A tale of Algebra and Geometry

Dan Abramovich

Brown University

University of Pisa

June 4, 2018
(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.
Intersection theory on algebraic stacks and their moduli spaces [Inv. 1989]

(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.\(^a\)

\(^a\)is a weak Alexander scheme.

- This is wonderful: it tells you something about varieties, which you can use even if you know nothing about the tools, namely stacks.
Intersection theory on algebraic stacks and their moduli spaces [Inv. 1989]

(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.\(^a\)

\(^a\)is a weak Alexander scheme.

- This is wonderful: it tells you something about varieties, which you can use even if you know nothing about the tools, namely stacks.
- Angelo’s thesis leads to many explicit computations, numerous theses, and further work at the foundation of enumerative geometry (180 citations).

Theorem [Invent. Math. 1998]

Assume that \(\kappa\) has characteristic \(\neq 2\) and \(3\). Then

\[A^*(\mathcal{M}_2) = \mathbb{Z}[\lambda_1, \lambda_2]/(10\lambda_1, 2\lambda_1^2 - 24\lambda_2) \]
“But you can’t really ignore the automorphisms, can you?”

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
“But you can’t really ignore the automorphisms, can you?”

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can’t restrain himself, and asks
“But you can’t really ignore the automorphisms, can you?”

The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.

Finally Angelo can’t restrain himself, and asks

“But you can’t really ignore the automorphisms, can you?”.
“But you can’t really ignore the automorphisms, can you?”

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can’t restrain himself, and asks

“But you can’t really ignore the automorphisms, can you?”.

- The next class was given by Angelo, a career-changing event, the first proper introduction to algebraic stacks for many.
“But you can’t really ignore the automorphisms, can you?”

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can’t restrain himself, and asks

“But you can’t really ignore the automorphisms, can you?”.

- The next class was given by Angelo, a career-changing event, the first proper introduction to algebraic stacks for many.
- He is basically telling students and professor alike how to seriously think about families and moduli.
“This is kind of obvious (if you think about it)”
“This is kind of obvious (if you think about it)”
“This is kind of obvious (if you think about it)”
“This is kind of obvious (if you think about it)”

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.
Proposition 5.3.1 [JAMS 2002]

The category \(\mathcal{K}_{g,n}(\mathcal{M}, d) \) has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
“This is kind of obvious (if you think about it)”

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
Proposition 5.3.1 [JAMS 2002]

The category $K_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be?
Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks.
- It really does help that someone with a reassuring voice tells you:
“This is kind of obvious (if you think about it)”

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks . . .
- It really does help that someone with a reassuring voice tells you: “This is kind of obvious (if you think about it)”.

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
- It really does help that someone with a reassuring voice tells you: “This is kind of obvious (if you think about it)”.
- While this sentence “This is kind of obvious (if you think about it)” might be perceived as intimidating, it is meant to be comforting.
“This is kind of obvious (if you think about it)”

Proposition 5.3.1 [JAMS 2002]

The category $K_{g,n}(M, d)$ has a deformation and obstruction theory satisfying Artin’s criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks.
- It really does help that someone with a reassuring voice tells you: “This is kind of obvious (if you think about it)”.
- While this sentence “This is kind of obvious (if you think about it)” might be perceived as intimidating, it is meant to be comforting.

However . . .
Size matters

It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.

The student is scared and would have weaseled out.

But the professor has two bodyguards on both sides, nodding, smiling. Angelo has this towering figure, and there is no way the student would escape!
Size matters

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
Size matters

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.
Size matters

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.
- But the professor has two bodyguards on both sides, nodding, smiling.
Size matters

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.
- But the professor has two bodyguards on both sides, nodding, smiling.
- Angelo has this towering figure, and there is no way the student would escape!
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo’s office at Harvard, 1996-1997.
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo’s office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo’s office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia’s thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia's thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo’s office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia’s thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)
- But there is an issue: how do you fill up a degenerate elliptic surface across a point?
“Trying to work with noncompact moduli spaces is like trying to keep change with holes in your pockets”

- We were sitting in Angelo’s office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia’s thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)
- But there is an issue: how do you fill up a degenerate elliptic surface across a point?
- The next morning Angelo reveals a beautiful Lemma.
The Purity Lemma [JAMS 2002]

Let $\mathcal{M} \to \mathbf{M}$ be the coarse moduli space of a separated Deligne-Mumford stack, X a separated S_2 surface, P a closed point. Assume that the local fundamental group of $U = X \setminus P$ around P is trivial.
The Purity Lemma [JAMS 2002]

Let $\mathcal{M} \to \mathbf{M}$ be the coarse moduli space of a separated Deligne-Mumford stack, X a separated S_2 surface, P a closed point. Assume that the local fundamental group of $U = X \setminus P$ around P is trivial.

Let $f : X \to \mathbf{M}$ be a morphism. Suppose there is a lifting $\tilde{f}_U : U \to \mathcal{M}$:

\[
\begin{array}{ccc}
 U & \rightarrow & X \quad f \\
 \downarrow & & \downarrow \\
 \mathbf{M} & \rightarrow & \mathcal{M}
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
 \tilde{f}_U & \rightarrow & \mathcal{M} \\
 \downarrow & & \downarrow \\
 \mathbf{M} & \rightarrow & \mathcal{M}
\end{array}
\]

Then the lifting extends to X:

\[
\begin{array}{ccc}
 U & \rightarrow & X \quad f \\
 \downarrow & & \downarrow \\
 \mathbf{M} & \rightarrow & \mathcal{M}
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
 \tilde{f}_U & \rightarrow & \mathcal{M} \\
 \downarrow & & \downarrow \\
 \mathbf{M} & \rightarrow & \mathcal{M}
\end{array}
\]
The purity lemma: localization and lifting on U

- The problem is étale local, so we may pass to strict henselization.
- We can thus assume U simply connected,
- and $\mathcal{M} = [V/\Gamma]$, with $V \to \mathcal{M}$ finite étale.
- Consider $V_U = U \times_\mathcal{M} V$.

Since $V_U \to U$ is finite étale and U simply connected there is a section $U \to V_U$ composing to a morphism $U \to V$.
The purity lemma: end of proof

- Consider the closure Y of U in $X \times_M V$:

\[
\begin{array}{ccc}
Y & \hookrightarrow & X \times_M V \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & M
\end{array}
\]

- As $V \rightarrow M$ is finite, $Y \rightarrow X$ is finite.
- As $U \rightarrow X$ is birational and isomorphism away from codimension 2, $Y \rightarrow X$ is also.
- As X is S_2, we have $Y \rightarrow X$ an isomorphism.
- $X \rightarrow Y \rightarrow \cdots \rightarrow M$ is the needed lifting.
Random gems

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).
Random gems

Theorem [Invent. Math. 1998]
Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]
An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.
Random gems

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]

An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.

Theorem 1 [Kresch-Vistoli, BLMS 2004]

Let X be a Deligne–Mumford quotient stack over a field having a quasiprojective coarse moduli space. Then X has a finite flat lci cover $Z \to X$ by a quasiprojective scheme which is as smooth as X.
Random gems

Theorem [Invent. Math. 1998]
Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]
An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.

Theorem 1 [Kresch-Vistoli, BLMS 2004]
Let X be a Deligne–Mumford quotient stack over a field having a quasiprojective coarse moduli space. Then X has a finite flat lci cover $Z \to X$ by a quasiprojective scheme which is as smooth as X.

Theorem 1.2 [Brosnan-Reichstein-Vistoli 2009]
The essential dimension of \mathcal{M}_2 is 5.
This is an interim report.

More to come!