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Abstract. This is an exposition of ideas appearing in [ATW19], discussing in addition
the extent to which one can address other aspects of birational geometry using weighted
blowings up.

1. Introduction

1.1. The place of resolution. Resolution of singularities, when available, is one of the
most powerful tool at the hands of an algebraic geometer. One would wish it to have a
completely intuitive, natural proof. Many such proofs exist for curves, see [Kol07, Chapter
1]. At least one completely conceptual proof exists for surfaces in characteristic > 2 and
for threefolds of characteristic > 5, see [Cut09]. It is fair to say that with most other cases,
including Hironaka’s monumental proof of resolution of singularities in characteristic zero
[Hir64], one feels that varieties resist our resolution efforts, and one has to resort to extreme
measure to force resolution upon them. On the other hand, one feels that it should not be
so: myriad applications show that it is in the best interest of any variety to be resolved.

1.2. This note. The purpose of this note is to recall how this “resistance” comes about,
and to outline a new approach, where we are able to prove resolution of singularities in
characteristic 0 with the complete cooperation of our varieties, by infusing the theory with
a bit of modern moduli theory, specifically the theory of algebraic stacks. The main result,
explained throughout this note, is the following:

Theorem 1.2.1 (Weighted Hironaka). There is a procedure F associating to a singular
subvariety X ⊂ Y embedded with pure codimension c in a smooth variety Y over a field of
characteristic 0, a center J̄ with blowing up Y ′ → Y and proper transform (X ′ ⊂ Y ′) =
F (X ⊂ Y ) such that maxinv(X ′) < maxinv(X). In particular, for some n the iterate
(Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn smooth.

For this purpose we systematically use stack-theoretic weighted blowings up. As is well
known, the use of classical blowings up of smooth centers has been of great value in birational
geometry. We end this note by discussing to what extent stack-theoretic weighted blowings
up can be as useful.

Theorem 1.2.1 is our main theorem in [ATW19]. An almost identical result is given
concurrently in [McQ19]. The methods employed are quite different.

Date: October 6, 2019.
The research presented here is supported by BSF grant 2014365, ERC Consolidator Grant 770922 -

BirNonArchGeom, and NSF grant DMS-1759514.
1



2. Curves and surfaces

Our aim is embedded resolution, namely to resolve a signular subvariety X ⊂ Y of a smooth
variety Y by applying birational transformations on Y .

2.1. How to resolve a curve? To resolve a singular curve C

(1) find a singular point x ∈ C, and then
(2) blow it up.

This procedure always works:

Fact (See [Har77, Theorem V.3.8]). pa(C) gets smaller in each such step,

hence the procedure ends with a smooth curve.

2.2. How to resolve a surface? Surfaces are more complex, as their singularities can
reside on either curves or points. To resolve a singular surface S one wants to

(1) find the worst singular locus C ⊂ S, and then
(2) show that C is smooth, and blow it up.

However:

Fact. This in general does not get better.

2.3. Example: Whitney’s umbrella. Consider S = V (x2 − y2z) The worst singularity is
the origin. In the z chart we get x = x3z, y = y3z, giving x2

3z
2 − y2

3z
3 = 0, or

z2(x2
3 − y2

3z) = 0.

The first term is exceptional, which we may ignore. However the second is the same as S.
It appears that we gained nothing.

2.4. How to resolve a surface - classical approach. Of course surface resolution can be
achieved. The standard algorithms in characteristic 0 - which applies in arbitrary dimension
- calls for recording the exceptional divisors. Thus after the first blowing up the equation
x2

3 − y2
3z has a distinguished coordinate z, which should be thought of as an improvement.

But even surfaces do not like this approach and resist it kicking and screaming: the excep-
tional divisors get in the way of the standard natural algorithm, which uses hypersurfaces of
maximal contact recalled later on. In short, such hypersurfaces are not necessarily transverse
to the exceptional divisors, giving no end of trouble.

By what seems like pure luck, one can introduce an auxiliary subroutine of resolution to
throw exceptional divisors out of the picture. In terms of singularity invariants, it is not
enough to record the exceptional locus, but also some of its history - or the “state of the
algorithm” - is needed. Of course this is all counterintuitive - we introduce these divisors to
make progress, and yet we introduce a procedure to get them out of the way - but somehow
this nevertheless works.

3. Explaining the main result

Coming back to Theorem 1.2.1, our first goal is to explain this result and how it could
possibly avoid the complications discussed in the previous section.
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3.1. Functoriality. First things first: here procedure means a functor for smooth surjective
morphisms: if f : Y1 � Y is smooth then J1 = f−1J and Y ′1 = Y1 ×Y Y ′, and X ′ can be
taken to be the proper transform (in the course of the proof we actually use the so called
weak transform instead).

The final result (Xn ⊂ Yn) is actually functorial for smooth but not necessarily surjective
morphisms - only the number n is not.

Functoriality has great value beyond elegance - it guarantees that resolution is equivariant
under automorphisms, it is compatible with localization, and in particular smooth points
are not disturbed.

Functoriality is present in Hironaka’s later work (under the term “canonical resolution”),
and is clarified in the works of Villamayor [Vil89] and Bierstone–Milman [BM97, BM08].
W lodarczyk [W lo05] was the first to show that functoriality is a powerful tool for the proof
itself, a method we employ here. Indeed, the result of our blowing up is an algebraic stack,
but functoriality allows us to replace it by a presentation by schemes, so we can have the
input of the theorem be a scheme.

We proceed with an overview of the concepts we use, exhibiting them in examples, and
then defining them more thoroughly later on.

3.2. Preview on invariants. We use singularity invariants to guide the procedure. For
p ∈ X we define

invp(X) ∈ Γ ⊂ Q≤n≥0 ,

and show

Theorem 3.2.1 ([ATW19, Theorem 5.2.1]). (1) Γ is a well-ordered subset with respect
to the lexicographical ordering,

(2) invp(X) is lexicographically upper-semi-continuous, and
(3) p ∈ X is smooth if and only if invp(X) = min Γ.

We define maxinv(X) = maxp invp(X).

Example 3.2.2. invp(V (x2 − y2z)) = (2, 3, 3)

The idea is: the variable x appears in the equation x2 − y2z in the monomial of lowest
possible degree 2, and the variables y and z appear in a monomial of the next lowest degree
3.

Remark 3.2.3. These invariants have been in our arsenal for ages. All the great works of
the last three decades on resolution in characteristic 0 use this invariant, with additional
information interspersed within it.

3.3. Preview of centers. We use centers denoted J for comparing singularities and the
notion of admissibility, and associated reduced centers denoted J̄ for blowing up.

As in the example above, invariants are determined using associated local parameters. If
invp(X) = maxinv(X) = (a1, . . . , ak) then, locally at p, we have

J = (xa11 , . . . , x
ak
k ).

Now we normalize the center by a rescaling procedure: write

(a1, . . . , ak) = `(1/w1, . . . , 1/wk)
3



with wi, ` ∈ N and gcd(w1, . . . , wk) = 1. We set the reduced center to be

J̄ = (x
1/w1

1 , . . . , x
1/wk

k ).

Defining the center J requires a new formalism: first, we will see that the parameters xi
require a choice, while we claim below the center is uniquely defined. Second, the center is
a beast involving fractional powers of parameters, something that goes beyond the familiar
world of ideals. We will explain these points later in this note.

Example 3.3.1. For X = V (x2 − y2z) we have J = (x2, y3, z3) and J̄ = (x1/3, y1/2, z1/2).

This example is a bit too easy, since the variables x, y and z were staring us in the face,
as the ideal is binomial. We will revisit this issue below where a different example will be
the guide.

Remark 3.3.2. The center J has been staring in our face for a while. If one interprets J
in terms of Newton polyhedra, it appears in section 1 of Youssin’s thesis [You90]. Youssin’s
construction is a simplified variant of Hironaka’s characteristic polyhedron of a singularity,
see [Hir67]

3.4. Example: blowing up Whitney’s umbrella x2 = y2z. The blowing up Y ′ → Y
makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly: the z chart has x = w3x3, y = w2y3, z = w2

with chart
Y ′ = [ SpecC[x3, y3, w] / (±1) ],

on which (±1) acts by (x3, y3, w) 7→ (−x3, y3,−w).
The transformed equation is

w6(x2
3 − y2

3),

and the invariant of the proper transform (x2
3 − y2

3) is (2, 2) < (2, 3, 3).

Remark 3.4.1. In fact, people studying explicit birational geometry, as well as people
studying explicit moduli spaces of surfaces, have known all along that X begs to be blown
up like this.

3.5. Definition of the weighted blowing up Y ′ → Y . We are now ready to define our
blowing up in general.

Let J̄ = (x
1/w1

1 , . . . , x
1/wk

k ). Define the graded algebra

AJ̄ ⊂ OY [T ]

as the integral closure of the image of

OY [Y1, . . . , Yn] // OY [T ]

Yi
� // xiT

wi .

Let
S0 ⊂ SpecY AJ̄ , S0 = V ((AJ̄)>0)

be the vertex of the spectrum. Then

BlJ̄(Y ) := ProjYAJ̄ :=
[
(SpecAJ̄ r S0)

/
Gm

]
.

This is the analogue of the definition of usual blowing up one can find in [Har77, Example
7.12.1], where Yi is sent to xiT , namely placed in degree 1, whereas here it is placed in degree
wi. Unlike Hartshorne’s description, we take the stack theoretic quotient rather than the
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scheme theoretic quotient. This is critical if one is to have a smooth ambient space after
blowing up.

3.6. Description of Y ′ → Y . Just like regular blowing up, a weighted blowing up has a
local description in terms of charts. The x1-chart is

[Spec k[u, x′2, . . . , x
′
n] / µw1

],

with x1 = uw1 and xi = uwix′i for 2 ≤ i ≤ k, and induced action:

(u, x′2, . . . , x
′
n) 7→ (ζu , ζ−w2x′2 , . . . , ζ

−wkx′k, x
′
k+1, . . . , x

′
n).

For our discussion at the end of this paper it is also useful to have a local toric description
of the blowing up. We follow [BCS05]. For simplicity let us assume Y is affine space,
corresponding to the cone σ = Rn

≥0 with lattice Nn.
Then Y ′ is the toric stack corresponding to the star subdivision Σ := vJ̄ ? σ along

vJ̄ = (w1, . . . , wk, 0, . . . , 0),

with the cone

σi = 〈vJ̄ , e1, . . . , êi, . . . , en〉

endowed with the sublattice Ni ⊂ N generated by the elements

vJ̄ , e1, . . . , êi, . . . , en,

for all i = 1, . . . , k.
The coarse moduli space of Y ′ is simply the toric variety corresponding to the star subdi-

vision, without the auxiliary sublattices.

3.7. Determining the center J associated to an ideal I in examples.

3.7.1. An example with fractional powers. Consider X = V (x5 + x3y3 + y8) at p = (0, 0);
write I := IX . Define a1 = ordpI = 5, and choose x1 to be any variable appearing in a
degree-a1 term, for instance x.

This determines the beginning of our center JI = (x5, y? ).
We note that if we were to change variables, we could use x + y2 instead, so there is

definitely a choice involved.
To balance x5 with x3y3 we need x2 and y3 to have the same weight, implying that x5 and

y15/2 have the same weight.
If we were to balance with the term y8 we would have taken y8 instead. Since 15/2 < 8

the choice y15/2 dominates, and we use

JI = (x5, y15/2) and J̄I = (x1/3, y1/2).

3.7.2. A related example. If instead we took X = V (x5 + x3y3 + y7), then since 7 < 15/2 we
would use

JI = (x5, y7) and J̄I = (x1/7, y1/5).
5



3.8. Describing the blowing up in the new examples.

(1) Considering X = V (x5 + x3y3 + y8) at p = (0, 0),
• the x-chart has x = u3, y = u2y1 with µ3-action, and equation

u15(1 + y3
1 + uy8

1)

with smooth proper transform.
• The y-chart has y = v2, x = v3x1 with µ2-action, and equation

v15(x5
1 + x3

1 + u)

with smooth proper transform.
(2) Considering X = V (x5 + x3y3 + y7) at p = (0, 0),

• the x-chart has x = u7, y = u5y1 with µ7-action, and equation

u35(1 + uy3
1 + y7

1)

with smooth proper transform.
• The y-chart has y = v5, x = v7x1 with µ5-action, and equation

v35(x5
1 + ux3

1 + 1)

with smooth proper transform.

3.9. Coefficient ideals. We need a mechanism for induction on dimension. The first ex-
ample shows clearly that one can’t just restrict the ideal I to {x1 = 0}, since this loses
information of monomials mixing x1 and other variables. These mixed monomials are re-
vealed by taking derivatives of the ideal I.

We thus must restrict to x1 = 0 the data of all

I, DI, . . . , Da1−1I

with corresponding weights

a1, a1 − 1, . . . , 1.

We combine these in

C(I, a1) :=
∑

f
(
I,DI, . . . ,Da1−1I

)
,

where f runs over monomials f = tb00 · · · t
ba1−1

a1−1 with weights∑
bi(a1 − i) ≥ a1!.

We now define the restricted coefficient ideal I[2] = C(I, a1)|x1=0.
We note however that I[2] naturally has weight a1!, whereas I has weight a1. We need to

compensate for this by “rescaling” I[2] down to degree a1. This is the source of fractional
invariants and fractional powers in our centers.

The coefficient ideal we use here was introduced in [Kol07, §3.54]. It is a variant of
constructions appearing in [Vil89, BM97, W lo05].
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3.10. Defining JI in general.

Definition 3.10.1. Let a1 = ordpI, with x1 a regular element in Da1−1I - a maximal
contact element. Suppose I[2] has invariant invp(I[2]) defined with parameters x̄2, . . . , x̄k
on {x1 = 0}, with lifts x2, . . . , xk in OY . Set

invp(I) = (a1, . . . , ak) :=

(
a1,

invp(I[2])

(a1 − 1)!

)
and

JI = (xa11 , . . . , x
ak
k ).

Example 3.10.2. (1) for X = V (x5 + x3y3 + y8) we have I[2] = (y)180, so

JI = (x5, y180/24) = (x5, y15/2).

(2) for X = V (x5 + x3y3 + y7) we have I[2] = (y)7·24, so JI = (x5, y7).

3.11. What is J? We have postponed the question - what kind of beast is J? It needs to
allow for rational powers, and differeent choices of parameters giving rise to J1 = (x5/2, y5/2)
and J2 = ((x+ y)5/2, (x− 5y)5/2)) must have J1 = J2. We follow ideas permeating birational
geometry to resolve this issue.

Definition 3.11.1. Consider the Zariski-Riemann space ZR(X) with its sheaf of ordered
groups Γ, and associated sheaf of rational ordered group Γ⊗Q.

• A valuative Q-ideal is

γ ∈ H0 (ZR(X), (Γ⊗Q)≥0)) .

• Each valuative Q-ideal induces a “shadow” ideal on Y by Iγ := {f ∈ OX : v(f) ≥
γv∀v}.
• Conversely, any coherent ideal I induces a valuative Q-ideal denoted v(I) := (min v(f) :
f ∈ I)v.

A center is in particular a valuative Q-ideal.

4. Elements of the proof

Now that we have defined our terms, we briefly describe key elements of the proof.

4.1. Homogeneity. Let I ⊂ OY and assume x1 ∈ D≤a−1I is a maximal contact element
at p ∈ Y . The ideals C(I, a1) is MC-invariant in the sense of [Kol07, §3.53], hence it is
homogeneous in the sense of [W lo05]:

Theorem 4.1.1 ([W lo05, Lemma 3.5.5], [Kol07, Theorem 3.92]). Let x1, x
′
1 be maximal

contact elements at p, and x2, . . . , xn ∈ OY,p such that (x1, x2, . . . , xn) and (x′1, x2, . . . , xn)

are both regular sequences. There is a scheme Ỹ with point p̃ ∈ Ỹ and two morphisms
φ, φ′ : Ỹ → Y with φ(p̃) = φ′(p̃) = p, both étale at p, satisfying

(1) φ∗x1 = φ′∗x′1,
(2) φ∗xi = φ′∗xi for i = 2, . . . , n, and
(3) φ∗C(I, a1) = φ′∗C(I, a1).

This in particular implies that replacing x1 by x′1 while keeping the other parameters intact
preserves the whole procedure.
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4.2. Formal decomposition. A useful close cousin of homogeneity is a convenient formal
decomposition of coefficient ideals, obtained by diagonalizing logarithmic differential opera-
tors:

Lemma 4.2.1 ([ATW19, Lemma 4.4.1]). If ordp(I) = a1 and x1 a corresponding maximal
contact, then in CJx1, . . . , xnK we have

C(I, a) = (xa1!
1 ) + (xa1!−1

1 C̃1) + · · ·+ (x1C̃a1!−1) + C̃a1!,

where
Ca1! ⊂ (x2, . . . , xn)a! ⊂ kJx2, . . . , xnK,

where Cj−1 := D≤1(Cj) satisfy CkCl ⊂ Ck+l, and C̃j = CjkJx1, . . . , xnK.

4.3. Admissibility and coefficient ideals. Admissibility of centers is a notion used through-
out resolution of singularities. The key point is that if one blows up an admissible center,
some measurement of the singularity does not get worse.

Definition 4.3.1. J is I-admissible if v(J) ≤ v(I).

Lemma 4.3.2 ([ATW19, Section 5.3.1]). This is equivalent to IOY ′ = E`I ′, with E ⊂ OY ′
the ideal of the exceptional divisor, J = J̄ ` and I ′ an ideal.

Indeed, on Y ′ the center J becomes E`, in particular principal.

Proposition 4.3.3 ([ATW19, Lemma 5.3.7]). A center J is I-admissible if and only if
J (a1−1)! is C(I, a1)- admissible.

This is a consequence of formal decomposition.

4.4. The key theorems. It is now clear what remains to prove:

Theorem 4.4.1 ([ATW19, Theorem 5.2.1 and 5.6.1]). The center JI is well-defined and
functorial.

Theorem 4.4.2 ([ATW19, Theorem 5.4.1]). The center JI is I-admissible.

Theorem 4.4.3 ([ATW19, Theorem 5.5.1]). (1) C(I, a1)OY ′ = E`′C ′ with invp′C
′ <

invp(C(I, a1)).
(2) IOY ′ = E`I ′ with invp′I ′ < invp(I).

Remarkably, each of these theorems follows with little effort from homegeneity, formal
decomposition, and induction.

5. Birational geometry and blowing up

5.1. Birational geometry using smooth blowing up. Smooth blowings up are remark-
ably useful in biarational geometry in characteristic 0. One can point out to two salient
features making them useful:

(1) One can describe the change of geometry resulting from a smooth blowing up Y ′ =
BlZ(Y ) of a smooth variety Y , describing the geometry of Y ′ in terms of that of Y ,
Z, and the position of Z in Y .

(2) If any two smooth varieties Y1, Y2 are related by a proper birational map, they are in
fact connected through smooth blowings up.
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Item (2) is Weak Factorization, see [W lo03, AKMW02]. It directly implies structural result,
such as Bittner’s theorem on the Grothendieck ring of varieties [Bit04, Theorem 3.1]. Ex-
amples of item (1) include the formula [Ful98, Proposition 6.7 and Example 8.3.9] for the
intersection theory of Y ′, and Bondal and Orlov’s semiorthogonal decomposition of D(Y ′)
[BO02, Theorem 4.2]. Together (1) and (2) imply results on birational invariance of certain
biregular invariants, for instance Borisov and Libgober’s results on elliptic genera [BL05].

5.2. Birational geometry using weighted blowing up. The situation of weighted blow-
ings up is similar but incomplete:

(1) There is no doubt one can describe the change of geometry resulting from a weighted
blowing up Y ′ = BlJ(Y ).

(2) It follows from Weak Factorization and Bergh’s destackification [Ber17] that if two
smooth stackss Y1, Y2 are related by a proper birational map, they are in fact con-
nected through weighted blowings up.

Regrding (2), indeed the paper [W lo05] preceding weak factorization provides a factor-
ization in weighted blowings up and down for smooth varieties. Hu [Hu04] showed how to
directly extend such factorization results to varieties with orbifold singularities.

As an example for (1), Kawamata [Kaw06, Section 5] generalized the theorem of Bondal
and Orlov in great generality. It appears that the only reason other aspects are not readily
available is that people did not have weighted blowings up in mind!

One point of caution though: weighted blowings up exhibit codimension-1 phenomena, as
they include root constructions Y ′ = Y ( r

√
D) along smooth divisors D. For instance, the

plurigenera of Y ′ are in general bigger than those of Y .

5.3. Strong factorization of toric mas. Oda [OM75] conjectured that if Y, Y ′ are smooth
toric varieties retaled by a proper toric birational map, then there is a sequence of smooth
toric blowings up Y ′′ 99K Y such that Y ′′ 99K Y ′ is also a morphism factoring as a sequence
of smooth blowings up. This is still a conjecture even in dimension 3. The paper [DSK11]
describes an algorithm which, if it terminates, provides such a factorization in general. The
algorithm was shown to terminate on millions of cases in dimension 3.

The same algorithm should apply for birational toric stacks and weighted blowings up, a
more general, and therefore harder, case. However Ewald [Ewa86] showed that any two three-
dimentional fans Σ1,Σ2 with the same support are related via a sequence of star subdivisions,
if these are allowed to be centered at points which are not unimodular barycenters. This
imediately implies the following:

Corollary 5.3.1 (The weighted strong Oda’s conjecture for threefolds). Let Y, Y ′ be smooth
three dimensional toric stacks related by a proper toric birational map. Then there is a
sequence of weighted blowings up Y ′′ 99K Y such that Y ′′ 99K Y ′ is also a morphism factoring
as a sequence of weighted blowings up.

Ewald’s factorization algorithm is a greedy algorithm using the three-dimensional situa-
tion. It is not known if it can be generalized to higher dimensions:

Conjecture 5.3.2 (The weighted strong Oda’s conjecture). Let Y, Y ′ be smooth toric stacks
of dimension > 3 related by a proper toric birational map. Then there is a sequence of
weighted blowings up Y ′′ 99K Y such that Y ′′ 99K Y ′ is also a morphism factoring as a
sequence of weighted blowings up.
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This is evidently weaker than the usual strong Oda’s conjecture. Given that Oda’s con-
jecture is unsolved in decades, one might give this possibly easier question a try.

Note that even here weighted blowings up result in codimension-1 phenomena through
the back door: consider the cone σ = R≥0 with the lattice N2. Let Σ1 be the standard
subdivision along (1, 1), and let Σ2 be the stacky fan obtained by subdividing along (1, 2),
with lattices generated by edge generators. The stellar subdivision Σ′1 of Σ1 along (1, 2) is
not the same as the stellar subdivision Σ′2 of Σ2 along the ray of (1, 1), since this ray is
generated by (2, 2) in Σ2! Rather Σ′2 → Σ′1 is the lattice alteration of the corresponding root
construction.
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