Properties of the invariant

Theorem (MC-invariance [Włodarczyk, Kollár])

Given maximal contacts x_1, x_1' and a common extension to regular systems of parameters (x_1, x_2, \ldots, x_n) and (x_1', x_2, \ldots, x_n), there are étale $\pi, \pi' : \tilde{Y} \rightarrow Y$ such that

$$
\pi^* x_1 = \pi'^* x_1'
$$

$$
\pi^* x_2 = \pi'^* x_2
$$

$$
\vdots
$$

$$
\pi^* C(I, a_1) = \pi'^* C(I, a_1).
$$

Proposition

inv_p is functorial, well-defined, upper-semi-continuous.
inv_p is functorial, well-defined, upper-semi-continuous.

- $a_1 = \text{ord}$, $\mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
inv_p is functorial, well-defined, upper-semi-continuous.

- $a_1 = \text{ord}$, $\mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)$ is functorial.

Note that $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)$.

Choosing appropriate t we have $(x_1', x_2 + tx_1', \ldots, x_n + tx_1')$ system of parameters.

By induction and functoriality a_2, \ldots, a_n well defined. (a_2, \ldots, a_n) USC on $V(x_1)$, containing the maximal locus of a_1,
so inv_p USC.
inv_p is functorial, well-defined, upper-semi-continuous.

- \(a_1 = \text{ord}, \ D(\mathcal{I})\) are functorial for smooth maps \(\Rightarrow C(\mathcal{I}, a_1)\) is functorial,
- so by induction \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)\) is functorial.
- Note that \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)\).
inv$_p$ is functorial, well-defined, upper-semi-continuous.

- $a_1 = \text{ord}$, $\mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)$ is functorial.
- Note that $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)$.
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \ldots, x_n + tx_1)$ system of parameters.
inv_p is functorial, well-defined, upper-semi-continuous.

- $a_1 = \text{ord}$, $D(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)$ is functorial.
- Note that $\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)$.
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \ldots, x_n + tx_1)$ system of parameters.
- MC-invariance gives $\pi^*\mathcal{I}[2] = \pi'^*\mathcal{I}[2]'$.

Dan Abramovich

properties of invariant

New York, July 27, 2020
inv\(_p\) is functorial, well-defined, upper-semi-continuous.

- \(a_1 = \text{ord}\), \(D(\mathcal{I})\) are functorial for smooth maps \(\Rightarrow C(\mathcal{I}, a_1)\) is functorial,
- so by induction \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)\) is functorial.
- Note that \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)\).
- Choosing appropriate \(t\) we have \((x_1', x_2 + tx_1, \ldots, x_n + tx_1)\) system of parameters.
- MC-invariance gives \(\pi^*\mathcal{I}[2] = \pi'^*\mathcal{I}[2]'\).
- By induction and functoriality \(a_2, \ldots, a_n\) well defined.
\(\text{inv}_p\) is functorial, well-defined, upper-semi-continuous.

- \(a_1 = \text{ord}, \mathcal{D}(\mathcal{I})\) are functorial for smooth maps \(\Rightarrow C(\mathcal{I}, a_1)\) is functorial,
- so by induction \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n)\) is functorial.
- Note that \(\text{inv}_p(\mathcal{I}, x_1, \ldots, x_n) = \text{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \ldots, x_n + tx_1)\).
- Choosing appropriate \(t\) we have \((x_1', x_2 + tx_1, \ldots, x_n + tx_1)\) system of parameters.
- MC-invariance gives \(\pi^*\mathcal{I}[2] = \pi'^*\mathcal{I}[2]'\).
- By induction and functoriality \(a_2, \ldots, a_n\) well defined.
- \((a_2, \ldots, a_n)\) USC on \(V(x_1)\), containing the maximal locus of \(a_1\),
- so \(\text{inv}_p\) USC.