Resolution and logarithmic resolution by weighted blowing up

Dan Abramovich, Brown University

Work with Michael Tëmkin and Jarosław Włodarczyk and work by Ming Hao Quek

> Also parallel work by M. McQuillan Algebraic geometry and Moduli Seminar

> > ETH Zürich, July 15, 2020

To resolve a singular variety X one wants to

(1) find the worst singular locus $S \subset X$,

(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.

Example: Whitney's umbrella

Consider $X = V(x^2 - y^2 z)$

(1) The worst singularity is the origin.

(2) In the *z* chart we get x = x'z, y = y'z, giving $x'^2z^2 - y'^2z^3 = 0, \text{ or } z^2(x'^2 - y'^2z) = 0.$

The first term is exceptional, the second is the same as X.

Two theorems

Nevertheless:

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ embedded in a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Theorem (Quek, characteristic 0)

There is a functor F associating to a logarithmically singular subvariety $X \subset Y$ embedded in a logarithmically smooth variety Y, a logarithmic center \overline{J} with stack theoretic logarithmic blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max loginv(X') < \max loginv(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n logarithmically smooth.

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

- A toric morphism X → B of toric varieties is a torus equivariant morphism.
- A toroidal embedding U_X ⊂ X is an open embedding étale locally isomorphic to toric T ⊂ V.
- A toroidal morphism $X \to B$ of toroidal embeddings is étale locally isomorphic to a toric morphism.

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.

$$\operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^2) \to \operatorname{Spec} \mathbb{C}_{+}$$

$$\operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[x] o \operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[x^2],$$

toric blowups

٢

۲

Context: functoriality

- Hironaka's theorem is functorial.
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Theorem (ℵ-T-W 2020)

Given $X \to B$ there is a relatively functorial logarithmically smooth modification $X' \to B'$.

- This respects $\operatorname{Aut}_B X$.
- Does not modify log smooth fibers.

Context: principalization

• Following Hironaka, the above theorem is based on embedded methods:

Theorem (ℵ-T-W 2020)

Given $Y \to B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_Y$, there is a relatively functorial logarithmically smooth modification $Y' \to B'$ such that $\mathcal{IO}_{Y'}$ is monomial.

- This is done by a sequence of logarithmic modifications,
- where in each step E becomes part of the divisor $D_{Y'}$.

8 / 25

Example 1

Y = Spec k[x, u]; D_Y = V(u); B = Spec k; I = (x², u²).
Blow up J = (x, u)
IO_{Y'} = O(-2E)

Example 1/2

- $Y = \operatorname{Spec} k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $v = u^2$ so $\mathcal{I} = f^* \mathcal{I}_0$
- By functoriality blow up J_0 so that $f^*J_0 = J = (x, u)$.
- Blow up $J_0 = (x, \sqrt{v})$
- Whatever J_0 is, the blowup is a stack.

Example 1/2: charts

• x chart:
$$v = v'x^2$$
:

$$(x^2, v) = (x^2, v'x^2) = (x^2)$$

exceptional, so monomial.

•
$$\sqrt{v}$$
 chart: $v = w^2, x = x'w$, with ± 1 action $(x', w) \mapsto (-x', -w)$:
 $(x^2, v) = (x'^2 w^2, w^2) = (w^2)$

exceptional, so monomial.

• The schematic quotient of the above is not toroidal.

Resolution again

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ embedded in a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Example

For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$.
We read it from the degrees of terms.
The center is:
 $J = (x^2, y^3, z^3); \bar{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$

Example: blowing up Whitney's umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly: • The *z* chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [Spec \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^6(x_3^2-y_3^2),$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is (2,2) < (2,3,3).

Order

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

- We denote by \mathcal{D}^a the sheaf of *a*-th order operators.
- We note that $\operatorname{ord}_p(\mathcal{I}) = \min\{a : \mathcal{D}^a \mathcal{I}_p\} = (1).$
- The invariant starts with $a_1 = \operatorname{ord}_p(\mathcal{I})$.

Proposition

The order is upper semicontinuous.

Proof.

$$V(\mathcal{D}^{a-1}\mathcal{I}) = \{p : \operatorname{ord}_p(\mathcal{I}) \geq a\}.$$

Maximal contact

Definition

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1}, \ldots)$.

Lemma

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since $1 \in \mathcal{D}^{a_1}\mathcal{I}_p$ there is x_1 with derivative 1. This derivative is a unit in a neighborhood.

Example

For
$$\mathcal{I} = (x^2 - y^2 z)$$
 we have $\operatorname{ord}_p \mathcal{I} = 2$ with $x_1 = x$ (or $x + y^2 + yz + h.o.t.$).

Coefficient ideals

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \ \mathcal{DI}, \ \ldots, \ \mathcal{D}^{\mathsf{a}_1 - 1} \mathcal{I}$$

with corresponding weights $a_1, a_1 - 1, \ldots, 1$. We combine these in

$$C(\mathcal{I}, a_1) := \sum f(\mathcal{I}, \mathcal{DI}, \dots, \mathcal{D}^{a_1-1}\mathcal{I}),$$

where f runs over monomials $f = t_0^{b_0} \cdots t_{a_1-1}^{b_{a_1-1}}$ with weights

$$\sum b_i(a_1-i) \geq a_1!.$$

Define $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Defining $J_{\mathcal{I}}$

Again $a_1 = \operatorname{ord}_p \mathcal{I}$ and x_1 maximal contact. We denoted $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Write $(a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1, \ldots, w_k) = 1$. We set

$$\bar{J}_{\mathcal{I}} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$$

Examples of $J_{\mathcal{I}}$

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is lexicographically upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.

We define $\max(X) = \max_p \operatorname{inv}_p(X)$. The invariant is well defined because of the MC-invariance property of $C(\mathcal{I}, a_1)$. The rest is induction!

Theorem (MC-invariance [Włodarczyk, Kollár])

Given maximal contacts x_1, x'_1 there are étale $\pi, \pi' : \tilde{Y} \rightrightarrows Y$ such that $\pi^* x_1 = {\pi'}^* x'_1 \dots$ and $\pi^* C(\mathcal{I}, a_1) = {\pi'}^* C(\mathcal{I}, a_1)$.

19 / 25

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{J}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}] \longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i} T^{w_{i}}.$$

Let

$$S_0 \subset \operatorname{Spec}_Y \mathcal{A}_{\bar{J}}, \quad S_0 = V((\mathcal{A}_{\bar{J}})_{>0}).$$

Then

$$Bl_{\overline{J}}(Y) := \mathcal{P}roj_{Y}\mathcal{A}_{\overline{J}} := [(\operatorname{Spec} \mathcal{A}_{\overline{J}} \smallsetminus S_{0}) / \mathbb{G}_{m}].$$

Description of $Y' \rightarrow Y$

• **Charts:** The *x*₁-chart is

$$[\operatorname{Spec} k[u, x'_2, \dots, x'_n] / \mu_{w_1}],$$

with $x_1 = u^{w_1}$ and $x_i = u^{w_i} x'_i$ for $2 \le i \le k$, and induced action:
 $(u, x'_2, \dots, x'_n) \mapsto (\zeta u, \zeta^{-w_2} x'_2, \dots, \zeta^{-w_k} x'_k, x'_{k+1}, \dots, x'_n).$

Toric stack: Consider Spec k[x₁,..., x_n, T] with G_m action with weights (w₁,..., w_n, -1). Let U be the open set where one of the x_i is a unit. Then Y' = [U/G_m]. It is an example of a *fantastack* [Geraschenko-Satriano], the stack quotient of a Cox construction.

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)\right).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

A center is in particular a valuative \mathbb{Q} -ideal. It is also an idealistic exponent or graded sequence of ideals.

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $v(J) \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

Indeed, on Y' the center J becomes E^{ℓ} , in particular principal. This is more subtle in Quek's theorem!

Proposition

A center J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ - admissible.

This is a consequence of Kollár's \mathcal{D} -balanced property of $C(\mathcal{I}, a_1)$.

The key theorems

Theorem

 $inv_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.

Theorem

 $I_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

Theorem

$$C(\mathcal{I}, a_1)\mathcal{O}_{\mathbf{Y}'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$$

Theorem

$$\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}' \text{ with } \operatorname{inv}_{p'}\mathcal{I}' < \operatorname{inv}_p(\mathcal{I}).$$

Thank you for your attention