Resolution and logarithmic resolution by weighted blowing up

Dan Abramovich, Brown University

Work with Michael Tëmkin and Jarosław Włodarczyk and work by Ming Hao Quek

Also parallel work by M. McQuillan
Algebraic geometry and Moduli Seminar

ETH Zürich, July 15, 2020

How to resolve

To resolve a singular variety X one wants to
(1) find the worst singular locus $S \subset X$,
(2) Hopefully S is smooth - blow it up.

How to resolve

To resolve a singular variety X one wants to
(1) find the worst singular locus $S \subset X$,
(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.

Example: Whitney's umbrella

Consider $X=V\left(x^{2}-y^{2} z\right)$

Example: Whitney's umbrella

Consider $X=V\left(x^{2}-y^{2} z\right)$
(1) The worst singularity is the origin.
(2) In the z chart we get

$$
\begin{aligned}
& x=x^{\prime} z, y=y^{\prime} z, \text { giving } \\
& x^{\prime 2} z^{2}-y^{\prime 2} z^{3}=0, \quad \text { or } \quad z^{2}\left(x^{\prime 2}-y^{\prime 2} z\right)=0
\end{aligned}
$$

Example: Whitney's umbrella

Consider $X=V\left(x^{2}-y^{2} z\right)$
(1) The worst singularity is the origin.
(2) In the z chart we get
$x=x^{\prime} z, y=y^{\prime} z$, giving
$x^{\prime 2} z^{2}-y^{\prime 2} z^{3}=0, \quad$ or $\quad z^{2}\left(x^{\prime 2}-y^{\prime 2} z\right)=0$.
The first term is exceptional, the second is the same as X.

Two theorems

Nevertheless:
Theorem ($\aleph-$ T-W, McQuillan, 2019, characteristic 0)
There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \bar{J} with stack theoretic weighted blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Two theorems

Nevertheless:
Theorem ($\aleph-$ T-W, McQuillan, 2019, characteristic 0)
There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \bar{J} with stack theoretic weighted blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Theorem (Quek, 2020, characteristic 0)
There is a functor F associating to a logarithmically singular subvariety $X \subset Y$ of a logarithmically smooth variety Y, a logarithmic center \bar{J} with stack theoretic logarithmic blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxloginv $\left(X^{\prime}\right)<\operatorname{maxloginv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} logarithmically smooth.

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ふ-Karu, 2000)
There is a modification $X^{\prime} \rightarrow B^{\prime}$ which is logarithmically smooth.

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ふ-Karu, 2000)
There is a modification $X^{\prime} \rightarrow B^{\prime}$ which is logarithmically smooth.
Logarithmically smooth $=$ toroidal:

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ふ-Karu, 2000)
There is a modification $X^{\prime} \rightarrow B^{\prime}$ which is logarithmically smooth.
Logarithmically smooth $=$ toroidal:

- A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (\aleph-Karu, 2000)
There is a modification $X^{\prime} \rightarrow B^{\prime}$ which is logarithmically smooth.
Logarithmically smooth $=$ toroidal:

- A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.
- A toroidal embedding $U_{X} \subset X$ is an open embedding étale locally isomorphic to toric $T \subset V$.

Context: families

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (\aleph-Karu, 2000)
There is a modification $X^{\prime} \rightarrow B^{\prime}$ which is logarithmically smooth.
Logarithmically smooth $=$ toroidal:

- A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.
- A toroidal embedding $U_{X} \subset X$ is an open embedding étale locally isomorphic to toric $T \subset V$.
- A toroidal morphism $X \rightarrow B$ of toroidal embeddings is étale locally isomorphic to a toric morphism.

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.
-

$$
\text { Spec } \mathbb{C}[x, y, z] /\left(x y-z^{2}\right) \quad \rightarrow \quad \text { Spec } \mathbb{C}
$$

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.
-

$$
\text { Spec } \mathbb{C}[x, y, z] /\left(x y-z^{2}\right) \quad \rightarrow \quad \text { Spec } \mathbb{C}
$$

$$
\text { Spec } \mathbb{C}[x] \quad \rightarrow \quad \text { Spec } \mathbb{C}\left[x^{2}\right]
$$

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.
-

$$
\text { Spec } \mathbb{C}[x, y, z] /\left(x y-z^{2}\right) \quad \rightarrow \quad \text { Spec } \mathbb{C}
$$

$$
\text { Spec } \mathbb{C}[x] \quad \rightarrow \quad \operatorname{Spec} \mathbb{C}\left[x^{2}\right]
$$

- toric blowups

Context: functoriality

- Hironaka's theorem is functorial.
- [\aleph-Karu 2000] is not: relied on deJong's method.

Context: functoriality

- Hironaka's theorem is functorial.
- [\aleph-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Context: functoriality

- Hironaka's theorem is functorial.
- [\aleph-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Theorem (\aleph-T-W 2020)

Given $X \rightarrow B$ there is a relatively functorial logarithmically smooth modification $X^{\prime} \rightarrow B^{\prime}$.

Context: functoriality

- Hironaka's theorem is functorial.
- [\aleph-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Theorem (\aleph-T-W 2020)

Given $X \rightarrow B$ there is a relatively functorial logarithmically smooth modification $X^{\prime} \rightarrow B^{\prime}$.

- This respects Aut $_{B} X$.
- Does not modify log smooth fibers.

Context: principalization

- Following Hironaka, the above theorem is based on embedded methods:

Theorem (\aleph-T-W 2020)

Given $Y \rightarrow B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$, there is a relatively functorial logarithmically smooth modification $Y^{\prime} \rightarrow B^{\prime}$ such that $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ is monomial.

Context: principalization

- Following Hironaka, the above theorem is based on embedded methods:

Theorem (\aleph-T-W 2020)

Given $Y \rightarrow B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$, there is a relatively functorial logarithmically smooth modification $Y^{\prime} \rightarrow B^{\prime}$ such that $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ is monomial.

- This is done by a sequence of logarithmic modifications,
- where in each step E becomes part of the divisor $D_{Y^{\prime}}$.

Example 1

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad B=\operatorname{Spec} k ;$

Example 1

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad B=\operatorname{Spec} k ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$.

Example 1

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad B=\operatorname{Spec} k ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$.
- Blow up $J=(x, u)$
- $\mathcal{I} \mathcal{O}_{Y^{\prime}}=\mathcal{O}(-2 E)$

Example $1 / 2$

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$

Example $1 / 2$

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$
- $Y_{0}=\operatorname{Spec} k[x, v] ; \quad D_{Y_{0}}=V(v) ; \quad \mathcal{I}_{0}=\left(x^{2}, v\right)$,
- $f: Y \rightarrow Y_{0} \quad v=u^{2} \quad$ so $\quad \mathcal{I}=f^{*} \mathcal{I}_{0}$

Example $1 / 2$

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$
- $Y_{0}=\operatorname{Spec} k[x, v] ; \quad D_{Y_{0}}=V(v) ; \quad \mathcal{I}_{0}=\left(x^{2}, v\right)$,
- $f: Y \rightarrow Y_{0} \quad v=u^{2} \quad$ so $\quad \mathcal{I}=f^{*} \mathcal{I}_{0}$
- By functoriality blow up J_{0} so that $f^{*} J_{0}=J=(x, u)$.

Example $1 / 2$

- $Y=\operatorname{Spec} k[x, u] ; \quad D_{Y}=V(u) ; \quad \mathcal{I}=\left(x^{2}, u^{2}\right)$
- $Y_{0}=\operatorname{Spec} k[x, v] ; \quad D_{Y_{0}}=V(v) ; \quad \mathcal{I}_{0}=\left(x^{2}, v\right)$,
- $f: Y \rightarrow Y_{0} \quad v=u^{2} \quad$ so $\quad \mathcal{I}=f^{*} \mathcal{I}_{0}$
- By functoriality blow up J_{0} so that $f^{*} J_{0}=J=(x, u)$.
- Blow up $J_{0}=(x, \sqrt{v})$
- Whatever J_{0} is, the blowup is a stack.

Example 1/2: charts

- x chart: $v=v^{\prime} x^{2}$:

$$
\left(x^{2}, v\right)=\left(x^{2}, v^{\prime} x^{2}\right)=\left(x^{2}\right)
$$

exceptional, so monomial.

- \sqrt{v} chart: $v=w^{2}, x=x^{\prime} w$, with ± 1 action $\left(x^{\prime}, w\right) \mapsto\left(-x^{\prime},-w\right)$:

$$
\left(x^{2}, v\right)=\left(x^{\prime 2} w^{2}, w^{2}\right)=\left(w^{2}\right)
$$

exceptional, so monomial.

- The schematic quotient of the above is not toroidal.

Resolution again

Theorem ($\aleph-$ T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \bar{J} with stack theoretic weighted blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Resolution again

Theorem ($\aleph-$ T-W, McQuillan, characteristic 0)
There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \bar{J} with stack theoretic weighted blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Example
For $X=V\left(x^{2}-y^{2} z\right)$ we have $\operatorname{inv}_{p}(X)=(2,3,3)$

Resolution again

Theorem (\aleph-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \bar{J} with stack theoretic weighted blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Example

For $X=V\left(x^{2}-y^{2} z\right)$ we have $\operatorname{inv}_{p}(X)=(2,3,3)$
We read it from the degrees of terms.
The center is:
$J=\left(x^{2}, y^{3}, z^{3}\right) ; \bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$.

Example: blowing up Whitney's umbrella $x^{2}=y^{2} z$

The blowing up $Y^{\prime} \rightarrow Y$ makes $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ principal. Explicitly:

- The z chart has $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ with chart

$$
Y^{\prime}=\left[\operatorname{Spec} \mathbb{C}\left[x_{3}, y_{3}, w\right] /(\pm 1)\right],
$$

with action of (± 1) given by $\left(x_{3}, y_{3}, w\right) \mapsto\left(-x_{3}, y_{3},-w\right)$.

Example: blowing up Whitney's umbrella $x^{2}=y^{2} z$

The blowing up $Y^{\prime} \rightarrow Y$ makes $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ principal. Explicitly:

- The z chart has $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ with chart

$$
Y^{\prime}=\left[\operatorname{Spec} \mathbb{C}\left[x_{3}, y_{3}, w\right] /(\pm 1)\right]
$$

with action of (± 1) given by $\left(x_{3}, y_{3}, w\right) \mapsto\left(-x_{3}, y_{3},-w\right)$.
The transformed equation is

$$
w^{6}\left(x_{3}^{2}-y_{3}^{2}\right),
$$

Example: blowing up Whitney's umbrella $x^{2}=y^{2} z$

The blowing up $Y^{\prime} \rightarrow Y$ makes $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ principal. Explicitly:

- The z chart has $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ with chart

$$
Y^{\prime}=\left[\operatorname{Spec} \mathbb{C}\left[x_{3}, y_{3}, w\right] /(\pm 1)\right]
$$

with action of (± 1) given by $\left(x_{3}, y_{3}, w\right) \mapsto\left(-x_{3}, y_{3},-w\right)$.
The transformed equation is

$$
w^{6}\left(x_{3}^{2}-y_{3}^{2}\right),
$$

and the invariant of the proper transform $\left(x_{3}^{2}-y_{3}^{2}\right)$ is
$(2,2)<(2,3,3)$.

Order (following Kollár's book)

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$.

Definition

For $p \in Y$ let $\operatorname{ord}_{p}(\mathcal{I})=\max \left\{a: \mathcal{I} \subseteq \mathfrak{m}_{p}^{a}\right\}$.

Order (following Kollár's book)

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$.

Definition

For $p \in Y$ let $\operatorname{ord}_{p}(\mathcal{I})=\max \left\{a: \mathcal{I} \subseteq \mathfrak{m}_{p}^{a}\right\}$.

- We denote by \mathcal{D}^{a} the sheaf of a-th order differential operators.

Order (following Kollár's book)

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$.

Definition
 For $p \in Y$ let $\operatorname{ord}_{p}(\mathcal{I})=\max \left\{a: \mathcal{I} \subseteq \mathfrak{m}_{p}^{a}\right\}$.

- We denote by \mathcal{D}^{a} the sheaf of a-th order differential operators.
- We note that $\operatorname{ord}_{p}(\mathcal{I})=\min \left\{a: \mathcal{D}^{a}\left(\mathcal{I}_{p}\right)\right\}=(1)$.
- The invariant starts with $a_{1}=\operatorname{ord}_{p}(\mathcal{I})$.

Order (following Kollár's book)

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_{Y}$.

Definition
 For $p \in Y$ let $\operatorname{ord}_{p}(\mathcal{I})=\max \left\{a: \mathcal{I} \subseteq \mathfrak{m}_{p}^{a}\right\}$.

- We denote by \mathcal{D}^{a} the sheaf of a-th order differential operators.
- We note that $\operatorname{ord}_{p}(\mathcal{I})=\min \left\{a: \mathcal{D}^{a}\left(\mathcal{I}_{p}\right)\right\}=(1)$.
- The invariant starts with $a_{1}=\operatorname{ord}_{p}(\mathcal{I})$.

Proposition

The order is upper semicontinuous.

$$
\begin{aligned}
& \text { Proof. } \\
& V\left(\mathcal{D}^{a-1} \mathcal{I}\right)=\left\{p: \operatorname{ord}_{p}(\mathcal{I}) \geq a\right\} .
\end{aligned}
$$

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_{1} \in \mathcal{D}^{a_{1}-1} \mathcal{I}_{p}$ is called a maximal contact element.
The center starts with $\left(x_{1}^{a_{1}}, \ldots\right)$.

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_{1} \in \mathcal{D}^{a_{1}-1} \mathcal{I}_{p}$ is called a maximal contact element.
The center starts with $\left(x_{1}^{a_{1}}, \ldots\right)$.

```
Lemma (Hironaka, Giraud)
In characteristic 0 a maximal contact exists on an open neighborhood of \(p\).
```

Since $1 \in \mathcal{D}^{a_{1}} \mathcal{I}_{p}$ there is x_{1} with derivative 1 . This derivative is a unit in a neighborhood.

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_{1} \in \mathcal{D}^{a_{1}-1} \mathcal{I}_{p}$ is called a maximal contact element.
The center starts with $\left(x_{1}^{a_{1}}, \ldots\right)$.
Lemma (Hironaka, Giraud)
In characteristic 0 a maximal contact exists on an open neighborhood of p.
Since $1 \in \mathcal{D}^{a_{1}} \mathcal{I}_{p}$ there is x_{1} with derivative 1 . This derivative is a unit in a neighborhood.

Example

For $\mathcal{I}=\left(x^{2}-y^{2} z\right)$ we have $\operatorname{ord}_{p} \mathcal{I}=2$ with $x_{1}=x$ (or $\alpha x+$ h.o.t. in $\mathcal{D}(\mathcal{I})$).

Coefficient ideals (treated following Kollár)

We must restrict to $x_{1}=0$ the data of all

$$
\mathcal{I}, \mathcal{D} \mathcal{I}, \ldots, \mathcal{D}^{a_{1}-1} \mathcal{I}
$$

with corresponding weights $a_{1}, a_{1}-1, \ldots, 1$.

Coefficient ideals (treated following Kollár)

We must restrict to $x_{1}=0$ the data of all

$$
\mathcal{I}, \mathcal{D} \mathcal{I}, \ldots, \mathcal{D}^{a_{1}-1} \mathcal{I}
$$

with corresponding weights $a_{1}, a_{1}-1, \ldots, 1$.
We combine these in

$$
C\left(\mathcal{I}, a_{1}\right):=\sum f\left(\mathcal{I}, \mathcal{D} \mathcal{I}, \ldots, \mathcal{D}^{a_{1}-1} \mathcal{I}\right)
$$

where f runs over monomials $f=t_{0}^{b_{0}} \cdots t_{a_{1}-1}^{b_{a_{1}-1}}$ with weights

$$
\sum b_{i}\left(a_{1}-i\right) \geq a_{1}!
$$

Define $\mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0}$.

Defining $J_{\mathcal{I}}$

Again $a_{1}=\operatorname{ord}_{p} \mathcal{I}$ and x_{1} maximal contact. We denoted $\quad \mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0} \quad$ (with order $\left.\geq a_{1}!\right)$.

Defining $J_{\mathcal{I}}$

Again $a_{1}=\operatorname{ord}_{p} \mathcal{I}$ and x_{1} maximal contact. We denoted $\quad \mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0} \quad$ (with order $\left.\geq a_{1}!\right)$.

Definition

Suppose \mathcal{I} [2] has invariant $\operatorname{inv}_{p}(\mathcal{I}[2])$ defined with parameters $\bar{x}_{2}, \ldots, \bar{x}_{k}$, with lifts x_{2}, \ldots, x_{k}.

Defining $J_{\mathcal{I}}$

Again $a_{1}=\operatorname{ord}_{p} \mathcal{I}$ and x_{1} maximal contact. We denoted $\quad \mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0} \quad$ (with order $\left.\geq a_{1}!\right)$.

Definition

Suppose \mathcal{I} [2] has invariant $\operatorname{inv}_{p}(\mathcal{I}[2])$ defined with parameters $\bar{x}_{2}, \ldots, \bar{x}_{k}$, with lifts x_{2}, \ldots, x_{k}. Set

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right)
$$

and

$$
J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right) .
$$

Defining $J_{\mathcal{I}}$

Again $a_{1}=\operatorname{ord}_{p} \mathcal{I}$ and x_{1} maximal contact.
We denoted $\quad \mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0} \quad$ (with order $\left.\geq a_{1}!\right)$.

Definition

Suppose \mathcal{I} [2] has invariant $\operatorname{inv}_{p}(\mathcal{I}[2])$ defined with parameters $\bar{x}_{2}, \ldots, \bar{x}_{k}$, with lifts x_{2}, \ldots, x_{k}. Set

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right)
$$

and

$$
J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Write $\left(a_{1}, \ldots, a_{k}\right)=\ell\left(1 / w_{1}, \ldots, 1 / w_{k}\right)$ with $w_{i}, \ell \in \mathbb{N}$ and $\operatorname{gcd}\left(w_{1}, \ldots, w_{k}\right)=1$. We set

$$
\overline{J_{\mathcal{I}}}=\left(x_{1}^{1 / w_{1}}, \ldots, x_{k}^{1 / w_{k}}\right)
$$

Examples of $J_{\mathcal{I}}$

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right), \quad \text { with } \quad J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right) .
$$

Example

(0) for $X=V\left(x^{2}+y^{2} z\right)$

Examples of $J_{\mathcal{I}}$

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right), \quad \text { with } \quad J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Example

(0) for $X=V\left(x^{2}+y^{2} z\right)$ we have $\mathcal{I}[2]=\left(y^{2} z\right)$, leading to

$$
J_{\mathcal{I}}=\left(x^{2}, y^{3}, z^{3}\right), \quad \overline{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)
$$

(1) for $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$

Examples of $J_{\mathcal{I}}$

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right), \quad \text { with } \quad J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Example

(0) for $X=V\left(x^{2}+y^{2} z\right)$ we have $\mathcal{I}[2]=\left(y^{2} z\right)$, leading to

$$
J_{\mathcal{I}}=\left(x^{2}, y^{3}, z^{3}\right), \quad \frac{\prime}{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)
$$

(1) for $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$ we have $\mathcal{I}[2]=(y)^{180}$, so
$J_{\mathcal{I}}=\left(x^{5}, y^{180 / 24}\right)=\left(x^{5}, y^{15 / 2}\right), \overline{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}\right)$.
(2) for $X=V\left(x^{5}+x^{3} y^{3}+y^{7}\right)$

Examples of $J_{\mathcal{I}}$

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right), \quad \text { with } \quad J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Example

(0) for $X=V\left(x^{2}+y^{2} z\right)$ we have $\mathcal{I}[2]=\left(y^{2} z\right)$, leading to

$$
J_{\mathcal{I}}=\left(x^{2}, y^{3}, z^{3}\right), \quad \overline{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)
$$

(1) for $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$ we have $\mathcal{I}[2]=(y)^{180}$, so

$$
J_{\mathcal{I}}=\left(x^{5}, y^{180 / 24}\right)=\left(x^{5}, y^{15 / 2}\right), \overline{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}\right)
$$

(2) for $X=V\left(x^{5}+x^{3} y^{3}+y^{7}\right)$ we have $\mathcal{I}[2]=(y)^{7 \cdot 24}$, so

$$
J_{\mathcal{I}}=\left(x^{5}, y^{7}\right), \quad \overline{J_{\mathcal{I}}}=\left(x^{1 / 7}, y^{1 / 5}\right)
$$

Implementation: Jonghyun Lee, Anne Frühbis-Krüger.

Properties of the invariant

Proposition

- inv_{p} is well-defined.
- inv_{p} is lexicographically upper-semi-continuous.
- inv_{p} is functorial.
- inv_{p} takes values in a well-ordered set.

We define $\operatorname{maxinv}(X)=\max _{p} \operatorname{inv}_{p}(X)$.

Properties of the invariant

Proposition

- inv_{p} is well-defined.
- inv_{p} is lexicographically upper-semi-continuous.
- inv ${ }_{p}$ is functorial.
- inv_{p} takes values in a well-ordered set.

We define $\operatorname{maxinv}(X)=\max _{p} \operatorname{inv}_{p}(X)$.
The invariant is well defined because of the MC-invariance property of $C\left(\mathcal{I}, a_{1}\right)$. The rest is induction!

Properties of the invariant

Proposition

- inv_{p} is well-defined.
- inv_{p} is lexicographically upper-semi-continuous.
- inv_{p} is functorial.
- inv_{p} takes values in a well-ordered set.

We define $\operatorname{maxinv}(X)=\max _{p} \operatorname{inv}_{p}(X)$.
The invariant is well defined because of the MC-invariance property of $C\left(\mathcal{I}, a_{1}\right)$. The rest is induction!

Theorem (MC-invariance [Włodarczyk, Kollár])

Given maximal contacts x_{1}, x_{1}^{\prime} there are étale $\pi, \pi^{\prime}: \tilde{Y} \rightrightarrows Y$ such that $\pi^{*} x_{1}=\pi^{\prime *} x_{1}^{\prime} \ldots$ and $\pi^{*} C\left(\mathcal{I}, a_{1}\right)=\pi^{\prime *} C\left(\mathcal{I}, a_{1}\right)$.

Definition of $Y^{\prime} \rightarrow Y$

Let $\bar{J}=\left(x_{1}^{1 / w_{1}}, \ldots, x_{k}^{1 / w_{k}}\right)$. Define the graded algebra

$$
\mathcal{A}_{\bar{J}} \subset \mathcal{O}_{Y}[T]
$$

as the integral closure of the image of

$$
\begin{aligned}
\mathcal{O}_{Y}\left[Y_{1}, \ldots, Y_{n}\right] & \longrightarrow \mathcal{O}_{Y}[T] \\
Y_{i} & \longmapsto x_{i} T^{w_{i}} .
\end{aligned}
$$

Definition of $Y^{\prime} \rightarrow Y$

Let $\bar{J}=\left(x_{1}^{1 / w_{1}}, \ldots, x_{k}^{1 / w_{k}}\right)$. Define the graded algebra

$$
\mathcal{A}_{\bar{J}} \subset \mathcal{O}_{Y}[T]
$$

as the integral closure of the image of

$$
\begin{aligned}
\mathcal{O}_{Y}\left[Y_{1}, \ldots, Y_{n}\right] & \longrightarrow \mathcal{O}_{Y}[T] \\
Y_{i} & \longmapsto x_{i} T^{w_{i}} .
\end{aligned}
$$

Let

$$
S_{0} \subset \operatorname{Spec}_{Y} \mathcal{A}_{J}, \quad S_{0}=V\left(\left(\mathcal{A}_{J}\right)>0\right) .
$$

Then

$$
B I_{\bar{J}}(Y):=\operatorname{Proj}_{Y} \mathcal{A}_{\bar{J}}:=\left[\left(\operatorname{Spec} \mathcal{A}_{\bar{J}} \backslash S_{0}\right) / \mathbb{G}_{m}\right]
$$

Description of $Y^{\prime} \rightarrow Y$

- Charts: The x_{1}-chart is

$$
\left[\operatorname{Spec} k\left[u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right] / \boldsymbol{\mu}_{w_{1}}\right],
$$

with $x_{1}=u^{w_{1}}$ and $x_{i}=u^{w_{i}} x_{i}^{\prime}$ for $2 \leq i \leq k$, and induced action:

$$
\left(u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \mapsto\left(\zeta u, \zeta^{-w_{2}} x_{2}^{\prime}, \ldots, \zeta^{-w_{k}} x_{k}^{\prime}, x_{k+1}^{\prime}, \ldots, x_{n}^{\prime}\right) .
$$

Description of $Y^{\prime} \rightarrow Y$

- Charts: The x_{1}-chart is

$$
\left[\operatorname{Spec} k\left[u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right] / \boldsymbol{\mu}_{w_{1}}\right],
$$

with $x_{1}=u^{w_{1}}$ and $x_{i}=u^{w_{i}} x_{i}^{\prime}$ for $2 \leq i \leq k$, and induced action:

$$
\left(u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \mapsto\left(\zeta u, \zeta^{-w_{2}} x_{2}^{\prime}, \ldots, \zeta^{-w_{k}} x_{k}^{\prime}, x_{k+1}^{\prime}, \ldots, x_{n}^{\prime}\right) .
$$

- Toric stack: Consider $\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}, T\right]$ with \mathbb{G}_{m} action with weights $\left(w_{1}, \ldots, w_{n},-1\right)$. Let U be the open set where one of the x_{i} is a unit. Then $Y^{\prime}=\left[U / \mathbb{G}_{m}\right]$.
It is an example of a fantastack [Geraschenko-Satriano], the stack quotient of a Cox construction.

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{Z R}(Y)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A valuative \mathbb{Q}-ideal is

$$
\left.\gamma \in H^{0}(\mathbf{Z R}(Y),(\Gamma \otimes \mathbb{Q}) \geq 0)\right)
$$

What is J ?

Definition

Consider the Zariski-Riemann space $\mathbf{Z R}(Y)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A valuative \mathbb{Q}-ideal is

$$
\left.\gamma \in H^{0}(\mathbf{Z R}(Y),(\Gamma \otimes \mathbb{Q}) \geq 0)\right)
$$

- $\mathcal{I}_{\gamma}:=\left\{f \in \mathcal{O}_{Y}: v(f) \geq \gamma_{v} \forall v\right\}$.
- $v(\mathcal{I}):=(\min v(f): f \in \mathcal{I})_{v}$.

What is J ?

Definition

Consider the Zariski-Riemann space $\mathbf{Z R}(Y)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A valuative \mathbb{Q}-ideal is

$$
\left.\gamma \in H^{0}(\mathbf{Z R}(Y),(\Gamma \otimes \mathbb{Q}) \geq 0)\right)
$$

- $\mathcal{I}_{\gamma}:=\left\{f \in \mathcal{O}_{Y}: v(f) \geq \gamma_{v} \forall v\right\}$.
- $v(\mathcal{I}):=(\min v(f): f \in \mathcal{I})_{v}$.

A center is in particular a valuative \mathbb{Q}-ideal. It is also an idealistic exponent or graded sequence of ideals.

Admissibility and coefficient ideals

Definition

J is \mathcal{I}-admissible if $J \leq v(\mathcal{I})$.

Admissibility and coefficient ideals

Definition

J is \mathcal{I}-admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{I} \mathcal{O}_{Y^{\prime}}=E^{\ell} \mathcal{I}^{\prime}$, with $J=\bar{J}^{\ell}$ and \mathcal{I}^{\prime} an ideal.
Indeed, on Y^{\prime} the center J becomes E^{ℓ}, in particular principal. This is more subtle in Quek's theorem!

Admissibility and coefficient ideals

Definition
 J is \mathcal{I}-admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{I} \mathcal{O}_{Y^{\prime}}=E^{\ell} \mathcal{I}^{\prime}$, with $J=\bar{J}^{\ell}$ and \mathcal{I}^{\prime} an ideal.
Indeed, on Y^{\prime} the center J becomes E^{ℓ}, in particular principal.
This is more subtle in Quek's theorem!

Proposition

A center J is \mathcal{I}-admissible if and only if $J^{\left(a_{1}-1\right)!}$ is $C\left(\mathcal{I}, a_{1}\right)$-admissible.

The key theorems

Theorem $\operatorname{inv}_{p}(\mathcal{I})$ is the maximal invariant of an \mathcal{I}-admissible center.

Theorem

$J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

The key theorems

Theorem $\operatorname{inv}_{p}(\mathcal{I})$ is the maximal invariant of an \mathcal{I}-admissible center.

Theorem

$J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

Theorem
$C\left(\mathcal{I}, a_{1}\right) \mathcal{O}_{Y^{\prime}}=E^{\ell^{\prime}} C^{\prime}$ with $\operatorname{inv}_{p^{\prime}} C^{\prime}<\operatorname{inv}_{p}\left(C\left(\mathcal{I}, a_{1}\right)\right)$.

The key theorems

Theorem $\operatorname{inv}_{p}(\mathcal{I})$ is the maximal invariant of an \mathcal{I}-admissible center.

Theorem

$J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.
Theorem
$C\left(\mathcal{I}, a_{1}\right) \mathcal{O}_{Y^{\prime}}=E^{\ell^{\prime}} C^{\prime}$ with $\operatorname{inv}_{p^{\prime}} C^{\prime}<\operatorname{inv}_{p}\left(C\left(\mathcal{I}, a_{1}\right)\right)$.
Theorem
$\mathcal{I} \mathcal{O}_{Y^{\prime}}=E^{\ell} \mathcal{I}^{\prime}$ with $\operatorname{inv}_{p^{\prime}} \mathcal{I}^{\prime}<\operatorname{inv}_{p}(\mathcal{I})$.
This is a consequence of Kollár's \mathcal{D}-balanced property of $C\left(\mathcal{I}, a_{1}\right)$.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.
- Then $\operatorname{maxinv}(\mathcal{I})=(4,4,4)$ with center $J=\left(x^{4}, y^{4}, z^{4}\right)$, a usual blowup.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.
- Then $\operatorname{maxinv}(\mathcal{I})=(4,4,4)$ with center $J=\left(x^{4}, y^{4}, z^{4}\right)$, a usual blowup.
- The z-chart has $\mathcal{I}^{\prime}=\left(y\left(x^{2}+z\right)\right)$. The new invariant is $(2,2)$ with reduced center $\left(y, x^{2}+z\right)$, which is tangent to the exceptional $z=0$.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.
- Then $\operatorname{maxinv}(\mathcal{I})=(4,4,4)$ with center $J=\left(x^{4}, y^{4}, z^{4}\right)$, a usual blowup.
- The z-chart has $\mathcal{I}^{\prime}=\left(y\left(x^{2}+z\right)\right)$. The new invariant is $(2,2)$ with reduced center $\left(y, x^{2}+z\right)$, which is tangent to the exceptional $z=0$.
- Instead work with logarithmic derivative in z.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.
- Then $\operatorname{maxinv}(\mathcal{I})=(4,4,4)$ with center $J=\left(x^{4}, y^{4}, z^{4}\right)$, a usual blowup.
- The z-chart has $\mathcal{I}^{\prime}=\left(y\left(x^{2}+z\right)\right)$. The new invariant is $(2,2)$ with reduced center $\left(y, x^{2}+z\right)$, which is tangent to the exceptional $z=0$.
- Instead work with logarithmic derivative in z.
- The logarithmic invariant is $(3,3, \infty)$ with center $\left(y^{3}, x^{3}, z^{3 / 2}\right)$ and reduced logarithmic center $\left(y, x, z^{1 / 2}\right)$.

Quek's theorem is necessary

- $\mathcal{I}=\left(x^{2} y z+y z^{4}\right) \subset \mathbb{C}[x, y, z]$.
- Then $\operatorname{maxinv}(\mathcal{I})=(4,4,4)$ with center $J=\left(x^{4}, y^{4}, z^{4}\right)$, a usual blowup.
- The z-chart has $\mathcal{I}^{\prime}=\left(y\left(x^{2}+z\right)\right)$. The new invariant is $(2,2)$ with reduced center $\left(y, x^{2}+z\right)$, which is tangent to the exceptional $z=0$.
- Instead work with logarithmic derivative in z.
- The logarithmic invariant is $(3,3, \infty)$ with center $\left(y^{3}, x^{3}, z^{3 / 2}\right)$ and reduced logarithmic center $\left(y, x, z^{1 / 2}\right)$.
- This reduces logarithmic invariants respecting logarithmic, hence exceptional, divisors.

The end

Thank you for your attention

