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How to resolve

To resolve a singular variety X one wants to

(1) find the worst singular locus S ⊂ X ,

(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.
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Example: Whitney’s umbrella

Consider X = V (x2 − y2z)

(image by Eleonore Faber).

The worst singularity is the origin.

In the z chart we get
x = x ′z , y = y ′z , giving

x ′2z2 − y ′2z3 = 0, or z2(x ′2 − y ′2z) = 0.

The first term is exceptional, the second is the same as X .
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Two theorems
Nevertheless:1

Theorem (ℵ-T-W, McQuillan, 2019, characteristic 0)

There is a functor F associating to a singular subvarietya X ⊂ Y of a smooth
variety Y , a center J̄ with stack theoretic weighted blowing up Y ′ → Y and
proper transform (X ′ ⊂ Y ′) = F (X ⊂ Y ) such that maxinv(X ′) < maxinv(X ). In
particular, for some n the iterate (Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn smooth.

aor substack

Theorem (Quek, 2020, characteristic 0)

There is a functor F associating to a logarithmically singular subvarietya X ⊂ Y
of a logarithmically smooth variety Y , a logarithmic center J̄ with stack theoretic
logarithmic blowing up Y ′ → Y and proper transform (X ′ ⊂ Y ′) = F (X ⊂ Y )
such that maxloginv(X ′) < maxloginv(X ). In particular, for some n the iterate
(Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn logarithmically smooth.

aor subtack

1See slides “context”
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The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).
The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).
The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).
The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).

The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).
The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



The umbrella again

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)

We read it from the degrees of terms.

The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x ′, y = w2y ′, z = w2 with chart

Y ′ = [ SpecC[x ′, y ′,w ] / (±1) ],

with action of (±1) given by (x ′, y ′,w) 7→ (−x ′, y ′,−w).
The transformed equation is

w6(x ′
2 − y ′

2
),

and the invariant of the proper transform x ′2− y ′2 is (2, 2) < (2, 3, 3).

Abramovich Resolution and logarithmic resolution New York, July 27, 2020 5 / 18



Order (following Kollár’s book)

We fix Y smooth and I ⊂ OY .

Definition

For p ∈ Y let ordp(I) = max{a : I ⊆ ma
p}.

We denote by Da the sheaf of a-th order differential operators.

We note that ordp(I) = min{a : Da(Ip)} = (1).

The invariant starts with a1 = ordp(I).

Proposition

The order is upper semicontinuous.

Proof.

V (Da−1I) = {p : ordp(I) ≥ a}. ♠
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Maximal contact (following Kollár’s book)

Definition (Giraud, Hironaka)

A regular parameter x1 ∈ Da1−1Ip is called a maximal contact element.

The center starts with (xa1
1 , . . .).

Lemma (Giraud, Hironaka)

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since 1 ∈ Da1Ip there is x1 with derivative 1. This derivative is a unit in a
neighborhood.

Example

For I = (x2 − y2z) we have ordpI = 2 with x1 = x
(or αx+h.o.t. in D(I)).
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Coefficient ideals (treated following Kollár)

We must restrict to x1 = 0 the data of all

I, DI, . . . , Da1−1I

with corresponding weights a1, a1 − 1, . . . , 1.

We combine these in

C (I, a1) :=
∑

f
(
I,DI, . . . ,Da1−1I

)
,

where f runs over monomials f = tb0
0 · · · t

ba1−1

a1−1 with weights∑
bi (a1 − i) ≥ a1!.

Define I[2] = C (I, a1)|x1=0.
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Defining invp(I) and JI
Again a1 = ordpI and x1 maximal contact.
We denoted I[2] = C (I, a1)|x1=0 (with order ≥ a1!).

Definition

Suppose I[2] has invariant invp(I[2]) defined with parameters x̄2, . . . , x̄k ,
with lifts x2, . . . , xk . Set

invp(I) = (a1, . . . , ak) :=

(
a1,

invp(I[2])

(a1 − 1)!

)
and

JI = (xa1
1 , x

a2
2 , . . . , x

ak
k ).

Write (a1, . . . , ak) = `(1/w1, . . . , 1/wk) with wi , ` ∈ N and
gcd(w1, . . . ,wk) = 1. We set

J̄I = (x
1/w1

1 , . . . , x
1/wk

k ).
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What is J?

Definition

Consider the Zariski-Riemann space ZR(Y ) with its sheaf of ordered
groups Γ, and associated sheaf of rational ordered group Γ⊗Q.

A valuative Q-ideal is

γ ∈ H0 (ZR(Y ), (Γ⊗Q)≥0)) .

Iγ := {f ∈ OY : v(f ) ≥ γv∀v}.
I 7→ v(I) := (min v(f ) : f ∈ I)v .

A center (xa1
1 , . . . , x

ak
k ) is in particular a valuative Q-ideal.(

min
i
{aiv(xi )}

)
v
.

It is also an idealistic exponent or graded sequence of ideals.
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Examples of JI

invp(I) = (a1, . . . , ak) :=
(
a1,

invp(I[2])
(a1−1)!

)
, with JI = (xa1

1 , . . . , x
ak
k ).

Example

(1) for X = V (x2 + y2z)

we have I[2] = (y2z), leading to
JI = (x2, y3, z3), J̄I = (x1/3, y1/2, z1/2)

(2) for X = V (x5 + x3y3 + y8) we have I[2] = (y)180, so
JI = (x5, y180/24) = (x5, y15/2), J̄I = (x1/3, y1/2).

Implementation: Jonghyun Lee, Anne Frühbis-Krüger.
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Definition of Y ′ → Y

Let J̄ = (x
1/w1

1 , . . . , x
1/wk

k ). Define the graded algebra

AJ̄ ⊂ OY [T ]

as the integral closure of the image of

OY [Y1, . . . ,Yn] // OY [T ]

Yi
� // xiT

wi .

Let
S0 ⊂ SpecY AJ̄ , S0 = V ((AJ̄)>0).

Then
BlJ̄(Y ) := ProjYAJ̄ :=

[
(SpecAJ̄ r S0)

/
Gm

]
.
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Local description of Y ′ → Y

Y ′ = ProjY (⊕IJ̄n), the stack-theoretic Proj ,2

explicitly:

The x1-chart is
[Spec k[u, x ′2, . . . , x

′
n] / µw1

],

with x1 = uw1 and xi = uwi x ′i for 2 ≤ i ≤ k , and induced action:

(u, x ′2, . . . , x
′
n) 7→ (ζu , ζ−w2x ′2 , . . . , ζ

−wkx ′k , x
′
k+1, . . . , x

′
n).

2see slides ”blowup”
Abramovich Resolution and logarithmic resolution New York, July 27, 2020 13 / 18



Local description of Y ′ → Y

Y ′ = ProjY (⊕IJ̄n), the stack-theoretic Proj ,2
explicitly:

The x1-chart is
[Spec k[u, x ′2, . . . , x

′
n] / µw1

],

with x1 = uw1 and xi = uwi x ′i for 2 ≤ i ≤ k , and induced action:

(u, x ′2, . . . , x
′
n) 7→ (ζu , ζ−w2x ′2 , . . . , ζ

−wkx ′k , x
′
k+1, . . . , x

′
n).

2see slides ”blowup”
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Properties of the invariant

Proposition

invp is well-defined.

invp is upper-semi-continuous.

invp is functorial.

invp takes values in a well-ordered set.a

asee slides ”invariant”

We define maxinv(X ) = maxp invp(X ).

The invariant is well defined because of the MC-invariance property of
C (I, a1). The rest is induction!
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Admissibility and coefficient ideals

Definition

J is I-admissible if J ≤ v(I).a

aSee slides “admissibility”

Proposition

A center J is I-admissible if and only if J(a1−1)! is C (I, a1)-admissible.
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The key theorems

Theorem

invp(I) is the maximal invariant of an I-admissible center.

JI is well-defined: it is the unique admissible center of maximal
invariant.a

aslides “uniqueness”

Theorem

C (I, a1)OY ′ = E `
′
C ′ with invp′C

′ < invp(C (I, a1)).

IOY ′ = E `I ′ with invp′I ′ < invp(I).a

aSlides “principaliztion”
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Quek’s theorem is necessary

I = (x2yz + yz4) ⊂ C[x , y , z ].

Then maxinv(I) = (4, 4, 4) with center J = (x4, y4, z4), a usual
blowup.

The z-chart has I ′ = (y(x2 + z)). The new invariant is (2, 2) with
reduced center (y , x2 + z), which is tangent to the exceptional z = 0.

Instead work with logarithmic derivative in z .

maxloginv(I ′) = (3, 3,∞) with center (y3, x3, z3/2) and reduced
logarithmic center (y , x , z1/2).

This reduces logarithmic invariants respecting logarithmic, hence
exceptional, divisors.
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The end

Thank you for your attention
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