Description of admissibility

Definition

J is \(\mathcal{I} \)-admissible if \(J \leq \nu(\mathcal{I}) \).

Lemma

This is equivalent to \(\mathcal{I} \mathcal{O}_{Y'} = E^\ell \mathcal{I}' \), with \(J = \bar{J}^\ell \) and \(\mathcal{I}' \) an ideal.

- Indeed, on \(Y' \) the center \(J \) becomes \(E^\ell \), in particular principal.
Description of admissibility

Definition

\(J \) is \(\mathcal{I} \)-admissible if \(J \leq v(\mathcal{I}) \).

Lemma

This is equivalent to \(\mathcal{I} \mathcal{O}_{Y'} = E^\ell \mathcal{I}' \), with \(J = \bar{J}^\ell \) and \(\mathcal{I}' \) an ideal.

- Indeed, on \(Y' \) the center \(J \) becomes \(E^\ell \), in particular principal.
- So on \(Y' \), we have \(J \leq v(\mathcal{I}) \iff E^\ell \supseteq \mathcal{I} \mathcal{O}_{Y'} \).
- This is more subtle in Quek’s theorem!
Description of admissibility

Definition

J is \mathcal{I}-admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{I}O_{Y'} = E^\ell \mathcal{I}'$, with $J = \overline{J}^\ell$ and \mathcal{I}' an ideal.

- Indeed, on Y' the center J becomes E^ℓ, in particular principal.
- So on Y', we have $J \leq v(\mathcal{I}) \iff E^\ell \supseteq \mathcal{I}O_{Y'}$. ♠
- This is more subtle in Quek’s theorem!
- Write $J = (x_1^{a_1}, \ldots, x_k^{a_k})$ and $\mathcal{I} = (f_1, \ldots, f_m)$.
- Expand $f_i = \sum c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.
- $J < v(\mathcal{I}) \iff v_J(f_i) \geq 1$ for all i
Description of admissibility

Definition

\(J \) is \(\mathcal{I} \)-admissible if \(J \leq v(\mathcal{I}) \).

Lemma

This is equivalent to \(\mathcal{I} \mathcal{O}_{Y'} = E^l \mathcal{I}', \) with \(J = \bar{J}^l \) and \(\mathcal{I}' \) an ideal.

- Indeed, on \(Y' \) the center \(J \) becomes \(E^l \), in particular principal.
- So on \(Y' \), we have \(J \leq v(\mathcal{I}) \) \(\iff \) \(E^l \supseteq \mathcal{I} \mathcal{O}_{Y'} \).
- This is more subtle in Quek’s theorem!
- Write \(J = (x_1^{a_1}, \ldots, x_k^{a_k}) \) and \(\mathcal{I} = (f_1, \ldots, f_m) \).
- Expand \(f_i = \sum c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_1} \).
- \(J < v(\mathcal{I}) \) \(\iff \) \(v_J(f_i) \geq 1 \) for all \(i \)
- \(\iff \) \(\sum \frac{\alpha_j}{a_j} \geq 1 \) for all \(i \) and \(\alpha \) such that \(c_\alpha \neq 0 \).
Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$-admissible \Rightarrow J is $\mathcal{I}_1 + \mathcal{I}_2$-admissible.
- J is \mathcal{I}-admissible \Rightarrow J^a is \mathcal{I}^a-admissible.
- J is \mathcal{I}-admissible \Rightarrow $J^{1-\frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$-admissible.
Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$-admissible \Rightarrow J is $\mathcal{I}_1 + \mathcal{I}_2$-admissible.
- J is \mathcal{I}-admissible \Rightarrow J^a is \mathcal{I}^a-admissible.
- J is \mathcal{I}-admissible \Rightarrow $J^{1-\frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$-admissible.

Proof.

$$\nu_J \left(\frac{\partial x^\alpha}{\partial x_j} \right) = \sum \frac{\alpha_i}{a_i} - \frac{1}{a_j} \geq 1 - \frac{1}{a_1}.$$
Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$-admissible \Rightarrow J is $\mathcal{I}_1 + \mathcal{I}_2$-admissible.
- J is \mathcal{I}-admissible \Rightarrow J^a is \mathcal{I}^a-admissible.
- J is \mathcal{I}-admissible \Rightarrow $J^{1 - \frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$-admissible.

Proof.

$$v_J \left(\frac{\partial x^\alpha}{\partial x_j} \right) = \sum \frac{\alpha_i}{a_i} - \frac{1}{a_j} \geq 1 - \frac{1}{a_1}.$$ ♠

Combining:

Proposition

A center J is \mathcal{I}-admissible if and only if $J^{(a_1 - 1)!}$ is $\mathcal{C}(\mathcal{I}, a_1)$-admissible.