Resolution by weighted blowing up

Also parallel work by M. McQuillan with G. Marzo
Logarithmic Enumerative Geometry and Mirror Symmetry

MFO, June 18, 2019

Main result

There is a functor F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Main result

There is a functor F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

- This is functorial for smooth surjective morphisms.

Main result

There is a functor F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

- This is functorial for smooth surjective morphisms.
- Example: blowing up $x^{2}-y^{2} z$ at the origin, gives in the z-chart $x=x_{3} z, y=y_{3} z$ the equation $z^{2}\left(x_{3}^{2}-y_{3}^{2} z\right)=0$.

Main result

There is a functor F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

- This is functorial for smooth surjective morphisms.
- Example: blowing up $x^{2}-y^{2} z$ at the origin, gives in the z-chart $x=x_{3} z, y=y_{3} z$ the equation $z^{2}\left(x_{3}^{2}-y_{3}^{2} z\right)=0$.
- However, blowing up $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ gives in the z-chart $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ the equation $w^{6}\left(x_{3}^{2}-y_{3}^{2}\right)$,

Main result

There is a functor F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

- This is functorial for smooth surjective morphisms.
- Example: blowing up $x^{2}-y^{2} z$ at the origin, gives in the z-chart $x=x_{3} z, y=y_{3} z$ the equation $z^{2}\left(x_{3}^{2}-y_{3}^{2} z\right)=0$.
- However, blowing up $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ gives in the z-chart $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ the equation $w^{6}\left(x_{3}^{2}-y_{3}^{2}\right)$,
- and the weights dropped: $(2,2)<(2,3,3)$.

The end

Thank you for your attention

