Resolution and logarithmic resolution by weighted blowing up

Dan Abramovich, Brown University

Work with Michael Tëmkin and Jarosław Włodarczyk and work by Ming Hao Quek

> Also parallel work by M. McQuillan Algebraic geometry and Moduli Seminar

> > ETH Zürich, July 15, 2020

1/26

To resolve a singular variety X one wants to

- (1) find the worst singular locus $S \subset X$,
- (2) Hopefully S is smooth blow it up.

To resolve a singular variety X one wants to

(1) find the worst singular locus $S \subset X$,

(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.

Example: Whitney's umbrella

Consider $X = V(x^2 - y^2 z)$

3 / 26

- 34

Example: Whitney's umbrella

Consider
$$X = V(x^2 - y^2 z)$$

(1) The worst singularity is the origin.
(2) In the *z* chart we get
 $x = x'z, y = y'z$, giving
 $x'^2 z^2 - y'^2 z^3 = 0$, or $z^2(x'^2 - y'^2 z) = 0$.

ETH Zürich, July 15, 2020 3 / 26

くほと くほと くほと

Example: Whitney's umbrella

Consider $X = V(x^2 - y^2 z)$ (1) The worst singularity is the origin.

(2) In the *z* chart we get x = x'z, y = y'z, giving $x'^2z^2 - y'^2z^3 = 0, \text{ or } z^2(x'^2 - y'^2z) = 0.$

The first term is exceptional, the second is the same as X.

Two theorems

Nevertheless:

Theorem (ℵ-T-W, McQuillan, 2019, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

A B M A B M

Two theorems

Nevertheless:

Theorem (ℵ-T-W, McQuillan, 2019, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Theorem (Quek, 2020, characteristic 0)

There is a functor F associating to a logarithmically singular subvariety $X \subset Y$ of a logarithmically smooth variety Y, a logarithmic center \overline{J} with stack theoretic logarithmic blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that maxloginv(X') < maxloginv(X). In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n logarithmically smooth.

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

- 3

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

 A toric morphism X → B of toric varieties is a torus equivariant morphism.

A B M A B M

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

- A toric morphism X → B of toric varieties is a torus equivariant morphism.
- A toroidal embedding U_X ⊂ X is an open embedding étale locally isomorphic to toric T ⊂ V.

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

- A toric morphism X → B of toric varieties is a torus equivariant morphism.
- A toroidal embedding U_X ⊂ X is an open embedding étale locally isomorphic to toric T ⊂ V.
- A toroidal morphism $X \to B$ of toroidal embeddings is étale locally isomorphic to a toric morphism.

5 / 26

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.

∃ → (∃ →

A toric morphism $X \to B$ of toric varieties is a torus equivariant morphism.e.g.

$$\operatorname{\mathsf{Spec}} \mathbb{C}[x,y,z]/(xy-z^2) \quad o \quad \operatorname{\mathsf{Spec}} \mathbb{C},$$

٢

ETH Zürich, July 15, 2020

∃ ► < ∃ ►</p>

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.

$$\operatorname{\mathsf{Spec}} \mathbb{C}[x,y,z]/(xy-z^2) \quad o \quad \operatorname{\mathsf{Spec}} \mathbb{C},$$

$\operatorname{Spec} \mathbb{C}[x] \to \operatorname{Spec} \mathbb{C}[x^2],$

٢

۲

ETH Zürich, July 15, 2020

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.

$$\operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^2) \quad o \quad \operatorname{Spec} \mathbb{C},$$

$\operatorname{Spec} \mathbb{C}[x] \to \operatorname{Spec} \mathbb{C}[x^2],$

• toric blowups

٢

۲

3 × 4 3 ×

- 3

- Hironaka's theorem is functorial.
- [ℵ-Karu 2000] is not: relied on deJong's method.

- Hironaka's theorem is functorial.
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For K–S-B or K-moduli want functoriality.

- Hironaka's theorem is functorial.
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Theorem (ℵ-T-W 2020)

Given $X \to B$ there is a relatively functorial logarithmically smooth modification $X' \to B'$.

7 / 26

- Hironaka's theorem is functorial.
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For K-S-B or K-moduli want functoriality.

Theorem (ℵ-T-W 2020)

Given $X \to B$ there is a relatively functorial logarithmically smooth modification $X' \to B'$.

- This respects $\operatorname{Aut}_B X$.
- Does not modify log smooth fibers.

Context: principalization

• Following Hironaka, the above theorem is based on embedded methods:

Theorem (ℵ-T-W 2020)

Given $Y \to B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_Y$, there is a relatively functorial logarithmically smooth modification $Y' \to B'$ such that $\mathcal{IO}_{Y'}$ is monomial.

()

Context: principalization

• Following Hironaka, the above theorem is based on embedded methods:

Theorem (ℵ-T-W 2020)

Given $Y \to B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_Y$, there is a relatively functorial logarithmically smooth modification $Y' \to B'$ such that $\mathcal{IO}_{Y'}$ is monomial.

- This is done by a sequence of logarithmic modifications,
- where in each step E becomes part of the divisor $D_{Y'}$.

A B K A B K

Example 1

• $Y = \operatorname{Spec} k[x, u];$ $D_Y = V(u);$ $B = \operatorname{Spec} k;$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 1

• $Y = \operatorname{Spec} k[x, u];$ $D_Y = V(u);$ $B = \operatorname{Spec} k;$ $\mathcal{I} = (x^2, u^2).$

ETH Zürich, July 15, 2020

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example 1

Y = Spec k[x, u]; D_Y = V(u); B = Spec k; I = (x², u²).
Blow up J = (x, u)
IO_{Y'} = O(-2E)

•
$$Y = \operatorname{Spec} k[x, u];$$
 $D_Y = V(u);$ $\mathcal{I} = (x^2, u^2)$

ETH Zürich, July 15, 2020 10

3

・ロト ・四ト ・ヨト ・ヨト

10 / 26

- $Y = \text{Spec } k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $v = u^2$ so $\mathcal{I} = f^* \mathcal{I}_0$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ● ●

- $Y = \operatorname{Spec} k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $v = u^2$ so $\mathcal{I} = f^* \mathcal{I}_0$
- By functoriality blow up J_0 so that $f^*J_0 = J = (x, u)$.

- $Y = \text{Spec } k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $v = u^2$ so $\mathcal{I} = f^* \mathcal{I}_0$
- By functoriality blow up J_0 so that $f^*J_0 = J = (x, u)$.
- Blow up $J_0 = (x, \sqrt{v})$
- Whatever J_0 is, the blowup is a stack.

Example 1/2: charts

• x chart:
$$v = v'x^2$$
:

$$(x^2, v) = (x^2, v'x^2) = (x^2)$$

exceptional, so monomial.

•
$$\sqrt{v}$$
 chart: $v = w^2, x = x'w$, with ± 1 action $(x', w) \mapsto (-x', -w)$:
 $(x^2, v) = (x'^2 w^2, w^2) = (w^2)$

exceptional, so monomial.

• The schematic quotient of the above is not toroidal.

Resolution again

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

• • = • • = • =

Resolution again

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Example

For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2,3,3)$

超す イヨト イヨト ニヨ

Resolution again

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Example

For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$
We read it from the degrees of terms.
The center is:
 $J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$

超す イヨト イヨト ニヨ

Example: blowing up Whitney's umbrella $x^2 = y^2 z$

The blowing up $Y' \rightarrow Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly: • The *z* chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$.

Example: blowing up Whitney's umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly: • The *z* chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^6(x_3^2-y_3^2),$$

Example: blowing up Whitney's umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly: • The *z* chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^{6}(x_{3}^{2}-y_{3}^{2}),$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is (2,2) < (2,3,3).

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

ETH Zürich, July 15, 2020 14 / 26

3

• • = • • = •

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

• We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.

(B)

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

- We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.
- We note that $\operatorname{ord}_p(\mathcal{I}) = \min\{a : \mathcal{D}^a(\mathcal{I}_p)\} = (1).$
- The invariant starts with $a_1 = \operatorname{ord}_p(\mathcal{I})$.

A B M A B M

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

- We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.
- We note that $\operatorname{ord}_p(\mathcal{I}) = \min\{a : \mathcal{D}^a(\mathcal{I}_p)\} = (1).$
- The invariant starts with $a_1 = \operatorname{ord}_p(\mathcal{I})$.

Proposition

The order is upper semicontinuous.

Proof.

$$V(\mathcal{D}^{a-1}\mathcal{I}) = \{p : \operatorname{ord}_p(\mathcal{I}) \geq a\}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

ETH Zürich, July 15, 2020 15 / 26

< @ ト < 注 ト < 注 ト - 注

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

Lemma (Hironaka, Giraud)

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since $1 \in D^{a_1} \mathcal{I}_p$ there is x_1 with derivative 1. This derivative is a unit in a neighborhood.

■▶ ★ 国▶ ★ 国▶ 三国 - のへの

Maximal contact (following Kollár's book)

Definition

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

Lemma (Hironaka, Giraud)

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since $1 \in D^{a_1} \mathcal{I}_p$ there is x_1 with derivative 1. This derivative is a unit in a neighborhood.

Example

For
$$\mathcal{I} = (x^2 - y^2 z)$$
 we have $\operatorname{ord}_p \mathcal{I} = 2$ with $x_1 = x$ (or $\alpha x + \text{h.o.t.}$ in $\mathcal{D}(\mathcal{I})$).

★掃♪ ★注♪ ★注♪ 二注

Coefficient ideals (treated following Kollár)

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \mathcal{DI}, \ldots, \mathcal{D}^{\mathsf{a}_1-1}\mathcal{I}$$

with corresponding weights $a_1, a_1 - 1, \ldots, 1$.

16 / 26

(B)

Coefficient ideals (treated following Kollár)

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \ \mathcal{DI}, \ \ldots, \ \mathcal{D}^{\mathsf{a}_1-1}\mathcal{I}$$

with corresponding weights $a_1, a_1 - 1, \ldots, 1$. We combine these in

$$C(\mathcal{I}, a_1) := \sum f(\mathcal{I}, \mathcal{DI}, \dots, \mathcal{D}^{a_1-1}\mathcal{I}),$$

where f runs over monomials $f = t_0^{b_0} \cdots t_{a_1-1}^{b_{a_1-1}}$ with weights

$$\sum b_i(a_1-i) \geq a_1!.$$

Define $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Again $a_1 = \operatorname{ord}_p \mathcal{I}$ and x_1 maximal contact. We denoted $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$ (with order $\geq a_1$!).

 $\begin{array}{ll} \text{Again } a_1 = \text{ord}_p \mathcal{I} \text{ and } x_1 \text{ maximal contact.} \\ \text{We denoted} \quad \mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0} \quad (\text{with order} \geq a_1!). \end{array}$

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k .

17 / 26

 $\begin{array}{ll} \text{Again } a_1 = \text{ord}_p \mathcal{I} \text{ and } x_1 \text{ maximal contact.} \\ \text{We denoted} \quad \mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0} \quad (\text{with order} \geq a_1!). \end{array}$

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

• • = • • = • = •

 $\begin{array}{ll} \text{Again } a_1 = \text{ord}_p \mathcal{I} \text{ and } x_1 \text{ maximal contact.} \\ \text{We denoted} \quad \mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0} \quad (\text{with order} \geq a_1!). \end{array}$

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Write $(a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1, \ldots, w_k) = 1$. We set

$$\bar{J}_{\mathcal{I}} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$$

17 / 26

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(0) for $X = V(x^2 + y^2 z)$

ETH Zürich, July 15, 2020 18 / 26

- 2

イロン イヨン イヨン イヨン

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(0) for
$$X = V(x^2 + y^2 z)$$
 we have $\mathcal{I}[2] = (y^2 z)$, leading to $J_{\mathcal{I}} = (x^2, y^3, z^3), \quad \bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}, z^{1/2})$
(1) for $X = V(x^5 + x^3y^3 + y^8)$

・ロト ・ 理ト ・ ヨト ・ ヨト

18 / 26

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \mathsf{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(0) for
$$X = V(x^2 + y^2 z)$$
 we have $\mathcal{I}[2] = (y^2 z)$, leading to $J_{\mathcal{I}} = (x^2, y^3, z^3)$, $\bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}, z^{1/2})$
(1) for $X = V(x^5 + x^3y^3 + y^8)$ we have $\mathcal{I}[2] = (y)^{180}$, so $J_{\mathcal{I}} = (x^5, y^{180/24}) = (x^5, y^{15/2}), \ \bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}).$
(2) for $X = V(x^5 + x^3y^3 + y^7)$

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

Implementation: Jonghyun Lee, Anne Frühbis-Krüger.

・ 何 ト ・ ヨ ト ・ ヨ ト

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is lexicographically upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.

We define $\max(X) = \max_{\rho} \operatorname{inv}_{\rho}(X)$.

A B F A B F

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is lexicographically upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.

We define $\max(X) = \max_p \operatorname{inv}_p(X)$. The invariant is well defined because of the MC-invariance property of $C(\mathcal{I}, a_1)$. The rest is induction!

4 3 4 3 4 3 4

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is lexicographically upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.

We define $\max(X) = \max_p \operatorname{inv}_p(X)$. The invariant is well defined because of the MC-invariance property of $C(\mathcal{I}, a_1)$. The rest is induction!

Theorem (MC-invariance [Włodarczyk, Kollár])

Given maximal contacts x_1, x'_1 there are étale $\pi, \pi' : \tilde{Y} \rightrightarrows Y$ such that $\pi^* x_1 = {\pi'}^* x'_1 \dots$ and $\pi^* C(\mathcal{I}, a_1) = {\pi'}^* C(\mathcal{I}, a_1)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{I}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}]\longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i}T^{w_{i}}.$$

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{J}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}] \longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i} T^{w_{i}}.$$

Let

$$S_0 \subset \operatorname{Spec}_Y \mathcal{A}_{\bar{J}}, \quad S_0 = V((\mathcal{A}_{\bar{J}})_{>0}).$$

Then

$$Bl_{\overline{J}}(Y) := \mathcal{P}roj_{Y}\mathcal{A}_{\overline{J}} := [(\operatorname{Spec} \mathcal{A}_{\overline{J}} \smallsetminus S_{0}) / \mathbb{G}_{m}].$$

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Description of $Y' \rightarrow Y$

• Charts: The x₁-chart is

$$[\text{Spec } k[u, x'_{2}, \dots, x'_{n}] / \mu_{w_{1}}],$$

with $x_{1} = u^{w_{1}}$ and $x_{i} = u^{w_{i}}x'_{i}$ for $2 \le i \le k$, and induced action:
 $(u, x'_{2}, \dots, x'_{n}) \mapsto (\zeta u, \zeta^{-w_{2}}x'_{2}, \dots, \zeta^{-w_{k}}x'_{k}, x'_{k+1}, \dots, x'_{n}).$

(人間) システン イラン

Description of $Y' \rightarrow Y$

• **Charts:** The *x*₁-chart is

$$[\text{Spec } k[u, x'_{2}, \dots, x'_{n}] / \mu_{w_{1}}],$$

with $x_{1} = u^{w_{1}}$ and $x_{i} = u^{w_{i}}x'_{i}$ for $2 \le i \le k$, and induced action:
 $(u, x'_{2}, \dots, x'_{n}) \mapsto (\zeta u, \zeta^{-w_{2}}x'_{2}, \dots, \zeta^{-w_{k}}x'_{k}, x'_{k+1}, \dots, x'_{n}).$

Toric stack: Consider Spec k[x₁,..., x_n, T] with G_m action with weights (w₁,..., w_n, -1). Let U be the open set where one of the x_i is a unit. Then Y' = [U/G_m]. It is an example of a *fantastack* [Geraschenko-Satriano], the stack quotient of a Cox construction.

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma \otimes \mathbb{Q})_{\geq 0}\right)\right).$

(B)

22 / 26

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma \otimes \mathbb{Q})_{\geq 0}\right)\right).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

(B)

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)\right).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

A center is in particular a valuative \mathbb{Q} -ideal. It is also an idealistic exponent or graded sequence of ideals.

A B F A B F

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.

ETH Zürich, July 15, 2020 23

A B < A B <</p>

23 / 26

Admissibility and coefficient ideals

Definition

```
J is \mathcal{I}-admissible if J \leq v(\mathcal{I}).
```

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

Indeed, on Y' the center J becomes E^{ℓ} , in particular principal. This is more subtle in Quek's theorem!

Admissibility and coefficient ideals

Definition

```
J is \mathcal{I}-admissible if J \leq v(\mathcal{I}).
```

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

Indeed, on Y' the center J becomes E^{ℓ} , in particular principal. This is more subtle in Quek's theorem!

Proposition

A center J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ -admissible.

- 4 回 ト 4 三 ト - 三 - シック

The key theorems

Theorem

 $inv_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.

Theorem

 $J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

A B < A B <</p>

The key theorems

Theorem

 $inv_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.

Theorem

 $J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

Theorem

$C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$

The key theorems

Theorem

 $inv_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.

Theorem

 $J_{\mathcal{I}}$ is well-defined: it is the unique admissible center of maximal invariant.

Theorem

$$C(\mathcal{I}, a_1)\mathcal{O}_{\mathbf{Y}'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$$

Theorem

$$\mathcal{IO}_{\mathbf{Y}'} = E^{\ell} \mathcal{I}' \text{ with } \operatorname{inv}_{p'} \mathcal{I}' < \operatorname{inv}_{p}(\mathcal{I}).$$

This is a consequence of Kollár's \mathcal{D} -balanced property of $C(\mathcal{I}, a_1)$.

(日) (四) (王) (王) (王)

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

2

25 / 26

A B < A B </p>

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

• Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.

25 / 26

3

(B)

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2, 2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2,2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.

A B F A B F

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2, 2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.
- The logarithmic invariant is $(3,3,\infty)$ with center $(y^3, x^3, z^{3/2})$ and reduced logarithmic center $(y, x, z^{1/2})$.

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2, 2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.
- The logarithmic invariant is $(3,3,\infty)$ with center $(y^3, x^3, z^{3/2})$ and reduced logarithmic center $(y, x, z^{1/2})$.
- This reduces logarithmic invariants respecting logarithmic, hence exceptional, divisors.

(過) (モン・モン・ヨ)

Thank you for your attention

26 / 26

3

・ 同 ト ・ ヨ ト ・ ヨ ト