(1)
$$(f_1^{a_1}, \dots, f_k^{a_k}) := (\min\{a_i \cdot v(f_i)\})_v \in H^0(\mathbf{ZR}(Y), \Gamma_{\mathbb{Q}+})$$

Lemma 0.0.1. After passing to completions we may write

$$C(\mathcal{I}, a) = (x_1^{a!}) + (x_1^{a!-1}\tilde{\mathcal{C}}_1) + \dots + (x_1\tilde{\mathcal{C}}_{a!-1}) + \tilde{\mathcal{C}}_{a!}.$$

Theorem 0.0.2. The invariant inv_p is independent of the choices. It is upper-semi-continuous. It is functorial for smooth morphisms: if $f: Y_1 \to Y$ is smooth and $p' \in Y'$ then $\operatorname{inv}_{p'}(\mathcal{IO}_{Y_1}) = \operatorname{inv}_{f(p')}(\mathcal{I})$.

Proof. The integer $a_1 = \operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I}_p \subseteq \mathfrak{m}_p^a\}$ requires no choices. Given a regular sequence (x_1, \ldots, x_n) extending (x_1, \ldots, x_k) , and given another maximal contact element x'_1 , we may choose constants t_i , and replace x_2, \ldots, x_n by $x_2 + t_2 x_1, \ldots, x_n + t_n x_1$ so that also (x'_1, x_2, \ldots, x_n) is a regular sequence. We can now write $x'_1 = \alpha x_1 + f$ with $\alpha \neq 0$ and $f \in \tilde{\mathcal{C}}_1$, and the ideal $\mathcal{I}[2] = \bar{\mathcal{C}}_{a_1}$ remains unchanged. By induction a_2, \ldots, a_k are independent of choices. Hence (a_1, \ldots, a_k) is independent of choices.

Since the closed subscheme $V(\mathcal{D}^{\leq a}\mathcal{I})$ is the locus where $\operatorname{ord}_p(\mathcal{I}) \geq a$, the order is upper-semi-continuous. The subscheme $V(\mathcal{D}^{\leq a_1}\mathcal{I})$ is contained in $V(x_1)$ on which $\operatorname{inv}_p(\mathcal{I}[2])$ is upper-semi-continuous by induction, hence $\operatorname{inv}_p(\mathcal{I})$ is upper-semi-continuous.

Since both $\operatorname{ord}_p(\mathcal{I})$ and the formation of coefficient ideals are functorial for smooth morphisms, the invariant is functorial for smooth morphisms.

Lemma 0.0.3. If x'_1 is another maximal contact element such that (x'_1, x_2, \ldots, x_n) is a regular sequence, then $J = (x'_1^{a_1}, x'_2^{a_2}, \ldots, x'_k^{a_k})$ is also a center associated to \mathcal{I} at p.

Again $x'_1 = \alpha x_1 + f$ with $\alpha \neq 0$ and $f \in \tilde{\mathcal{C}}_1$, and the ideal $\mathcal{I}[2] = \tilde{\mathcal{C}}_{a_1!}$ remains unchanged.

0.0.4. Basic properties. The description of the monomial valuation of J immediately provides the following lemmas:

Lemma 0.0.5. If J is both \mathcal{I}_1 -admissible and \mathcal{I}_2 -admissible then J is $\mathcal{I}_1 + \mathcal{I}_2$ -admissible. If J is \mathcal{I} -admissible then J^k is \mathcal{I}^k -admissible. More generally if J^{c_j} is \mathcal{I}_j -admissible then $J^{\sum c_j}$ is $\prod \mathcal{I}_j$ -admissible.

Indeed if $v_J(f) \ge 1$ and $v_J(g) \ge 1$ then $v_J(f+g) \ge 1$ and $v_J(f^{c_1}+g^{c_2}) \ge c_1+c_2$, etc.

Lemma 0.0.6. If J is \mathcal{I} -admissible then $J' = J^{\frac{a_1-1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$ -admissible. If $a_1 > 1$ and $J^{\frac{a_1-1}{a_1}}$ is \mathcal{I} -admissible then J is $x_1\mathcal{I}$ -admissible.

Proof. For the first statement note that if $\sum_{i=1}^{k} \alpha_i / a_i \ge 1$ and $\alpha_j \ge 1$ then

$$v_J\left(\frac{\partial(x_1^{\alpha_1}\cdots x_n^{\alpha_n})}{\partial x_j}\right) = \sum_{i=1}^k \alpha_i/a_i - 1/a_j \ge 1 - 1/a_1,$$

 \mathbf{SO}

$$v_{J'}\left(\frac{\partial(x_1^{\alpha_1}\cdots x_n^{\alpha_n})}{\partial x_j}\right) \ge 1$$

as needed. The other statement is similar.

Lemma 0.0.7. For $\mathcal{I}_0 \subset k[x_2, \ldots, x_n]$ write $\tilde{\mathcal{I}}_0 = \mathcal{I}_0 k[x_1, \ldots, x_n]$. Assume $a_1 \leq a_2$ and $(x_2^{a_2}, \ldots, x_k^{a_k})$ is \mathcal{I}_0 -admissible. Then $(x_1^{a_1}, \ldots, x_k^{a_k})$ is $\tilde{\mathcal{I}}_0$ -admissible.

Here for generators of \mathcal{I}_0 we have $\sum_{i=1}^k \alpha_i / a_i = \sum_{i=2}^k \alpha_i / a_i$.

Lemma 0.0.8. J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ -admissible.

This combines Lemmas 0.0.5 and 0.0.6 for the terms defining $C(\mathcal{I}, a_1)$.

Theorem 0.0.9. If $(a_1, \ldots, a_k) = \text{inv}_p(\mathcal{I})$, with corresponding parameters x_1, \ldots, x_k , and $J = (x_1^{a_1}, \ldots, x_k^{a_k})$ a corresponding center, then J is \mathcal{I} -admissible.

£

Proof. Applying Lemma 0.0.8, we replace \mathcal{I} by $C(\mathcal{I}, a_1)$, rescale the invariant up to $a_1!$ and work on formal completion. We may therefore write

$$\mathcal{I} = (x_1^{a_1}) + (x_1^{a_1 - 1} \tilde{\mathcal{I}}_1) + \dots + (x_1 \tilde{\mathcal{I}}_{a_1 - 1}) + \tilde{\mathcal{I}}_{a_1}$$

as in Lemma 0.0.1.

The inductive hypothesis implies $(x_2^{a_2}, \ldots, x_k^{a_k})$ is $\overline{\mathcal{I}}_{a_1}$ -admissible. By Lemma 0.0.7 J is $\widetilde{\mathcal{I}}_{a_1}$ -admissible. By Lemma 0.0.6 J is $(x_1^{a_1-j}\tilde{\mathcal{I}}_j)$ -admissible, So by Lemma 0.0.5 J is \mathcal{I} -admissible, as needed. *

Theorem 0.0.10. The center J associated to \mathcal{I} is unique.

Proof. Rescaling, we any assume a_i are integers and centers are represented by ideals. The problem is local, and can be verified on formal completions at a point $p \in Y$, so that again we may write using the technical proposition

$$\mathcal{I} = (x_1^{a_1}) + (x_1^{a_1-1}\tilde{\mathcal{I}}_1) + \dots + (x_1\tilde{\mathcal{I}}_{a_1-1}) + \tilde{\mathcal{I}}_{a_1}.$$

Let $J = (x_1^{a_1}, \ldots, x_k^{a_k})$ and $J' = (x_1'^{a_1}, x_2'^{a_2}, \ldots, x_k'^{a_k})$ be centers associated to \mathcal{I} . **Case 1:** $x_1 = x_1'$. We may assume by induction $x_i' \equiv x_i \mod x_1$. Formula (1) shows that J = J' as valuative \mathbb{Q} -ideals.

Case 2: $x_i = x'_i$ for i > 1. Write $x'_1 = x_1 + f$, where $f \in \tilde{\mathcal{I}}_1$. We may write $J' = ((x'_1)^{a_1}, x_2^{a_2}, \dots, x_k^{a_k})$. The basic lemmas imply that J is admissible for each term in J' hence J is admissible for the *ideal* J'. Reversing the roles we have that J' is admissible for the *ideal J*. This implies that J = J' as valuative Q-ideals.

Case 3: J' is general but (x'_1, x_2, \ldots, x_n) is a regular sequence. By Lemma 0.0.3 the center $J'_1 := ((x'_1)^{a_1}, x^{a_2}_2, \dots, x^{a_k}_k)$ is associated to \mathcal{I} as well. By Case 2 $J = J'_1$ as valuative \mathbb{Q} -ideals. By Case 1 $J'_1 = J'$ as valuative \mathbb{Q} -ideals, so J = J' as valuative \mathbb{Q} -ideals, as needed.

Case 4: the general case. Since (x_1, \ldots, x_n) is a regular sequence there are constants t_i so that, setting $x_1'' = x_1 + t_i x_1$, both (x_1, x_2', \dots, x_n') and $(x_1', x_2', \dots, x_n')$ are regular sequences. By Case 1, $J = (x_1^{a_1}, x_2''^{a_2}, \dots, x_n''^{a_n})$ as valuative \mathbb{Q} -ideals. By Case 3, $(x_1^{a_1}, x_2''^{a_2}, \dots, x_n''^{a_n}) = J'$ as valuative \mathbb{Q} -ideals, so J = J' as valuative \mathbb{Q} -ideals, as needed.

Theorem 0.0.11. Assume $\mathcal{I}_p \neq (1)$, and let $(a_1, \ldots, a_k) = inv_p(\mathcal{I})$, with corresponding parameters x_1, \ldots, x_k and $J = (x_1^{a_1}, \ldots, x_k^{a_k})$. For $c \in \mathbb{N}_{>0}$ write $Y'_c \to Y$ for the blowing up of the rescaled center $\overline{J}^{1/c} := (x_1^{1/(w_1c)}, \ldots, x_k^{1/(w_kc)})$, with corresponding factorization $\mathcal{IO}_{Y'_c} = E^{a_1w_1c}\mathcal{I}'$. Then for every point p' over p we have $\operatorname{inv}_{p'}(\mathcal{I}') < \operatorname{inv}_p(\mathcal{I}).$

Proof. If k = 0 the ideal is (0) and there is nothing to prove. When k = 1 the ideal is $(x_1^{a_1})$, which becomes exceptional with proper transform (1). We now assume k > 1.

Again using Lemma 0.0.1, we choose formal coordinates, work with $\tilde{\mathcal{C}} := C(\mathcal{I}, a_1)$, and write

$$\tilde{\mathcal{C}} = (x_1^{a_1!}) + (x_1^{a_1!-1}\tilde{\mathcal{C}}_1) + \dots + (x_1\tilde{\mathcal{C}}_1) + \tilde{\mathcal{C}}_{a_1!}.$$

Writing $\tilde{\mathcal{C}}\mathcal{O}_{Y'_c} = E^{a_1!w_1c}\tilde{\mathcal{C}}'$, we will first show that $\operatorname{inv}_{p'}(\tilde{\mathcal{C}}') < (a_1 - 1)! \cdot (a_1, a_2, \dots, a_k)$ for all points p' over

Write $H = \{x_1 = 0\}$, and $H' \to H$ the blowing up of the reduced center \bar{J}_H associated to $J_H :=$ $(x_2^{a_2},\ldots,x_k^{a_k})$. By Lemma ?? the proper transform $\tilde{H'} \to H$ of H via the blowing up of \bar{J} is the root stack $H'({}^{(cc')}\sqrt{E_H})$ of H' along $E_H \subset H'$, where $c' = \frac{\operatorname{lcm}(w_1, \dots, w_k)}{\operatorname{lcm}(w_2, \dots, w_k)}$. Therefore \tilde{H}' is the blowing up of $\bar{J}_H^{1/(cc')}$, allowing for induction.

We now inspect the behavior on different charts. On the x_1 -chart we have $x_1 = u^{w_1c}$ so the first term becomes $(x_1^{a_1!}) = E^{a_1!w_1c} \cdot (1)$ and $\operatorname{inv}_p \tilde{\mathcal{C}}' = \operatorname{inv}(1) = 0.^1$ This implies that on all other charts it suffices to consider $p' \in \tilde{H}' \cap E$, as all other points belong to the x_1 -chart. By the inductive assumption, for such points we have

$$\operatorname{inv}_{p'}(\bar{\mathcal{C}}'_{a_1!}) < (a_1 - 1)! \cdot (a_2, \dots, a_k).$$

¹This reflects the fact that before passing to the coefficient ideal $\operatorname{ord}(\mathcal{I}') < a_1$ on this chart - it need not become a unit ideal in general!

Note that the term $(x_1^{a_1!})$ in $\tilde{\mathcal{C}}$ is transformed, via $x_1 = u^{w_1c}x_1'$ to the form $E^{a_1!w_1c}(x_1'^{a_1!})$. It follows that $\operatorname{ord}_{p'}(\tilde{\mathcal{C}}') \leq a_1!$, and if $\operatorname{ord}_{p'}(\tilde{\mathcal{C}}') < a_1!$ then a fortiori $\operatorname{inv}_{p'}(\tilde{\mathcal{C}}') < \operatorname{inv}_p(\tilde{\mathcal{C}})$. If on the other hand $\operatorname{ord}_{p'}(\tilde{\mathcal{C}}') = a_1!$ then the variable x_1' is a maximal contact element. Using the inductive

assumption we compute

$$\operatorname{inv}_{p'}((x_1'^{a_1!}) + \tilde{\mathcal{C}}'_{a_1!}) = (a_1!, \operatorname{inv}_{p'}(\bar{\mathcal{C}}'_{a_1!})) < (a_1!, \operatorname{inv}_{p'}(\bar{\mathcal{C}}_{a_1!})) = (a_1 - 1)!(a_1, \dots, a_k)$$

Since $\tilde{\mathcal{C}}'$ includes this ideal, we obtain again $\operatorname{inv}_{p'}(\tilde{\mathcal{C}}') < \operatorname{inv}_p(\tilde{\mathcal{C}})$, as claimed.

We deduce that $\operatorname{inv}_{p'}(\mathcal{I}') < \operatorname{inv}_p(\mathcal{I})$ as well: Once again we may assume x'_1 is a maximal contact element and $\operatorname{ord}_{p'}(\mathcal{I}') = a_1$. We have the standard inclusions $\mathcal{I}'^{(a_1-1)!} \subset \tilde{\mathcal{C}}' \subset C(\mathcal{I}', a_1)$, hence

$$\operatorname{inv}_{p'}(\mathcal{I}^{\prime(a_1-1)!}) \ge \operatorname{inv}_{p'}(\tilde{\mathcal{C}}^{\prime}) \ge \operatorname{inv}_{p'}(C(\mathcal{I}^{\prime},a_1)).$$

Since $\operatorname{inv}_{p'}(\mathcal{I}'^{(a_1-1)!}) = \operatorname{inv}_{p'}(C(\mathcal{I}', a_1))$ we have equalities throughout, hence

$$\operatorname{inv}_{p'}(\mathcal{I}') = \frac{1}{(a_1 - 1)!} \operatorname{inv}_{p'}(\tilde{\mathcal{C}}') < \frac{1}{(a_1 - 1)!} \operatorname{inv}_p(\tilde{\mathcal{C}}) = \operatorname{inv}_p(\mathcal{I}),$$

as needed.

è	6
-	