes and geometric quantization, Progr. Math. 107, Birkhäuser, 1993. See
also the book of Breen and the paper of Edidin et al. cited above.

Definition of Orbifolds: A good general discussion, delivered with the
author’s usual quirky charm, appears in Sect. 13 of the samizdat lecture
notes of W. Thurston; for some reason this was not included in the ver-
sion that appeared in book form, but it is available from www.msri.org/
communications/books/gt3m. Another approach to orbifolds, more closely
related to stacks, is that via groupoids, due to Moerdijk and collaborators;
see for example I. Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds
in mathematics and physics (Madison, WI, 2001) Contemp. Math. 310, AMS,
2002.

Twisted Vector Bundles: See, for example, E. Lupercio and B. Uribe,
Gerbes over orbifolds and twisted K-theory, Comm. Math. Phys. 245 (2004)
449–489, or A. Adem and Y. Ruan, Twisted orbifold K-theory, Comm. Math.
Phys. 237 (2003) 533–556.

Strominger–Yau–Zaslow: The original article by A. Strominger,
E. Zaslow, and S.T. Yau, Mirror symmetry is T -duality, Nuclear Phys. B
479 (1996) 243–259, has spawned a vast literature; we mention only the
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addition of gerbes (a.k.a. “B-fields”) by N.J. Hitchin, Lectures on special
Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bun-
dles and Lagrangian Submanifolds, AMS/IP Stud. Adv. Math. 23, AMS,
2001, and an appealing survey by R. Donagi and T. Pantev, Torus fibrations,
gerbes, and duality, preprint. The author’s papers giving examples where
SYZ is satisfied are M. Thaddeus, Mirror symmetry, Langlands duality, and
commuting elements of Lie groups, Internat. Math. Res. Notices 2001 (2001)
1169–1193, and T. Hausel and M. Thaddeus, Mirror symmetry, Langlands
duality, and the Hitchin system, Invent. Math. 153 (2003) 197–229.

4.3 Notes to Lecture 3

A good general reference on quantum cohomology and Gromov–Witten in-
variants (without orbifolds) is Part 4 of K. Hori et al., Mirror symmetry,
AMS, 2003. This volume comprises the proceedings of a school run by the
Clay Mathematics Institute.

Cohomology of Sheaves on Stacks: A convenient reference for
Grothendieck’s theorem is I.G. Macdonald, Symmetric products of an al-
gebraic curve, Topology 1 (1962) 319–343.

Orbifold Cohomology: The orbifold product (where quantum parame-
ters are set to zero) was introduced by W. Chen and Y. Ruan, A new co-
homology theory of orbifold, Comm. Math. Phys. 248 (2004) 1–31. But the
quantum product, though constructed later, appears to be more fundamen-
tal: for this see D. Abramovich, T. Graber, and A. Vistoli, Gromov–Witten
theory of Deligne-Mumford stacks, preprint. See also Abramovich’s notes in
this volume.

Twisted Orbifold Cohomology: Among the many interesting recent
works on the subject, we mention only two by Y. Ruan: Discrete torsion
and twisted orbifold cohomology, J. Symplectic Geom. 2 (2003) 1–24, and
Stringy orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001),
Contemp. Math. 310, AMS, 2002.

The Case of Discrete Torsion: The seminal physics paper is by
C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15
(1995), 189–214. In fact a whole book had been written by a mathematician,
G. Karpilovsky, The Schur multiplier, Oxford, 1987.

The Fantechi-Göttsche Ring was introduced by B. Fantechi and
L. Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117
(2003) 197–227. Since they set the quantum parameters to zero, the Γ -
invariant part of their ring carries the orbifold product. Their product has
not yet been fully extended to a quantum product, but there is some relevant
discussion of the necessary rigidification in T. Jarvis, R. Kaufmann, and T.
Kimura, Pointed admissible G-covers and G-equivariant cohomological field
theories, Compos. Math. 141 (2005) 926–978, and in the 2006 Ph.D. thesis of
Maciek Mizerski at the University of British Columbia.
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The Loop Space of an Orbifold: Gromov–Witten invariants for orb-
ifolds are defined symplectically by W. Chen and Y. Ruan in Orbifold
Gromov–Witten theory, Orbifolds in mathematics and physics (Madison, WI,
2001), Contemp. Math. 310, AMS, 2002, and algebraically by D. Abramovich,
T. Graber, and A. Vistoli, Gromov–Witten theory of Deligne-Mumford stacks,
preprint.

A Concluding Puzzle: For the basic theorem in K-theory, see
M.F. Atiyah, K-theory, Benjamin, 1967. The equivariant version of the theo-
rem is usually attributed to M.F. Atiyah and G.B. Segal, On equivariant Euler
characteristics, J. Geom. Phys. 6 (1989) 671–677. However, an alternative
lineage for this result is traced by A. Adem and Y. Ruan, Twisted orbifold
K-theory, Comm. Math. Phys. 237 (2003) 533–556. Adem and Ruan also
give a ring isomorphism from equivariant K-theory to the cohomology of the
inertia stack. The adjusted ring homomorphism going to orbifold cohomology
is constructed by T. Jarvis, R. Kaufmann, and T. Kimura, Stringy K-theory
and the Chern character, preprint. Another such construction, which extends
to twisted K-theory, is given by A. Adem, Y. Ruan, and B. Zhang, A stringy
product on twisted orbifold K-theory, preprint.
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The Moduli Space of Curves
and Gromov–Witten Theory

R. Vakil∗

Department of Mathematics, Stanford University
Stanford, CA 94305–2125, USA
vakil@math.stanford.edu

1 Introduction

These notes are intended to explain how Gromov–Witten theory has been

AQ: We have
changed the font
style for headings to
make consistent
with other chapters.
Please check
whether it is ok.

useful in understanding the moduli space of complex curves. We will focus
on the moduli space of smooth curves and how much of the recent progress
in understanding it has come through “enumerative” invariants in Gromov–
Witten theory, something which we take for granted these days, but which
should really be seen as surprising. There is one sense in which it should
not be surprising – in many circumstances, modern arguments can be loosely
interpreted as the fact that we can understand curves in general by study-
ing branched covers of the complex projective line, as all curves can be so
expressed. We will see this theme throughout the notes, from a Riemann-
style parameter count in Sect. 2.2 to the tool of relative virtual localization in
Gromov–Witten theory in Sect. 5.

These notes culminate in an approach to Faber’s intersection number con-
jecture using relative Gromov–Witten theory (joint work with Goulden and
Jackson [GJV3]). One motivation for this article is to convince the reader that
our approach is natural and straightforward.

We first introduce the moduli space of curves, both the moduli space of
smooth curves, and the Deligne–Mumford compactification, which we will
see is something forced upon us by nature, not arbitrarily imposed by man.
We will then define certain geometrically natural cohomology classes on the
moduli space of smooth curves (the tautological subring of the cohomology
ring), and discuss Faber’s foundational conjectures on this subring. We will
then extend these notions to the moduli space of stable curves, and discuss
Faber-type conjectures in this context. A key example is Witten’s conjecture,

∗ Partially supported by NSF CAREER/PECASE Grant DMS–0228011, and an
Alfred P. Sloan Research Fellowship.

2000 Mathematics Subject Classification: Primary 14H10, 14H81, 14N35, Sec-
ondary 14N10, 53D45, 14H15.

K. Behrend, M. Manetti (eds.), Enumerative Invariants in Algebraic Geometry 143
and String Theory. Lecture Notes in Mathematics 1947,
c© Springer-Verlag Berlin Heidelberg 2008
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which really preceded (and motivated) Faber’s conjectures, and opened the
floodgates to the last decade’s flurry of developments. We will then discuss
other relations in the tautological ring (both known and conjectural). We will
describe Theorem � (Theorem 4.1), a blunt tool for proving many statements,
and Y.-P. Lee’s Invariance Conjecture, which may give all relations in the
tautological ring. In order to discuss the proof of Theorem �, we will be finally
drawn into Gromov–Witten theory, and we will quickly review the necessary
background. In particular, we will need the notion of “relative Gromov–Witten
theory”, including Jun Li’s degeneration formula [Li1, Li2] and the relative
virtual localization formula [GrV3]. Finally, we will use these ideas to tackle
Faber’s intersection number conjecture.

Because the audience has a diverse background, this article is intended
to be read at many different levels, with as much rigor as the reader is able
to bring to it. Unless the reader has a solid knowledge of the foundations of
algebraic geometry, which is most likely not the case, he or she will have to
be willing to take a few notions on faith, and to ask a local expert a few
questions.

We will cover a lot of ground, but hopefully this article will include enough
background that the reader can make explicit computations to see that he or
she can actively manipulate the ideas involved. You are strongly encouraged
to try these ideas out via the exercises. They are of varying difficulty, and the
amount of rigor required for their solution should depend on your background.

Here are some suggestions for further reading. For a gentle and quick in-
troduction to the moduli space of curves and its tautological ring, see [V2].
For a pleasant and very detailed discussion of moduli of curves, see Harris
and Morrison’s foundational book [HM]. An on-line resource discussing curves
and links to topology (including a glossary of important terms) is available at
[GiaM]. For more on curves, Gromov–Witten theory, and localization, see
[HKKPTVVZ, Chaps. 22–27], which is intended for both physicists and math-
ematicians. Cox and Katz’ wonderful book [CK] gives an excellent mathemat-
ical approach to mirror symmetry. There is as of yet no ideal book introducing
(Deligne–Mumford) stacks, but Fantechi’s [Fan] and Edidin’s [E] both give an
excellent idea of how to think about them and work with them, and the ap-
pendix to Vistoli’s paper [Vi] lays out the foundations directly, elegantly, and
quickly, although this is necessarily a more serious read.
Acknowledgments. I am grateful to the organizers of the June 2005 confer-
ence in Cetraro, Italy on “Enumerative invariants in algebraic geometry and
string theory” (Kai Behrend, Barbara Fantechi, and Marco Manetti), and to
Fondazione C.I.M.E. (Centro Internazionale Matematico Estivo). I learned
this material from my co-authors Graber, Goulden, and Jackson, and from
the other experts in the field, including Carel Faber, Rahul Pandharipande,
Y.-P. Lee, . . . , whose names are mentioned throughout this article. I thank
Carel Faber, Soren Galatius, Tom Graber, Arthur Greenspoon, Y.-P. Lee and
Rahul Pandharipande for improving the manuscript. I am very grateful to
Renzo Cavalieri, Sam Payne, and the participants in their April 2006 “Moduli
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space of Curves and Gromov–Witten Theory Workshop” at the University of
Michigan for their close reading and many detailed suggestions.

2 The Moduli Space of Curves

We begin with some conventions and terminology. We will work over C, al-
though these questions remain interesting over arbitrary fields. We will work
algebraically, and hence only briefly mention other important approaches to
the subjects, such as the construction of the moduli space of curves as a
quotient of Teichmüller space.

By smooth curve, we mean a compact (also known as proper or com-
plete), smooth (also known as nonsingular) complex curve, i.e. a Riemann
surface, see Fig. 1. Our curves will be connected unless we especially describe
them as “possibly disconnected”. In general our dimensions will be algebraic
or complex, which is why we refer to a Riemann surface as a curve – they
have algebraic/complex dimension 1. Algebraic geometers tend to draw “half-
dimensional” cartoons of curves (see also Fig. 1).

Fig. 1. A complex curve, and its real “cartoon”

The reader likely needs no motivation to be interested in Riemann sur-
faces. A natural question when you first hear of such objects is: what are the
Riemann surfaces? How many of them are there? In other words, this question
asks for a classification of curves.

2.1. Genus. A first invariant is the genus of the smooth curve, which can
be interpreted in three ways: (1) the number of holes (topological genus; for
example, the genus of the curve in Fig. 1 is 3), (2) dimension of space of
differentials (= h0(C,ΩC), geometric genus), and (3) the first cohomology
group of the sheaf of algebraic functions (h1(C,OC), arithmetic genus). These AQ: We have

followed the
continuous equation
numbering. Please
check.

three notions are the same. Notions (2) and (3) are related by Serre duality

(1) H0(C,F)×H1(C,K⊗ F∗) → H1(C,K) ∼= C

where K is the canonical line bundle, which for smooth curves is the sheaf
of differentials ΩC . Here F can be any finite rank vector bundle; Hi refers to
sheaf cohomology. Serre duality implies that h0(C,F) = h1(C,K⊗F∗), hence
(taking F = K). h0(C,ΩC) = h1(C,OC). (We will use these important facts
in the future!)
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As we are working purely algebraically, we will not discuss why (1) is the
same as (2) and (3).

2.2. There Is a (3g − 3)-Dimensional Family of Genus g Curves
Remarkably, it was already known to Riemann [R, p. 134] that there is a

“(3g−3)-dimensional family of genus g curves”. You will notice that this can’t
possibly be right if g = 0, and you may know that this isn’t right if g = 1, as
you may have heard that elliptic curves are parametrized by the j-line, which
is one-dimensional. So we will take g > 1, although there is a way to extend
to g = 0 and g = 1 by making general enough definitions. (Thus there is a
“(−3)-dimensional moduli space” of genus 0 curves, if you define moduli space
appropriately – in this case as an Artin stack. But that is another story.)

Let us now convince ourselves (informally) that there is a (3g − 3)-
dimensional family of genus g curves. This will give me a chance to introduce
some useful facts that we will use later. I will use the same notation for vector
bundles and their sheaves of sections. The sheaf of sections of a line bundle is
called an invertible sheaf.

We will use five ingredients:
(1) Serre duality (1). This is a hard fact.
(2) The Riemann–Roch formula. If F is any coherent sheaf (for example, a
finite rank vector bundle) then

h0(C,F)− h1(C,F) = deg F − g + 1.

This is an easy fact, although I will not explain why it is true.
(3) Line bundles of negative degree have no non-zero sections: if L is a line

bundle of negative degree, then h0(C,L) = 0 . Here is why: the degree of a
line bundle L can be defined as follows. Let s be any non-zero meromorphic
section of L. Then the degree of L is the number of zeros of sminus the number
of poles of s. Thus if L has an honest non-zero section (with no poles), then
the degree of s is at least 0.
Exercise. If L is a degree 0 line bundle with a non-zero section s, show that
L is isomorphic to the trivial bundle (the sheaf of functions) O.
(4) Hence if L is a line bundle with deg L > deg K, then h1(C,L) = 0 by

Serre duality, from which h0(C,L) = deg L− g + 1 by Riemann–Roch.
(5) The Riemann–Hurwitz formula. Suppose C → P

1 is a degree d cover of
the complex projective line by a genus g curve C, with ramification r1, . . . ,
rn at the ramification points on C. Then

χtop(C) = dχtop(P1)−
∑

(ri − 1),

where χtop is the topological Euler characteristic, i.e.

(2) 2− 2g = 2d−
∑

(ri − 1).
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We quickly review the language of divisors and line bundles on smooth
curves. A divisor is a formal linear combination of points on C, with integer
coefficients, finitely many non-zero. A divisor is effective if the coefficients are
non-negative. The degree of a divisor is the sum of its coefficients. Given a
divisor D =

∑
nipi (where the pi form a finite set), we obtain a line bundle

O(D) by “twisting the trivial bundle ni times at the point pi”. This is best
understood in terms of the sheaf of sections. Sections of the sheaf O(D) (over
some open set) correspond to meromorphic functions that are holomorphic
away from the pi; and if ni > 0, have a pole of order at most ni at pi; and
if ni < 0, have a zero of order at least −ni at pi. Each divisor yields a line
bundle along with a meromorphic section (obtained by taking the function 1
in the previous sentence’s description). Conversely, each line bundle with a
non-zero meromorphic section yields a divisor, by taking the “divisor of zeros
and poles”: if s is a non-zero meromorphic section, we take the divisor which
is the sum of the zeros of s (with multiplicity) minus the sum of the poles
of s (with multiplicity). These two constructions are inverse to each other.
In short, line bundles with the additional data of a non-zero meromorphic
section correspond to divisors. This identification is actually quite subtle the
first few times you see it, and it is worth thinking through it carefully if you
have not done so before. Similarly, line bundles with the additional data of a
non-zero holomorphic section correspond to effective divisors.

We now begin our dimension count. We do it in three steps.
Step 1. Fix a curve C, and a degree d. Let Picd C be the set of degree d line
bundles on C. Pick a point p ∈ C. Then there is an bijection Pic0 C → Picd C
given by F → F(dp). (By F(dp), we mean the “twist of F at p, d times”,
which is the same construction sketched two paragraphs previously. In terms
of sheaves, if d > 0, this means the sheaf of meromorphic sections of F, that
are required to be holomorphic away from p, but may have a pole of order
at most d at p. If d < 0, this means the sheaf of holomorphic sections of F that
are required to have a zero of order at least −d at p.) If we believe Picd C has
some nice structure, which is indeed the case, then we would expect that this
would be an isomorphism. In fact, Picd can be given the structure of a complex
manifold or complex variety, and this gives an isomorphism of manifolds or
varieties.
Step 2: “dim Picd C = g”. There are quotes around this equation because
so far, Picd C is simply a set, so this will just be a plausibility argument. By
Step 1, it suffices to consider any d > deg K. Say dim Picd C = h. We ask:
how many degree d effective divisors are there (i.e. what is the dimension of
this family)? The answer is clearly d, and Cd surjects onto this set (and is
usually d!-to-1).

But we can count effective divisors in a different way. There is an h-
dimensional family of line bundles by hypothesis, and each one of these has
a (d − g + 1)-dimensional family of non-zero sections, each of which gives a
divisor of zeros. But two sections yield the same divisor if one is a multiple of
the other. Hence we get: h+ (d− g + 1)− 1 = h+ d− g.
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Thus d = h+ d− g, from which h = g as desired.
Note that we get a bit more: if we believe that Picd has an algebraic

structure, we have a fibration (Cd)/Sd → Picd, where the fibers are isomorphic
to P

d−g. In particular, Picd is reduced (I won’t define this!), and irreducible.
(In fact, as many of you know, it is isomorphic to the dimension g abelian
variety Pic0 C.)
Step 3. Say Mg has dimension p. By fact (4) above, if d � 0, and D is a
divisor of degree d, then h0(C,O(D)) = d−g+1. If we take two general sections
s, t of the line bundle O(D), we get a map to P

1 (given by p → [s(p); t(p)] –
note that this is well-defined), and this map is degree d (the preimage of [0; 1]
is precisely div s, which has d points counted with multiplicity). Conversely,
any degree d cover f : C → P

1 arises from two linearly independent sections
of a degree d line bundle. (To get the divisor associated to one of them,
consider f−1([0; 1]), where points are counted with multiplicities; to get the
divisor associated to the other, consider f−1([1; 0]).) Note that (s, t) gives
the same map to P

1 as (s′, t′) if and only (s, t) is a scalar multiple of (s′, t′).
Hence the number of maps to P

1 arising from a fixed curve C and a fixed
line bundle L corresponds to the choices of two sections (2(d − g + 1) by
fact (4)), minus 1 to forget the scalar multiple, for a total of 2d − 2g + 1.
If we let the the line bundle vary, the number of maps from a fixed curve is
2d− 2g + 1 + dim Picd(C) = 2d− g + 1. If we let the curve also vary, we see
that the number of degree d genus g covers of P

1 is p+ 2d− g + 1 .
But we can also count this number using the Riemann–Hurwitz formula

(2). By that formula, there will be a total of 2g+2d−2 branch points (including
multiplicity). Given the branch points (again, with multiplicity), there is a
finite amount of possible monodromy data around the branch points. The
Riemann Existence Theorem tells us that given any such monodromy data,
we can uniquely reconstruct the cover, so we have

p+ 2d− g + 1 = 2g + 2d− 2,

from which p = 3g − 3 .
Thus there is a (3g−3)-dimensional family of genus g curves! (By showing

that the space of branched covers is reduced and irreducible, we could again
“show” that the moduli space is reduced and irreducible.)

2.3. The Moduli Space of Smooth Curves
It is time to actually define the moduli space of genus g smooth curves,

denoted Mg, or at least to come close to it. By “moduli space of curves” we
mean a “parameter space for curves”. As a first approximation, we mean the
set of curves, but we want to endow this set with further structure (ideally that
of a manifold, or even of a smooth complex variety). This structure should be
given by nature, not arbitrarily defined.

Certainly if there were such a space Mg, we would expect a universal curve
over it Cg → Mg, so that the fiber above the point [C] representing a curve
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C would be that same C. Moreover, whenever we had a family of curves
parametrized by some base B, say CB → B (where the fiber above any point
b ∈ B is some smooth genus g curve Cb), there should be a map f : B → Mg

(at the level of sets sending b ∈ B to [Cb] ∈ Mg), and then f∗Cg should be
isomorphic to CB.

We can turn this into a precise definition. The families we should consider
should be “nice” (“fibrations” in the sense of differential geometry). It turns
out that the corresponding algebraic notion of “nice” is flat, which I will not
define here. We can define Mg to be the scheme such that the maps from any
scheme B to it are in natural bijection with nice (flat) families of genus g
curves over B. (Henceforth all families will be assumed to be “nice” = flat.)
Some thought will convince you that only one space (up to isomorphism) ex-
ists with this property. This “abstract nonsense” is called Yoneda’s Lemma.
The argument is general, and applies to nice families of any sort of thing. Cat-
egorical translation: we are saying that this contravariant functor of families
is represented by the functor Hom(·,Mg). Translation: if such a space exists,
then it is unique, up to unique isomorphism.

If there is such a moduli space Mg, we gain some additional information:
cohomology classes on Mg are “characteristic classes” for families of genus
g curves. More precisely, given any family of genus g curves CB → B, and
any cohomology class α ∈ H∗(Mg), we have a cohomology class on B: if
f : B → Mg is the moduli map, take f∗α. These characteristic classes behave
well with respect to pullback: if CB′ → B′ is a family obtained by pullback
from CB → B, then the cohomology class on B′ induced by α is the pullback
of the cohomology class on B induced by α. The converse turns out to be
true: any such “universal cohomology class”, defined for all families and well-
behaved under pullback, arises from a cohomology class on Mg. (The argument
is actually quite tautological, and the reader is invited to think it through.)
More generally, statements about the geometry of Mg correspond to “universal
statements about all families”.

Here is an example of a consequence. A curve is hyperelliptic if it admits a
2-to-1 cover of P

1. In the space of smooth genus 3 curves M3, there is a Cartier
divisor of hyperelliptic curves, which means that the locus of hyperelliptic
curves is locally cut out by a single equation. Hence in any family of genus
3 curves over an arbitrarily horrible base, the hyperelliptic locus are cut out
by a single equation. (For scheme-theoretic experts: for any family CB → B
of genus 3 curves, there is then a closed subscheme of B corresponding to
the hyperelliptic locus. What is an intrinsic scheme-theoretic definition of
this locus?)

Hence all we have to do is show that there is such a scheme Mg. Sadly,
there is no such scheme! We could just throw up our hands and end these
notes here. There are two patches to this problem. One solution is to relax
the definition of moduli space (to get the notion of coarse moduli space), which
doesn’t quite parametrize all families of curves. A second option is to extend
the notion of space. The first choice is the more traditional one, but it is
becoming increasingly clear that the second choice the better one.
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This leads us to the notion of a stack, or in this case, the especially nice
stack known as a Deligne–Mumford stack. This is an extension of the idea of
a scheme. Defining a Deligne–Mumford stack correctly takes some time, and
is rather tiring and uninspiring, but dealing with Deligne–Mumford stacks on
a day-to-day basis is not so bad – you just pretend it is a scheme. One might
compare it to driving a car without knowing how the engine works, but really
it is more like driving a car while having only the vaguest idea of what a car is.

Thus I will content myself with giving you a few cautions about where your
informal notion of Deligne–Mumford stack should differ with your notion of
scheme. (I feel less guilty about this knowing that many analytic readers
will be similarly uncomfortable with the notion of a scheme.) The main issue
is that when considering cohomology rings (or the algebraic analog, Chow
rings), we will take Q-coefficients in order to avoid subtle technical issues.
The foundations of intersection theory for Deligne–Mumford stacks were laid
by Vistoli in [Vi]. (However, thanks to work of Andrew Kresch [Kr], it is
possible to take integral coefficients using the Chow ring. Then we have to
accept the fact that cohomology groups can be non-zero even in degree higher
than the dimension of the space. This is actually something that for various
reasons we want to be true, but such a discussion is not appropriate in these
notes.)

A smooth (or nonsingular) Deligne–Mumford stack (over C) is essentially
the same thing as a complex orbifold. The main caution about saying that
they are the same thing is that there are actually three different definitions
of orbifold in use, and many users are convinced that their version is the only
version in use, causing confusion for readers such as myself.

Hence for the rest of these notes, we will take for granted that there is
a moduli space of smooth curves Mg (and we will make similar assumptions
about other moduli spaces).

Here are some facts about the moduli space of curves. The space Mg has
(complex) dimension 3g − 3. It is smooth (as a stack), so it is an orbifold
(given the appropriate definition), and we will imagine that it is a manifold.
We have informally seen that it is irreducible.

We make a brief excursion outside of algebraic geometry to show that this
space has some interesting structure. In the analytic setting, Mg can be ex-
pressed as the quotient of Teichmüller space (a subset of C

3g−3 homeomorphic
to a ball) by a discrete group, known as the mapping class group. Hence the
cohomology of the quotient Mg is the group cohomology of the mapping class
group. (Here it is essential that we take the quotient as an orbifold/stack.)
Here is a fact suggesting that the topology of this space has some elegant
structure:

(3) χ(Mg) = B2g/2g(2g − 2)

(due to Harer and Zagier [HZ]), where B2g denotes the 2gth Bernoulli number.
Other exciting recent work showing the attractive structure of the co-

homology ring is Madsen and Weiss’ proof of Madsen’s generalization of
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Mumford’s conjecture [MW]. We briefly give the statement. There is a natural
isomorphism between H∗(Mg; Q) and H∗(Mg+1; Q) for ∗ < (g − 1)/2 (due
to Harer and Ivanov). Hence we can define the ring we could informally de-
note by H∗(M∞; Q). Mumford conjectured that this is a free polynomial ring
generated by certain cohomology classes (κ-classes, to be defined in Sect. 3.1).
Madsen and Weiss proved this, and a good deal more. (See [T] for an overview
of the topological approach to the Mumford conjecture, and [MT] for a more
technical discussion.)

2.4. Pointed Nodal Curves, and the Moduli Space of Stable Pointed
Curves

As our moduli space Mg is a smooth orbifold of dimension 3g − 3, it is
wonderful in all ways but one: it is not compact. It would be useful to have a
good compactification, one that is still smooth, and also has good geometric
meaning. This leads us to extend our notion of smooth curves slightly.

A node of a curve is a singularity analytically isomorphic to xy = 0 in
C

2. A nodal curve is a curve (compact, connected) smooth away from a finite
number of points (possibly zero), which are nodes. An example is sketched in
Fig. 2, in both “real” and “cartoon” form. One caution with the “real” picture:
the two branches at the node are not tangent; this optical illusion arises from
the need of our limited brains to represent the picture in three-dimensional
space. A pointed nodal curve is a nodal curve with the additional data of n
distinct smooth points labeled 1 through n (or n distinct labels of your choice,
such as p1 through pn).

genus 1

(geometric) genus 0
1

1

Fig. 2. A pointed nodal curve, and its real “cartoon”

The geometric genus of an irreducible curve is its genus once all of the
nodes are “unglued”. For example, the components of the curve in Fig. 2 have
genus 1 and 0.

We define the (arithmetic) genus of a pointed nodal curve informally as
the genus of a “smoothing” of the curve, which is indicated in Fig. 3. More
formally, we define it as h1(C,OC). This notion behaves well with respect to
deformations. (More formally, it is locally constant in flat families.)
Exercise (for those with enough background): If C has δ nodes, and its irre-
ducible components have geometric genus g1, . . . , gk respectively, show that
the arithmetic genus of C is

∑k
i=1(gi − 1) + 1 + δ.
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1

Fig. 3. By smoothing the curve of Fig. 2, we see that its genus is 2

We define the dual graph of a pointed nodal curve as follows. It consists of
vertices, edges, and “half-edges”. The vertices correspond to the irreducible
components of the curve, and are labeled with the geometric genus of the
component. When the genus is 0, the label will be omitted for convenience.
The edges correspond to the nodes, and join the corresponding vertices. (Note
that an edge can join a vertex to itself.) The half-edges correspond to the
labeled points. The dual graph corresponding to Fig. 2 is given in Fig. 4.

11

Fig. 4. The dual graph to the pointed nodal curve of Fig. 2 (unlabeled vertices are
genus 0)

A nodal curve is said to be stable if it has finite automorphism group. This
is equivalent to a combinatorial condition: (1) each genus 0 vertex of the dual
graph has valence at least three, and (2) each genus 1 vertex has valence at
least one.
Exercise. Prove this. You may use the fact that a genus g ≥ 2 curve has
finite automorphism group, and that an elliptic curve (i.e. a 1-pointed genus
1 curve) has finite automorphism group. While you are proving this, you may
as well show that the automorphism group of a stable genus 0 curve is trivial.

2.5. Exercise. Draw all possible stable dual graphs for g = 0 and n ≤ 5; also
for g = 1 and n ≤ 2. In particular, show there are no stable dual graphs if
(g, n) = (0, 0), (0, 1), (0, 2), (1, 0).
Fact. There is a moduli space of stable nodal curves of genus g with n marked
points, denoted Mg,n. There is an open subset corresponding to smooth curves,
denoted Mg,n. The space Mg,n is irreducible, of dimension 3g − 3 + n, and
smooth.

(For Gromov–Witten experts: you can interpret this space as the moduli
space of stable maps to a point. But this is in some sense backwards, both
historically, and in terms of the importance of both spaces.)
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Exercise. Show that χ(Mg,n) = (−1)n (2g+n−3)!B2g

2g(2g−2)! , using the Harer–Zagier
fact earlier (3).

2.6. Strata. To each stable graph Γ of genus g with n points, we associate
the subset MΓ ⊂ Mg,n of curves with that dual graph. This translates to the
space of curves of a given topological type. Notice that if Γ is the dual graph
given in Fig. 4, we can obtain any curve in MΓ by taking a genus 0 curve
with three marked points and gluing two of the points together, and gluing
the result to a genus 1 curve with two marked points. (This is most clear in
Fig. 2.) Thus each MΓ is naturally the quotient of a product of Mg′,n′ ’s by a
finite group. For example, if Γ is as in Fig. 4, MΓ = (M0,3 ×M1,2)/S2.

These MΓ give a stratification of Mg,n, and this stratification is essentially
as nice as one could hope. For example, the divisors (the closure of the codi-
mension one strata) meet transversely along smaller strata. The dense open
set Mg,n is one stratum; the rest are called boundary strata. The codimension
1 strata are called boundary divisors.

Notice that even if we were initially interested only in unpointed Riemann
surfaces, i.e. in the moduli space Mg, then this compactification forces us to
consider MΓ , which in turn forces us to consider pointed nodal curves.
Exercise. By computing dimMΓ , check that the codimension of the boundary
stratum corresponding to a dual graph Γ is precisely the number of edges of
the dual graph. (Do this first in some easy case!)

2.7. Important exercise. Convince yourself that M0,4
∼= P

1. The isomorphism
is given as follows. Given four distinct points p1, p2, p3, p4 on a genus 0 curve
(isomorphic to P

1), we may take their cross-ratio λ = (p4−p1)(p2−p3)/(p4−
p3)(p2−p1), and in turn the cross-ratio determines the points p1, . . . , p4 up to
automorphisms of P

1. The cross-ratio can take on any value in P
1−{0, 1,∞}.

The three 0-dimensional strata correspond to these three missing points –
figure out which stratum corresponds to which of these three points.
Exercise. Write down the strata of M0,5, along with which stratum is in the
closure of which other stratum (cf. Exercise 2.5).

2.8. Natural Morphisms Among These Moduli Spaces
We next describe some natural maps between these moduli spaces. For ex-

ample, given any n-pointed genus g curve (where (g, n) �=(0, 3), (1, 1), n > 0),
we can forget the nth point, to obtain an (n − 1)-pointed nodal curve of
genus g. This curve may not be stable, but it can be “stabilized” by contract-
ing all components that are 2-pointed genus 0 curves. This gives us a map
Mg,n → Mg,n−1, which we dub the forgetful morphism.
Exercise. Create an example of a dual graph where stabilization is necessary.
Also, explain why we excluded the cases (g, n) = (0, 3), (1, 1).

2.9. Important exercise. Interpret Mg,n+1 → Mg,n as the universal curve
over Mg,n. (This is a bit subtle. Suppose C is a nodal curve, with node p.
Which stable pointed curve with 1 marked point corresponds to p? Similarly,
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suppose (C, p) is a pointed curve. Which stable 2-pointed curve corresponds
to p?)

Given an (n1 +1)-pointed curve of genus g1, and an (n2 +1)-pointed curve
of genus g2, we can glue the first curve to the second along the last point of
each, resulting in an (n1+n2)-pointed curve of genus g1+g2. This gives a map

Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 .

Similarly, we could take a single (n+2)-pointed curve of genus g, and glue its
last two points together to get an n-pointed curve of genus g + 1; this gives
a map

Mg,n+2 → Mg+1,n.

We call these last two types of maps gluing morphisms.
We call the forgetful and gluing morphisms the natural morphisms between

moduli spaces of curves.

3 Tautological Cohomology Classes on Moduli Spaces
of Curves, and Their Structure

We now define some cohomology classes on these two sorts of moduli spaces
of curves, Mg and Mg,n. Clearly by Harer and Zagier’s Euler-characteristic
calculation (3), we should expect some interesting classes, and it is a chal-
lenge to name some. Inside the cohomology ring, there is a subring, called
the tautological (sub)ring of the cohomology ring, that consists informally of
the geometrically natural classes. An equally informal definition of the tau-
tological ring is: all the classes you can easily think of. (Of course, this isn’t
a mathematical statement. But we do not know of a single algebraic class in
H∗(Mg) that can be explicitly written down, that is provably not tautological,
even though we expect that they exist.) Hence we care very much about this
subring.

The reader may work in cohomology, or in the Chow ring (the algebraic
analogue of cohomology). The tautological elements will live naturally in ei-
ther, and the reader can choose what he or she is most comfortable with. In
order to emphasize that one can work algebraically, and also that our dimen-
sions and codimensions are algebraic, I will use the notation of the Chow ring
Ai, but most readers will prefer to interpret all statements in the cohomology
ring. There is a natural map Ai → H2i, and the reader should be conscious
of that doubling of the index.

If α is a 0-cycle on a compact orbifold X, then
∫

X
α is defined to be its

degree.

3.1. Tautological Classes on Mg, Take One
A good way of producing cohomology classes on Mg is to take Chern

classes of some naturally defined vector bundles.
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On the universal curve π : Cg → Mg over Mg, there is a natural line
bundle L; on the fiber C of Cg, it is the line bundle of differentials of C.
Define ψ := c1(L), which lies in A1(Cg) (or H2(Cg) – but again, we will stick
to the language of A∗). Then ψi+1 ∈ Ai+1(Cg), and as π is a proper map, we
can push this class forward to Mg, to get the Mumford–Morita–Miller κ-class

κi := π∗ψ
i+1, i = 0, 1, . . . .

Another natural vector bundle is the following. Each genus g curve (i.e.
each point of Mg) has a g-dimensional space of differentials (Sect. 2.1), and
the corresponding rank g vector bundle on Mg is called the Hodge bundle,
denoted E. (It can also be defined by E := π∗L.) We define the λ-classes by

λi := ci(E), i = 0, . . . , g.

We define the tautological ring as the subring of the Chow ring generated
by the κ-classes. (We will have another definition in Sect. 3.8.) This ring is
denoted R∗(Mg) ⊂ A∗(Mg) (or R∗(Mg) ⊂ H2∗(Mg)).

It is a miraculous “fact” that everything else you can think of seems to
lie in this subring. For example, the following generating function identity
determines the λ-classes from the κ-classes in an attractive way, and inciden-
tally serves as an advertisement for the fact that generating functions (with
coefficients in the Chow ring) are a good way to package information [Fab1,
p. 111]:

∞∑

i=0

λit
i = exp

( ∞∑

i=1

B2iκ2i−1

2i(2i− 1)
t2i−1

)

.

3.2. Faber’s Conjectures
The study of the tautological ring was begun in Mumford’s fundamen-

tal paper [Mu], but there was no reason to think that it was particularly
well-behaved. But just over a decade ago, Carel Faber proposed a remark-
able constellation of conjectures (first in print in [Fab1]), suggesting that the
tautological ring has a beautiful combinatorial structure. It is reasonable to
state that Faber’s conjectures have motivated a great deal of the remarkable
progress in understanding the topology of the moduli space of curves over the
last decade.

Although Faber’s conjectures deal just with the moduli of smooth curves,
their creation required knowledge of the compactification, and even of
Gromov–Witten theory, as we will later see.

A good portion of Faber’s conjectures can be informally summarized as:
“R∗(Mg) behaves like the ((p, p)-part of the) cohomology ring of a (g − 2)-
dimensional complex projective manifold”. We now describe (most of) Faber’s
conjectures more precisely. I have chosen to cut them into three pieces.
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I. “Vanishing/socle” conjecture. Ri(Mg) = 0 for i > g − 2, and
Rg−2(Mg)∼= Q. This was proved by Looijenga [Lo] and Faber [Fab1, Theo-
rem 2]. (Looijenga’s theorem will be stated explicitly below, see Theorem 4.5.)
We will prove the “vanishing” part Ri(Mg) = 0 for i > g − 2 in Sect. 4.4,
and show that Rg−2(Mg) is generated by a single element as a consequence
of Theorem 7.10. These statements comprise Looijenga’s theorem (Theo-
rem 4.5). The remaining part (that this generator Rg−2(Mg) is non-zero) is a
theorem of Faber’s, and we omit its proof.
II. Perfect pairing conjecture. The analog of Poincaré duality holds: for
0 ≤ i ≤ g − 2, the natural product Ri(Mg)× Rg−2−i(Mg) → Rg−2(Mg) ∼= Q

is a perfect pairing. This conjecture is currently completely open, and is only
known in special cases.

We call a ring satisfying I and II a Poincaré duality ring of dimension
g − 2.

A little thought will convince you that, thanks to II, if we knew the “top
intersections” (i.e. the products of κ-classes of total degree g−2, as a multiple
of the generator of Rg−2(Mg)), then we would know the complete structure
of the tautological ring. Faber predicts the answer to this as well.
III. Intersection number conjecture (take one). (We will give a better
statement in Conjecture 3.23, in terms of a partial compactification of Mg,n.)
For any n-tuple of non-negative integers (d1, . . . , dn) summing to g − 2,

(4)
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

j=1(2dj + 1)!!
κg−2 =

∑

σ∈Sn

κσ

where if σ = (a1,1 · · · a1,i1)(a2,1 · · · a2,i2) · · · is the cycle decomposition of σ,
then κσ is defined to be

∏
j κdaj,1+daj,2+···+daj,ij

. Recall that (2k − 1)!! =

1× 3× · · · × (2k − 1) = (2k)!/2kk!.
For example, we have

κi−1κg−i−1 + κg−2 =
(2g − 1)!!

(2i− 1)!!(2g − 2i− 1)!!
κg−2

and
κg−2

1 =
1

g − 1
22g−5(g − 2)!2κg−2.

Remarkably, Faber was able to deduce this elegant conjecture from a very
limited amount of experimental data.

Faber’s intersection number conjecture begs an obvious question: why is
this formula so combinatorial? What is the combinatorial structure behind
this ring? Faber’s alternate description of the intersection number conjecture
(Conjecture 3.23) will be even more patently combinatorial.

Faber’s intersection number conjecture is now a theorem. Getzler and
Pandharipande showed that it is a formal consequence of the Virasoro con-
jecture for the projective plane [GeP]. The Virasoro conjecture is due to the
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physicists Eguchi, Hori, Xiong, and also the mathematician Sheldon Katz,
and deals with the Gromov–Witten invariants of some space X. (See [CK,
Sect. 10.1.4] for a statement.) Getzler and Pandharipande show that the
Virasoro conjecture in P

2 implies a recursion among the intersection numbers
on the (compact) moduli space of stable curves, which in turn is equivalent
to a recursion for the top intersections in Faber’s conjecture. They then show
that the recursions have a unique solution, and that Faber’s prediction is a
solution.

Givental has announced a proof of the Virasoro conjecture for projective
space (and more generally Fano toric varieties) [Giv]. The details of the proof
have not appeared, but Y.-P. Lee and Pandharipande are writing a book
[LeeP] giving the details. This theorem is really a tour-de-force, and the most
important result in Gromov–Witten theory in some time. However, it seems
a roundabout and high-powered way of proving Faber’s intersection number
conjecture. For example, by its nature, it cannot shed light on the combi-
natorial structure behind the intersection numbers. For this reason, it seems
worthwhile giving a more direct argument. At the end of these notes, I will
outline a program for tackling this conjecture (joint with the combinatorialists
I.P. Goulden and D.M. Jackson), and a proof in a large class of cases.

(There are two other conjectures in this constellation worth mentioning.
Faber conjectures that κ1, . . . , κ[g/3] generate the tautological ring, with no
relations in degrees≤ [g/3]. Both Morita [Mo1] and Ionel [I2] have given proofs
of the first part of this conjecture a few years ago. Faber also conjectures that
R∗(Mg) satisfies the Hard Lefschetz and Hodge Positivity properties with
respect to the class κ1 [Fab1, Conjecture 1(bis)].

As evidence, Faber has checked that his conjectures hold true in genus up
to 21 [Fab4]. I should emphasize that this check is very difficult to do – the
rings in question are quite large and complicated! Faber’s verification involves
some clever constructions, and computer-aided computations.

Morita has recently announced a conjectural form of the tautological ring,
based on the representation theory of the symplectic group Sp(2g,Q) [Mo2,
Conjecture 1]. This is a new and explicit (and attractive) proposed description
of the tautological ring. One might hope that his conjecture may imply Faber’s
conjecture, and may also be provable.

3.3. Tautological Classes on Mg,n

We can similarly define a tautological ring on the compact moduli space
of stable pointed curves, Mg,n. In fact here the definition is cleaner, and even
sheds new light on the tautological ring of Mg. As before, this ring includes
“all classes one can easily think of”, and as before, it will be most cleanly
described in terms of Chern classes of natural vector bundles. Before we give
a formal definition, we begin by discussing some natural classes on Mg,n.

3.4. Strata. We note first that we have some obvious (co)homology classes
on Mg,n, that we didn’t have on Mg: the fundamental classes of the (closure
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of the) strata. We will discuss these classes and their relations at some length
before moving on.

In genus 0 (i.e., on M0,n), the cohomology (and Chow) ring is generated by
these classes. (The reason is that each stratum of the boundary stratification
is by (Zariski-)open subsets of affine space.) We will see why the tautological
groups are generated by strata in Exercise 4.9.

We thus have generators of the cohomology groups; it remains to find the
relations. On M0,4, the situation is especially nice. We have checked that M0,4

is isomorphic to P
1 (Exercise 2.7), and there are three boundary points. They

are homotopic (as any two points on P
1 are homotopic) – and even rationally

equivalent, the algebraic version of homotopic in the theory of Chow groups.
By pulling back these relations by forgetful morphisms, and pushing for-

ward by gluing morphisms, we get many other relations for various M0,n. We
dub these cross-ratio relations, although they go by many other names in the
literature. Keel has shown that these are all the relations [Ke].

In genus 1, the tautological ring (although not the cohomology or Chow
rings!) are again generated by strata. (We will see why in Exercise 3.28, and
again in Exercise 4.9.) We again have cross-ratio relations, induced by a single
(algebraic/complex) codimension 1 relation on M0,4. Getzler proved a new
(codimension 2) relation on M1,4 [Ge1, Thm. 1.8] (now known as Getzler’s
relation). (It is remarkable that this relation, on an important compact smooth
fourfold, parametrizing four points on elliptic curves, was discovered so late.)
Via the natural morphisms, this induces relations on M1,n for all n. Some
time ago, Getzler announced that these two sorts of relations were the only
relations among the strata [Ge1, par. 2].

In genus 2, there are very natural cohomology classes that are not combi-
nations of strata, so it is now time to describe other tautological classes.

3.5. Other tautological classes. Once again, we can define classes as Chern
classes of natural vector bundles.

On Mg,n, for 1 ≤ i ≤ n, we define the line bundle Li as follows. On
the universal curve Cg,n → Mg,n, the cotangent space at the fiber above
[(C, p1, . . . , pn)] ∈ Mg,n at point pi is a one-dimensional vector space, and this
vector space varies smoothly with [(C, p1, . . . , pn)]. This is Li. More precisely,
if si : Mg,n → Cg,n is the section of π corresponding to the ith marked point,
then Li is the pullback by si of the sheaf of relative differentials or the relative
dualizing sheaf (it doesn’t matter which, as the section meets only the smooth
locus). Define ψi = c1(Li) ∈ A1(Mg,n).

A genus g nodal curve has a g-dimensional vector space of sections of
the dualizing line bundle. These vector spaces vary smoothly, yielding the
Hodge bundle Eg,n on Mg,n. (More precisely, if π is the universal curve over
Mg,n, and Kπ is the relative dualizing line bundle on the universal curve,
then Eg,n := π∗Kπ.) Define λi := ci(Eg,n) on Mg,n. Clearly the restriction of
the Hodge bundle and λ-classes from Mg to Mg are the same notions defined
earlier.
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Similarly, there is a more general definition of κ-classes, due to Arbarello
and Cornalba [ArbC].

One might reasonably hope that these notions should behave well under
the forgetful morphism π : Mg,n+1 → Mg,n (which we can interpret as the
universal curve by Exercise 2.9).
Exercise. Show that there is a natural isomorphism π∗

Eg,n
∼= Eg,n+1, and

hence that π∗λk = λk. (Caution: the two λk’s in this statement are classes on
two different spaces.)

The behavior of the ψ-classes under pullback by the forgetful morphism
has a slight twist.

3.6. Comparison lemma. ψ1 = π∗ψ1 +D0,{1,n+1}.
(Caution: the two ψ1’s in the comparison lemma are classes on two dif-

ferent spaces!) Here D0,{1,n+1} means the boundary divisor corresponding to
reducible curves with one node, where one component is genus 0 and contains
only the marked points p1 and pn+1. The analogous statement applies with 1
replaced by any number up to n of course.
Exercise (for people with more background). Prove the Comparison Lemma 3.6.
(Hint: First show that we have equality away from D0,{1,n+1}. Hence
ψ1 = π∗ψ1 + kD0,{1,n+1} for some integer k, and this integer k can be
computed on a single test family.)

As an application:

3.7. Exercise. Show that ψ1 on M0,4 is O(1) (where M0,4
∼= P

1, Exercise 2.7).

Exercise. Express ψ1 explicitly as a sum of boundary divisors on M0,n.
We are now ready to define the tautological ring of Mg,n. We do this by

defining the rings for all g and n at once.

3.8. Definition. The system of tautological rings (R∗(Mg,n) ⊂ A∗(Mg,n))g,n

(as g and n vary over all genera and numbers of marked points) is the smallest
system of Q-algebras closed under pushforwards by the natural morphisms.

This elegant definition is due to Faber and Pandharipande [FabP3, Sect.
0.1].

Define the tautological ring of any open subset of Mg,n by its restriction
from Mg,n. In particular, we can recover our original definition of the tauto-
logical ring of Mg (Sect. 3.1).

It is a surprising fact that everything else you can think of (such as ψ-
classes, λ-classes and κ-classes) will lie in this ring. (It is immediate that
fundamental classes of strata lie in this ring: they are pushforwards of the
fundamental classes of their “component spaces”, cf. Sect. 2.6.)

We next give an equivalent description of the tautological groups, which
will be convenient for many of our arguments, because we do not need to
make use of the multiplicative structure. In this description, the ψ-classes
play a central role.
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3.9. Definition [GrV3, Definition 4.2]. The system of tautological rings
(R∗(Mg,n)subsetA∗(Mg,n))g,n is the smallest system of Q- vector spaces closed
under pushforwards by the natural morphisms, such that all monomials in
ψ1, . . . , ψn lie in R∗(Mg,n).

The equivalence of Definition 3.8 and Definition 3.9 is not difficult (see for
example [GrV3]).

3.10. Faber-Type Conjectures for Mg,n, and the Conjecture of Hain–
Looijenga–Faber–Pandharipande

In analogy with Faber’s conjecture, we have the following.

3.11. Conjecture R∗(Mg,n) is a Poincaré-duality ring of dimension 3g−3+n.
This was first asked as a question by Hain and Looijenga [HLo, Ques-

tion 5.5], first stated as a speculation by Faber and Pandharipande [FabP1,
Speculation 3] (in the case n = 0), and first stated as a conjecture by
Pandharipande [P, Conjecture 1]. In analogy with Faber’s conjecture, we break
this into two parts.
I. “Socle” conjecture. R3g−3+n(Mg,n) ∼= Q. This is obvious if we define
the tautological ring in terms of cohomology: H2(3g−3+n)(Mg,n) ∼= Q, and
the zero-dimensional strata show that the tautological zero-cycles are not all
zero. However, in the tautological Chow ring, the socle conjecture is not at all
obvious. Moreover, the conjecture is not true in the full Chow ring – A0(M1,11)
is uncountably generated, while the conjecture states that R0(M1,11) has a
single generator. (By R0, we of course mean R3g−3+n.)

We will prove the vanishing conjecture in Sect. 4.6.
II. Perfect pairing conjecture For 0 ≤ i ≤ 3g− 3+n, the natural product

Ri(Mg,n)×R3g−3+n−i(Mg,n) → R3g−3+n(Mg,n) ∼= Q

is a perfect pairing. (We currently have no idea why this should be true.)
Hence, in analogy with Faber’s conjecture, if this conjecture were true,

then we could recover the entire ring by knowing the top intersections. This
begs the question of how to compute all top intersections.

3.12. Fact/recipe (Mumford and Faber) If we knew the top intersections
of ψ-classes, we would know all top intersections. In other words, there is an
algorithm to compute all top intersections if we knew the numbers

(5)
∫

Mg,n

ψa1
1 · · ·ψan

n ,
∑

ai = 3g − 3 + n.

(This is a worthwhile exercise for people with some familiarity with the
moduli space of curves.) This is the basis of Faber’s wonderful computer pro-
gram [Fab2] computing top intersections of various tautological classes. For
more information, see [Fab3]. This construction is useful in understanding the
definition (Definition 3.9) of the tautological group in terms of the ψ-classes.
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Until a key insight of Witten’s, there was no a priori reason to expect that
these numbers should behave nicely. We will survey three methods of comput-
ing these numbers: (1) partial results in low genus; (2) Witten’s conjecture;
and (3) via the ELSV formula. A fourth (attractive) method was given in
Kevin Costello’s thesis [C].

3.13. Top intersections on Mg,n: partial results in low genus. Here are two
crucial relations among top intersections.
Dilaton equation. If Mg,n exists (i.e. there are stable n-pointed genus g
curves, or equivalently 2g − 2 + n > 0), then

∫

Mg,n+1

ψβ1
1 ψβ2

2 · · ·ψβn
n ψn+1 = (2g − 2 + n)

∫

Mg,n

ψβ1
1 · · ·ψβn

n .

String equation. If 2g − 2 + n > 0, then

∫

Mg,n+1

ψβ1
1 ψβ2

2 · · ·ψβn
n =

n∑

i=1

∫

Mg,n

ψβ1
1 ψβ2

2 · · ·ψβi−1
i · · ·ψβn

n

(where you ignore terms where you see negative exponents).
Exercise (for those with more experience). Prove these using the Comparison
Lemma 3.6.

Equipped with the string equation alone, we can compute all top in-
tersections in genus 0, i.e.

∫

M0,n
ψβ1

1 · · ·ψβn
n where

∑
βi = n − 3. (In any

such expression, some βi must be 0, so the string equation may be used.)
Thus we can recursively solve for these numbers, starting from the base case∫

M0,3
ψ0

1ψ
0
2ψ

0
3 = 1.

Exercise. Show that
∫

M0,n

ψa1
1 · · ·ψan

n =
(

n− 3
a1, · · · , an

)

.

In genus 1, the story is similar. In this case, we need both the string and
dilaton equation.
Exercise. Show that any integral

∫

M1,n

ψβ1
1 · · ·ψβn

n

can be computed using the string and dilaton equation from the base case∫

M1,1
ψ1 = 1/24.

We now sketch why the base case
∫

M1,1
ψ1 = 1/24 is true. We calculate

this by choosing a finite cover P
1 → M1,1. Consider a general pencil of cubics

in the projective plane. In other words, take two general homogeneous cubic
polynomials f and g in three variables, and consider the linear combinations
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of f and g. The non-zero linear combinations modulo scalars are parametrized
by a P

1. Thus we get a family of cubics parametrized by P
1, i.e. C → P

1.
You can verify that in this family, there will be twelve singular fibers, that

are cubics with one node. One way of verifying this is as follows: f = g = 0
consists of nine points p1, . . . , p9 (basically by Bezout’s theorem – you expect
two cubics to meet at nine points). There is a map P

2 −{p1, . . . , p9} → P
1. If

C is the blow-up of P
2 at the nine points, then this map extends to C → P

1,
and this is the total space of the family. The (topological) Euler characteristic
of C is the Euler characteristic of P

2 (which is 3) plus 9 (as each blow-up
replaces a point by a P

1), i.e. χ(C) = 12. Considering C as a fibration over P
1,

most fibers are elliptic curves, which have Euler characteristic 0. Hence χ(C) is
the sum of the Euler characteristics of the singular fibers. Each singular fiber
is a nodal cubic, which is isomorphic to P

1 with two points glued together
(depicted in Fig. 5); this is the union of C

∗ (which has Euler characteristic 0)
with a point, so χ(C) is the number of singular fibers. (This argument needs
further justification at every point!)

We have a section of C → P
1, given by the exceptional fiber E of the blow-

up of p1. Hence we have a moduli map µ : P
1 → M1,1 of smooth curves. Clearly

it doesn’t map P
1 to a point, as some of the fibers are smooth, and twelve are

singular. Thus the moduli map µ is surjective (as the image is an irreducible
closed set that is not a point). You might suspect that µ has degree 12, as the
preimage of the boundary divisor ∆ ∈ M1,1 has 12 preimages, and one can
check that µ is nonsingular here. However, we come to one of the twists of
stack theory – each point of M1,1, including ∆, has degree 1/2 – each point
should be counted with multiplicity one over the size of its automorphism
group, and each 1-pointed genus 1 stable curve has precisely one nontrivial
automorphism.

Thus 24
∫

M1,1
ψ1 =
∫

P1 µ
∗ψ1, so we wish to show that

∫

P1 µ
∗ψ1 = 1. This

is an explicit computation on C → P
1. You may check that on the blow-up to

C, the dualizing sheaf to the fiber at p1 is given by −O(E)|E . As E2 = −1,
we have

∫

P1 µ
∗ψ1 = −E2 = 1 as desired.

In higher genus, the string and dilaton equation are also very useful.
Exercise. Fix g. Show that using the string and dilaton equation, all of the
numbers (5) (for all n) can be computed from a finite number of base cases.
The number of base cases required is the number of partitions of 3g− 3. (It is
useful to describe this more precisely, by explicitly describing the generating
function for (5) in terms of these base cases.)

3.14. Witten’s conjecture. So how do we get at these remaining base cases?
The answer was given by Witten [W]. (This presentation is not chronologi-
cal – Witten’s conjecture came first, and motivated most of what followed. In
particular, it predates Faber’s conjectures, and was used to generate the data
that led Faber to his conjectures.)
Witten’s conjecture (Kontsevich’s theorem). Let
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Fg =
∑

n≥0

1
n!

∑

k1,...,kn

(∫

Mg,n

ψk1
1 · · ·ψkn

n

)

tk1 · · · tkn

be the generating function for the genus g numbers (5), and and let

F =
∑

Fg�
2g−2

be the generating function for all genera. (This is Witten’s free energy, or the
Gromov–Witten potential of a point.) Then

(2n+ 1)
∂3

∂tn∂t20
F =

=
(

∂2

∂tn−1∂t0
F

)(
∂3

∂t30
F

)

+ 2
(

∂3

∂tn−1∂t20
F

)(
∂2

∂t20
F

)

+
1
4

∂5

∂tn−1∂t40
F.

Witten’s conjecture now has many proofs, by Kontsevich [Ko1],
Okounkov–Pandharipande [OP], Mirzakhani [Mi], and Kim–Liu [KiL]. It
is a sign of the richness of this conjecture that these proofs are all very
different, and all very enlightening in different ways.

The reader should not worry about the details of this formula, and should
just look at its shape. Those familiar with integrable systems will recognize
this as the Korteweg–de Vries (KdV) equation, in some guise. There was a later
reformulation due to Dijkgraaf, Verlinde, and Verlinde [DVV], in terms of the
Virasoro algebra. Once again, the reader should not worry about the precise
statement, and concentrate on the form of the conjecture. Define differential
operators (n ≥ −1)

L−1 = − ∂

∂t0
+

�
−2

2
t20 +

∞∑

i=0

ti+1
∂

∂ti

L0 = −3
2
∂

∂t1
+

∞∑

i=0

2i+ 1
2

ti
∂

∂ti
+

1
16

Ln =
∞∑

k=0

Γ (m+ n+ 3
2 )

Γ (k + 1
2 )

(tk − δk,1)
∂

∂tn+k
+

+
�

2

2

n−1∑

k=1

(−1)k+1Γ (n− k + 1
2 )

Γ (−k − 1
2 )

∂

∂tk

∂

∂tn−k−1
(n > 0)

These operators satisfy [Lm, Ln] = (m− n)Lm+n.
Exercise. Show that L−1e

F = 0 is equivalent to the string equation. Show
that L0e

F = 0 is equivalent to the dilaton equation.
Witten’s conjecture is equivalent to Lne

F = 0 for all n. These equations
let you inductively solve for the coefficients of F , and hence compute all these
numbers.
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3.15. The Virasoro conjecture. The Virasoro formulation of Witten’s con-
jecture has a far-reaching generalization, the Virasoro conjecture described
earlier. Instead of top intersections on the moduli space of curves, it addresses
top (virtual) intersections on the moduli space of maps of curves to some space
X. Givental’s proof (to be explicated by Lee and Pandharipande) for the case
of projective space (and more generally Fano toric varieties) was mentioned
earlier. It is also worth mentioning Okounkov and Pandharipande’s proof in
the case where X is a curve; this is also a tour-de-force.

3.16. Hurwitz numbers and the ELSV formula. We can also recover these top
intersections via the old-fashioned theme of branched covers of the projective
line, the very technique that let us compute the dimension of the moduli space
of curves, and of the Picard variety Sect. 2.2.

Fix a genus g, a degree d, and a partition of d into n parts, α1+· · ·+αn = d,
which we write as α  d. Let

(6) r := 2g + d+ n− 2.

Fix r + 1 points p1, . . . , pr,∞ ∈ P
1. Define the Hurwitz number Hg

α to be the
number of branched covers of P

1 by a Riemann surface, that are unbranched
away from p1, . . . , pr,∞, such that the branching over∞ is given by α1, . . . , αn

(i.e. there are n preimages of ∞, and the branching at the ith preimage is of
order αi, i.e. the map is analytically locally given by t �→ tαi), and there
is the simplest possible branching over each pi, i.e. the branching is given
by 2 + 1 + · · · + 1 = d. (To describe this simple branching more explicitly:
above any such branch point, d − 2 of the sheets are unbranched, and the
remaining two sheets come together. The analytic picture of the two sheets
is the projection of the parabola y2 = x to the x-axis in C

2.) We consider
the n preimages of ∞ to be labeled. Caution: in the literature, sometimes
the preimages of ∞ are not labeled; that definition of Hurwitz number will be
smaller than ours by a factor of #Autα, where Autα is the subgroup of Sn

fixing the n-tuple (α1, . . . , αn) (e.g. if α = (2, 2, 2, 5, 5), then #Autα = 3!2!).
One technical point: each cover is counted with multiplicity 1 over the size

of the automorphism group of the cover.
Exercise. Use the Riemann–Hurwitz formula (2) to show that if the cover is
connected, then it has genus g.

Experts will recognize these as relative descendant Gromov–Witten invari-
ants of P

1; we will discuss relative Gromov–Witten invariants of P
1 in Sect. 5.

However, they are something much more down-to-earth. The following result
shows that this number is a purely combinatorial object. In particular, there
are a finite number of such covers.

3.17. Proposition.

Hg
α = #

{

(σ1, . . . , σr) : σi transpositions generating Sd,
r∏

i=1

σi ∈ C(α)

}
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#Autα/d!,

where the σi are transpositions generating the symmetric group Sd, and C(α)
is the conjugacy class in Sd corresponding to partition α.

Before we give the proof, we make some preliminary comments. As an
example, consider d = 2, α = 2, g arbitrary, so r = 2g+1. The above formula
gives Hg

α = 1/2, which at first blush seems like nonsense – how can we count
covers and get a non-integer? Remember however the combinatorial/stack-
theoretic principal that objects should be counted with multiplicity 1 over
the size of their automorphism group. Any double cover of this sort always
has a non-trivial involution (the “hyperelliptic involution”). Hence there is
indeed one cover, but it is counted as “half a cover”. Fortunately, this is the
only case of Hurwitz numbers for which this is an issue. The reader may want
to follow this particular case through in the proof.
Proof of Proposition 3.17. Pick another point 0 ∈ P

1 distinct from
p1,. . . ,pr,∞. Choose branch cuts from 0 to p1, . . . , pr,∞ (non-intersecting
paths from 0 to p1, 0 to p2, . . . , 0 to ∞) such that their cyclic order around
0 is p1, . . . , pr,∞. Suppose C → P

1 is one of the branched covers counted
by Hg

α. Then label the d preimages of 0 with 1 through d in some way. We will
count these labeled covers, and divide by d! at the end. Now cut along the
preimages of the branch-cuts. As P

1 minus the branch-cuts is homeomorphic
to a disc, which is simply connected, its preimage must be d copies of the
disc, labelled 1 through d according to the label on the preimage of 0. We
may reconstruct C → P

1 by determining how to glue these sheets together
along the branch cuts. The monodromy of the cover C → P

1 around pi is
an element σi of Sd, and this element will be a transposition, corresponding
to the two sheets being interchanged above that branch point. Similarly, the
monodromy around ∞ is also an element σ∞ of Sd, with cycle type α. The
cover has the additional data of the bijection of the cycles with the parts
of α. In π1(P1 − {p1, . . . , pr,∞}), the loops around p1, . . . , pr, ∞ multiply
to the identity, so σ1σ2 · · ·σrσ∞ = e. (Here we use the fact that the branch
cuts meet 0 in this particular order.) Thus σ−1

∞ = σ1 · · ·σr. This is the only
relation among these generators of π1(P1 −{p1, . . . , pr,∞}. Furthermore, the AQ: Please check

for missing opening
bracket.

cover C is connected, meaning that we can travel from any one of the d sheets
to any of the others, necessarily by travelling around the branch points. This
implies that the σ1, . . . , σr, σ∞ (and hence just the σ1, . . . , σr) generate a
transitive subgroup of Sd. But the only transitive subgroup of Sd containing
a transposition σ1 is all of Sd.

Conversely, given the data of transposition σ1, . . . , σr generating Sd, with
product of cycle type α, along with a labelling of the parts of the product (of
which there are #Autα), we can construct a connected cover C → P

1, by the
Riemann existence theorem. Thus, upon forgetting the labels of the d sheets,
we obtain the desired equality. �	

The above proof clearly extends to deal with more general Hurwitz num-
bers, where arbitrary branching is specified over each of a number of points.
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Proposition 3.17 shows that any Hurwitz number may be readily computed
by hand or by computer. What is interesting is the structure behind them. In
1891, Hurwitz [H] showed that

(7) H0
α = r!dn−3

∏
(
ααi

i

αi!

)

.

By modern standards, he provided an outline of a proof. His work was forgot-
ten by a large portion of the mathematics community, and later people proved
special cases, including Dénes [D] in the case n = 1, Arnol’d [Arn] in the case
n = 2. In the case n = d (so α = 1d) it was stated by the physicists Cresci-
manno and Taylor [CT], who apparently asked the combinatorialist Richard
Stanley about it, who in turn asked Goulden and Jackson. Goulden and Jack-
son independently discovered and proved Hurwitz’ original theorem in the
mid-nineties [GJ1]. Since then, many proofs have been given, including one
by myself using moduli of curves [V1].

Goulden and Jackson studied the problem for higher genus, and conjec-
tured a structural formula for Hurwitz numbers in general. Their polynomi-
ality conjecture [GJ2, Conjecture 1.2] implies the following.

3.18. Goulden–Jackson polynomiality conjecture (one version). For each
g, n, there is a symmetric polynomial Pg,n in n variables, with monomials of
homogeneous degree between 2g − 3 + n and 3g − 3 + n, such that

Hg
α = r!

n∏

i=1

(
ααi

i

αi!

)

Pg,n(α1, . . . , αn).

The reason this conjecture (and the original version) is true is an amazing
theorem of Ekedahl, Lando, M. Shapiro, and Vainshtein.

3.19. Theorem (ELSV formula, by Ekedahl, Lando, M. Shapiro, and Vain-
shtein [ELSV1, ELSV2]).

(8) Hg
α = r!

n∏

i=1

(
ααi

i

αi!

)∫

Mg,n

1− λ1 + · · ·+ (−1)gλg

(1− α1ψ1) · · · (1− αnψn)

(if Mg,n exists).
We will give a proof in Sect. 6.1.
Here is how to interpret the right side of the equation. Note that the αi are

integers, and the ψi’s and λk’s are cohomology (or Chow) classes. Formally
invert the denominator, e.g.

1
1− α1ψ1

= 1 + α1ψ1 + α2
1ψ

2
1 + · · · .

Then multiply everything out inside the integral sign, and discard all but the
summands of total codimension 3g − 3 + n (i.e. dimension 0). Then take the
degree of this cohomology class.
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For example, if g = 0 and n = 4, we get

Hg
α = r!

4∏

i=1

(
ααi

i

αi!

)∫

M0,4

1− λ1 + · · · ± λg

(1− α1ψ1) · · · (1− α4ψ4)

= r!
4∏

i=1

(
ααi

i

αi!

)∫

M0,4

(1 + α1ψ1 + · · · ) · · · (1 + α4ψ4 + · · · )

= r!
4∏

i=1

(
ααi

i

αi!

)∫

M0,4

(α1ψ1 + · · ·+ α4ψ4)

= r!
4∏

i=1

(
ααi

i

αi!

)

(α1 + · · ·+ α4) (Exercise 3.7)

= r!
4∏

i=1

(
ααi

i

αi!

)

d.

Exercise. Recover Hurwitz’ original formula (7) from the ELSV-formula, at
least if n ≥ 3.

More generally, expanding the integrand of (8) yields

(9)
∑

a1+···+an+k=3g−3+n

(

(−1)k

(∫

Mg,n

ψa1
1 · · ·ψan

n λk

))

(αa1
1 · · ·αan

n ) .

This is a polynomial in α1, . . . , αn of homogeneous degree between 2g−3+n
and 3g − 3 + n. Thus this explains the mystery polynomial in the Goulden–
Jackson Polynomiality Conjecture 3.18 – and the coefficients turn out to be
top intersections on the moduli space of curves! (The original polynomiality
conjecture was actually different, and some translation is necessary in order
to make the connection with the ELSV formula [GJV1].)

There are many other consequences of the ELSV formula; see [ELSV2,
GJV1] for surveys.

We should take a step back to see how remarkable the ELSV formula is.
To any reasonable mathematician, Hurwitz numbers (as defined by Propo-
sition 3.17) are purely discrete, combinatorial objects. Yet their structure is
fundamentally determined by the topology of the moduli space of curves. Put
more strikingly – the combinatorics of transpositions in the symmetric group
leads inexorably to the tautological ring of the moduli space of curves!

3.20. We return to our original motivation for discussing the ELSV formula:
computing top intersections of ψ-classes on the moduli space of curves Mg,n.
Fix g and n. As stated earlier, any given Hurwitz number may be readily
computed (and this can be formalized elegantly in the language of generating
functions). Thus any number of values of Pg,n(α1, . . . , αn) may be computed.
However, we know that Pg,n is a symmetric polynomial of known degree,
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and it is straightforward to show that one can determine the coefficients of a
polynomial of known degree from enough values. In particular, from (9), the
coefficients of the highest-degree terms in Pg,n are precisely the top intersec-
tions of ψ-classes.

This is a powerful perspective. As an important example, Okounkov and
Pandharipande used the ELSV formula to prove Witten’s conjecture.

3.21. Back to Faber-Type Conjectures
This concludes our discussion of Faber-type conjectures for Mg,n. I have

two more remarks about Faber-type conjectures. The first is important, the
second a side-remark.

3.22. Faber’s intersection number conjecture on Mg, take two. We define the
moduli space of n-pointed genus g curves with “rational tails”, denoted Mrt

g,n,
as follows. We define Mrt

g,n as the dense open subset of Mg,n parametrizing
pointed nodal curves where one component is nonsingular of genus g (and
the remaining components form trees of genus 0 curves sprouting from it –
hence the phrase “rational tails”). If g > 1, then Mrt

g,n = π−1(Mg), where
π : Mg,n → Mg is the forgetful morphism. Note that Mrt

g = Mg.
We may restate Faber’s intersection number conjecture (for Mg) in terms

of this moduli space. By our redefinition of the tautological ring on Mg in
Sect. 3.3 (Definition 3.9, using also Faber’s constructions of Sect. 3.12), the
“top intersections” are determined by π∗ψa1

1 · · ·ψan
n (where π : Mrt

g,n → Mg)
for
∑
ai = g − 2 + n.

Then Faber’s intersection number conjecture translates to the following.

3.23. Faber’s intersection number conjecture (take two). If all ai > 1, then

ψa1
1 · · ·ψan

n =
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

j=1(2aj − 1)!!
[generator] for

∑
ai = g − 2 + n

where [generator] = κg−2 = π∗ψ
g−1
1 .

(This reformulation is also due to Faber.) This description is certainly
more beautiful than the original one (4), which suggests that we are closer to
the reason for it to be true.

3.24. The other conjectures of Faber were extended to Mrt
g,n by Pandharipande

[P, Conjecture 1].

3.25. Remark: Faber-type conjectures for curves of compact type. Based on the
cases of Mg and Mg,n, Faber and Pandharipande made another conjecture for
curves of “compact type”. A curve is said to be of compact type if its Jacobian
is compact, or equivalently if its dual graph has no loops, or equivalently,
if the curve has no nondisconnecting nodes. Define Mc

g,n ⊂ Mg,n to be the
moduli space of curves of compact type. It is Mg,n minus an irreducible divisor,
corresponding to singular curves with one irreducible component (called ∆0,
although we will not use this notation).
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3.26. Conjecture (Faber–Pandharipande [FabP1, Spec. 2], [P, Conjecture 1].
R∗(Mc

g) is a Poincaré duality ring of dimension 2g − 3.
Again, this has a vanishing/socle part and a perfect pairing part. There

is something that can be considered the corresponding intersection number
part, Pandharipande and Faber’s λg theorem [FabP2].

We will later (Sect. 4.7) give a proof of the vanishing/socle portion of the
conjecture, that Ri(Mc

g) = 0 for i > 2g− 3, and is 1-dimensional if i = 2g− 3.
The perfect pairing part is essentially completely open.

3.27. Other Relations in the Tautological Ring
We have been concentrating on top intersections in the tautological ring.

I wish to discuss more about other relations (in smaller codimension) in the
tautological ring.

In genus 0, as stated earlier (Sect. 3.4), all classes on Mg,n are generated
by the strata, and the only relations among them are the cross-ratio relations.
We have also determined the ψ-classes in terms of the boundary classes.

In genus 1, we can verify that ψ1 can be expressible in terms of boundary
strata. On M1,1, if the boundary point is denoted δ0 (the class of the nodal
elliptic curve shown in Fig. 5), we have shown ψ1 = δ0/12. (Reason: we proved
it was true on a finite cover, in the course of showing that

∫

M1,1
ψ1 = 1/24.)

We know how to pull back ψ-classes by forgetful morphisms, so we can now
verify the following.
Exercise. Show that in the cohomology group of M1,n, ψi is equivalent to a lin-
ear combination of boundary divisors. (Hint: use the Comparison Lemma 3.6.)

1

Fig. 5. The curve corresponding to the point δ0 ∈ M1,1

3.28. Slightly trickier exercise. Use the above to show that the tautological
ring in genus 1 is generated (as a group) by boundary classes. (This fact was
promised in Sect. 3.4.)

In genus 2, this is no longer true: ψ1 is not equivalent to a linear com-
bination of boundary strata on M2,1. However, in 1983, Mumford showed
that ψ2

1 (on M2,1) is a combination of boundary strata ([Mu], see also [Ge2,
Equation (4)]); in 1998, Getzler showed the same for ψ1ψ2 (on M2,2) [Ge2].
These two results can be used to show that on M2,n, all tautological classes
are linear combinations of strata, and classes “constructed using ψ1 on M2,1”.
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Figure 6 may help elucidate what classes we mean – they correspond to dual
graphs, with at most one marking ψ on an edge incident to one genus 2 com-
ponent. The class in question is defined by gluing together the class of ψi on
M2,v corresponding to that genus 2 component (where v is the valence, and
i corresponds to the edge labeled by ψ) with the fundamental classes of the
M0,vj

’s corresponding to the other vertices. The question then arises: what
are the relations among these classes? On top of the cross-ratio and Getzler
relation, there is a new relation due to Belorousski and Pandharipande, in
codimension 2 on M2,3 [BP]. We do not know if these three relations generate
all the relations. (All the genus 2 relations mentioned in this paragraph are
given by explicit formulas, although they are not pretty to look at.)

2

ψ

5

4

2

6

1

3

Fig. 6. A class on M2,6 – a codimension 1 class on a boundary stratum, constructed
using ψ1 on M2,3 and gluing morphisms

In general genus, the situation should get asymptotically worse as g grows.
However, there is a general statement that can be made:

3.29. Getzler’s conjecture [Ge2, footnote 1] (Ionel’s theorem [I1]). If g >
0, all degree g polynomials in ψ-classes vanish on Mg,n (hence live on the
boundary of Mg,n).

We will interpret this result as a special case of a more general result
(Theorem �), in Sect. 4.3. In keeping with the theme of this article, the proof
will be Gromov–Witten theoretic.

3.30. Y.-P. Lee’s Invariance Conjecture There is another general state-
ment that may well give all the relations in every genus: Y.-P. Lee’s Invariance
conjecture. It is certainly currently beyond our ability to either prove or dis-
prove it, although the first part is already a theorem (Theorem 3.31). Lee’s
conjecture is strongly motivated by Gromov–Witten theory.

Before we state the conjecture, we discuss the consequences and evi-
dence. All of the known relations in the tautological rings are consequences
of the conjecture. For example, the genus 2 implications are shown by Arcara
and Lee in [ArcL1]. They then predicted a new relation in M3,1 in [ArcL2].
Simultaneously and independently, this relation was proved by Kimura and
X. Liu [KL]. This seems to be good evidence for the conjecture being true.
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More recently, the methods behind the conjecture have allowed Lee to turn
these predictions into proofs, not conditional on the truth of the conjecture
[Lee2]. Thus for example Arcara and Lee’s work yields a proof of the new
relation on M3,1.

We now give the statement. The conjecture is most naturally expressed in
terms of the tautological rings of possibly-disconnected curves. The definition
of a stable possibly-disconnected curve is the same as that of a stable curve,
except the curve is not required to be connected. We denote the moduli space
of n-pointed genus g possibly-disconnected curves by M

•
g,n. The reader can

quickly verify that our discussion of the moduli space of curves carries over
without change if we consider possibly-disconnected curves. For example, M

•
g,n

is nonsingular and pure-dimensional of dimension 3g − 3 + n (although not
in general irreducible). It contains Mg,n as a component, so any statements
about M

•
g,n will imply statements about Mg,n. Note that the disjoint union

of two curves of arithmetic genus g and h is a curve of arithmetic genus
g + h − 1: Euler characteristics add under disjoint unions. Note also that a
possibly-disconnected marked curve is stable if and only if all of its connected
components are stable.
Exercise. Show that M

•
−1,6 is a union of

(
6
3

)
/2 points – any 6-pointed genus

−1 stable curve must be the disjoint union of two P
1’s, with 3 of the 6 labeled

points on each component.
Exercise. Show that any component of M

•
g,n is the quotient of a product of

Mg′,n′ ’s by a finite group.
Tautological classes are generated by classes corresponding to a dual graph,

with each vertex (of genus g and valence n, say) labeled by some cohomology
class on M

•
g,n (possibly the fundamental class); call this a decorated dual

graph. (We saw an example of a decorated dual graph in Fig. 6. Note that
ψ-classes will always be associated to some half edge.) Decorated dual graphs
are not required to be connected. If Γ is a decorated dual graph (of genus g
with n tails, say), let dimΓ be the dimension of the corresponding class in
A∗(M

•
g,n).

For each positive integer l, we will describe a linear operator rl that sends
formal linear combinations of decorated dual graphs to formal linear combina-
tions of decorated dual graphs. It is homogeneous of degree −l: it sends (dual
graphs corresponding to) dimension k classes to (dual graphs corresponding
to) dimension k − l classes.

We now describe its action on a single decorated dual graph Γ of genus g
with n marked points (or half-edges), labeled 1 through n. Then rl(Γ ) will be
a formal linear combination of other graphs, each of genus g − 1 with n + 2
marked points.

There are three types of contributions to rl(Γ ). (In each case, we discard
any graph that is not stable.)
1. Edge-cutting. There are two contributions for each directed edge, i.e. an
edge with chosen starting and ending point. (Caution: there are two possible
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directions for each edge in general, except for those edges that are “loops”,
connecting a single vertex to itself. In this case, both directions are considered
the same.) We cut the edge, regarding the two half-edges as “tails”, or marked
points. The starting half-edge is labeled n + 1, and the ending half-edge is
labeled n+2. One summand will correspond to adding an extra decoration of
ψl to point n+1. (In other words, ψl

n+1 is multiplied by whatever cohomology
class is already decorating that vertex.) A second summand will correspond
to the adding an extra decoration of ψl to point n + 2, and this summand
appears with multiplicity (−1)l−1.
2. Genus reduction For each vertex we produce l graphs as follows. We reduce
the genus of the vertex by 1, and add two new tails to this vertex, labelled
n+ 1 and n+ 2; we decorate them with ψm and ψl−1−m respectively, where
0 ≤ m ≤ l − 1. Each such graph is taken with multiplicity (−1)m+1.
3. Vertex-splitting. For each vertex, we produce a number of graphs as follows.
We split the vertex into two. The first new vertex is given the tail n+ 1, and
the second is given the tail n+2. The two new tails are decorated by ψm and
ψl−1−m respectively, where 0 ≤ m ≤ l − 1. We then take one such graph for
each choice of splitting of the genus g = g1 + g2 and partitioning of the other
incident edges. Each such graph is taken with multiplicity (−1)m+1.

Then rl(Γ ) is the sum of the above summands. Observe that when l is odd
(resp. even), the result is symmetric (resp. anti-symmetric) in the labels n+1
and n+ 2.

By linearity, this defines the action of rl on any linear combination of
directed graphs.

3.31. Y.P. Lee’s invariance theorem [Lee2]. If
∑
ciΓi = 0 holds in A∗(M

•
g,n),

then rl(
∑
ciΓi) = 0 in A∗(Mg−1,n+2).

This was invariance conjecture 1 of [Lee1]. It gives a necessary condition
for a tautological class to be zero. Hence for example it can be used to de-
termine the coefficients of a tautological equation, if we already know there
is one by other means. The theorem also implies that rl is well-defined at
the level of tautological rings (i.e. compatible with descending). The converse
of Theorem 3.31 is also conjectured to be true, and would be a sufficient
condition for a candidate tautological equation to hold true:

3.32. Y.-P. Lee’s invariance conjecture [Lee1, Conjecture 2]. If
∑
ciΓi has

positive pure dimension, and rl(
∑
ciΓi)=0 in A∗(Mg−1,n+2), then

∑
ciΓi =

0 holds in A∗(M
•
g,n).

Theorem 3.31 and Conjecture 3.32 can be used to produce tautological
equations inductively! The base case is when dim M

•
g,n = 0, which is known:

we will soon show (Sect. 4.6) that R0(Mg,n) ∼= Q. (We write R3g−3+n(Mg,n)
as R0(Mg,n) to remind the reader that the statement is about tautological
0-cycles.) Hence dimension 0 tautological classes on Mg,n are determined by
their degree (and dimension 0 tautological classes on M

•
g,n are determined

by their degree on each connected component). Note that the algorithm is a
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finite process: the dimension l relations on Mg,n or M
•
g,n produced by this

algorithm are produced after a finite number of steps.
Even more remarkably, this seems to produce all tautological relations:

3.33. Y.-P. Lee’s invariance conjecture, continued [Lee1, Conjecture 3]. Con-
jecture 3.32 will produce all tautological equations inductively.

A couple of remarks are in order. Clearly this is a very combinatorial
description. It was dictated by Gromov–Witten theory, as explained in [Lee1].
In particular, it uses the fact that all tautological equations are invariant
under the action of lower triangular subgroups of the twisted loop groups,
and proposes that they are the only equations invariant in this way.

In order to see the magic of this conjecture in action, and to get experi-
ence with the rl operators, it is best to work out an example. The simplest
dimension 1 relation is the following.
Exercise. Show that the pullback of the (dimension 0) cross-ratio relation
(Sect. 3.4) on M0,4 to a (dimension 1) relation on M0,5 is implied by the
Invariance Conjecture. (Some rather beautiful cancellation happens.)

3.34. Final remarks on relations in the tautological ring. This continues to be
an active area of research. We point out for example Arcara and Sato’s recent
article [ArcS] using localization in Gromov–Witten theory to compute the
class
∑g

k=0(−1)g−kψk
1λg−k explicitly as a sum of boundary classes on Mg,1.

4 A Blunt Tool: Theorem � and Consequences

We now describe a blunt tool from which much of the previously described
structure of the tautological ring follows. Although it is statement purely
about the stratification of the moduli space of curves, we will see (Sect. 6.3)
that it is proved via Gromov–Witten theory.

4.1. Theorem � [GrV3]. Any tautological class of codimension i is trivial away
from strata satisfying

# genus 0 vertices ≥ i− g + 1.

(Recall that the genus 0 vertices correspond to components of the curve
with geometric genus 0.)

More precisely, any tautological class is zero upon restriction to the (large)
open set corresponding to the open set corresponding to

# genus 0 vertices < i− g + 1.

Put another way: given any tautological class of codimension i, you can move
it into the set of curves with at least i−g+1 genus 0 components. A third for-
mulation is that the tautological classes of codimension i are pushed forward
from classes on the locus of curves with at least i− g+1 genus 0 components.
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We remark that this is false for the Chow ring as a whole – this is funda-
mentally a statement about tautological classes.

We will discuss the proof in Sect. 6.3, but first we give consequences. There
are in some sense four morals of this result.

First, this is the fundamental geometry behind many of the theorems we
have been discussing. We will see that they follow from Theorem � by straight-
forward combinatorics. As a sign of this, we will often get strengthenings of
what was known or conjectured previously.

Second, this suggests the potential importance of a filtration of the moduli
space by the number of genus 0 components. It would be interesting to see if
this filtration really is fundamental, for example if it ends up being relevant
in understanding the moduli space of curves in another way. So far this has
not been the case.

Third, as we will see from the proof, once one knows a clean statement of
what one wants to prove, the proof is relatively straightforward, at least in
outline.

And fourth, the proof will once again show the centrality of Gromov–
Witten theory to the study of the moduli of curves.

4.2. Consequences of Theorem �
We begin with a warm-up example.

4.3. Theorem � implies Getzler’s conjecture 3.29 (Ionel’s theorem). Any de-
gree g monomial is a codimension g tautological class, which vanishes on the
open set of Mg,n corresponding to curves with no genus 0 components. If
g > 0, this is non-empty and includes Mg,n.

In particular: (1) we get a proof of Getzler’s conjecture; (2) we see that
more classes vanish on this set – all tautological classes of degree at least g,
not just polynomials in the ψ-classes; (3) we observe that the classes vanish
on a bigger set than Mg,n, and that what is relevant is not the smoothness of
the curves, but the fact that they have no genus 0 components. (4) This gives
a moral reason for Getzler’s conjecture not to hold in genus 0.

4.4. Theorem � implies the first part of Looijenga’s Theorem (Faber’s van-
ishing conjecture). Recall (Sect. 3.2) that Looijenga’s Theorem is part of the
“vanishing” part of Faber’s conjectures:

4.5. Theorem [Lo]. We have Ri(Mg) = 0 for i > g − 2, dimRg−2(Mg) ≤ 1.
We will show that Theorem � implies the first part now; we will show the

second part as a consequence of Theorem 7.10.
First, if the codimension of a tautological class is greater than or equal to g,

then we get vanishing on the open set where there are no genus 0 components,
so we get vanishing for the same reason as in Getzler’s conjecture.

The case of codimension g − 1 is more subtle. From the definition of the
tautological ring, tautological classes are obtained by taking ψ-classes, and
multiplying, gluing, and pushing forward by forgetful morphisms. Now on
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Mg = Mg,0, there are no ψ-classes and no boundary strata, so by the definition
of the tautological ring, all codimension g− 1 tautological classes on Mg,0 are
pushed forward from tautological classes on Mg,1, which are necessarily of
codimension g. These also vanish by Theorem � by the same argument as
before.

As before, one can say more:
Exercise. Extend this argument to the moduli space of curves with rational
tails Mrt

g,n. (First determine the dimension of the conjectural Poincaré duality
ring!)

The Faber-type conjecture for this space was mentioned in Sect. 3.24.
I should point out that I expect that Looijenga’s proof extends to this case
without problem, but I haven’t checked.

4.6. Theorem � implies the socle part of the Hain–Looijenga–Faber–
Pandharipande Conjecture 3.11 on Mg,n. Recall the socle part of the Hain–
Looijenga–Faber–Pandharipande Conjecture 3.11, that R0(Mg,n) ∼= Q.

We show how this is implied by Theorem �. This was first shown in [GrV2],
which can be seen as a first step toward the statement and proof of Theorem �.

Our goal is to show that all tautological 0-cycles are commensurate, and
that one of them is non-zero. Clearly the latter is true, as the class of a
0-dimensional stratum (a point) is tautological, and is non-zero as it has non-
zero degree, so we concentrate on the first statement.

By Theorem �, any dimension 0 tautological class is pushed forward from
the locus of curves with at least (3g − 3 + n) − g + 1 = 2g − 2 + n genus 0
components.
Exercise. Show that the only stable dual graphs with 2g − 2 + n genus 0
components have all vertices genus 0 and trivalent. Show that these are the
0-dimensional strata. (See Fig. 7 for the 0-dimensional strata on M1,2.)

2

1

2

1

da inserire

Fig. 7. The 0-dimensional strata on M1,2 – notice that all vertices are genus 0 and
trivalent, and that there are 2g − 2 + n of them

Hence R0(Mg,n) is generated by this finite number of points. It remains to
show that any two of these points are equivalent in the Chow ring. A geometric
way of showing this is by observing that all points in M0,N are equivalent in
the Chow ring, and that our 0-dimensional strata are in the image of M0,2g+n

under g gluing morphisms. A more combinatorial way of showing this is by
showing that each 1-dimensional stratum is isomorphic to P

1, and that any
two 0-dimensional strata can be connected by a chain of 1-dimensional strata.
Exercise. Complete one of these arguments.
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As in the earlier applications of Theorem � too: we can verify the perfect
pairing conjecture in codimension 1 and probably 2 (although Tom Graber
and I haven’t delved too deeply into 2). This is combinatorially more serious,
but not technically hard.

4.7. Theorem � implies the Faber–Pandharipande vanishing/socle conjecture
on curves of compact type. We now show the “vanishing/socle part” of the
Faber-type conjecture for curves of compact type (Faber–Pandharipande Con-
jecture 3.26).

First, suppose that i > 2g − 3. We will show that Ri(Mc
g) = 0. By

Theorem �, any such tautological class vanishes on the open set where there
are at most i− g+ 1 > g− 2 genus 0 vertices. Then our goal follows from the
next exercise.
Exercise. Show that any genus g (0-pointed) stable graph that is a tree has
at most g − 2 genus 0 vertices. Moreover, if equality holds, then each vertex
is either genus 1 of valence 1, or genus 0 of valence 3. (Examples when g = 6
are given in Fig. 8.)

1

1

1

1

1

1

1 1

1

1 1

1

Fig. 8. The two 0-pointed genus 6 stable trees with at least 4 genus 0 vertices

Next, if i = 2g − 3, then our codimension 2g − 3 (hence g) class is pushed
forward from strata of the form described in the previous exercise. But each
stratum has dimension g, so the tautological class must be a linear combina-
tion of fundamental classes of such strata.

Furthermore, any two such strata are equivalent (in cohomology, or even
in the Chow ring) by arguments analogous to either of those we used for Mg,n.

Thus we have shown that R2g−3(Mc
g) is generated by the fundamental

class of a single such stratum. It remains to show that this is non-zero. This
argument is short, but requires a little more background than we have pre-
sented. (For the experts: it suffices to show that λg �= 0 on this stratum
MΓ . We have a cover πM

g

1,1 → MΓ via gluing morphisms, and the pull-
back of the Hodge bundle splits into the Hodge bundles of each of the g
elliptic curves. Thus π∗λg is the product of the λ1-classes on each factor, so
deg π∗λg = (

∫

M1,1
λ1)g = 1/24g �= 0.)

As always, Theorem � gives extra information. (1) This argument extends
to curves of compact type with points. (2) We can now attack part of the
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Poincaré duality portion of the conjecture. (3) We get an explicit generator
of R2g−3(Mc

g) (a stratum of a particular form, e.g. Fig. 8).

4.8. Theorem � helps determine the tautological ring in low dimension. In
the course of proving R0(Mg,n) ∼= Q, we showed that R0(Mg,n) was generated
by 0-strata. A similar argument shows that Ri(Mg,n) generated by boundary
strata for i = 1, 2 (where Ri(Mg,n) := R3g−3+n−i(Mg,n)). (We are already
aware that this will not extend to i = 3, as ψ1 on M2,1 is not a linear combi-
nation of fundamental classes of strata.)

In general, Theorem � implies that in order to understand tautological
classes in dimension up to i, you need only understand curves of genus up to
(i+ 1)/2, with not too many marked points.

The moral of this is that the “top” (lowest-codimension) part of the tau-
tological ring used to be considered the least mysterious (given the definition
of the tautological ring, it is easy to give generators), and the bottom was
therefore the most mysterious. Now the situation is the opposite. For exam-
ple, in codimension 3, we can describe the generators of the tautological ring,
but we have no idea what the relations are. However, we know exactly what
the tautological ring looks like in dimension 3.

4.9. Exercise. Use Theorem � and a similar argument to show that the tau-
tological groups of M0,n and M1,n are generated by boundary strata.

4.10. Additional consequences. For many additional consequences of
Theorem �, see [GrV3]. For example, we recover Diaz’ theorem (Mg con-
tains no complete subvarieties of dim > g − 2), as well as generalizations and
variations such as: M

c

g,n contains no complete subvarieties of dim > 2g−3+n.
The idea behind the proof of Theorem � is rather naive. But before we can

discuss it, we will have to finally enter the land of Gromov–Witten theory, and
define stable relative maps to P

1, which we will interpret as a generalization
of the notion of a branched cover.

5 Stable Relative Maps to P
1 and Relative Virtual

Localization

We now discuss the theory of stable relative maps, and “virtual” localization
on their moduli space (relative virtual localization). We will follow J. Li’s
algebro-geometric definition of stable relative maps [Li1], and his description
of their obstruction theory [Li2], but we point out earlier definitions of stable
relative maps in the differentiable category due to A.-M. Li and Y. Ruan
[LR], and Ionel and Parker [IP1, IP2], and Gathmann’s work in the algebraic
category in genus 0 [Ga]. We need the algebraic category for several reasons,
most importantly because we will want to apply virtual localization.
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Stable relative maps are variations of the notion of stable maps, and the
reader may wish to become comfortable with that notion first. (Stable maps
are discussed in Abramovich’s article in this volume, for example.)

We are interested in the particular case of stable relative maps to P
1,

relative to at most two points, so we will define stable relative maps only in
this case. For concreteness, we define stable maps to X = P

1 relative to one
point ∞; the case of zero or two points is the obvious variation on this theme.
Such a stable relative map to (P1,∞) is defined as follows. We are given the
data of a degree d of the map, a genus g of the source curve, a number m of
marked points, and a partition d = α1 + · · ·+ αn, which we write α  d.

Then a relative map is the following data:

• A morphism f1 from a nodal (m + n)-pointed genus g curve
(C, p1, . . . , pm, q1, . . . , qn) (where as usual the pi and qj are distinct non-
singular points) to a chain of P

1’s, T = T0 ∪ T1 ∪ · · · ∪ Tt (where Ti and
Ti+1 meet), with a point ∞ ∈ Tt − Tt−1. Unfortunately, there are two
points named ∞. We will call the one on X, ∞X , and the one on T , ∞T ,
whenever there is any ambiguity.

• A projection f2 : T → X contracting Ti to ∞X (for i > 0) and giving
an isomorphism from (T0, T0 ∩ T1) (resp. (T0,∞)) to X if t > 0 (resp. if
t = 0). Denote f2 ◦ f1 by f .

• We have an equality of divisors on C: f∗1∞T =
∑
αiqi. In particular,

f−1
1 ∞T consists of nonsingular (marked) points of C.

• The preimage of each node n of T is a union of nodes of C. At any such
node n′ of C, the two branches map to the two branches of n, and their
orders of branching are the same. (This is called the predeformability or
kissing condition.)

If follows that the degree of f1 is d on each Ti. An isomorphism of two such
maps is a commuting diagram

(C, p1, . . . , pm, q1, . . . , qn)

f1

��

∼ �� (C ′, p′1, . . . , p
′
m, q

′
1, . . . , q

′
n)

f1

��
(T,∞T ) ∼ ��

f2

��

(T,∞T )

f2

��
(X,∞X) = �� (X,∞X)

where all horizontal morphisms are isomorphisms, the bottom (although not
necessarily the middle!) is an equality, and the top horizontal isomorphism
sends pi to p′i and qj to q′j . Note that the middle isomorphism must pre-
serve the isomorphism of T0 with X, and is hence the identity on T0, but for
i > 0, the isomorphism may not be the identity on Ti.

This data of a relative map is often just denoted f , with the remaining
information left implicit.
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We say that f is stable if it has finite automorphism group. This corre-
sponds to the following criteria:

• Any f1-contracted geometric genus 0 component has at least 3 “special
points” (node branches or marked points).

• Any f1-contracted geometric genus 1 component has at least 1 “special
point”.

• If 0 < i < t (resp. 0 < i = t), then not every component mapping to Ti is
of the form [x; y] → [xq; yq], where the coordinates on the target are given
by [0; 1] = Ti ∩ Ti−1 and [1; 0] = Ti ∩ Ti+1 (resp. [1; 0] = ∞).

(The first two conditions are the same as for stable maps. The third condition
is new.) A picture of a stable relative map is given in Fig. 9.

∞T

T0

X

T

C

q2

q3

f1

f2

q1

∞X

T2

T1

Fig. 9. An example of a stable relative map

Thus we have some behavior familiar from the theory of stable maps: we
can have contracted components, so long as they are “stable”, and don’t map
to any nodes of T , or to ∞T . We also have some new behavior: the target X
can “sprout” a chain of P

1’s at ∞X . Also, the action of C
∗ on the map via

the action on a component Ti (i > 0) that preserves the two “special points”
of Ti (the intersections with Ti−1 and Ti+1 if i < t, and the intersection with
Ti−1 and ∞ if i = t) is considered to preserve the stable map. For example,
Fig. 10 shows two isomorphic stable maps.

There is a compact moduli space (Deligne–Mumford stack) for stable rela-
tive maps to P

1, denoted Mg,m,α(P1, d). (In order to be more precise, I should
tell you the definition of a family of stable relative maps parametrized by an
arbitrary base, but I will not do so.) In what follows, m = 0, and that sub-
script will be omitted. (More generally, stable relative maps may be defined
with P

1 replaced by any smooth complex projective variety, and the point
∞ replaced by any smooth divisor D on X. The special case D = ∅ yields
Kontsevich’s original space of stable maps.)
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Fig. 10. Two isomorphic stable relative maps

Unfortunately, the space Mg,α(P1, d) is in general terribly singular, and
not even equidimensional.
Exercise. Give an example of such a moduli space with two components of
different dimensions. (Hint: use contracted components judiciously.)

However, it has a component which we already understand well, which cor-
responds to maps from a smooth curve, which is a branched cover of P

1. Such
curves form a moduli space Mg,α(P1, d) of dimension corresponding to the
“expected number of branch points distinct from ∞”, which we may calculate
by the Riemann–Hurwitz formula (2) to be

(10) r = 2g − 2 + n+ d.

We have seen this formula before, (6).
Exercise. Verify (10).

These notions can be readily generalized, for example to stable rela-
tive maps to P

1 relative to two points (whose moduli space is denoted
Mg,α,β(P1, d)), or to no points (otherwise known as the stable maps to P

1;
this moduli space is denoted Mg(P1, d)).
Exercise. Calculate dim Mg,α,β(P1, d) (where α has m parts and β has n parts)
and dim Mg(P1, d).

5.1. Stable relative maps with possibly-disconnected source curve. Recall
that by our (non-standard) definition, nodal curves are connected. It will
be convenient, especially when discussing the degeneration formula, to con-
sider curves without this hypothesis. Just as our discussion of (connected)
stable curves generalized without change to (possibly-disconnected) stable
curves (see Sect. 3.30), our discussion of (relatively) stable maps from con-
nected curves generalizes without change to “(relatively) stable maps from
possibly-disconnected curves”. Let Mg,α(P1, d)• be the space of stable relative
maps from possibly-disconnected curves (to P

1, of degree d, etc.). Warning:
this is not in general the quotient of a product of Mg′,α′(P1, d′)’s by a finite
group.
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5.2. The Virtual Fundamental Class
There is a natural homology (or Chow) class on Mg,α(P1, d) of dimen-

sion r = dim Mg,α(P1, d) (cf. (10)), called the virtual fundamental class
[Mg,α(P1, d)]virt ∈ Ar(Mg,α(P1, d)]), which is obtained from the deformation-
obstruction theory of stable relative maps, and has many wonderful properties.
The virtual fundamental class agrees with the actual fundamental class on the
open subset Mg,α(P1, d). The most difficult part of dealing with the moduli
space of stable relative maps is working with the virtual fundamental class.
Aside: relative Gromov–Witten invariants. In analogy with usual Gromov–
Witten invariants, one can define relative Gromov–Witten invariants by in-
tersecting natural cohomology classes on the moduli space with the virtual
fundamental class. More precisely, one multiplies (via the cup/cap product)
the cohomology classes with the virtual fundamental class, and takes the de-
gree of the resulting zero-cycle. One can define ψ-classes and λ-classes in
the same way as before, and include these in the product. When including
ψ-classes, the numbers are often called descendant relative invariants; when
including λ-classes, the numbers are sometimes called Hodge integrals. For
example, one can show that Hurwitz numbers are descendant relative invari-
ants of P

1. However, this point of view turns out to be less helpful, and we
will not use the language of relative Gromov–Witten invariants again.

The virtual fundamental class behaves well under two procedures: degen-
eration and localization; we now discuss these.

5.3. The Degeneration Formula for the Virtual Fundamental Class,
Following [Li2]

We describe the degeneration formula in the case of stable maps to P
1

relative to one point, and leave the cases of stable maps to P
1 relative to zero

or two points as straightforward variations for the reader. In this discussion,
we will deal with possibly-disconnected curves to simplify the exposition.

Consider the maps to P
1 relative to one point ∞, and imagine deforming

the target so that it breaks into two P
1’s, meeting at a node (with ∞ on one

of the components). It turns out that the virtual fundamental class behaves
well under this degeneration. The limit can be expressed in terms of virtual
fundamental classes of spaces of stable relative maps to each component, rela-
tive to ∞ (for the component containing ∞), and relative to the node-branch
(for both components).

Before we make this precise, we give some intuition. Suppose we have
a branched cover C → P

1, and we deform the target into a union of two
P

1’s, while keeping the branch points away from the node; call the limit map
C ′ → P

1 ∪ P
1. Clearly in the limit, away from the node, the cover looks

just the same as it did before (with the same branching). At the node, it
turns out that the branched covers of the two components must satisfy the
kissing/predeformability condition. Say that the branching above the node
corresponds to the partition γ1 + · · ·+ γm. By our discussion about Hurwitz
numbers, as we have specified the branch points, there will be a finite num-
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ber of such branched covers – we count branched covers of each component
of P

1 ∪ P
1, with branching corresponding to the partition γ above the node-

branch; then we choose how to match the preimages of the node-branch on the
two components (there are #Autγ such choices). It turns out that γ1 · · · γm

covers of the original sort will degenerate to each branched cover of the nodal
curve of this sort. (Notice that if we were interested in connected curves C,
then the inverse image of each component of P

1 would not necessarily be con-
nected, and we would have to take some care in gluing these curves together to
get a connected union. This is the reason for considering possibly-disconnected
components.)

Motivated by the previous paragraph, we give the degeneration for-
mula. Consider the degeneration of the target (P1,∞) �������� P

1 ∪ (P1,∞) .
Let (X,∞) be the general target, and let (X ′,∞) be the degenerated target.
Let (X1, a1) ∼= (P1,∞) denote the first component of X ′, where a1 refers to
the node-branch, and let (X2, a2,∞) ∼= (P1, 0,∞) denote the second compo-
nent of X ′, where a2 corresponds to the node branch. Then for each partition
γ1 + · · ·+ γm = d, there is a natural map

(11) Mg1,γ(P1, d)• ×Mg2,γ,α(P1, d)• → Mg1+g2−m+1,α(X ′, d)•

obtained by gluing the points above a1 to the corresponding points above a2.
The image of this map can be suitably interpreted as stable maps to X ′,
satisfying the kissing condition, which can appear as the limit of maps to X.
(We are obscuring a delicate issue here – we have not defined stable maps to
a singular target such as X.) Then Li’s degeneration formula states that the
image of the product of the virtual fundamental classes in (11) is the limit of
the virtual fundamental class of Mg,α(P1, d)•, multiplied by γ1 · · · γm.

The main idea behind Li’s proof is remarkably elegant, but as with any
argument involving the virtual fundamental class, the details are quite tech-
nical.

If we are interested in connected curves, then there is a corresponding
statement (that requires no additional proof): we look at the component of the
moduli space on the right side of (11) corresponding to maps from connected
source curves, and we look at just those components of the moduli spaces on
the left side which glue together to give connected curves.

5.4. Relative Virtual Localization [GrV3]
The second fundamental method of manipulating virtual fundamental

classes is by means of localization. Before discussing localization in our
Gromov–Witten-theoretic context, we first quickly review localization in its
original setting.

(A friendly introduction to equivariant cohomology is given in
[HKKPTVVZ, Chap. 4], and to localization on the space of ordinary stable
maps in [HKKPTVVZ, Chap. 27].)

Suppose Y is a complex projective manifold with an action by a torus C
∗.

Then the fixed point locus of the torus is the union of smooth submanifolds,
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possibly of various dimensions. Let the components of the fixed locus be Y1,
Y2, . . . . The torus acts on the normal bundle Ni to Yi. Then the Atiyah-Bott
localization formula states that

(12) [Y ] =
∑

fixed

[Yi]/ctop(Ni) =
∑

fixed

[Yi]/e(Ni),

in the equivariant homology of Y (with appropriate terms inverted), where ctop
(or the Euler class e) of a vector bundle denotes the top Chern class. This
is a wonderfully powerful fact, and to appreciate it, you must do examples
yourself. The original paper of Atiyah and Bott [AB] is beautifully written
and remains a canonical source.

You can cap (12) with various cohomology classes to get 0-dimensional
classes, and get an equality of numbers. But you can cap (12) with classes to
get higher-dimensional classes, and get equality in cohomology (or the Chow
ring). One lesson I want to emphasize is that this is a powerful thing to do.
For example, in a virtual setting, in Gromov–Witten theory, localization is
traditionally used to get equalities of numbers. We will also use equalities
of numbers to prove the ELSV formula (8). However, using more generally
equalities of classes will give us Theorem �, and part of Faber’s conjecture.

Localization was introduced to Gromov–Witten theory by Kontsevich in
his ground-breaking paper [Ko2], in which he works on the space of genus
zero maps to projective space, where the virtual fundamental class is the
usual fundamental class (and hence there are no “virtual” technicalities). In
the foundational paper [GrP], Graber and Pandharipande showed that the
localization formula (12) works “virtually” on the moduli space of stable maps,
where fundamental classes are replaced by virtual fundamental classes, and
normal bundles are replaced by “virtual normal bundles”. They defined the
virtual fundamental class of a fixed locus, and the virtual normal bundle, and
developed the machinery to deal with such questions.

There is one pedantic point that must be made here. The localization for-
mula should reasonably be expected to work in great generality. However, we
currently know it only subject to certain technical hypotheses. (1) The proof
only works in the algebraic category. (2) In order to apply this machinery,
the moduli space must admit a C

∗-equivariant locally closed immersion into
an orbifold. (3) The virtual fundamental class of this fixed locus needs to be
shown to arise from the C

∗-fixed part of the obstruction theory of the mod-
uli space. It would be very interesting, and potentially important, to remove
hypotheses (1) and (2).

The theory of virtual localization can be applied to our relative setting
[GrV3]. (See [LLZ] for more discussion.) We now describe it in the case of
interest to us, of maps to P

1. Again, in order to understand this properly, you
should work out examples yourself.

Fix a torus action on P
1

σ ◦ [x; y] = [σx; y],
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so the torus acts with weight 1 on the tangent space at 0 and −1 on the
tangent space at ∞. (The weight is the one-dimensional representation, or
equivalently, the character.) This torus action induces an obvious torus action
on Mg,α(P1, d)• (and Mg,α(P1, d)).

We first determine the torus-fixed points of this action. Suppose C →
T → X is such a fixed map. A picture of two fixed maps showing “typical”
behavior is given in Fig. 11. The first has “nothing happening above ∞X”,
and the second has some “sprouting” of Ti’s.

f−1(∞X ) = f
−1
1 (∞T )

0 ∞T

0 ∞X

(a)

(b)

(c)

f−1(0)

C

T

X

0

0 ∞X

(a)

(b)

(c)

f−1(0)

C

T

X

∞T

f
−1
1 (∞T )

(d)

Fig. 11. Two examples of torus-fixed stable relative maps to (P1,∞)

The map C → X must necessarily be a covering space away from the
points 0 and ∞ of X = P

1.
Exercise. Using the Riemann–Hurwitz formula, show that a surjective map
C ′ → P

1 from an irreducible curve, unbranched away from 0 and ∞, must be
of the form P

1 → P
1, [x; y] �→ [xa; ya] for some a.

5.5. Hence the components dominating X must be a union of “trivial covers”
of this sort.

We now focus our attention on the preimage of 0. Any sort of (stable)
behavior above 0 is allowed. For example, the curve could be smooth and
branched there (Fig. 11a); or two of the trivial covers could meet in a node
(Fig. 11b); or there could be a contracted component of C, intersecting various
trivial components at nodes (Fig. 11c). (Because the “relative” part of the
picture is at ∞, this discussion is the same as the discussion for ordinary
stable maps, as discussed in [GrP].)

Finally, we consider the preimage of ∞X . Possibly “nothing happens over
∞”, i.e. the target has not sprouted a tree (l = 0 in our definition of stable
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relative maps at the start of Sect. 5), and the preimage of ∞ consists just of
n smooth points; this is the first example in Fig. 11. Otherwise, there is some
“sprouting” of the target, and something “nontrivial” happens above each
sprouted component Ti (i > 0), as in Fig. 11d.

5.6. At this point, you should draw some pictures, and convince yourself of
the following important fact: the connected components of the fixed locus
correspond to certain discrete data. In particular, each connected component
can be interpreted as a product of three sorts of moduli spaces:

(A) moduli spaces of pointed curves (corresponding to Fig. 11c)
(B) (for those fixed loci where “something happens above ∞X , i.e. Fig. 11d),

a moduli space of maps parametrizing the behaviour there. This mod-
uli space is a variant of the space of stable relative maps, where there
is no “rigidifying” map to X. We denote such a moduli space by
Mg,α,β(P1, d)∼; its theory (of deformations and obstructions and virtual
fundamental classes) is essentially the same as that for Mg,α,β(P1, d). The
virtual dimension of Mg,α,β(P1, d)∼ is one less than that of Mg,α,β(P1, d).

(C) If α1 + · · ·+αn = d is the partition corresponding to the “trivial covers”
of T0, these stable relative maps have automorphisms Zα1 × · · · × Zαn

corresponding to automorphisms of these trivial covers (i.e. if one trivial
cover is of the form [x; y] �→ [xα1 ; yα1 ], and ζα1 is a α1th root of unity,
then [x; y] �→ [ζα1x; y] induces an automorphism of the map). In the
language of stacks, we can include a factor of BZα1 × · · · × BZαn

; but
the reader may prefer to simply divide the virtual fundamental class by∏
αi instead.

Each of these spaces has a natural virtual fundamental class: the first
sort has its usual fundamental class, and the second has its intrinsic virtual
fundamental class.

The relative virtual localization formula states that

[Mg,α(P1, d)]virt =
∑

fixed

[Yi]virt/e(Nvirt
i ),

in the equivariant homology of Mg,α(P1, d) (cf. (12)), with suitable terms
inverted, where the virtual fundamental classes of the fixed loci are as just
described, and the “virtual normal bundle” will be defined now.

Fix attention now to a fixed component Yi. The virtual normal bundle is a
class in equivariant K-theory. The term 1/e(Nvirt

i ) can be interpreted as the
product of several factors, each “associated” to a part of the picture in Fig. 11.
We now describe these contributions. The reader is advised to not worry too
much about the precise formulas; the most important thing is to get a sense
of the shape of the formula upon a first exposure to these ideas. Let t be the
generator of the equivariant cohomology of a point (i.e. H∗

T (pt) = Z[t]):
1. For each irreducible component dominating T0 (i.e. each trivial cover)

of degree αi, we have a contribution of α
αi
i

αi!tαi
.
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2. For each contracted curve above 0 (Fig. 11c) of genus g′, we have a
contribution of (tg

′ −λ1t
g′−1 + · · ·+(−1)g′

λg′)/t. (This contribution is on the
factor Mg′,n corresponding to the contracted curve.)

3. For each point where a trivial component of degree αi meets a contracted
curve above 0 at a point j, we have a contribution of t/(t/αi−ψj). here, ψj is
a class on the moduli space Mg′,n corresponding to the contracted component.

4. For each node above 0 (Fig. 11b) joining trivial covers of degrees αi and
αj , we have a contribution of 1/(t/α1 + t/α2).

5. For each smooth point above 0 (Fig. 11a) on a trivial cover of degree
αi, we have a contribution of t/αi.

At this point, if you squint and ignore the t’s, you can almost see the ELSV
formula (8) taking shape.

6. If there is a component over ∞X , then we have a contribution of
1/(−t− ψ), where ψ is the first Chern class of the line bundle corresponding
to the cotangent space of T1 at the point where it meets T0.

These six contributions look (and are!) complicated. But this formula can
be judiciously used to give some powerful results, surprisingly cheaply. We
now describe some of these.

6 Applications of Relative Virtual Localization

6.1. Example 1: Proof of the ELSV Formula (8)
As a first example, we prove the ELSV formula (8). (This formula follows

[GrV1], using the simplification in the last section of [GrV1] provided by the
existence of Jun Li’s description of the moduli space of stable relative maps.)
The ELSV formula counts branched covers with specified branching over ∞
corresponding to α  d, and other fixed simple branched points. Hence we
will consider Mg,α(P1, d).

We next need to impose other fixed branch points. There is a natural
Gromov–Witten-theoretic approach involving using descendant invariants,
but this turns out to be the wrong thing to do. Instead, we use a beauti-
ful construction of Fantechi and Pandharipande [FanP]. Given any map from
a nodal curve to P

1, we can define a branch divisor on the target. When the
source curve is smooth, the definition is natural (and old): above a point p
corresponding to a partition β  d, the branch divisor contains p with mul-
tiplicity

∑
(βi − 1). It is not hard to figure out how extend this to the case

where the source curve is not smooth above p.
Exercise. Figure out what this extension should be. (Do this so that the
Riemann–Hurwitz formula remains true.)

Thus we have a map of sets Mg(P1, d) → Sym2d+2g−2
P

1. In the case of
stable relative maps, we have a map of sets Mg,α(P1, d) → Sym2d+2g−2

P
1. As

each such stable relative map will have branching of at least
∑

(αi − 1) above
∞, we can subtract this fixed branch divisor to get a map of sets
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(13) br : Mg,α(P1, d) → Symr
P

1

where r = 2d+ 2g − 2−
∑

(αi − 1) = 2g − 2 + d+ n (cf. (10)).
The important technical result proved by Fantechi and Pandharipande is

the following.

6.2. Theorem (Fantechi–Pandharipande [FanP]). There is a natural map of
stacks br as in (13).

We call such a map a (Fantechi–Pandharipande) branch morphism. This
morphism respects the torus action.

One can now readily verify several facts. If the branch divisor does not
contain p �= ∞ in P

1, then the corresponding map C → P
1 is unbranched

(i.e. a covering space, or étale) above p. If the branch divisor contains p �= ∞
with multiplicity 1, then the corresponding map is simply branched above p.
(Recall that this means that the preimage of p consists of smooth points, and
the branching corresponds to the partition 2+1+· · ·+1.) If the branch divisor
does not contain ∞, i.e. there is no additional branching above ∞X beyond
that required by the definition of stable relative map, then the preimage of
∞X consists precisely of the n smooth points qi. In other words, there is no
“sprouting” of Ti, i.e. T ∼= P

1. Hence if p1+· · ·+pr is a general point of Symr
P

1,
then br−1(p1 + · · ·+pr) ⊂ Mg,α(P1, d) is a finite set of cardinality equal to the
Hurwitz number Hg

α. This is true despite the fact that Mg,α(P1, d) is horribly
non-equidimensional – the preimage of a general point of Symr

P
1 will be

contained in Mg,α(P1, d), and will not meet any other nasty components!
By turning this set-theoretic argument into something more stack-

theoretic and precise, we have that

(14) Hg
α = deg br−1(pt) ∩ [Mg,α(P1, d)]virt.

(For distracting unimportant reasons, the previous paragraph’s discussion is
slightly incorrect in the case where Hg

α = 1/2, but (14) is true.)
We can now calculate the right side of (14) using localization. In order

to do this, we need to interpret it equivariantly, which involves choosing an
equivariant lift of br−1 of a point in Symr

P
1 ∼= P

r. We do this by choosing our
point in Symr

P
1 to be the point 0 with multiplicity r. Thus all the branching

(aside from that forced to be at ∞) must be at 0. The normal bundle to this
point of P

r is r!tr. Thus when we apply localization, a miracle happens. The
only fixed loci we consider are those where there is no extra branching over
∞ (see the first picture in Fig. 11). However, the source curve is smooth, so
there is in fact only one connected component of the fixed locus to consider,
which is shown in Fig. 12. The moduli space in this case is Mg,n, which we
take with multiplicity 1/

∏
αi (cf. Sect. 5.6(C)). Hence the Hurwitz number

is the intersection on this moduli space of the contributions to the virtual
normal bundle outlined above.
Exercise. Verify that the contributions from 1, 2, and 3 above, on the moduli
space Mg,n, give the ELSV formula (8).
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∞0

T = X

Fig. 12. The only fixed locus contributing to our calculation of the Hurwitz number

6.3. Example 2: Proof of Theorem � (Theorem 4.1)
In Example 1 (Sect. 6.1), we found an equality of numbers. Here we will

use relative virtual localization to get equality of cohomology or Chow classes.
Fix g and n. We are interested in dimension j (tautological) classes on

Mg,n. In particular, we wish to show that any such tautological class can be
deformed into one supported on the locus corresponding to curves with at least
2g−2+n− j genus 0 components. (This is just a restatement of Theorem �.)
Call such a dimension j class good. Using the definition of the tautological
ring in terms of ψ-classes, it suffices to show that monomials in ψ-classes of
dimension j (hence degree=codimension 3g − 3 + n− j) are good.

Here is one natural way of getting dimension j classes. Take any partition
α1+· · ·+αn = d. Let r = 2g−2+n+d be the virtual dimension of Mg,α(P1, d)
(i.e. the dimension of the virtual fundamental class, and the dimension of
Mg,α(P1, d)), and suppose r > j. Define the Hurwitz class H

g,α
j by

H
g,α
j := π∗

(
(∩r−j

i=1 br
−1(pi)) ∩ [Mg,α(P1, d)]virt

)
∈ Aj(Mg,n)

where π is the moduli map Mg,α(P1, d) → Mg,n (and the n points are the
preimages of ∞), and p1, . . . , pr−j are generally chosen points on P

1. We
think of this Hurwitz class informally as follows: consider branched covers
with specified branching over ∞. Such covers (and their generalization, stable
relative maps) form a space of (virtual) dimension r. Fix all but j branch
points, hence giving a class of dimension j. Push this class to the moduli
space Mg,n.

We get at this in two ways, by deformation and by localization.
1. Deformation. (We will implicitly use Li’s degeneration formula here.)
Deform the target P

1 into a chain of r−j P
1’s, each with one of the fixed branch

points pi. Then you can (and should) check that the stabilized source curve
has lots of rational components, essentially as many as stated in Theorem �.
(For example, imagine that r � 0. Then the j “roving” branch points can lie
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on only a small number of the r − j components of the degenerated target.
Suppose P

1 is any other component of the target, where 0 and ∞ correspond
to where it meets the previous and next component in the chain. Then the
cover restricted to this P

1 can have arbitrary branching over 0 and ∞, and
only one other branch point: simple branching above the pi lying on it. This
forces the cover to be a number of trivial covers, plus one other cover C → P

1,
where C is simply branched at pi, and has one point above 0 and two points
above ∞, or vice versa, forcing C to be genus 0, with three node-branches.
This analysis will leave you slightly short. The remaining rational curves are
found through a clever idea of Ionel, who seemingly conjures a rational curve
out of nowhere.) Thus any dimension j Hurwitz class is good, i.e. satisfies the
conclusion of Theorem �.
2. Localization. We next use localization to express tautological classes in
terms of Hurwitz classes. In the same way as for the ELSV formula, we choose
an equivariant lifting of ∩r−j

i=1 br
−1(pi), corresponding to requiring all the pi to

go to 0. (Unlike the ELSV case, there are still j branch points that could go
to either 0 or ∞.)

We now consider what fixed components can arise.
We have one “main” component that is similar to the ELSV case, where

all the j “roving” branch points go to 0 (Fig. 12). Any other component will
be nontrivial over ∞. One can readily inductively show that these other com-
ponents are good, i.e. satisfy the conclusion of Theorem �. (The argument is
by looking at the contribution from such a fixed locus. The part contained
in f−1(∞X) is essentially a Hurwitz class, which we have shown is good. The
part contained in f−1(0) corresponds to tautological classes on moduli spaces
of curves with smaller 2g − 2 + n, which can be inductively assumed to be
good.)

Thus we have shown that the contribution of the “main” component is
good. But this contribution is straightforward to contribute: it is (up to a
multiple) the dimension j component of

1− λ1 + · · ·+ (−1)gλg

(1− α1ψ1) · · · (1− αnψn)

(compare this to the ELSV formula (8)). By expanding this out, we find a
polynomial in the αi of degree 3g − 3 + n− j (cf. (9) for a similar argument
earlier). We then apply the same trick as when we computed top intersections
of ψ-classes using Hurwitz numbers in Sect. 3.20: we can recover the coef-
ficients in this polynomial by “plugging in enough values”. In other words,
ψa1

1 · · ·ψa1
n may be obtained (modulo good classes) as a linear combination of

Hurwitz classes. As Hurwitz classes are themselves good, we have shown that
the monomial ψa1

1 · · ·ψa1
n is also good, completing the argument.
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7 Towards Faber’s Intersection Number Conjecture 3.23
via Relative Virtual Localization

We can use the methods of the proof of Theorem � to combinatorially describe
the top intersections in the tautological ring. Using this, one can prove the
“vanishing” or “socle” portion of the Faber-type conjecture for curves with
rational tails (and hence for Mg), and prove Faber’s intersection number con-
jecture for up to three points. Details will be given in [GJV3]; here we will
just discuss the geometry involved.

The idea is as follows. We are interested in the Chow ring of Mrt
g,n, so we

will work on compact moduli spaces, but discard any classes that vanish on
the locus of curves with rational tails. We make a series of short geometric
remarks.

First, note that R2g−1(Mrt
g,n) → R2g−1(Mg,1) is an isomorphism, and

R2g−1(Mg,1) → R2g−1(Mg) is a surjection. The latter is immediate from our
definition. The argument for the former is for example [GrV3, Prop. 5.8],
and can be taken as an exercise for the reader using Theorem �. Faber
showed [Fab1, Thm. 2] that R2g−1(Mg) is non-trivial, so if we can show that
R2g−1(Mg,1) is generated by a single element, then we will have proved that
R2g−1(Mrt

g,n) ∼= Q for all n ≥ 0.

7.1. An extension of that argument using Theorem � shows that if we have
a Hurwitz class of dimension less than 2g − 1 (i.e. with fewer than 2g − 1
“moving branch points”), then the class is 0 in A∗(Mrt

g,n).
In order to get a hold of R2g−1(Mrt

g,n), we will again use branched covers.
Before getting into the Gromov–Witten theory, we make a series of remarks,
that may be verified by the reader, using only the Riemann–Hurwitz for-
mula (2).

7.2. First, suppose we have a map C → P
1 from a nodal (possibly discon-

nected) curve, unbranched away from 0 and ∞. Then it is a union of trivial
covers (in the sense of Sect. 5.5).

7.3. Second, suppose we have a map from a nodal curve C to P
1, with no

branching away from 0 and ∞ except for simple branching over 1, and non-
singular over 0 and ∞. Then it is a union of trivial covers, plus one more
component, that is genus 0, completely branched over one of {0,∞}, and
with two preimages over the other. More generally, suppose we have a map
from some curve C to a chain of P

1’s, satisfying the kissing condition, un-
branched except for two smooth points 0 and ∞ on the ends of the chain,
and simple branching over another point 1. Then the map is the union of a
number of trivial covers glued together, plus one other cover P

1 → P
1 of the

component containing 1, of the sort described in the previous sentence.

7.4. Third, if we have a map from a nodal curve C to P
1, with total branching

away from 0 and ∞ of degree less than 2g, and nonsingular over 0 and ∞,
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then C has no component of geometric genus g. In the same situation, if the
total branching away from 0 and ∞ is exactly 2g, and C has a component
of geometric genus g, then the cover is a disjoint union of trivial covers, and
one connected curve C ′ of arithmetic genus g, where the map C ′ → P

1 is
contracted to 1 or completely branched over 0 and ∞.

More generally, if we have a map from a curve C to a chain of P
1’s satisfying

the kissing condition, with 0 and ∞ points on either ends of the chain, with
total branching away less than 2g away from 0, ∞, and the nodes, then C
has no component of geometric genus g. In the same situation, if the total
branching away from 0, ∞, and the nodes is precisely 2g, then the map is the
union of a number of trivial covers glued together, plus one other cover of the
sort described in the previous paragraph.

7.5. The following fact is trickier. Let Gg,d be the image in A2g−1(Mg,1)
of br−1(1) ∩ [Mg,(d),(d)(P1, d)]virt (where the point p ∈ C corresponding to
[(C, p)] ∈ Mg,1 is the preimage of ∞). Then Gg,d = d2g

Gg,1. (We omit
the proof, but the main idea behind this is the Fourier–Mukai fact [Lo,
Lemma 2.10].)

Define the Faber–Hurwitz class F
g,α as the image in A2g−1(Mrt

g,n) of

∩r−(2g−1)
i=1 br−1(pi) ∩ [Mg,α(P1, d)]virt

where the pi are general points of P
1. (This is the image of the Hurwitz class

H
g,α
2g−1 in Mrt

g,n.)
As with the proof of Theorem �, we get at this class inductively using

degeneration, and connect it to intersections of ψ-classes using localization.

7.6. Degeneration
Break the target into two pieces P

1 ��������
P

1 ∪ P
1 , where ∞ and one pi

are on the “right” piece, and the remaining pi’s are on the “left” piece. The
Faber–Hurwitz class breaks into various pieces; we enumerate the possibilities.
We are interested only in components where there is a nonsingular genus g
curve on one side. We have two cases, depending on whether this curve maps
to the “left” or the “right” P

1.

7.7. If it maps to the left component, then all 2g− 1 “moving” branch points
must also map to the left component in order to get a non-zero contribution
in A∗(Mrt

g,n), by Remark 7.4. Thus by Remark 7.3, the cover on the right is
of a particular sort, and the cover on the left is another Faber–Hurwitz class,
where one of the branch points over ∞ has been replaced two, or where two
of the branch points are replaced by one.

7.8. If the genus g curve maps to the right component, then all 2g−1 “moving”
branch points must map to the right component, and by Remark 7.4 our
contribution is a certain multiple of Gg,d, which by Remark 7.5 is a certain
multiple of Gg,1. The contribution from the left is the genus 0 Hurwitz number
H0

α, for which Hurwitz gives us an attractive formula (7).
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Unwinding this gives the recursion

(15)
F

g,α =
∑

i+j=αk
d′+d′′=d

ijH0
α′F

g,α′′( d+l(α)−2
d′+l(α′)−2,d′′+l(α′′)−1

)
+

+
∑

i,j (αi + αj) F
g,α′

+
∑l(α)

i=1 α
2g+1
i H0

αGg,1.

In this formula, the contributions from paragraph Sect. 7.7 are in the first two
terms on the right side of the equation, and the contributions from Sect. 7.8
are in the last. The second term on the right corresponds to where two parts
αi and αj of α are “joined” by the nontrivial cover of the right P

1 to yield
a new partition where αi and αj are replaced by αi + αj . The first term on
the right corresponds to where one part αk of α is “cut” into two pieces i
and j, forcing the curve covering the left P

1 to break into two pieces, one of
genus 0 (corresponding to partition α′) and one of genus g (corresponding
to α′′). The binomial coefficient corresponds to the fact that the d+ l(α)− 2
fixed branch points p1, p2, . . . on the left component must be split between
these two covers.

The base case is F
g,(1) = Gg,1. Hence we have shown that F

g,α is always a
multiple of Gg,1, and the theory of cut-and-join type equations (developed no-
tably by Goulden and Jackson) can be applied to solve for F

g,α (in generating
function form) quite explicitly.

7.9. Localization
We now get at the Faber–Hurwitz class by localizing. As with the proof of

Theorem �, we choose a linearization on br−1(pi) that corresponds to requiring
all the pi to move to 0. We now describe the fixed loci that contribute. We
won’t worry about the precise contribution of each fixed locus; the important
thing is to see the shape of the formula.

First note that as we have only 2g− 1 moving branch points, in any fixed
locus in the “rational-tails” locus, our genus g component cannot map to ∞,
and thus must be contracted to 0. The fixed locus can certainly have genus 0
components mapping to sprouted Ti over ∞, as well as genus 0 components
contracted to 0.

We now look at the contribution of this fixed locus, via the relative virtual
localization formula. We will get a sum of classes glued together from various
moduli spaces appearing in the description of the fixed locus (cf. Sect. 5.6).
Say the contracted genus g curve meets m trivial covers, of degree β1, . . . ,
βm respectively. Then the contribution from this component will be some
summand of

1− λ1 + · · ·+ (−1)gλg

(1− β1ψ1) · · · (1− βmψm)

where ψi are the ψ-classes on Mg,m. Thus the contribution from this compo-
nent is visibly tautological, and by Remark 7.1 the contribution will be zero
if the dimension of the class is less than 2g − 1. As the total contribution
of this fixed locus is 2g − 1, any non-zero contribution must correspond to
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a dimension 2g − 1 tautological class on Mg,m glued to a dimension 0 class
on the other moduli spaces appearing in this fixed locus. This can be readily
computed; the genus 0 components contracted to 0 yield binomial coefficients,
any components over ∞X turn out to yield products of genus 0 double Hurwitz
numbers, which count branched covers of P

1 by a genus 0 curve, with specified
branching α and β above two points, and the remaining branching fixed and
simple.

Equipped with this localization formula, even without worrying about the
specific combinatorics, we may show the following.

7.10. Theorem. For any n, and β  d, π∗ψ
β1
1 · · ·ψβn

n is a multiple of Gd,1,
where π is the forgetful map to Mg,1.

We have thus fully shown the “vanishing” (or socle) part of Faber’s con-
jecture for curves with rational tails. (This may certainly be shown by other
means.) In particular, we have completed a proof of Looijenga’s Theorem 4.5.
Proof. Call such a class an n-point class. We will show that such a class is a
multiple of
Gd,1 modulo m-point classes, where m < n; the result then follows by induc-
tion. As with the proof of Theorem �, we consider F

g,α as α varies over all
partitions of length n. Each such Faber–Hurwitz class is a multiple of Gd,1 by
our degeneration analysis. By our localization analysis, all of the fixed points
for F

g,α yield m-point classes where m < n except for one, corresponding
to the picture in Fig. 12. The contribution of this component is some known
multiple of a polynomial in α1, . . . , αn. The highest-degree coefficients of
this polynomial are the n-point classes, the monomials in ψ-classes that we
seek. By taking a suitable linear combination of values of the polynomial (i.e.
Faber–Hurwitz classes, modulo m-point classes where m < n), we can obtain
any coefficient, and in particular, the leading coefficients. �	

A related observation is that we have now given an explicit combinatorial
description of the monomials in ψ-classes, as a multiple of our generator Gg,1.
(In truth, we have not been careful in this exposition in describing all the
combinatorial factors. See [GJV3] for a precise description.)

This combinatorialization can be made precise as follows. We create a
generating function F for Faber–Hurwitz classes. The join-cut equation (15)
allows us to solve for the generating function F.

We make a second generating function W for the intersections
π∗ψ

β1
1 · · ·ψβn

n λk ∈ R2g−1(Mg,1) (where β1 + · · · + βn + k = g − 2). Lo-
calization gives us a description of F in terms of W (and also the genus 0
double Hurwitz generating function). By inverting this relationship we can
hope to solve relatively explicitly for W, and hence prove Faber’s intersection
number conjecture. Because genus 0 double Hurwitz number H0

α,β are only
currently well-understood when one of the partition has at most 3 parts (see
[GJV2]), this program is not yet complete. However, it indeed yields:
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7.11. Theorem [GJV3]. Faber’s intersection number conjecture is true for up
to three points.

One might reasonably hope that this will give an elegant proof of Faber’s
intersection number conjecture in full before long.

8 Conclusion

In the last fifteen years, there has been a surge of progress in understanding
curves and their moduli using the techniques of Gromov–Witten theory. Many
of these techniques have been outlined here.

Although this recent progress uses very modern machinery, it is part of an
ancient story. Since the time of Riemann, algebraic curves have been studied
by way of branched covers of P

1. The techniques described here involve think-
ing about curves in the same way. Gromov–Witten theory gives the added in-
sight that we should work with a “compactification” of the space of branched
covers, the moduli space of stable (relative) maps. A priori we pay a steep
price, by working with a moduli space that is bad in all possible ways (sin-
gular, reducible, not even equidimensional). But it is in some sense “virtually
smooth”, and its virtual fundamental class behaves very well, in particular
with respect to degeneration and localization.

The approaches outlined here have one thing in common: in each case
the key idea is direct and naive. Then one works to develop the necessary
Gromov–Witten-theoretic tools to make the naive idea precise.

In conclusion, the story of using Gromov–Witten theory to understand
curves, and to understand curves by examining how they map into other
spaces (such as P

1), is most certainly not over, and may just be beginning.
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16. Problemi di geometria differenziale in grande

17. Il principio di minimo e le sue applicazioni alle equazioni funzionali

1959 18. Induzione e statistica

19. Teoria algebrica dei meccanismi automatici (2 vol.)

20. Gruppi, anelli di Lie e teoria della coomologia

1960 21. Sistemi dinamici e teoremi ergodici

22. Forme differenziali e loro integrali

1961 23. Geometria del calcolo delle variazioni (2 vol.)

24. Teoria delle distribuzioni

25. Onde superficiali

1962 26. Topologia differenziale

27. Autovalori e autosoluzioni

28. Magnetofluidodinamica

1963 29. Equazioni differenziali astratte

30. Funzioni e varietà complesse
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Vol. 1836: C. Nǎstǎsescu, F. Van Oystaeyen, Methods of
Graded Rings. XIII, 304 p, 2004.
Vol. 1837: S. Tavaré, O. Zeitouni, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXI-2001. Editor: J. Picard (2004)
Vol. 1838: A.J. Ganesh, N.W. O’Connell, D.J. Wischik,
Big Queues. XII, 254 p, 2004.
Vol. 1839: R. Gohm, Noncommutative Stationary
Processes. VIII, 170 p, 2004.
Vol. 1840: B. Tsirelson, W. Werner, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXII-2002. Editor: J. Picard (2004)
Vol. 1841: W. Reichel, Uniqueness Theorems for Vari-
ational Problems by the Method of Transformation
Groups (2004)
Vol. 1842: T. Johnsen, A. L. Knutsen, K3 Projective Mod-
els in Scrolls (2004)
Vol. 1843: B. Jefferies, Spectral Properties of Noncom-
muting Operators (2004)
Vol. 1844: K.F. Siburg, The Principle of Least Action in
Geometry and Dynamics (2004)
Vol. 1845: Min Ho Lee, Mixed Automorphic Forms, Torus
Bundles, and Jacobi Forms (2004)
Vol. 1846: H. Ammari, H. Kang, Reconstruction of Small
Inhomogeneities from Boundary Measurements (2004)
Vol. 1847: T.R. Bielecki, T. Björk, M. Jeanblanc, M.
Rutkowski, J.A. Scheinkman, W. Xiong, Paris-Princeton
Lectures on Mathematical Finance 2003 (2004)
Vol. 1848: M. Abate, J. E. Fornaess, X. Huang, J. P. Rosay,
A. Tumanov, Real Methods in Complex and CR Geom-
etry, Martina Franca, Italy 2002. Editors: D. Zaitsev, G.
Zampieri (2004)
Vol. 1849: Martin L. Brown, Heegner Modules and Ellip-
tic Curves (2004)
Vol. 1850: V. D. Milman, G. Schechtman (Eds.), Geomet-
ric Aspects of Functional Analysis. Israel Seminar 2002-
2003 (2004)
Vol. 1851: O. Catoni, Statistical Learning Theory and
Stochastic Optimization (2004)
Vol. 1852: A.S. Kechris, B.D. Miller, Topics in Orbit
Equivalence (2004)
Vol. 1853: Ch. Favre, M. Jonsson, The Valuative Tree
(2004)
Vol. 1854: O. Saeki, Topology of Singular Fibers of Dif-
ferential Maps (2004)
Vol. 1855: G. Da Prato, P.C. Kunstmann, I. Lasiecka,
A. Lunardi, R. Schnaubelt, L. Weis, Functional Analytic
Methods for Evolution Equations. Editors: M. Iannelli,
R. Nagel, S. Piazzera (2004)
Vol. 1856: K. Back, T.R. Bielecki, C. Hipp, S. Peng,
W. Schachermayer, Stochastic Methods in Finance, Bres-



sanone/Brixen, Italy, 2003. Editors: M. Fritelli, W. Rung-
galdier (2004)
Vol. 1857: M. Émery, M. Ledoux, M. Yor (Eds.), Sémi-
naire de Probabilités XXXVIII (2005)
Vol. 1858: A.S. Cherny, H.-J. Engelbert, Singular Stochas-
tic Differential Equations (2005)
Vol. 1859: E. Letellier, Fourier Transforms of Invariant
Functions on Finite Reductive Lie Algebras (2005)
Vol. 1860: A. Borisyuk, G.B. Ermentrout, A. Friedman,
D. Terman, Tutorials in Mathematical Biosciences I.
Mathematical Neurosciences (2005)
Vol. 1861: G. Benettin, J. Henrard, S. Kuksin, Hamil-
tonian Dynamics – Theory and Applications, Cetraro,
Italy, 1999. Editor: A. Giorgilli (2005)
Vol. 1862: B. Helffer, F. Nier, Hypoelliptic Estimates and
Spectral Theory for Fokker-Planck Operators and Witten
Laplacians (2005)
Vol. 1863: H. Führ, Abstract Harmonic Analysis of Con-
tinuous Wavelet Transforms (2005)
Vol. 1864: K. Efstathiou, Metamorphoses of Hamiltonian
Systems with Symmetries (2005)
Vol. 1865: D. Applebaum, B.V. R. Bhat, J. Kustermans,
J. M. Lindsay, Quantum Independent Increment Processes
I. From Classical Probability to Quantum Stochastic Cal-
culus. Editors: M. Schürmann, U. Franz (2005)
Vol. 1866: O.E. Barndorff-Nielsen, U. Franz, R. Gohm,
B. Kümmerer, S. Thorbjønsen, Quantum Independent
Increment Processes II. Structure of Quantum Lévy
Processes, Classical Probability, and Physics. Editors: M.
Schürmann, U. Franz, (2005)
Vol. 1867: J. Sneyd (Ed.), Tutorials in Mathematical Bio-
sciences II. Mathematical Modeling of Calcium Dynamics
and Signal Transduction. (2005)
Vol. 1868: J. Jorgenson, S. Lang, Posn(R) and Eisenstein
Series. (2005)
Vol. 1869: A. Dembo, T. Funaki, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Editor: J. Picard (2005)
Vol. 1870: V.I. Gurariy, W. Lusky, Geometry of Müntz
Spaces and Related Questions. (2005)
Vol. 1871: P. Constantin, G. Gallavotti, A.V. Kazhikhov,
Y. Meyer, S. Ukai, Mathematical Foundation of Turbu-
lent Viscous Flows, Martina Franca, Italy, 2003. Editors:
M. Cannone, T. Miyakawa (2006)
Vol. 1872: A. Friedman (Ed.), Tutorials in Mathemati-
cal Biosciences III. Cell Cycle, Proliferation, and Cancer
(2006)
Vol. 1873: R. Mansuy, M. Yor, Random Times and En-
largements of Filtrations in a Brownian Setting (2006)
Vol. 1874: M. Yor, M. Émery (Eds.), In Memoriam Paul-
André Meyer - Séminaire de Probabilités XXXIX (2006)
Vol. 1875: J. Pitman, Combinatorial Stochastic Processes.
Ecole d’Eté de Probabilités de Saint-Flour XXXII-2002.
Editor: J. Picard (2006)
Vol. 1876: H. Herrlich, Axiom of Choice (2006)
Vol. 1877: J. Steuding, Value Distributions of L-Functions
(2007)
Vol. 1878: R. Cerf, The Wulff Crystal in Ising and Percol-
ation Models, Ecole d’Eté de Probabilités de Saint-Flour
XXXIV-2004. Editor: Jean Picard (2006)
Vol. 1879: G. Slade, The Lace Expansion and its Applica-
tions, Ecole d’Eté de Probabilités de Saint-Flour XXXIV-
2004. Editor: Jean Picard (2006)
Vol. 1880: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems I, The Hamiltonian Approach (2006)
Vol. 1881: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems II, The Markovian Approach (2006)

Vol. 1882: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems III, Recent Developments (2006)
Vol. 1883: W. Van Assche, F. Marcellàn (Eds.), Orthogo-
nal Polynomials and Special Functions, Computation and
Application (2006)
Vol. 1884: N. Hayashi, E.I. Kaikina, P.I. Naumkin,
I.A. Shishmarev, Asymptotics for Dissipative Nonlinear
Equations (2006)
Vol. 1885: A. Telcs, The Art of Random Walks (2006)
Vol. 1886: S. Takamura, Splitting Deformations of Dege-
nerations of Complex Curves (2006)
Vol. 1887: K. Habermann, L. Habermann, Introduction to
Symplectic Dirac Operators (2006)
Vol. 1888: J. van der Hoeven, Transseries and Real Differ-
ential Algebra (2006)
Vol. 1889: G. Osipenko, Dynamical Systems, Graphs, and
Algorithms (2006)
Vol. 1890: M. Bunge, J. Funk, Singular Coverings of
Toposes (2006)
Vol. 1891: J.B. Friedlander, D.R. Heath-Brown,
H. Iwaniec, J. Kaczorowski, Analytic Number Theory,
Cetraro, Italy, 2002. Editors: A. Perelli, C. Viola (2006)
Vol. 1892: A. Baddeley, I. Bárány, R. Schneider, W. Weil,
Stochastic Geometry, Martina Franca, Italy, 2004. Editor:
W. Weil (2007)
Vol. 1893: H. Hanßmann, Local and Semi-Local Bifur-
cations in Hamiltonian Dynamical Systems, Results and
Examples (2007)
Vol. 1894: C.W. Groetsch, Stable Approximate Evaluation
of Unbounded Operators (2007)
Vol. 1895: L. Molnár, Selected Preserver Problems on
Algebraic Structures of Linear Operators and on Function
Spaces (2007)
Vol. 1896: P. Massart, Concentration Inequalities and
Model Selection, Ecole d’Été de Probabilités de Saint-
Flour XXXIII-2003. Editor: J. Picard (2007)
Vol. 1897: R. Doney, Fluctuation Theory for Lévy
Processes, Ecole d’Été de Probabilités de Saint-Flour
XXXV-2005. Editor: J. Picard (2007)
Vol. 1898: H.R. Beyer, Beyond Partial Differential Equa-
tions, On linear and Quasi-Linear Abstract Hyperbolic
Evolution Equations (2007)
Vol. 1899: Séminaire de Probabilités XL. Editors:
C. Donati-Martin, M. Émery, A. Rouault, C. Stricker
(2007)
Vol. 1900: E. Bolthausen, A. Bovier (Eds.), Spin Glasses
(2007)
Vol. 1901: O. Wittenberg, Intersections de deux
quadriques et pinceaux de courbes de genre 1, Inter-
sections of Two Quadrics and Pencils of Curves of Genus
1 (2007)
Vol. 1902: A. Isaev, Lectures on the Automorphism
Groups of Kobayashi-Hyperbolic Manifolds (2007)
Vol. 1903: G. Kresin, V. Maz’ya, Sharp Real-Part Theo-
rems (2007)
Vol. 1904: P. Giesl, Construction of Global Lyapunov
Functions Using Radial Basis Functions (2007)
Vol. 1905: C. Prévôt, M. Röckner, A Concise Course on
Stochastic Partial Differential Equations (2007)
Vol. 1906: T. Schuster, The Method of Approximate
Inverse: Theory and Applications (2007)
Vol. 1907: M. Rasmussen, Attractivity and Bifurcation for
Nonautonomous Dynamical Systems (2007)
Vol. 1908: T.J. Lyons, M. Caruana, T. Lévy, Differential
Equations Driven by Rough Paths, Ecole d’Été de Proba-
bilités de Saint-Flour XXXIV-2004 (2007)



Vol. 1909: H. Akiyoshi, M. Sakuma, M. Wada,
Y. Yamashita, Punctured Torus Groups and 2-Bridge Knot
Groups (I) (2007)
Vol. 1910: V.D. Milman, G. Schechtman (Eds.), Geo-
metric Aspects of Functional Analysis. Israel Seminar
2004-2005 (2007)
Vol. 1911: A. Bressan, D. Serre, M. Williams,
K. Zumbrun, Hyperbolic Systems of Balance Laws.
Cetraro, Italy 2003. Editor: P. Marcati (2007)
Vol. 1912: V. Berinde, Iterative Approximation of Fixed
Points (2007)
Vol. 1913: J.E. Marsden, G. Misiołek, J.-P. Ortega,
M. Perlmutter, T.S. Ratiu, Hamiltonian Reduction by
Stages (2007)
Vol. 1914: G. Kutyniok, Affine Density in Wavelet
Analysis (2007)
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