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Abstract. We prove functorial weak factorization of projective birational

morphisms of regular quasi-excellent schemes in characteristic 0 based on the

existing line of proof for varieties. From this we deduce factorization of any
blowing up of formal schemes, complex analytic germs, Berkovich analytic or

rigid analytic spaces.
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1. Introduction

1.1. The class of qe schemes (originally “quasi excellent schemes”) is the natural
class of schemes on which problems around resolution of singularities are of interest.
They can also be used as a bridge for studying the same type of problems in other
geometric categories, see [Tem12, Section 5]. In this paper we address the problem
of functorial factorization of birational morphisms between regular qe schemes of
characteristic 0 into blowings up and down of regular schemes along regular centers.
We rely on general foundations developed in [AT15a, AT15b] and the approach for
varieties of [W lo00, AKMW02]. As a consequence of both this generality of qe
schemes and of functoriality, we are able to deduce factorization of birational or
bimeromorphic morphisms in other geometric categories of interest.
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2 D. ABRAMOVICH AND M. TEMKIN

Sec:def-factor

1.2. Blowings up and weak factorizations. We start with a morphism of noe-
therian qe regular schemes φ : X1 → X2 given as the blowing up of a coherent
sheaf of ideals I on the qe scheme X2. In addition, we provide φ with a boundary
(D1, D2), where each Di is a normal crossings divisor in Xi and D1 := φ−1D2. Let
U = X2 r (D2 ∪ V (I)) be the maximal open subscheme of X2 such that I is the
unit ideal on U and the boundary is disjoint from U . The restriction of φ on U is
the trivial blowing up (i.e. the blowing up of the empty center), in particular, we
canonically have an isomorphism φ−1U → U . We often keep the ideal I implicit in
the notation, even though it determines φ (but see Section 2.3.8 for a construction
in the reverse direction). The reader may wish to focus on the following two cases
of interest: (i) D2 = ∅; (ii) V (I) ⊆ D2.

A weak factorization of a blowing up φ : X1 → X2 is a diagram of regular qe
schemes

X1 = V0
ϕ1 // V1

ϕ2 // . . .
ϕl−1
// Vl−1

ϕl // Vl = X2

along with regular schemes Zi for i = 1, . . . , l and ideal sheaves Ji for i = 1, . . . , (l−
1) satisfying the following conditions:

(1) φ = ϕl ◦ ϕl−1 ◦ · · · ◦ ϕ2 ◦ ϕ1.
(2) The maps Vi 99K X2 are morphisms; these maps as well as ϕi induce

isomorphisms on U .
(3) For every i = 1, . . . , l either ϕi : Vi−1 99K Vi or ϕ−1

i : Vi 99K Vi−1 is a
morphism given as the blowing up of Zi, which is respectively a subscheme
of Vi or Vi−1 disjoint from U .

(4) The inverse image DVi ⊂ Vi of D2 ⊂ X2 is a normal crossings divisor and
Zi has normal crossings with DVi .

(5) For every i = 1, . . . , (l− 1), the morphism Vi → X2 is given as the blowing
up of the corresponding coherent ideal sheaf Ji on X2, which is the unit
ideal on U .

To include V0 → X2, we define J0 = I. The ideals Ji are a convenient way to
encode functoriality, especially when we later pass to other geometric categories.

These conditions are the same as (1)–(5) in [AKMW02, Theorem 0.3.1], except
that here the centers of blowing up and ideal sheaves are specified. Condition (2)
is formulated for convenience; it is a consequence of (3) and (5). Note that here, as
in [AKMW02, Theorem 0.3.1], the centers are not assumed irreducible, in contrast
with [AKMW02, Theorem 0.1.1]. With these condition, the most basic form of our
main theorem is as follows:

Th:factor-simple Theorem 1.2.1 (Weak factorization). Every birational blowing up φ : X1 → X2

of a noetherian qe regular Q-scheme has a weak factorization X1 = V0 99K V1 99K
. . . 99K Vl−1 99K Vl = X2.

The adjective “weak” serves to indicate that blowings up and down may alternate
arbitrarily among the maps ϕi, as opposed to a strong factorization, where one has
a sequence of blowings up followed by a sequence of blowings down. We note that
at present strong factorization is not known even for toric threefolds.

Theorem 1.2.1 generalizes [W lo03, 0.0.1] and [AKMW02, Theorem 0.1.1], where
the case of varieties is considered. But we wish to prove a more precise theorem.
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1.3. Functorial weak factorization. The class of data (X2, I,D2), namely mor-
phisms φ : X1 → X2 of noetherian qe regular schemes given as blowings up of ideals
I, with divisor D2 as in Section 1.2, can be made into the regular surjective category
of blowings up, denoted Blrs, by defining arrows as follows:

Def:Bl Definition 1.3.1. An arrow from the blowing up φ′ : X ′1 = BlI′(X
′
2) → X ′2 to

φ : X1 = BlI(X2) → X2 is a regular and surjective morphism g : X ′2 → X2 such
that g∗I = I ′ and g−1D2 = D′2. In particular, g induces a canonical isomorphism
X ′1 → X1 ×X2

X ′2 and D′1 is the preimage of D1 under X ′1 → X1.

Similarly, weak factorizations can be made into the regular surjective category
of weak factorizations, denoted Factrs, by defining arrows as follows:

Def:factcat Definition 1.3.2. A morphism in Factrs from a weak factorization

X ′1 = V ′0 99K V
′
1 99K . . . 99K V

′
l−1 99K V

′
l = X ′2

of φ′ : X ′1 → X ′2, with centers Z ′i and ideals J ′i to a weak factorization

X1 = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X2

of φ : X1 → X2, with centers Zi and ideals Ji consists of a regular surjective mor-
phism g : X ′2 → X2 such that g∗I = I ′, g∗Ji = J ′i inducing gi : V

′
i → Vi, such

that Z ′i = g−1
i Zi or g−1

i−1Zi as appropriate. In particular ϕi ◦ gi−1 = gi ◦ ϕi and

g−1
i DVi = DV ′i

.

Note that given a factorization of φ, any morphism from a factorization of φ′ is
uniquely determined by g : X ′2 → X2.

If we wish to restrict to schemes in a given characteristic p we denote the cat-
egories Blrs(char = p) and Factrs(char = p) respectively. If we wish to restrict the
dimension we write Blrs(char = p,dim ≤ d) and Factrs(char = p,dim ≤ d).

There is an evident forgetful functor Factrs → Blrs taking a weak factorization
X1 = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X2 to its composition φ : X1 →
X2. The weak factorization theorem provides a section, when strong resolution of
singularities holds:

Th:main Theorem 1.3.3. (1) Functorial weak factorization: There is a functor

Blrs(char = 0)→ Factrs(char = 0)

assigning to a blowing up φ : X1 → X2 in characteristic 0 a weak factoriza-
tion

X1 = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X2,

so that the composite Blrs(char = 0) → Factrs(char = 0) → Blrs(char = 0)
is the identity.

(2) Conditional factorization in positive and mixed characteris-
tics: If functorial embedded resolution of singularities applies in charac-
teristic p (respectively, over Z) for schemes of dimension ≤ d + 1, then
there is a functor

Blrs(char = p,dim ≤ d)→ Factrs(char = p,dim ≤ d)

(respectively, a functor

Blrs(dim ≤ d)→ Factrs(dim ≤ d))
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which is a section of Factrs(char = p,dim ≤ d) → Blrs(char = p,dim ≤ d)
(respectively, Factrs(dim ≤ d)→ Blrs(dim ≤ d)).

This generalizes a theorem for varieties in characteristic 0, [AKMW02, Theorem
0.3.1 and Remark (3) thereafter], [W lo06, Theorem 1.1], [W lo09, Theorem 0.0.1],
where the factorization is only shown to be functorial for isomorphisms. The precise
statements we need for part (2) are spelled out below as Hypothetical Statements
2.1.4 and 2.2.4.

Remark 1.3.4 (Preservation of G-normality). In [BL05, Definition 3.1] Borisov
and Libgober introduce G-normal divisors and in [BL05, Theorem 3.8] they show
that this condition can be preserved in the algorithm of [AKMW02]. The same
holds true here, using the same argument of [BL05, Theorem 3.8], by performing
the sequence of blowings up associated to the barycentric subdivision on the schemes
W res
i± obtained in Section 5.2. Details are left to the interested reader.

1.4. Applications of functoriality. We need to justify the somewhat heavy func-
torial treatment. Of course functoriality may be useful if one wants to make sure
the factorization is equivariant under group actions and separable field extensions;
this has been of use already in the case of varieties. But it also serves as a tool to
transport our factorization result to other geometric spaces.

Blowings up of regular objects is a concept which exists in categories other than
schemes, for instance: Artin stacks, qe formal schemes, complex semianalytic germs
(see Appendix B), Berkovich k-analytic spaces, rigid k-analytic spaces. For brevity
we denote the full subcategory of qe noetherian objects in any of these categories
by Sp. Functoriality, as well as the generality of qe schemes, is crucial in proving
the following:

Th:factor-Sp Theorem 1.4.1 (Factorization in other categories). Any blowing up X1 → X2 of
either noetherian qe regular algebraic stacks, or regular objects of Sp, in charac-
teristic 0 has a weak factorization X1 = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X2.
The same holds in positive and mixed characteristics (when relevant) if functorial
embedded resolution of singularities for qe schemes applies in positive and mixed
characteristics.

See Theorem 6.1.3 for the case of stacks and Theorem 6.4.5 for other categories,
where functoriality is also shown, in other words Theorem 1.3.3 applies in each
of the categories Sp. In addition, the argument deducing Theorem 6.1.3 from
Theorem 1.3.3 is a formal one based on functoriality, so the same argument can
be used to extend Theorem 6.4.5 to stacks in the categories of formal schemes,
Berkovich spaces, etc., once an appropriated theory of stacks is constructed, see for
instance [Sim96, Noo05, Uli15, Yu14, PY14].

Sec:strong-functoriality

1.5. The question of stronger functoriality. It is natural to replace the cate-
gory Blrs by the category Blr with the same objects but where arrows g : X ′2 → X2

as in Definition 1.3.1 are not required to be surjective, only regular. In a simi-
lar way one can replace the category Factrs by a category Factr. As explained in
[Tem12, §2.3.3] for resolution of singularities, removing the surjectivity assumption
requires imposing an equivalence relation on factorizations, in which two factoriza-
tions which differ by a step which is the blowing up of the unit ideal are considered
equivalent. It is conceivable that the analogue of Theorem 1.3.3 may hold for
Factr → Blr.
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1.6. Factorization of birational and bimeromorphic maps. Our results for
projective morphism imply results for birational and bimeromorphic maps. We start
with the case of schemes. By a proper birational map f : X1 99K X2 of reduced
schemes we mean an isomorphism f0 : U1 → U2 of dense open subschemes such
that the closure Y ⊂ X1 ×X2 of the graph of f0 is proper over each Xi. Assume
that Xi are regular. The factorization problem for the birational map f reduces to
factorization of the proper morphisms Y res → Xi, where Y res is a resolution of Y .
Assume, now, that f : X1 → X2 is a proper birational morphism. By a blow up
version of Chow’s lemma (e.g., it follows from the flattening of Raynaud-Gruson)
there exists a blowing up Y = BlI(X1) → X2 that factors through X1. Then
Y = Blf−1I(X1) and hence the resolution Y res, which is the blowing up of Y , is
also a blowing up of both Xi. Thus, factorization of f reduces to the factorization
for blowings up, which was dealt with in Theorem 1.3.3.

Now, assume that Sp is any geometric category. The definition of a proper
bimeromorphic map f : X1 → X2 is similar to the definition of a proper birational
map with two addenda: in the case of stacks we require that the morphisms Y → Xi

are representable, and in the case of analytic spaces or formal schemes we require
that U is open Y (in particular, Y → Xi are bimeromorphic). Then the general
factorization problem immediately reduces to the case when f is a proper morphism.
Furthermore, if objects of Sp are compact and if Chow’s lemma holds in Sp then
the problem reduces further to the case when f is a blowing up. For complex
analytic spaces, Chow’s lemma was proved by Hironaka in [Hir75, Corollary 2]. It
extends immediately to the complex analytic germs we consider in this paper, and
these are indeed compact. Most probably, it also holds in all other categories Sp
we mentioned, but this does not seem to be worked out so far.

2. Qe schemes and functoriality
Sec:qe-resolution

2.1. Qe schemes and their resolution of singularities.

2.1.1. Qe schemes. The class of quasi-excellent schemes was introduced by Grothen-
dieck as the natural class where problems related to resolution of singularities be-
have well. The name “quasi-excellent” is perhaps not very elegant (it was not in-
troduced by Grothendieck), and we feel it harmless to refer to them as qe schemes.

First recall that regular morphisms are a generalization of smooth morphisms in
situations of morphisms which are not necessarily of finite type. Following [Gro67,
IV2, 6.8.1] a morphism of schemes f : Y → X is said to be regular if

• the morphism f is flat and
• all geometric fibers of f : Y → X are regular.

A locally noetherian scheme X is a qe scheme if the following two conditions
hold:

• for any scheme Y of finite type over X, the regular locus Yreg is open; and

• For any point x ∈ X, the completion morphism Spec ÔX,x → SpecOX,x is
regular.

It is a known, but nontrivial fact, that a scheme Y of finite type over a qe scheme
is also a qe scheme, see, for example, [Mat80, 34.A]. A ring A is a qe ring if SpecA
is a qe scheme.
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Sec:resolution

2.1.2. Resolution of singularities of qe schemes: characteristic 0. Since [Gro67,
IV2, 7.9.6], it is universally hoped that every qe scheme admits a good resolution of
singularities. It is now known, see [Tem12, Theorem 1.2.1], that all qe noetherian Q-
schemes admit resolution of singularities, and this resolution is given by a sequence
of blowings up with nonsingular centers, which is functorial in regular morphisms
of qe schemes. Note that here we only require the morphisms to be regular, not
necessarily surjective. Furthermore, functoriality of this resolution implies that one
also gets a functorial way to resolve an arbitrary qe scheme (locally noetherian
but not necessarily noetherian) by a morphism fX : X ′ → X. In general there is
no canonical factorization of fX into a composition of blowings up with regular
centers, but fX can be realized as an infinite composition whose restrictions onto
noetherian open subschemes of X are finite, see [Tem12, Theorem 5.3.2].

2.1.3. Positive and mixed characteristics hypothesis. In Theorem 1.3.3 (3), the pre-
cise hypothetical statement we need about resolutions is the following analogue of
[Tem12, Theorem 1.2.1]:

Hyp:resolution Hypothetical Statement 2.1.4. (1) Functorial resolution: Each noe-
therian qe Fp scheme (respectively, Z-scheme) X of dimension ≤ d + 1

admits an ideal sheaf JX whose blowing up X̃ → X is a resolution of singu-
larities, in a manner functorial for regular surjective morphisms X ′ → X,
so that X̃ ′ = X ′ ×X X̃.

(2) Equivariance: Moreover, if G is a smooth group scheme of arbitrary
dimension, a : G×X → X an action and pX : G×X → X the projection,
then JX is G-equivariant: a−1JX = p−1

X JX .

In mixed characteristics we will also need:

(3) Functoriality of toroidal charts: For any monoidal chart j : X̂p ↪→
Y := SpecCJMK in the sense of [AT15b, Lemma 2.3.9 and Theorem 2.3.11],
we have j−1JY = JX̂p with JY a monomial ideal.

The statement here, with a single resolving ideal sheaf JX , differs from [Tem12,
Theorem 1.2.1], which gives a sequence of blowings up. We will see below that a
sequence of blowings up can be transformed, functorially under surjective regular
morphisms, into a single ideal sheaf.

We note that the equivariance statement (2) in dimension (d + 1) follows from
statement (1) in dimension (d+1)+dimG, but here we wish to only make assump-
tions up to dimension d+ 1. It is conceivable that a version of (2) sufficient for our
needs follows from (1) by taking slices, but we will not pursue this question.

Let us say that a scheme X is locally monoidal if locally it admits a logarithmic
structure making it to a logarithmically regular scheme. It is expected that there
should exist a canonical resolution of such schemes of combinatorial nature, which
is, in particular, independent of the characteristics. Our Statement (3) asserts such
independence in mixed characteristics; in pure characteristics it is a consequence of
equivariance. It is analogous to Hypothetical Statement 2.2.4(3) below. Similarly
to Hypothetical Statement 2.2.4, proving Statements (1)–(3) for locally monoidal
schemes is expected to be easier than the general case. For example, it is proved in
[IT14, Theorem 3.4.9] for logarithmically regular schemes (with a single logarithmic
structure), but known functoriality [IT14, Theorem 3.4.15] is not enough to extend
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it to locally monoidal schemes. In addition, very recently Buonerba resolved certain
locally monoidal varieties in [Buo15].

Sec:principalization

2.2. Principalization. In addition to resolution of singularities, we will need a
version of functorial principalization of coherent ideal sheaves on qe regular schemes
with boundaries.

We consider the category of triples (X, I,D) where X is a noetherian regular
qe scheme, I is a coherent ideal sheaf, D ⊂ X a normal crossings divisor, and
arrows are regular morphisms f : X1 → X2 such that f−1I2 = I1 and f−1D2 = D1.
Again we only require the morphisms to be regular, not necessarily surjective. A
principalization of I is a sequence of blowings up of regular centers φX : X̃ → X,
which are the identity on the locus where I is the unit ideal, such that φ−1

X I is
generated locally at every point by a single monomial in regular parameters. The
principalization is compatible with D if at each stage Xi of the sequence forming
φX : X̃ → X, the inverse image Di ⊂ Xi of D is a normal crossings divisor, and
the new center of blowing up has normal crossings with Di. Principalizations
compatible with D form a category again, and functorial principalization provides
a functor from triples (X, I,D) to principalizations φX : X̃ → X. As we do not
require the morphism f to be surjective, we have to use the equivalence relation
mentioned in Section 1.5. However, we will only apply the result in the context of
surjective morphism, so this equivalence will not figure in any of our applications.

Functorial principalization of ideal sheaves for varieties over a field of charac-
teristic 0 is known, see [BM97, Sections 11,13], [Kol07, Theorem 3.26]; it is in fact
compatible with an a-priori given normal crossings divisor D ⊂ X. The second
author is in the process of writing a general functorial principalization of ideal
sheaves on noetherian regular qe Q-schemes with the methods of [Tem09]. Until
that becomes available we prefer not to use it. In the present paper we only need
principalization for ideals which are locally given as monomial ideals, in particular
the ideal is locally the pullback of a toric ideal through a morphism to a toric va-
riety. These belong to a class for which functorial principalization can be obtained
using the case of varieties and methods of [IT14, Theorem 2.4.1, p. 95], as follows.

princhyp Hypothetical Statement 2.2.1. Principalization exists for qe schemes.1 ←1

A triple (X, I,D) is said to be Q-absolute if there exists an open covering
∐
Uα →

X, regular Q-varieties Zα, regular morphisms fα : Uα → Zα, ideal sheaves Iα on Zα
and divisors Dα ⊂ Zα such that f−1

α Iα = I|Uα and f−1
α Dα = D|Uα . The collection

of Q-absolute triples forms a full subcategory of the category of triples. Functorial
principalization of Q-absolute triples (X, I,D) compatible with D is a functor from
this subcategory to principalizations of the corresponding ideals.

The statement we need is the following:

Prop:absolute-principalization Proposition 2.2.2. There exists a functorial principalization φX : X̃ → X com-
patible with D of Q-absolute triples (X, I,D).

Proof. We may replace
∐
Uα by a finite covering, since X is noetherian. We write

Uαβ = Uα ×X Uβ . Now, we will use the ideas from the proof of [IT14, Theo-
rem 2.4.3].

1(Michael) Will add details later (dimensions, etc). Currently put this for referencing.
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First we construct a principalization. For this it suffices to construct a principal-
ization of

∐
(Uα, I|Uα , D|Uα) whose two pullbacks to the fiber product W :=

∐
Uαβ

coincide. The triple (Z, IZ , DZ) :=
∐

(Zα, Iα, Dα) has a principalization compatible
with Dα coming from the principalization functor for Q-varieties. This pulls back
to a principalization of

∐
(Uα, I|Uα , D|Uα) and we need to show that the two pull-

backs to W coincide. We have two regular morphisms f, g : W → Z. By Popescu’s
theorem (see [Pop86] or [Spi99]), f is the limit of smooth morphisms fγ : Wγ → Z.
By [Gro67, IV3, Proposition 8.13.1], g factors through a morphism gγ : Wγ → Z
for a large enough γ and then [IT14, Proposition 2.4.3] implies that replacing Wγ

by a neighborhood of the image of W we can achieve that gγ is also smooth. Since
the two pullbacks of IZ and DZ to W coincide, there is some γ such that the two
pullbacks of IZ and DZ to Wγ coincide. It follows by functoriality of principaliza-
tion for varieties that the two principalizations on Wγ coincide, and therefore they
coincide on W , as required.

We now demonstrate that this principalization is functorial. Consider a regu-
lar surjective morphism f : (X1, I1, D1) → (X2, I2, D2) with coverings

∐
U1α and∐

U2β and Q varieties Z1α and Z2α. Then composing U2β → Z2β with f we get an-
other covering

∐
f−1U2β with regular maps to Z2β , so it is enough to show that the

resulting principalizations on X1 coincide. We now write W =
∐
U1α×X1

f−1U2β ,
which maps to Z1 =

∐
Z1α and Z2 =

∐
Z2β . By the same argument as earlier we

have that W → Z1×Z2 is the limit of a family Wγ → Z1×Z2, where the two maps
Wγ → Zi are smooth. As above we conclude that the ideals and divisors coincide
on some Wγ and the two principalizations coincide on W and therefore on X1. ♣

2.2.3. Positive and mixed characteristics hypothesis. In Theorem 1.3.3 (3), the pre-
cise hypothetical setup and statement we need about principalization is the follow-
ing. A triple (X, I,D) with X regular, I an ideal sheaf and D a normal crossings
divisor is said to be locally monoidal if there is an open covering

∐
Uα → X, loga-

rithmically regular structures (Uα,Mα) such that D is part of the toroidal divisor,
and monoid ideals Iα ⊂ Mα such that IUα is generated by the image of Iα under
Mα → OUα .

Hyp:principalization Hypothetical Statement 2.2.4. (1) Each locally monoidal Fp-triple (respec-

tively, Z-triple) (X, I,D) of dimension ≤ d admits a principalization X̃ →
X compatible with D, in a manner functorial for regular morphisms X ′ →
X.

(2) Moreover, if G is a smooth group scheme of arbitrary dimension, a : G ×
X → X an action and pX : G × X → X the projection, and if I and
D are equivariant: a−1I = p−1

X I and a−1D = p−1
X D, then X̃ → X is

G-equivariant as well.

Again in mixed characteristics we also need:

(3) Functoriality of toroidal charts: For any monoidal chart j : X̂p ↪→
Y := SpecCJMK in the sense of [AT15b, Lemma 2.3.9 and Theorem 2.3.11],

we have
˜̂
Xp = X̂p ×Y Ỹ , with Ỹ → Y a toric morphism.

We remark that the results of [IT14, Section 3.1.14] suggest that this statement
may be within reach: in that paper the local non-functorial problem is solved,
and the problem reduces to making the process functorial even if one changes the
logarithmic structure Mα on Uα.
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Sec:functorial-projective

2.3. Functorial constructions. In our method, it will be important to describe
certain morphisms we will obtain as blowing up of a concrete ideal or an explic-
itly described projective morphism, since further constructions will depend on this
data. Moreover, this should be done functorially with respect to surjective regular
morphisms. In the current section we develop a few basic functorial constructions
of this type.

There are few ways to describe a projective morphism: using Proj, using ample
sheaves, or using projective fibrations, but each approach involves choices. Neither
description is “more natural” than the others, and we will have to switch between
them. Similarly to [Gro67, II] we choose the language of projective fibrations to be
the basic one and we will show how other descriptions are canonically reduced to
projective fibrations.

2.3.1. Projective fibrations. Let X be a scheme. For a coherent OX -module E
consider the projective fibration P(E) = PX(E) := ProjX Sym•(E) associated with
E. It has a canonical twisting sheaf OP(E)(1), and E → π∗O(1) is an isomorphism.
This construction is functorial for all morphisms: if φ : X ′ → X is any morphism
and E′ = φ∗E then PX′(E′) = X ′ ×X PX(E), and OP(E′)(1) is the pullback of
OP(E)(1).

Sec:projective-morphisms
2.3.2. Projective morphisms. By the usual definition [Gro67, II, 5.5.2], a morphism
f : Y → X is projective if it factors through a closed immersion i : Y ↪→ PX(E) for
a coherent OX -module E. In this paper, we will use the convention that by saying
“f is projective” we fix E and i. In particular, Y acquires a canonical relatively
very ample sheaf OY (1) = OP(E)(1)|Y .

2.3.3. Relation to Proj. For a projective morphism f : Y → X we also obtain a
canonical description of Y as a Proj. Namely, if IY ⊆ OP(E) denotes the ideal
defining Y then Y = ProjX A, where A• = Sym•(E)/IB is a quasi-coherent OX -
algebra with coherent graded components, generated over A0 = OX by its degree-1
component A1. Again this structure is functorial for all morphisms: if φ : X ′ → X
is any morphism and A′ = φ∗A then ProjX′ A

′ = X ′ ×X ProjX A.

Conversely, if a graded OX -algebra A• has coherent components and is generated
over A0 = OX by A1 then Sym•(A1) � A• and we obtain a closed immersion
i : ProjX A ↪→ PX(A1). Thus, Y = ProjX A is projective overX, and the associated
graded quasi-coherent algebra is A itself. This construction is also functorial for all
morphisms.

Remark 2.3.4. We note that the construction of a projective morphism from Proj
is right inverse to the construction of Proj from a projective morphism, but they
are not inverse: going from a projective morphisms to Proj and back to a projective
morphism one usually changes the projective fibration.

Remark 2.3.5. In this paper we use superscripts to denote degrees of homogeneous
components of a graded object, as in Ai ⊂ A•. When considering weights of a given
Gm-action we will use subscripts. We hope this will not cause confusion.

2.3.6. General Proj. Consider now a general quasi-coherent graded OX -algebra
with coherent graded components, which is only assumed to be generated over
A0 = OX in finitely many degrees. Writing AM• = ⊕jAMj for a positive integer
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M , we have a canonical isomorphism Y = ProjX A
• ' ProjX A

M•. For a suitable
M the algebra AM• is generated in degree 1 by AM . If we take the minimal M0

such that AM• is generated in degree 1, then L is not functorial for all morphisms.
Rather it is functorial for all flat surjective morphisms X ′ → X: if AM• is generated
in degree 1 then (A′)M• is generated in degree 1, and the opposite is true whenever
X ′ → X is flat surjective; this follows since surjectivity of ((A′)1)⊗n → (A′)n im-
plies surjectivity of (A1)⊗n → An by flat decent. Combining this construction with
the previous one we obtain an interpretation of Y → X as a projective morphism,
and this construction is functorial for all flat surjective morphisms.

Remark 2.3.7. This construction applies to the following situation: assume f : Y →
X is a proper morphism of noetherian schemes and L is an f -ample sheaf. Then
A• = OX ⊕

⊕∞
k=1 f∗(L

k) is generated in finitely many degrees and Y = ProjX A.
Therefore, L gives rise to an interpretation of f as a projective morphism functo-
rially for all surjective flat morphisms.

Sec:blowup-projective

2.3.8. Blowings up. An important variant is that of blowings up. Consider a coher-
ent ideal sheaf I on X. The Rees algebra RX(I) = ⊕∞k=0I

k is generated in degree
1, and we define BlI(X) = ProjX RX(I). In particular, BlI(X) is projective over
X with the closed immersion BlI(X) ↪→ PX(I). If φ : X ′ → X is a morphism, then
IkOX′ = (IOX′)k = (I ′)k and φ∗(Ik) → IkOX′ is surjective, giving a canonical
morphism φ′ : BlI′(X

′)→ BlI(X) over φ. Clearly (φ′)∗L = L′. So a blowing up is
functorially projective. If moreover X ′ → X is flat, then BlI′(X

′) = X ′ ×X BlXI.

We will need an opposite construction, using a variant of [Har77, Theorem
II.7.17] for regular schemes. Assume X is regular and f : Y → X is a proper
birational morphism with an ample sheaf L (e.g., if Y → X is projective we can
take L = OY (1)). Then after replacing L by a positive power which is functorial
for flat surjective morphisms, we have that Y = ProjX A

•, where A• is generated
over A0 = OX by its degree-1 component, and Ak = f∗L

k.

Locally on X, write Lk as a fractional ideal on Y , giving it as a fractional ideal
FL,k on X since Y → X is birational. Since A• is generated in degree 1, we have
that FL,k = F kL,1 (see [Har77, Theorem II.7.17 Step 5]). Since X is factorial, there
is a unique expression FL,1 = MI, where M is an invertible fractional ideal and
I is an ideal sheaf without invertible factors. Explicitly, F ∗L,1 is invertible, so we

can write I = F ∗L,1FL,1 and M = F ∗∗L,1. It follows that FL,k = MkIk. Note that
while the construction is local on X and depends on an embedding of L in the
fraction field, the ideal sheaf I glues canonically. Locally on X we have a canonical
isomorphism Y ' BlI(X), which evidently glues canonically. We have obtained
that a projective birational morphism f : Y → X with X regular is a blowing up,
functorially for flat surjective morphisms X ′ → X of regular schemes.

For future reference we record the following well known result that follows from
the universal property of blowings up.

factorblowlem Lemma 2.3.9. If X is an integral scheme and a blowing up Y = BlI(X) → X
factors through a proper birational morphism Z → X then Y = BlIOZ (Z).

Sec:sequence-projective

2.3.10. Sequences of projective morphisms. Now assume Z
g→ Y

f→ X is a sequence
of projective morphisms of noetherian schemes, say Z ↪→ PY (F ) and Y ↪→ PX(E)
for a coherent OY -module F and a coherent OX -module E. For a large enough
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n the map f∗f∗(F (n))
α→ F (n) is surjective, hence PY (F ) = PY (F (n)) embeds

into PX(E ⊗ f∗F (n)) and we obtain a closed immersion Z ↪→ PX(E ⊗ f∗F (n)).
Choosing the minimal n such that α is surjective we obtain a construction that
realizes composition of projective morphisms as a projective morphism functorially
for flat surjective morphisms X ′ → X.

If X is regular we can combine this with the previous statements, so if Ym →
· · · → Y1 → X is a sequence of blowings up we have that Ym → X is a blowing up
of an ideal sheaf, functorially for flat and surjective morphisms of regular schemes.

Remark 2.3.11. We will not use this, but blowings up can also be composed
in terms of ideals. One can show that if X is normal then the composition of

Y = BlI(X)
f→ X and BlJ(Y ) → Y is of the form Blf∗(f−1(In)J)(X) → X for a

large enough n.

3. Functorial toroidal factorization

3.1. Statement. We follow the treatment of toroidal schemes in [AT15b, Section
2.3], in particular they carry logarithm structures in the Zariski topology. A toroidal
ideal I on a toroidal scheme X with logarithmic structure M is the ideal generated
by the image of a monomial ideal in M through M → OX . We define a category
TorBlrs of toroidal blowings up, similar to Blrs:

(1) An object is a birational transformationX1 → X2 whereX1, X2 are toroidal
and regular, and X1 → X2 is given as the normalized blowing up of a
toroidal ideal I ⊂ OX2 .

(2) An arrow from X ′1 → X ′2 to X1 → X2 consists of a regular surjective
morphism g : X ′2 → X2, such that UX2

= g−1UX2
and I ′ = IOX′2 .

We similarly define a toroidal weak factorization X1 = V0 99K V1 99K . . . 99K
Vl−1 99K Vl = X2 of a toroidal blowing up X1 → X2, where the schemes Vi, ideals
Ji and centers Zi are toroidal. These form the regular surjective category TorFactrs

of toroidal weak factorizations in a manner similar to the above.

Prop:toroidal-factorization Proposition 3.1.1. Let X1 → X2 be a toroidal morphism of toroidal schemes
obtained by normalized blowing up a toroidal ideal. Then there is a toroidal weak
factorization X1 = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X2 in a functorial manner:
there is a section TorBlrs → TorFactrs of the forgetful functor TorFactrs → Blrs.

Remark 3.1.2. Jaros law W lodarczyk informed us that one can prove a stronger
result: a factorization procedure which is functorial for all regular strict morphisms
g : X ′2 → X2, not required to be surjective. His proposed argument involves subtle
modifications at the heart of the algorithm in [W lo09, Sections 4 and 5]. The proof
we provide at the end of this section shows that any procedure for toric factorization
gives rise to a functorial procedure.

3.2. Cone complexes. Before proving Proposition 3.1.1 we need to discuss a gen-
eralization of the polyhedral cone complexes with integral structure of [KKMSD73]
which was introduced in [ACP12, 2.5] to accommodate any toroidal embedding in
the sense of [KKMSD73], allowing for self intersections and monodromy. In this
paper we only assign polyhedral cone complexes to Zariski toroidal schemes, with-
out self intersections or monodromy, but the generalized polyhedral cone complexes
are used as a combinatorial tool to achieve functoriality.
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Fix a toroidal scheme X. Recall that the polyhedral complex of [KKMSD73]
or the equivalent Kato fan of [Kat94] assigns a polyhedral cone σZ with integral
structure to each toroidal stratum Z ⊂ X; each inclusion Z ′ ↪→ Z ⊂ X gives rise
to a linear map ν : σZ → σZ′ , which identifies σZ as a face of σZ′ in such a way
that the integral structure on σZ is the restriction of the integral structure of σZ′ :
this is called a face map. We define Σ(X) = lim−→({σZ}, {ν}) - it is similar to the fan
of a toric variety, but is not embedded in a space NR and the intersection of two
cones may be the union of faces rather than just one face.

A map of polyhedral cone complexes lim−→({σ′i}, {ν′k})→ lim−→({σj}, {νl}) is defined

to be a collection of cone maps σ′i → σj(i) compatible with the face maps ν′k and
νk. A toroidal map X ′ → X gives rise to a map of cone complexes; here are a few
well known relationships:

(1) A proper birational toroidal morphism gives rise to a subdivision, and there
is an equivalence of categories between proper toroidal birational morphisms
and subdivisions. Blowings up of ideals correspond to subdivisions deter-
mined by piecewise linear continuous integral functions which are convex
on each cone; following [KKMSD73] we call these projective subdivisions (in
the combinatorial literature they are coherent subdivisions).

(2) A regular morphism g : X ′2 → X2 such that UX2 = g−1UX2 gives rise to a
map of complexes Σ(g) : Σ(X ′)→ Σ(X) where all the maps σ′i → σj(i) are
face maps - this is called a face map of complexes.

(3) If the map g : X ′2 → X2 is also surjective then Σ(g) is surjective.
(4) The scheme X is regular if and only if all the cones σi ⊂ Σ(X) are nonsin-

gular in the usual toric sense.
(5) If X is regular then the closure of a stratum is always regular (this would fail

if we allowed self intersections); we call such subschemes toroidal centers.
(6) The blowing up X ′ → X of an irreducible toroidal center Z on a regular

X corresponds to the star subdivision Σ′ → Σ(X) at the barycenter of σZ .
The blowing up X ′ → X of any regular toroidal subscheme W corresponds
to the simultaneous star subdivision Σ′ → Σ(X) at the barycenters of all
the cones corresponding to the connected components of W .

Thus proposition 3.1.1 would follow if the projective subdivision Σ(X1)→ Σ(X2)
can be factored as a composition of such simultaneous star subdivisions and their
inverses, in such a way that the intermediate steps are projective subdivisions of
Σ(X2), in a functorial manner with respect to surjective face maps. This will be
our Lemma 3.5.1 below.

Morelli’s π-desingularization lemma of fan cobordisms [W lo03, Lemma 10.4.3]
gives a non-functorial result in the case of fans; this was generalized in [AMR99]
to polyhedral cone complexes. In [AKMW02] it is made functorial under automor-
phisms, which is not sufficient for our purposes here.

Consider the category whose objects are projective subdivisions Σ1 → Σ2 of
nonsingular cone complexes given by a fixed piecewise linear continuous integral
function f : Σ2 → R convex on each cone and arrows (Σ′2, f

′) → (Σ2, f) induced
by surjective face maps h : Σ′2 → Σ2 with f ′ = f ◦ h. Functoriality would be
easily achieved if the connected component of any object Σ1 → Σ2 in this category
had a final object, as we show below in Lemma 3.5.1. Indeed, this would mean
that applying Morelli’s lemma to the final object would induce a factorization for
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the whole component, giving the result. Unfortunately final objects usually do not
exist in the category of cone complexes. Our next goal is to enlarge this category
so that final objects do exist, see Lemma 3.3.1 below.

3.3. Generalized cone complexes and existence of final objects. A gener-
alized cone complex is given by any finite diagram ({σj}, {νl}) of cones and face
maps. We allow for more than one face map σj → σl, including non-trivial self-
face maps σj → σj . We think of a generalized cone complex Σ as a structure
imposed on the topological space Σ = lim−→({σj}, {νl}). Thus an arrow of general-

ized cone complexes ({σ′i}, {ν′k}) → ({σj}, {νl}) is given by compatible cone maps
as above; an arrow is a face map if it is given by compatible face maps; and an
arrow is declared to be an isomorphism if it is a face map inducing a bijection of
sets lim−→({σ′i}, {ν′k})→ lim−→({σj}, {νl}).

Cone complexes are a full subcategory of generalized cone complexes. They are
distinguished by the property that, for any cones τ, σ of Σ a face map ν : τ → σ in
Σ is unique if it exists. Thus proposition 3.1.1 would again follow if any projective
subdivision Σ1 → Σ2 of generalized nonsingular cone complexes can be factored as
a composition of simultaneous star subdivisions and their inverses, in a functorial
manner with respect to surjective cone maps. The advantage of working with
generalized cone complexes is the following:

Lem:final Lemma 3.3.1. The connected component of the projective subdivision Σ1 → Σ2 of
generalized cone complexes in the category induced by surjective face maps Σ′2 → Σ2

has a final object.

Proof. The projective subdivision Σ1 → Σ2 is induced by an implicit piecewise
linear convex integral function f : Σ2 → R. Write Σ2 = ({σj}, {νl}). Then
νl : σi → σj has the property that fσi = fσj ◦ νl. Let {µk} be the collection
of all face maps µk : σm → σn with the property that fσm = fσn ◦ µk. Then
∆ := ({σj}, {µk}) is a generalized cone complex, the maps fσj glue to give a

piecewise linear integral function f̃ : ∆→ R, and since {νl} ⊂ {µk} we have a map

of diagrams g : Σ2 → ∆ such that f = f̃ ◦ g.

It is convenient to have another presentation of ∆. Choose one representative σ̄
from each isomorphism class of cones in ∆. Given two such representatives τ̄ and σ̄,
consider all maps ν̄l : τ̄ → σ̄ in ∆. Clearly ∆̄ = ({σ̄}, {ν̄l}) maps as a subdiagram
to ∆, and the map is an isomorphism since it is clearly a bijection on set theoretic
limits.

We claim that (∆, f̃) is a final object in the component of (Σ2, f) in the category
of generalized cone complexes with piecewise linear integral function. For this it
suffices to show that if (Σ′2, f

′) is an object and h : Σ2 → Σ′2 is a surjective face
map such that f ′ ◦h = f then g = g′′ ◦h where g′′ : Σ′2 → ∆ is a morphism so that

f ′ = f̃ ◦ g′′.
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First, if we apply the construction of ∆ to Σ′2 we get a map g′ : Σ′2 → ∆′ which
sits in a commutative diagram

Σ2
g

//

h

��

f
**

∆

h̃

��

f̃

  

R

Σ′2
g′

//

f ′

55

∆′
f̃ ′

??

On the other hand ∆̄ ' ∆ and ∆̄′ ' ∆′, and the map ∆̄ → ∆̄′ induced by h̃
is an isomorphism of diagrams: since h is a surjective face map, any cone in Σ′2 is
isomorphic to a cone of Σ1 via an isomorphism compatible with f and vice versa.
So h̃ gives a bijection between the isomorphism classes of cones, and the maps ν̄
between cones are determined by the compatibility of the function f̃ = f̃ ′ on them.
So ∆ → ∆′ is an isomorphism, giving the requisite map of generalized complexes
g′′ = h̃−1 ◦ g′. ♣

3.4. Barycentric subdivisions and factorization for generalized cone com-
plexes. We proceed to extend the factorization of subdivisions of cone complexes
to generalized cone complexes. We do it by a reduction step using barycentric
subdivisions:

Lem:barycentric Lemma 3.4.1. (1) ([ACP12, 2.5]) The barycentric subdivision B(∆) of a gen-
eralized cone complex ∆ is a projective subdivision obtained by a sequence
of simultaneous star subdivisions. If ∆ is nonsingular then the star subdi-
visions are smooth. The generalized cone complex B(∆) is in fact a cone
complex.

(2) ([AMR99, Lemma 8.7]) The barycentric subdivision B(∆) of a nonsingular
cone complex ∆ is a projective subdivision obtained by a sequence of simul-
taneous smooth star subdivisions. The nonsingular cone complex B(∆) is
in fact isomorphic to a fan.

Proof. (1) Write ∆ = ({σj}, {µk}). We need to show that if τB , σB are cones
in B(∆), then a face map τB → σB in B(∆) is unique if it exists. Suppose
the minimal cone containing the image of τB is τ and the corresponding
cone for σB is σ. Then it suffices to show that the restriction to τB of
a face map ψ : τ → σ in ∆ carrying τB into σB is unique if it exists.
We can write σB = 〈b(σi1), . . . b(σik)〉 uniquely as the cone generated by
the barycenters b(σir ) of faces σir of σ of dimensions i1 < · · · < ik, and
similarly τB = 〈b(τj1), . . . b(τjl)〉. So ψ must carry b(τjs) to the barycenter
of a cone of σ of dimension js, in other words ψ(b(τjs)) = b(σjs). Since
{b(τj1), . . . , b(τjl)} span τB this means that the restriction of ψ is unique if
it exists.

(2) Consider the vector space V =
⊕

σ∈∆ Rσ with one basis element for each
cone of σ. Assume ∆ is a cone complex. In [AMR99, Lemma 8.7] it is
shown that B(∆) has a real embedding in V , and the image is the real
support of a fan. The embedding is obtained by sending b(σ) to the unit
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vector eσ ∈ Rσ ⊂ V . Here we assume that ∆ is nonsingular, and we need to
check that the embedding gives an isomorphism of cone complexes, namely
that the integral structures coincide. Note that the lattice in any cone
〈b(σi1), . . . , b(σik)〉 in B(∆) is generated by the elements b(σi1), . . . , b(σik).
The image of this lattice in V is precisely generated by e(σi1), . . . , e(σik),
and coincides with the intersection of the cone 〈e(σi1), . . . , e(σik)〉 with⊕

σ∈∆ Zσ. So the image of B(∆) is indeed a fan, as required.

♣

Lem:generalized-factorization Lemma 3.4.2. Let ∆ be a nonsingular generalized cone complex and f : ∆ → R
a piecewise linear function, convex and integral on each cone, such that the corre-
sponding subdivision ∆1 → ∆ is nonsingular. Then ∆1 → ∆ admits a factorization
into nonsingular star subdivisions and their inverses, with all intermediate steps
projective over ∆.

Proof. By Lemma 3.4.1 we may replace ∆1 by its second barycentric subdivision, so
we may assume ∆1 is isomorphic to a fan. The common subdivision of B(B(∆1))
and B(B(∆)) is a projective subdivision of B(B(∆1)), so there is a sequence of
star subdivisions ∆′1 → B(B(∆1)) such that ∆′1 → ∆ factors through a projective
subdivision ∆′1 → ∆′ := B(B(∆)). Since ∆′ is isomorphic to a fan and ∆′1 is
a projective subdivision, Morelli’s π desingularization lemma applies, see [Mor96]
or [W lo03, Lemma 10.4.3], giving a factorization by star subdivisions and their
inverses, all projective over ∆′. Combining these transformation, we obtain the
desired factorization, with all steps projective over ∆:

∆′1

star subdivision sequence

zz

factorized // ∆′

B(B(∆1))

star subdivision sequence

zz

B(B(∆))

star subdivision sequence

##
∆1

projective subdivision
// ∆

♣

3.5. Functoriality for generalized cone complexes.

Lem:generalized-factorization-functorial Lemma 3.5.1. The factorization in Lemma 3.4.2 can be made functorial for sur-
jective face maps: we can associate to (∆, f) a factorization so that, given a sur-
jective face map φ : Σ → ∆, the factorization of (Σ, f ◦ φ) is the pullback of the
factorization of (∆, f) along φ.

Proof. For each connected component of the category of pairs (∆, f) with face maps

between them choose a final object (∆̃, f̃). By Lemma 3.4.2 there is a factorization

∆̃1 99K . . . 99K ∆̃ of (∆̃, f̃). Given an arbitrary (∆, f) it has a morphism ψ∆ : ∆→
∆̃ to the final object (∆̃, f̃), so that f = f ◦ ψ∆. The pullback ∆1 99K . . . 99K ∆ of

∆̃1 99K . . . 99K ∆̃ along ψ∆ is a factorization of (∆, f), and its pullback along φ is

simply the pullback Σ1 99K . . . 99K Σ along ψ∆ ◦ φ = ψΣ of ∆̃1 99K . . . 99K ∆̃, so
the process is functorial. ♣
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3.6. Functoriality for toroidal factorization.

Proof of Proposition 3.1.1. The toroidal morphism X1 → X2 corresponds to a sub-
division Σ(X1) → Σ(X2) induced by a piecewise linear function f : Σ(X2) → R
convex and integral on each cone. This is functorial: a surjective regular mor-
phism X ′2 → X2 gives rise to a surjective face map φ : Σ(X2)′ → Σ(X2) such that
X ′1 → X ′2 corresponds to f ◦ φ.

By Lemma 3.5.1 we have a factorization Σ(X1) 99K . . . 99K Σ(X2), functorial for
surjective face maps, into nonsingular star subdivisions and their inverses, with all
intermediate steps functorially projective over Σ(X2). This gives rise to a toroidal
factorization X1 99K . . . 99K X2 into blowings up and down, which is functorial for
surjective regular morphisms, where the terms are functorially projective over X2.

♣

4. Birational cobordisms

A key tool in the factorization algorithm is the notion of birational cobordism,
introduced in [W lo00], where it is motivated by analogy with Morse theory. In this
paper we adopt the approach of [AKMW02] which relies on Geometric Invariant
Theory and variation of linearizations, see [BP90, Tha96, DH98].

Sec:GIT-E

4.1. Geometric Invariant Theory of P(E). Given a nonzero coherent sheaf E
on X2, the data of a Gm-action ρ : Gm → AutE on E is equivalent to the data of
a Z-grading E = ⊕a∈ZEa, which is necessarily a finite sum: E =

⊕amax

a=amin
Ea. The

homogeneous factor Ea is characterized by

ρ(t)v = tav ∀v ∈ Ea.
Here and later we use the informal notation v ∈ Ea to indicate that v is a local
section of Ea. Given such data, there is a resulting action of Gm on Sym•(E) and
a linearized action on P(E) = PX2

(E).

We require the following:

Assumption 4.1.1. The sheaves Eamin
and Eamax

are everywhere nonzero, so
P(Eamin

)→ X2 and P(Eamax
)→ X2 are surjective.

Given an integer a viewed as a character of Gm, we define a new action of Gm
on E by

ρa(t)v = t−aρ(t)(v).

This induces an action on Sym•(E) and on (P(E),OP(E)(1)) which we also denote
by ρa. Writing (Sym•(E))ρa for the ring of invariants under this action, we denote

P(E) �a Gm := ProjX2
(Sym•(E))ρa .

As customary, we unwind this as follows: we define the unstable locus of ρa to
be the closed subscheme

Eq:unstableEq:unstable (1) P(E)un
a := P

(⊕
b<a

Eb

) ⊔
P

(⊕
b>a

Eb

)
,

and the semistable locus to be the complementary open

P(E)sst
a := P(E) r P(E)un

a .

We have the following well-known facts:
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Lem:GIT-E Lemma 4.1.2. (1) The semistable locus P(E)sst
a is nonempty precisely when

amin ≤ a ≤ amax.
(2) Consider the rational map qa : P(E)→ P(E)�aGm induced by the inclusion

(Sym•(E))ρa ⊂ (Sym•(E)). Then qa restricts to an affine Gm-invariant
morphism P(E)sst

a → P(E) �a Gm which is a submersive universal categor-
ical quotient, thus P(E) �a Gm = P(E)sst

a �Gm.
(3) For amin ≤ a1 < a2 ≤ amax we have P(E)sst

a1 ⊂ P(E)sst
a2 precisely when⊕a2−1

a=a1
Ea = 0, and similarly P(E)sst

a1 ⊃ P(E)sst
a2 precisely when

⊕a2
a=a1+1Ea =

0. In particular P(E)sst
a1 = P(E)sst

a2 precisely when
⊕a2

a=a1
Ea = 0.

(4) If amin ≤ a1 < a2 ≤ amax and
⊕a2−1

a=a1
Ea = 0, then the inclusion P(E)sst

a1 ⊂
P(E)sst

a2 induces a projective morphism

P(E)sst
a1 �Gm → P(E)sst

a2 �Gm.

Similarly if
⊕a2

a=a1+1Ea = 0 we have a projective morphism

P(E)sst
a1 �Gm ← P(E)sst

a2 �Gm.

Proof. (1) We have a ≤ amax if and only if P(
⊕

b<aEb) 6= P(E), and amin ≤ a
if and only if P(⊕b>aEb) 6= P(E).

(2) (a) Affine cover of the quotient. The scheme P(E) �a Gm =
ProjX2

(Sym•(E))ρa is covered by principal open sets

Eq:D0Eq:D0 (2) D0
f := (P(E) �a Gm) r ZP(E)�aGm(f)

associated to non-zero homogeneous invariant elements of the form
f =

∏s
j=1 fj where fj ∈ Ea+δj with

∑
δj = 0.

(b) Common zero locus of {f}. We note that the common zero locus
of elements of Ec is P(E/Ec) = P(

⊕
b 6=cEb). Now observe that any

element f =
∏s
j=1 fj as above has a factor fj with δj ≥ 0 and a factor

fj with δj ≤ 0. This means that f vanishes on P(
⊕

b<aEb) and on
P(
⊕

b>aEb), so f vanishes on P(E)un
a .

Conversely if x /∈ P(E)un
a then we have some coordinates f1 ∈ Ea+δ1 , δ1 ≤

0 and f2 ∈ Ea+δ2 , δ2 ≥ 0 which do not vanish: f1(x) 6= 0 6= f2(x). Tak-
ing any positive r, s so that rδ1 + sδ2 = 0 we can form f = fr1 f

s
2 , and

f(x) 6= 0. This implies that the common zero locus of the elements
f =

∏s
j=1 fj above in P(E) is precisely P(E)un

a .

(c) Compatible affine cover of P(E)sst
a . It follows that P(E)sst

a is
covered by principal open sets

Eq:DEq:D (3) Df = P(E) r ZP(E)(f),

the inverse image of the affine open D0
f of equation (2) is the affine

open Df of equation (3), and P(E)sst
a → P(E) �a Gm is an affine

morphism.
(d) Coordinates and invariants The coordinate ring of D0

f is the

degree-zero component of (Sym•(E))ρa [1/f ], which is the ρa-invariant
summand of the degree-0 component of (Sym•(E))[1/f ]. The latter
is the coordinate ring of Df . In particular, D0

f = Df � Gm is a sub-

mersive universal categorical quotient, see [AT15a, Lemma 4.2.6 and
Corollary 4.2.11]. It follows from the definition (see [MFK94, Remark
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5, p. 8]) that P(E)sst
a → P(E) �a Gm is a submersive universal cate-

gorical quotient.
(3) The situation is symmetric, so we only address the first statement. If⊕a2−1

a=a1
Ea = 0 then P(

⊕
b<a2

Eb) = P(
⊕

b<a1
Eb) ⊂ P(E)un

a1 and certainly

P(
⊕

b>a2
Eb) ⊂ P(

⊕
b>a1

Eb) ⊂ P(E)un
a1 , so P(E)un

a1 ⊂ P(E)un
a2 as needed.

Conversely, if v ∈ P(
⊕a2−1

a=a1
Ea) over x ∈ X2 and we take w ∈ P(Eamin

)

also over x, then either v ∈ P(Ea1) ⊂ P(E)sst
a1 or else (v + w) ∈ P(E)sst

a1 . In

either case, if
⊕a2−1

a=a1
Ea 6= 0 we have P(E)sst

a1 6⊂ P(E)sst
a2 , as needed.

(4) The situation is symmetric, so we only address the first case, where amin ≤
a1 < a2 ≤ amax and ⊕a2−1

a=a1Ea = 0, so that P(E)sst
a1 ⊂ P(E)sst

a2 by (3). Since
P(E)sst

ai → P(E) �ai Gm are categorical quotients, we have a canonical
morphism ϕa1/a2 making the following diagram commutative:

P(E)sst
a1
� � //

��

P(E)sst
a2

��

P(E) �a1 Gm
ϕa1/a2 // P(E) �a2 Gm.

But P(E) �ai Gm are projective over X2, hence ϕa1/a2 is projective.

♣

This lemma gives the familiar “wall and chamber decomposition” of the interval
[amin, amax] in the character lattice Z into segments where the quotients P(E)sst

a1 �Gm
are constant.

All the constructions above are compatible with arbitrary morphisms X ′2 → X2,
except that the values of amin and amax and the ample sheaf for φa1/a2 are only
compatible with surjective morphisms X ′2 → X2.

Rem:geometric-quotient Remark 4.1.3. One can show that the quotient morphism P(E)sst
a → P(E)sst

a �Gm
is in fact universally submersive. If in addition Ea = 0 it can be shown that the
quotient morphism is a universal geometric quotient P(E)sst

a → P(E)sst
a /Gm. These

facts follow from [MFK94, Theorem 1.1 and Amplification 1.3], which are stated
for schemes over a field in characteristic 0 but apply here since Gm is a linearly
reductive group-scheme over Z. Since we do not need these facts, we will not provide
a detailed proof, though we will use the notation P(E)sst

a /Gm when Ea = 0.
GIT

4.2. Geometric Invariant Theory of B ⊂ P(E). Continuing the discussion,
let B ⊂ P(E) be a closed reduced Gm-stable subscheme. It is the zero locus
of a homogeneous and Gm-homogeneous ideal IB ⊂ Sym•E. We define Bun

a :=
B ∩ P(E)un

a and Bsst
a := B ∩ P(E)sst

a . The image of qa : Bsst
a → P(E) �a Gm

is denoted B �a Gm. We have canonically B �a Gm = ProjX2

(
(Sym•E/IB)

ρa
)
.

We write amin(B) = min{a | B ∩ P(Ea) 6= ∅} and similarly amax(B) = max{a |
B ∩ P(Ea) 6= ∅}. We deduce the analogous, still well-known, facts, which follow
immediately from Lemma 4.1.2:

Lem:GIT-B Lemma 4.2.1. (1) The semistable locus Bsst
a is nonempty precisely when amin(B) ≤

a ≤ amax(B).
(2) The map qa : Bsst

a → P(E) �a Gm is an affine Gm-invariant morphism,
inducing a categorical quotient Bsst

a → Bsst
a �Gm = B �a Gm.
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(3) For a1 < a2 we have Bsst
a1 ⊂ B

sst
a2 precisely when B ∩ P(⊕a2−1

a=a1Ea) = ∅, and
similarly Bsst

a1 ⊃ Bsst
a2 precisely when B ∩ P(⊕a2a=a1+1Ea) = ∅. In particular

Bsst
a1 = Bsst

a2 precisely when B ∩ P(⊕a2a=a1Ea) = ∅.
(4) If a1 < a2 and B ∩ P(⊕a2−1

a=a1Ea) = ∅, then the inclusion Bsst
a1 ⊂ Bsst

a2 in-
duces a projective morphism Bsst

a1 � Gm → Bsst
a2 � Gm. Similarly if B ∩

P(⊕a2a=a1+1Ea) = ∅ we have a projective morphism Bsst
a1 �Gm ← Bsst

a2 �Gm.

This time we obtain a “wall and chamber decomposition” of the interval [amin(B), amax(B)].
We denote the “walls”, namely the values of a for which B ∩ P(Ea) 6= ∅, by
amin(B) = a0 < a1 · · · < am = amax(B).

By replacing the embedding B ⊂ P(E) by the Veronese re-embedding B ⊂
P(Sym2E) we may, and will, assume

Ass:separate Assumption 4.2.2. ai + 1 < ai+1.

We denote Bsst
ai+ = Bsst

ai+1 and Bsst
ai− = Bsst

ai−1, and note that Bsst
ai+ = Bsst

ai+1−.
Assumption 4.2.2 implies that now we always have projective morphisms ϕai±:

(4) Bsst
ai−/Gm

ϕai−
((

ϕi // Bsst
ai+/Gm

ϕai+
vv

Bsst
ai+1−/Gmϕai+1−

((

. . .

Bsst
ai �Gm Bsst

ai+1
�Gm

.

Finally, we will assume the following:

Ass:spread Assumption 4.2.3. Each irreducible component of B meets both P(Eamin(B)) and
P(Eamax(B)).

Under this assumption the quotients Bsst
a �Gm are all birational to each other,

as long as amin(B) < a < amax(B). For the extreme values we have isomorphisms
B ∩ P(Eamin(B))→ Bsst

amin(B) �Gm and B ∩ P(Eamax(B))→ Bsst
amax(B) �Gm.

Remark 4.2.4. As in Remark 4.1.3, it can be shown that Bsst
a → Bsst

a � Gm is
universally submersive, and if B∩P(Ea) = ∅ we have a universal geometric quotient
Bsst
a → Bsst

a /Gm.
Sec:def-cobordism

4.3. Definition of a birational cobordism. The notion of a birational cobor-
dism for a blowing up we use in this paper extends the notion of compactified
relatively projective embedded birational cobordism of [AKMW02, 2.4] by allowing a
non-empty boundary. Ignoring the issue of the boundary, it is far more restrictive
than the notion introduced in [W lo00].

Let φ : X1 → X2 be an object of Blrs. A birational cobordism for φ is a scheme
B which is the blowing up of a Gm-invariant ideal on P1

X2
, and embedded, in a

manner satisfying Assumptions 4.2.2 and 4.2.3, as a Gm-stable subscheme in P(E)
for a Gm-sheaf E on X2, such that

(1) X ′1 = Bsst
a0+/Gm = Bsst

a0 �Gm is obtained from X1 by principalizing D1,
(2) X ′2 = Bsst

am−/Gm = Bsst
am � Gm is obtained from X2 by principalizing D2,

and
(3) the following diagram of rational maps commutes:
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Bsst
a0

qa0 //

α

��

X ′1 // X1

φ

��

Bsst
am

qam // X ′2 // X2

where α is the birational map induced by the open dense inclusions

Bsst
a0 ⊂ B ⊃ B

sst
am .

The birational cobordism is said to respect the open set U ⊂ X2 if U is contained
in the image of (Bsst

a0+ ∩ Bsst
am−)/Gm. This happens whenever the ideal on P1

X2

whose blowing up is B restricts to the unit ideal on P1
U . We say that a birational

cobordism B of φ is regular if B is regular and the preimage DB of D2 is a simple
normal crossings divisor.

4.4. Construction of regular birational cobordism. We claim that one can
associate a regular birational cobordism to any blowing up in Blrs functorially, and
we formalize this claim as follows. There is an evident category Cobrs of regular
birational cobordisms of blowings up φ : X1 → X2 in Blrs, with an evident forgetful
functor Cobrs → Blrs. A morphism of regular birational cobordisms B′ → B is
uniquely determined by a regular surjective morphism g : X ′2 → X2.

Prop:cobordism Proposition 4.4.1. The functor Cobrs → Blrs has a section Blrs → Cobrs.

We provide a sketch of proof here, and more detail in Appendix A.

Sketch of proof. Following the construction of [AKMW02, Theorem 2.3.1], consider
the blowing up of the ideal I ⊗OP1

X2
+ I{0}. This is a birational cobordism BI for

φ, but it is singular. We apply canonical resolution of singularities to BI , which
is a functorial sequence of blowings up Breg → B: see Section 2.1.2, where in
positive and mixed characteristic we may use Hypothetical Statement 2.1.4 since
dimBI = dimX2 + 1. Then we principalize the preimage of D2 in Breg by a
blowing up sequence B → Breg, obtaining a regular birational cobordism (B,DB)
for φ. The last step is non-trivial only when D2 6= ∅ and then, in the positive and
mixed characteristic, it involves Hypothetical Statement 2.2.1. ♣



FACTORIZATION OF BIRATIONAL MAPS FOR QE SCHEMES 21

5. Factoring the map

Throughout this section “functorial” means “functorial in X1 → X2 with respect
to surjective regular morphisms”. By total transform of a divisor D ⊂ X under a
(normalized) blowing up BlJ(X) → X we mean the union of the preimage of D
and the total transform of J .

5.1. Blowing up the torific ideals.

5.1.1. Initial factorization. Proposition 4.4.1 provides a functorial birational cobor-
dism (B,DB) of φ. Departing slightly from the notation of [AKMW02, Theorem
2.6.2], we write Wi± = Bsst

ai±/Gm, and Wi = Bsst
ai � Gm. Since Wi+ ' W(i+1)− we

have a functorial factorization

Eq:wtd-factEq:wtd-fact (5) W1−
ϕ0+ ϕ1−

""

W2−
ϕ1+

||

ϕ2−

��

Wm−
ϕm−ϕ(m−1)+

~~X ′1 W0 W1 . . . Wm X ′2

with all terms functorially projective over X2. Since the cobordism is compatible
with U , the morphisms Wi± → X2 and Wi → X2 and hence also the morphisms
ϕi± are isomorphisms on U . Note that since Wm−1 99KWm is a morphism it follows
that ϕ(m−1)+ is an isomorphism, but this fact does not feature in our arguments.
In general the terms Wi and Wi± in this factorization are singular, but we will use
them to construct a non-singular factorization.

5.1.2. Torific ideals. Let Di ⊂ Wi, Di± ⊂ Wi±, Dai ⊂ Bsst
ai and Dai± ⊂ Bsst

ai±
denote the preimages of D2. We will show how main results of [AT15b] imply
that since (Wi, Di) is given as a quotient of (Bsst

ai , Dai), it can be made toroidal
by a canonical torific blowing up. Since B is regular and DB is a simple normal
crossings divisor, (Bsst

ai , Dai) is a toroidal scheme with a relatively affine Gm-action.
In [AT15b, Section 4.2] one functorially associates to (Bsst

ai , Dai) a Gm-equivariant

torific ideal JBi on Bsst
ai . We define ideal sheaf Ji on Wi to be the Gm-invariant part

of JBi , and we call it the invariant torific ideals. By abuse of language, the ideal
sheaves Ji± = JiOWi± will also be called invariant torific ideals.

Theorem 5.1.3. For every 1 ≤ i ≤ (m − 1) the ideal sheaves Ji and Ji± are
functorial and restrict to the unit ideal on U . Furthermore, let W tor

i = BlJiWi
2
←2

and W tor
i± = BlJi±Wi±, and denote by Dtor

i ⊂ W tor
i and Dtor

i± ⊂ W tor
i± the total

transforms of Di and Di±, respectively. Then

(1) (W tor
i , Dtor

i ) and (W tor
i± , D

tor
i± ) are toroidal, and

(2) the morphisms ϕi± induce toroidal morphisms

ϕtor
i± : (W tor

i± , D
tor
i± )→ (W tor

i , Dtor
i )

that restrict to isomorphisms on U .

Proof. By [AT15b, Lemma 4.2.12] Gm acts in a relatively affine way on Btor
ai :=

BlJBi (Bsst
ai ). Let Dtor

ai ⊂ Btor
ai be the total transform of Dai , then by [AT15b,

Theorem 1.1.2], (Btor
ai , D

tor
ai ) is a toroidal scheme with toroidal action of Gm, and

2(Michael) In fact this should be normalized blowing up. I don’t change this now, since we
may want to switch to blowings up in the end, using the normalization/saturation trick.
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W tor
i = Btor

ai � Gm. Note that Dtor
i is the image of Dtor

ai , hence (W tor
i , Dtor

i ) is
toroidal by [AT15b, Theorem 1.1.3].

By [AT15b, Lemma 4.2.14], W tor
i± = (Btor

ai )± � Gm. Set (Dtor
ai )± = Dtor

ai |(Btor
ai

)± ,

then Gm acts toroidally on ((Btor
ai )±, (D

tor
ai )±) and hence the quotient (W tor

i± , D
tor
i± ) is

toroidal by [AT15b, Theorem 1.1.3]. Note also that ϕi± induce toroidal morphisms
ϕtor
i± by [AT15b, Proposition 3.3.14].

Functoriality of JBi implies that Ji and Ji± are functorial too. Note also that
JBi is the unit ideal over U , as it is generated by monomials in semi-invariant
coordinates along the fixed point set, and these coordinates are units over U . Since
X2 is a qe scheme, normalization is finite. So Btor

ai → Bsst
ai is functorially projective.3

3→
♣

We note that in general W tor
i+ 6= W tor

(i+1)−. The steps Wi− → Wi ← Wi+ in the

factorization (5) now look as follows:

Eq:tor-factEq:tor-fact (6) W tor
i− ϕtor

i−
''

��

W tor
i+ϕtor

i+

ww

��

W tor
i

��

W(i−1)+ Wi− ϕi−

++

Wi+ϕi+

ss

W(i+1)−

Wi

Remark 5.1.4. In [AKMW02, Lemma 3.2.8] it is stated with a sketch of proof
that the ideals Ji can be chosen so that ϕtor

i± are isomorphisms. We will not use this
statement. We note however that this follows from [Tha96, Theorem 3.5]: if the
l-torific ideal Il generates all IMl,M ≥ 1 and also I−l generates all I−Ml,M ≥ 1,
then once l,−l ∈ Si, the ample set of characters on Bsst

ai used to determine JBi in
[AT15b], then ϕtor

i± are isomorphisms. One can choose such l in a manner functorial
for regular surjective morphisms.

Sec:Tying

5.2. Tying the maps together.

5.2.1. Canonical resolution and principalization. Extending [AKMW02, Section
4.2] to qe schemes with a boundary, we write W res

i± → Wi± for the composition
of the canonical resolution of singularities W ′i± → Wi± and the canonical princi-
palization W res

i± → W ′i± of the preimage D′i± of D2 in W ′i±, see Sections 2.1.2 and
2.2; in positive and mixed characteristics we require Hypothetical Statements 2.1.4
and 2.2.4. It is obtained by blowing up a functorial ideal on Wi± which is the unit
ideal on U . By the construction, W res

i± is regular and the preimage Dres
i± of D2 is a

simple normal crossings divisor.

Note that the resolution and principalization processes are independent of the
toroidal structures and hence coincide for (W(i−1)+, D(i−1)+) = (Wi−, Di−), in
other words (W res

(i−1)+, D
res
(i−1)+) = (W res

i− , D
res
i− ). This provides a bridge between

W tor
(i−1)+ and W tor

i− .

3(Michael) There is a problem here: it is not clear how to make normalization functorially
projective. Maybe will have to use that the normalized blow up along I is the blow up along

something like (In)nor. Anyway, this should be addressed in §2.4.
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princrem Remark 5.2.2. Since W1− = X ′1 is regular, X ′′1 := W res
1− is obtained from X ′1 by

principalization of D′1 and similarly X ′′2 := W res
m− is obtained from X ′1 by principal-

ization of D′2. Both D′1 and D′2 are simple normal crossings divisors, so we could
alternatively take W res

1− = X ′1 and W res
m− = X ′m. Our choice helps to make notation

uniform, though it results in a slightly longer factorization.

Remark 5.2.3. Note that the singularities requiring resolution in this step are far
from general: it follows from Section 5.2.4 below that Zariski locally one can obtain
a toroidal scheme from (Wi±, Di±) simply by enlarging the divisor Di±. At least
over an algebraically closed field they admit resolution of singularities, see [W lo03,
Theorem 8.3.2], and it seems reasonable to expect the same in general, and in a
functorial manner.

torchart

5.2.4. Local toroidal charts. Our next aim is to connect W res
i± and W tor

i± . We will
work locally on Wi±. For concreteness, fix a point x ∈ Wi− and consider the
localization Wx := SpecOWi−,x. We denote W res

x = W res
i− ×Wi− Wx and similarly

for W tor
x and other Wi−-schemes we will introduce later. For shortness, we also

write Bx = Bsst
ai− ×Wi− Wx, DBx = Dai− ×Wi− Wx and Dx = Di− ×Wi− Wx. By

[AT15b, Proposition 3.4.1] there is an auxiliary toroidal structure DBx on Bx that
enlarges DBx and on which the action of Gm is toroidal. Let Dx be the image of
DBx in Wx.

For an fs torsion free monoid M we will use the notation AM = SpecZ[M ] and
EM = AM r AMgp . By [AT15b, Corollary 3.2.11] there is a strongly equivariant
toroidal chart (Bx, Dx)→ (AMB

, EMB
). The Gm-action induces a grading on MB ,

and we set M = (MB)0 and Y = AM . By [AT15b, Lemma 4.3.5] the torific ideal of
Bx is the pullback of the torific ideal of AMB

, both ideals are toroidal and the torific
blowing up of Bx is the base change of the torific blowing up of AMB

. Furthermore,
taking invariants we obtain a local toroidal chart (Wx, Dx) → (Y,EM ), and again
the invariant torific ideals JWx

= Ji−OWx
and JY are toroidal and satisfy JWx

=
JYOWx . Thus, writing Y tor → Y for the invariant torific blowing up of Y , we have
W tor
x = Wx ×Y Y tor. Notice also that Wi± and the ideal Ji± are locally monoidal.

The auxiliary toroidal structure was used to find the strictly equivariant chart
and to establish compatibility of torific blowings up, since the latter are toroidal
only with respect to the auxiliary structures. However, a posteriori the construction
extends to (Wx, Dx) as follows: it is proved in [AT15b, 4.4.5] that DBx is the preim-
age of an equivariant toric divisor EMB

⊆ EMB
, and hence Dx is the preimage of a

toric divisor E ⊆ EM , the image of EMB
under ABM → AM . In particular, (Y,E)

is a toroidal chart for (Wx, Dx), and if Etor and E
tor

denote the total transforms

of E and E, respectively, then (Y tor, Etor) and (Y tor, E
tor

) are toroidal charts for

(W tor
x , Dtor

x ) and (W tor
x , D

tor

x ), respectively.

5.2.5. Principalization of torific ideals. Consider the resolution of singularities Y ′ →
Y and let Y res → Y ′ be the principalization of the preimage of E in Y ′. By Hypo-
thetical Statements 2.1.4(3) and 2.2.4 resolution and principalization are compatible
with toroidal charts, in particular, W res

x = Wx ×Y Y res and hence Y res is a toric
chart for W res

x and the ideal Ji±OW res
x

= JYOW res
x

comes from a toroidal ideal on
Y res. This proves that the ideal J res

i± := Ji±OW res
i±

on W res
i± is locally monoidal. Let

W can
i± denote the canonical principalization of J res

i± , see Section 2.2. It is obtained by
a functorial sequence of blowings up of nonsingular centers disjoint from U starting
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from W res
i± , see Proposition 2.2.2; in positive and mixed characteristics we require

Hypothetical Statement 2.2.4.

By the universal property of blowing up, the maps W can
i± 99K W tor

i± are mor-
phisms. The map W can

i± → Wi is a composition of maps given functorially by
blowing up ideals restricting to the unit ideal on U . By Section 2.3.10 the mor-

phism W can
i± → Wi itself is given by blowing up a functorial ideal J̃can

i± restricting
to the unit ideal on U . So, by Lemma 2.3.9 the morphism W can

i± → W tor
i± is given

by blowing up the functorial ideal Jcan
i± = J̃can

i± OW tor
i±

. By Dcan
i± we denote the total

transform of Dtor
i± . In the local setting we also consider the auxiliary toroidal divisor

D
can

x which is the total transform of D
tor

x . Diagram (6) now looks as follows:

Eq:can-factEq:can-fact (7) W can
i−

�� ��

W can
i+

����

W res
(i−1)+

��

W res
i−

��

W tor
i− ϕtor

i−

''

��

W tor
i+ϕtor

i+

ww

��

W res
i+

��

W res
(i+1)−

��

W tor
i

��

W(i−1)+ Wi− ϕi−

++

Wi+ϕi+

ss

W(i+1)−

Wi

Lemma 5.2.6. The ideal Jcan
i± is toroidal. Thus, (W can

i± , Dcan
i± ) → (W tor

i± , D
tor
i± ) is

a functorial toroidal blowing up.

Proof. Step 1: reduction to toric case. Without loss of generality it suf-
fices to deal with W can

i− →W tor
i− , and we will work locally on Wi−. The blowing up

W can
x →W res

x is the canonical principalization of the torific ideal, which comes from
Y through Y res, so again by functoriality of 2.2.2 or Hypothetical Statement 2.2.4(3)
we have W can

x = Wx×Y Y can, where the toric morphism Y can → Y res is the princi-
palization of JYOY res . By the functorial property of blowings up, Y can → Y factors

through Y tor. We have that Y can = BlJ̃can
Y

(Y ) for a functorial ideal J̃can on Y , and

by Lemma 2.3.9, Y can = BlJcan
Y

(Y ), where Jcan
Y = J̃can

Y OY tor . Let Ecan and E
can

denote the total transforms of Etor and E
tor

, respectively. Once again, (Y can, Ecan)

and (Y can, E
can

) are toroidal charts for (W can
x , Dcan

x ) and (W can
x , D

can

x ). In the same
fashion, Jcan

x = Jcan
Y OW can

x
and therefore it suffices to prove that the ideal Jcan

Y is
toroidal.

Step 2: proof in the toric case. In [AKMW02, Proposition 4.2.1] it is
shown that (Y can, Ecan)→ (Y tor, Etor) is toroidal,4 except that the ideal blown up

4→
is not shown to be toroidal. This can be shown as follows. In [AKMW02, Propo-
sition 4.2.2] one constructs an action of Gka on Y . One shows that the morphism
Y tor → Y of charts is equivariant under this action, as well as the torific ideal; the
scheme Y tor is written as a product of Gka with a toric scheme providing its toroidal
structure. It suffices to show that the ideal defining the blowing up Y can → Y tor

is a Gka-equivariant monomial ideal, since then its generating monomials are not
divisible by the coordinates of the Gka factor.

4(Michael) In the particular case when E = ∅.
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Since the blowing up Y res → Y is the canonical resolution of singularities, the
ideal defining this blowing up on a toric chart is monomial and Gka-equivariant.
Also the torific ideal on Y res is monomial and Gka-equivariant, therefore the same
is true for the ideal defining its functorial principalization Y can → Y res. ♣

The above lemma implies that the composition W can
i± → W tor

i is a toroidal

morphism given by blowing up a functorial toroidal ideal we denote by J
can

i± . Let

W ′i →W tor
i be the normalized blowing up of the product ideal J

can

i− J
can

i+ , giving rise
to toroidal morphisms W ′i →W can

i± . By [IT14, Theorem 3.4.9] there is a functorial
toroidal resolution of singularities W torres

i →W ′i . This gives the following:

Lemma 5.2.7. There is a toroidal nonsingular modification W torres
i → W tor

i ob-
tained by blowing up a functorial ideal, such that the maps W torres

i 99K W can
i± are

both toroidal morphisms.

Note that these latter maps are again blowings up of the pullbacks of the ideal
defining W torres

i →W tor
i , which is functorial as well. Since the morphism is toroidal,

it induces the identity on U , and the toroidal ideal blown up is the unit ideal on U .

We now have pieces of the diagram above looking as follows:

W torres
i

(TorBlrs)
zz

(TorBlrs)
$$

W can
i−

(blow up sequence)

{{ $$

W can
i+

zz

(blow up sequence)

##

W res
(i−1)+

��

W res
i−

��

W tor
i

��

W res
i+

��

W res
(i+1)−

��

W(i−1)+ Wi−

**

Wi+

tt

W(i+1)−

Wi

All maps are functorially the blowings up of ideals. The top diamond is at the same
time toroidal, with maps given by blowings up of functorial toroidal ideals, so the
toroidal structure is functorial in X1 → X2. By Proposition 3.1.1, the two top maps
W torres
i →W can

i± have a functorial toroidal weak factorization; since it is toroidal it
induces isomorphisms on U . This gives a factorization of the top diamond of the
diagram above as follows:

W torres
i

(TorFactrs)
zz

(TorFactrs)
$$

W can
i−

$$

W can
i+

zz

W tor
i

Note that W res
1− = X ′′1 and W res

m− = X ′′2 by Remark 5.2.2, and X ′′i → Xi possess
obvious factorizations. Putting these together we functorially obtain a diagram
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X ′′1

(Factrs)

��

W torres
1

(Factrs)

��

(Factrs)

��

W torres
m−1

(Factrs)

��

(Factrs)

��

X ′′2

(Factrs)

��

X1
// W res

1− ϕ1

// W res
2− ϕ2

// . . .
ϕm−1

// W res
(m−1)− ϕm

// W res
m−

// X2.

Note that Wi are given by blowing up of functorial ideals on X2, and that W res
i±

are obtained by blowing up functorial ideals on Wi, all restricting to the identity
on U . Similarly, the terms appearing in the diagonal arrows are given by blowing
up of functorial ideals on W res

i± . By the result of Section 2.3.10 all terms appearing
are obtained by blowing up of functorial ideals on X2 restricting to the unit ideal
on U . In case Xi r U are normal crossings divisors, we have guarantees that the
same holds for W res

i± . It follows that the same holds for all terms in the sequence
forming W can

i± → W res
i± by the properties of canonical principalization, and for the

terms in a factorization of W torres
i → W can

i± since these are all nonsingular toroidal
schemes. Renaming all these terms Vi, i = 1, . . . , l, Theorem 1.3.3 follows. ♣

6. Extending the factorization to other categories

In this section we use the factorization for schemes to construct an analogous
factorization for blowings up of formal schemes, complex and non-archimedean an-
alytic spaces, and stacks. We follow the general outline of the argument in [Tem12,
Sections 5.1–5.2], though we decided to elaborate more details related to the relative
GAGA issues. In fact, for this construction to work one only needs to have a rea-
sonable comparison theory between algebraic blow ups and their analytifications,
but some of these results do not seem to be covered by the literature, especially in
the complex analytic case.

Sec:stacks

6.1. Stacks. Once functorial factorization for schemes is established it extends to
stacks straightforwardly.

6.1.1. Basic notions. Our terminology concerning stacks follows that of [Tem12,
§5.1]. In particular, by a stack we mean an Artin stack X and X is qe (respectively,
regular) if it admits a smooth covering W → X with W a qe (respectively, a regu-
lar) scheme. The definition of blowing up along a closed subscheme is compatible
with flat morphisms and hence extends to stacks. We define the regular surjective
category of blowings up of stacks BlSt

rs and the regular surjective category of weak

factorizations of blowings up of stacks FactSt
rs as in definitions 1.3.1 and 1.3.2.

6.1.2. Factorization for stacks. We are now in position to extend the factorization
to stacks.

Th:stacks Theorem 6.1.3. There is a functor BlSt
rs (char = 0) → FactSt

rs (char = 0) from the
regular surjective category of blowings up f : X′ → X in characteristic zero to the
regular surjective category of factorizations

X′ = X0 99K X1 99K . . . 99K Xl−1 99K Xl = X,

in characteristic zero such that the composite

BlSt
rs (char = 0)→ FactSt

rs (char = 0)→ BlSt
rs (char = 0)
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is the identity. The same holds in positive and mixed characteristics if Hypothetical
Statements 2.1.4 and 2.2.4 hold true.

Proof. Choose a smooth covering of X by a qe scheme W . Then W and R =
W ×X W are regular qe schemes and the projections p1,2 : R ⇒ W are surjective
and smooth. The pullbacks W ′ → W and R′ → R of X′ → X are objects of Blrs,
hence Theorem 1.3.3 provides their regular factorizations (W•) and (R•). By the
functoriality, these factorizations are compatible with both p1 and p2. Since both
pullbacks of the factorization (W•) to R coincide, flat descent implies that (W•)
comes from a factorization (X•) of X′ → X.

To see that the factorization (X•) is independent of a smooth covering W → X
we note that any smooth covering W ′ → X that factors through W induces the
same factorization of X′ → X, as follows from the functoriality of factorization with
respect to the morphism W ′ →W .

Finally, assume that (Y′ → Y)→ (X′ → X) is a morphism in BlSt
rs . Then there

exist smooth coverings by qe schemes W → X and T → Y such that the morphism
Y → X lifts to a regular surjective morphism T → W . It then follows easily from
the functoriality of factorization with respect to T → W that the factorization for
stacks we constructed is compatible with Y→ X. Thus, the factorization for stacks
is functorial. ♣

6.2. Geometric spaces.

6.2.1. Categories. We will work with the geometric spaces of the following four
classes, that will simply be called spaces:

(1) qe formal schemes as defined in [Tem12, Section 2.4.3],
(2) semianalytic germs of complex analytic spaces, see Appendix B,
(3) k-analytic spaces of Berkovich for a complete non-Archimedean field k, see

[Ber93, Section 1],
(3’) rigid k-analytic spaces, where k is as above and non-trivially valued.

To make notation uniform, the category of all such spaces will be denoted Sp in
each of the four cases.

Remark 6.2.2. (i) The case (3’) is added for the sake of completeness. It is
essentially included in (3) because the category of qcqs (i.e. quasi-compact and
quasi-separated) rigid spaces is equivalent to the category of compact strictly ana-
lytic Berkovich spaces, and all our arguments will be ”local enough”.

(ii) Probably, there exist other contexts where our methods apply, e.g. semial-
gebraic geometry. We do not explore this direction here, but we will deal with the
above four cases in a uniform way that should make it simpler for the interested
reader to extend our results to other possible settings.

6.2.3. Affinoid spaces. We say that a space X is affinoid if it is of the following
type:

(1) X = Spf(A) is affine,
(2) (X , X) is an affinoid germ of a complex analytic space, see Section B.6
(3) X =M(A) is an affinoid k-analytic space,

(3’) X = Sp(A) is an affinoid rigid space over k.
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6.2.4. Admissible affinoid coverings. To simplify the discussion we consider only
affinoid coverings X = ∪i∈IXi of a qcqs space by its affinoid domains. Such a
covering is called admissible if it possesses a finite refinement. Here is the main
property of admissible coverings, which may fail for non-admissible ones (e.g. the
covering of a germ (X , X) by one-pointed subgerms (X , x) with x ∈ X).

Lem:acyclicity Lemma 6.2.5. Assume that X = ∪i∈IXi is an admissible covering of an affinoid
space. Then for any coherent OX-module F the Çech complex

0→ F(X)→
∏
i

F(Xi)→
∏
i,j

F(Xi ∩Xj)→ . . .

is acyclic.

Proof. For formal schemes this is classical, and for non-archimedean geometry this
is Tate’s Acyclicity Theorem and its extension to Berkovich spaces. It remains to
deal with complex germs. It suffices to deal with the case of finite coverings, and
then we can replace the direct products with direct sums. Choosing a small enough
representative X of X we can assume that X is Hausdorff. Choose families of Stein
domains V0 ⊃ V1 . . . and V0i ⊃ V1i . . . for each i ∈ I such that X = ∩∞n=0Vn and
Xi = ∩∞n=0Vni. For each n ∈ N the union ∪i∈IVni is a neighborhood of X and hence
it contains some Vm. Let m = m(n) be the minimal number for which the latter
happens. The intersections Uni = Vm∩Vni are Stein domains since X is Hausdorff,
hence Vm is covered by Stein domains Uni and we obtain the acyclic Çech complex

0→ F(Vm)→ ⊕iF(Uni)→ ⊕i,jF(Uni ∩ Unj)→ . . . .

Since limn→∞m(n) =∞ and Xi = ∩nUni, passing to the limit on n we obtain the
sequence from the formulation of the Lemma. It remains to use that the filtered
colimit is an exact functor. ♣

6.2.6. Regular spaces. Each category of spaces possesses a natural notion of regular
spaces, see [Tem12, Section 5.2.2]. In fact, a space X is regular if it possesses an
admissible affinoid covering X = ∪iXi such that the rings Ai = OX(Xi) are regular.
In particular, it follows from Lemma B.6.1 that a germ of analytic space (X , X) is
regular if and only if X is smooth in a neighborhood of X.

By Spreg we denote the full subcategory of Sp consisting of quasi-compact reg-
ular objects, and we do not impose any separatedness assumption.

6.2.7. Smooth and regular morphisms. Also, the category Sp has a natural notion
of smooth morphisms. In cases (1), (2) and (3’) this is the classical notion (with the
obvious adjustment in (2)) and in (3) this is the notion of quasi-smooth morphisms
as defined in [Duc13, Section 4].

In cases (2), (3) and (3’) any morphism is of finite type, so we identify the notions
of smooth and regular morphisms. Regular morphisms of qe formal schemes were
defined in [Tem12, 2.4.12]: a morphism f : Y → X is called regular if it admits an
open covering of the form fi : Spf(Bi) → Spf(Ai) such that the homomorphisms
Ai → Bi are regular.

Lem:regmor Lemma 6.2.8. If Y → X is a regular morphism of affinoid spaces in Sp then the
homomorphism OX(X)→ OY (Y ) is regular.
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Proof. Case (1) is covered by [Tem12, Lemma 2.4.6]. Case (3), and hence also
case (3’), follows from [Duc13, Proposition 4.5.1], [Duc09, Theorem 3.3] and the
fact that for any affinoid space Z =M(C) the map Z → Spec(C) is surjective by
[Ber93, Proposition 2.1.1]. Case (2) is dealt with similarly using that if Z is an
affinoid germ, z ∈ Z and f : Z → T = Spec(OZ(Z)) is the natural map then f(Z)
is the set of all closed points and the homomorphism OT,f(z) → OZ,z is regular by
Lemma B.6.1. ♣

6.3. Relative GAGA. Assume that X is an affinoid space, A = OX(X) and
X = SpecA. Relative GAGA relates the theory of X -schemes and X-spaces.

6.3.1. Analytification functor. There exists an analytification/formal completion
functor from X -schemes of finite type to X-spaces. For uniformity, we will usually
call this functor analytification and denote Y 7→ Y = Yan. It is constructed as
follows:

(i) The analytification of AnX is AnX .
(ii) If Y is X -affine, say Y = SpecB with B = A[t1, . . . ,tn]/(f1, . . . ,fm), then
Yan is the vanishing locus of f1, . . . ,fm in AnX . It is easily seen to be
independent of the A-presentation of B

(iii) The construction in (ii) is compatible with localizations, so in general one
covers Y by X -affine schemes Yi and glues Yan from Yan

i .

6.3.2. The analytification map. There exist natural analytification maps πY : Yan →
Y which can be constructed through the steps (i)–(iii), or directly (ii) and (iii). Let
us describe them in the affine case Y = SpecB:

(1) The map is Spf B ↪→ SpecB. It is injective and the image is the set of open
prime ideals of B.

(2),(3’) The map Yan → Y is injective and its image is the set of maximal ideals of
B.

(3) The map Yan → Y is surjective, see [Ber93, Proposition 2.6.2].

6.3.3. Sheaves. The analytification functor also extends to coherent sheaves: for
any X -scheme Y of finite type there exists an analytification functor Coh(Y) →
Coh(Yan) given by Fan = π∗YF .

Sec:Gagaproperties
6.3.4. Properties. For each X -proper scheme Y the analytification functor Coh(Y) ∼−→
Coh(Y ) is an equivalence of categories. In particular, the analytification functor in-
duces an equivalence between the categories of projective X -schemes and X-spaces.
The references are:

(1) Grothendieck’s Existence Theorem, [Gro67, III1, 5.1.4].
(2) Theorem C.1.1 below.
(3) The analytification was introduced in [Ber93, Section 2.6], and comparison

of coherent sheaves can be found in [Poi10, Theorem A.1].
(3’) Köpf’s theorem, see [Köp74, Sections 5 and 6] and [Con06, Example 3.2.6].

6.3.5. Analytification and regularity. Various properties are respected by analytifi-
cation, but for our needs we only need to study the situation with regularity.

Prop:gagareg Proposition 6.3.6. Assume that X is an affinoid space with A = OX(X), X =
Spec(A), and Y is an X -scheme of finite type with Y = Yan, then
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(i) If Y is regular then Y is regular.
(ii) Conversely, assume that Y is regular, then

(a) in cases (2), (3) and (3’), Y is regular,
(b) in case (1) assume also that Y is X -proper, then Y is regular.

Proof. Note that case (3’) follows from (3) since a qcqs rigid space can be enhanced
to an analytic space, and the regularity is preserved. We will study cases (1), (2)
and (3) separately, but let us first make a general remark. The claims (i) and (ii)(a)
are local on Y, so we can assume that Y = SpecB for a finitely generated A-algebra
B in these cases.

Case (1). In this case, A is an I-adic ring and X = Spf A. Since A is qe, B is

qe and so the I-adic completion homomorphism B → B̂ is regular. This implies (i)

since if B is regular then B̂ is regular, and so Spf B̂ is regular.

Let us prove (ii). Since A is I-adic, I is contained in the Jacobson radical of A
(see [AM69, Proposition 10.15(iv)]), and so any point of X has a specialization in
Xs := V (I). By the properness of f : Y → X , any point of Y has a specialization in
Ys := f−1(Xs), hence it suffices to prove the following claim: if Y is of finite type
over X and Y is regular, then Y is regular at any point y ∈ Ys.

The latter claim is local around y, hence we can assume, again, that Y = SpecB.

Let m ⊂ B be the ideal corresponding to y, then the m-adic completion B → B̂m
factors through the I-adic completion B → B̂, and so B̂m is the completion of B̂

along mB̂. Since X is qe, B̂ is qe and so B̂ → B̂m is regular. By our assumption

B̂ is regular, hence B̂m is regular too. The homomorphism Bm → B̂m is faithfully
flat, hence Bm is regular and we win.

Case (3). In this case, A is k-affinoid and X =M(A). Consider a point y ∈ Y
and set y = πY(y) ∈ Y. By [Duc13, (1.3.7.2)], Y is regular at y if and only if Y is
regular at y. Since πY is surjective this implies that Y is regular if and only if Y is
so.

Case (2). If y ∈ Y and y = πY(y) then it follows easily from Lemma B.6.1 that
the homomorphism fy : OY,y → OY,y induces an isomorphism of the completions.
A local ring is regular if and only if its completion is regular, hence OY,y is regular
if and only if OY,y is so. Since the image of πY contains all closed points, we obtain
that Y is regular if and only if Y is regular. ♣

6.4. The factorization theorem.

6.4.1. Blowings up. Each of the categories Sp has a natural notion of blowings
up f : X ′ → X along ideals (e.g., see [Tem12, Section 2.4.4] and [Tem12, Section
5.1.2]). In fact, BlI(X) can be described as follows: if Y ⊂ X is an affinoid domain,
Y = Spec(OX(Y )) and I ⊂ OY is induced by I, then the restriction of f onto Y is
the analytification of the blowing up BlI(Y)→ Y. We will only consider blowings
up with nowhere-dense centers.

6.4.2. Weak factorization. By a weak factorization of X1 → X2 we mean a diagram

X1 = V0
φ1 // V1

φ2 // . . .
φl−1
// Vl−1

φl // Vl = X2
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along with subspaces Zi and ideal sheaves Ji satisfying conditions (1-5) of Section
1.2, where in (2) and (4) the word “scheme” is replaced with “space”. For brevity
of notation, such a datum will be denoted (V•, φ•, Z•).

We define the regular surjective category of blowings up BlSp
rs in Sp and the

regular surjective category of weak factorizations FactSp
rs on Sp as in definitions

1.3.1 and 1.3.2. By definition, these categories are fibred over the category of
regular spaces with regular morphisms, and the fibers over a regular space X will
be denoted Blrs(X) and Factrs(X). Thus, Blrs(X) is the set of blowings up X ′ → X
with regular X and Factrs(X) is the set of all regular factorizations of blowings up
of X.

Lem:gagafact Lemma 6.4.3. Let X be an affinoid space, A = OX(X) and X = SpecA. Then
the analytification functor Y 7→ Yan induces bijections Blrs(X) ∼−→ Blrs(X ) and
Factrs(X) ∼−→ Factrs(X ).

Proof. By the relative GAGA, see Section 6.3.4, analytification induces a bijection
between the blowings up X ′ → X and X ′ → X . By Proposition 6.3.6, X ′ is
regular if and only if X ′ is regular, hence Blrs(X) ∼−→ Blrs(X ). The second bijection
is proved similarly, but this time one also relates regularity of the centers in the
factorizations. ♣

6.4.4. The main theorem. We are now in position to prove the following analogue
of Theorem 1.3.3.

Th:main-C Theorem 6.4.5. There is a functor BlSp
rs (char = 0)→ FactSp

rs (char = 0) from the
regular surjective category of blowings up f : X ′ → X in characteristic zero to the
regular surjective category of factorizations

X ′ = V0 99K V1 99K . . . 99K Vl−1 99K Vl = X,

in characteristic zero such that the composite

BlSp
rs (char = 0)→ FactSp

rs (char = 0)→ BlSp
rs (char = 0)

is the identity. The same holds in positive and mixed characteristics if Hypothetical
Statements 2.1.4 and 2.2.4 hold true.

Proof. First, let us construct a factorization of f : X ′ → X. Fix an admissible
affinoid covering X = ∪ni=1Xi and set X ′i = Xi×X X ′. The rings Ai = OX(Xi) are
qe, see [Tem12, Section 5.2.3], so the scheme X =

∐n
i=1 Xi with Xi = Spec(Ai) is

noetherian and qe. Let I be the ideal defining f and let Ii ⊂ Ai be its restrictions.
Consider the blowings up Fi : X ′i → Xi defined by Ii. The analytification of Fi
is the restriction fi of f over Xi by the relative GAGA, hence X ′i is regular by
Proposition 6.3.6(ii).

Set X ′ =
∐n
i=1 X ′i and consider the factorization (V•,Φ•,Z•) of the blow up

F : X ′ → X . For each i, it induces a factorization (Vi,•,Φi,•,Zi,•) of Fi : X ′i → Xi
and the analytification of the latter is a factorization of fi : X

′
i → Xi that will be

denoted (Vi,•, φi,•, Zi,•).

We claim that the latter factorizations glue to a factorization of f . It suffices
to prove that for any i, j and an affinoid domain Y ⊂ Xi ∩ Xj the restrictions
of (Vi,•, φi,•, Zi,•) and (Vj,•, φj,•, Zj,•) onto Y coincide. Set B = OX(Y ) and Y =
Spec(B), and let G : Y ′ → Y be the blowing up along the ideal induced by I. In
particular, the analytification g : Y ′ → Y of G is the restriction of f . The regular
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homomorphisms Ai → B and Aj → B induce regular morphisms hi, hj : Y → X
such that G is the pullback of F with respect to either of this morphisms. The
factorizations of G induced from (V•,Φ•,Z•) via hi and hj coincide by Lemma 6.4.6
below. It remains to note that the factorizations of g induced from the factorizations
of fi and fj are the analytifications of these factorizations of G.

We have constructed a factorization of f . The same argument as was used to glue
local factorizations to a global one shows that the construction is independent of the
affinoid covering. Finally, compatibility of factorization with a regular morphism
h : Y → X is deduced in the same way from Lemma 6.2.8 and compatibility with
regular morphisms of factorization for schemes. ♣

The following result is an analogue of [Tem12, Lemma 2.3.1].

Lem:func Lemma 6.4.6. Assume that F : Blrs → Factrs is a factorization functor, f : X ′ →
X and g : Y ′ → Y are two blowings up with regular source and target and hi : Y →
X with i = 1, 2 are two regular morphisms such that h∗i (f) = g. Then the pullbacks
of F(f) to a factorization of g via h1 and h2 coincide.

Proof. Extend hi to morphisms φi : Y
∐
X → X so that the map on X is the

identity. Each φi is a surjective regular morphism, hence the pullback of F(f) to
Y
∐
X via φi coincides with the factorization of the blowing up Y ′

∐
X ′ → Y

∐
X.

Restricting the latter onto Y coincides with h∗i (F(f)). ♣

Remark 6.4.7. (i) An analogue of Lemma 6.4.6 holds true in any category Sp
and the above proof applies verbatim.

(ii) Although h∗i (F(f)) coincide, they can differ from F(g) when hi are not
surjective. See also [Tem12, Remark 2.3.2(ii)].

Appendix A. Construction of a birational cobordism via deformation
to the normal cone

App:cobordism

Proof of Proposition 4.4.1. We follow the construction of [AKMW02, Theorem 2.3.1]
word for word, except we make it even more explicit and check functoriality.

Step 1: cobordism BO for trivial blowing up. We start with

BO = P1
X2

= P(OX2
· T0 ⊕OX2

· T1) =: PX2
(EO),

with its projection π0 : BO → X2. Providing the generators T0 and T1 with Gm-
weights 0 and 1, the scheme BO is a birational cobordism for the identity morphism
with the trivial ideal (1), with the standard action of Gm linearized, except that
it does not satisfy Assumption 4.2.2. But that may be achieved after the fact by
taking the symmetric square. The construction is clearly functorial.

Step 2a: construction of a singular cobordism BI . Assume X1 is given as the
blowing up of the ideal I on X2. We blow up the Gm-equivariant ideal IB :=
I ⊗ OBO + I{0} on BO, where I{0} is the defining ideal of {0} ×X2. The ideal is

clearly the unit ideal on P1
U . This blowing up gives rise to a Gm-scheme BI and

projective morphism πI : BI → BO; this is evidently functorial in φ. The arguments
of Section 2.3.10 show that πBI/X2 := π0 ◦ πI : BI → X2 is projective, again in a
functorial manner. In particular BI ⊂ P(EI) for some functorial Gm-sheaf EI .

Step 2b: coordinates of BI . Let us make the construction of the previous step
explicit: write FI = π0 ∗I

B(1) = I ·U0⊕OX2
·U1 with U0, U1 having corresponding
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Gm-weights 0 and 1. Let

EI = FI ⊗ EO = I · U0T0 ⊕ (OX2
· U1T0 ⊕ I · U0T1) ⊕ OX2

· U1T1

with corresponding Gm-weights 0, 1 and 2. Again it does not satisfy Assumption
4.2.2, but again that may be achieved after the fact by taking the symmetric square.

We have a surjection π∗0FI → IB(1) where the first coordinate sends f ·U0 7→ fT0

and the second sends U1 7→ T1. We thus have Gm-equivariant closed embeddings

BI = BlIB (BO) = BlIB(1)(BO) ⊂
PBO (π∗0FI) = PX2

(FI)×X2
BO = PX2

(FI)×X2
PX2

(EO) ⊂
PX2

(FI ⊗ EO) = PX2
(EI),

where BlIB(1)(BO) denotes the blowing up of the fractional ideal IB(1) and the
last inclusion is the Segre embedding.

We describe BI = ProjX2
A as follows. The algebra

A :=⊕
d

(
Id · T 2d

0 ⊕ Id−1 · T 2d−1
0 T1 ⊕ · · · ⊕ OX2 · T0T

2d−1
1 ⊕ OX2 · T 2d

1

)
,

with terms Id−k · T j0T k1 when j > k and OX2 · T
j
0T

k
1 when j ≤ k, is a graded

Gm-weighted quotient Sym•EI � A, where we set Uj = Tj and map I⊗d � Id.

We note that BI admits an equivariant projection morphisms BI → BO =
PX2(EO) which is an isomorphism away from the divisor (T 2

1 ), and an equivariant
projection morphism BI → PX2(FI), whose image is the closed subscheme we
denote

PX2
(FI)

′ := ProjX2

⊕
n≥0

 n⊕
j=0

Ij

 .

The morphism BI → PX2
(FI)

′ is an isomorphism away from the zero section
ProjX2

⊕
n≥0OX2

⊂ PX2
(FI)

′, whose complement is the total space Spec Sym((IOX1
)−1)

of the invertible sheaf IOX1
on X1.

Step 2c: stable and unstable loci for weight 1. The homogeneous Cartier divisor
(T0T1) is the union of two regular subschemes: X1 = ProjX2

⊕
n≥0(In ·T 2n

0 ) which

is the zero locus of (T0T1, T
2
1 ), and X2 = ProjX2

⊕
n≥0(OX2

·T 2n
1 ) which is the zero

locus of (T0T1, I ·T 2
0 ). Since the zero locus of the “irrelevant ideal” (I ·T 2

0 , T0T1, T
2
1 )

is empty, these two subschemes are disjoint. In particular each is a regular Cartier
divisor. It follows that both X1 and X2 lie in the regular locus Breg

I , which is open
since BI is of finite type over the qe scheme X2.

We have X1 = BI ∩ PX2
((EI)0) and X2 = BI ∩ PX2

((EI)2), where the indices
0 and 2 denote the components with given Gm-weight (the variable a in Section
4.2). Their union (T0T1) is the unstable locus (BI)

un
1 . The complement is affine,

explicitly

(BI)
sst
1 = SpecX2

A[(T0T1)−1]degree=0

= SpecX2

(
· · · ⊕ I2

(
T0

T1

)2

⊕ I
(
T0

T1

)
⊕OX2 ⊕OX2

(
T1

T0

)
⊕OX2

(
T1

T0

)2

⊕ . . .

)
.
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This scheme is in general singular, but the quotient is simpler:

(BI)
sst
1 �Gm = SpecX2

OX2
= X2.

Step 2d: stable and unstable loci for weight 2. The projective Cartier divisor
(T 2

1 ) can be identified as

(BI)
un
2 = PX2

(I · T 2
0 ) ∪ PZ(I)(I/I

2 · T 2
0 ⊕O · T0T1)

= X1 ∪ C(Z(I)),

where C(Z(I)) is the normal cone. The complement is again affine, of the form

(BI)
sst
2 = SpecX2

A[T−1
1 ]degree=0

= SpecX2

(
· · · ⊕ OX2

(
T0

T1

)2

⊕OX2

(
T0

T1

)
⊕OX2

)
= A1

X2
.

Thus,
(BI)

sst
2 �Gm = SpecX2

OX2
= X2

and the morphism (BI)
sst
2 → X2 is smooth. Another way to see this is to notice

that the map BI → BO restricts to an open embedding on (BI)
sst
2 , and the image

is the complement of {0} ×X2.

Step 2e: stable and unstable loci for weight 0. The projective zero locus of
(I · T0)2 can be identified as

(BI)
un
0 = PX2(OX2 · T 2

1 ) ∪ PZ(I)(OX2 · T0T1 ⊕OX2 · T 2
1 ) = X2 ∪ P1

Z(I).

The complement is not necessarily affine, as I is not necessarily principal. However,
recalling the sheaf FI from Step 2b, the morphism (BI)

sst
0 → PX2

(FI) is an open
embedding, whose image is the complement of the zero section. So (BI)

sst
0 is the

total space of the invertible sheaf IOX1 on X1. Thus, (BI)
sst
0 �Gm = X1 and the

morphism (BI)
sst
0 → X1 is smooth.

Step 3a: resolving BI and principalizing the preimage of D2. We apply canon-
ical resolution of singularities to BI , which is a functorial Gm-equivariant sequence
of blowings up Breg → BI : see Section 2.1.2, where in positive and mixed char-
acteristic we may use Hypothetical Statement 2.1.4 since dimB = dimX2 + 1.
Next, we apply canonical principalization to the preimage of D2 in Breg, obtaining
a functorial Gm-equivariant blowing up sequence B → Breg such that B is regular
and the preimage D ⊂ B of D2 is an ordered simple normal crossings divisor: see
Section 2.2, where in positive and mixed characteristic we use Hypothetical State-
ment 2.2.1. We obtain a sequence of blowings up BO ← BI . . .← Bk = Breg ← B
with ideals Ai supported on the singular locus, which is included in the preimage
of PX2

((EI)1) = PX2
(OX2

· U1T0 ⊕ I · U0T1), and the preimages of D2.

Step 3b: embedding. By the arguments of Section 2.3.10, the blowing up se-
quence B → BO is functorially a single blowing up of an ideal J . Write J̃ = JOBI
so that B = BlJ̃BI . There is a functorially defined integer d such that J̃(d) is
globally generated on BI relative to X2. Using [Har77, II.7.10(b)] we have an
equivariant embedding of B inside

PX2(Ẽ) := PX2

(
π
BI/X2
∗ J̃(d)

)
.

Since J is the unit ideal on (BI)
sst
0 and (BI)

sst
2 , we have that π

BI/X2
∗ J̃(d) ↪→

Symd(EI) is an isomorphism on the components of Gm-weight 0 or 2d. Since
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Symd(EI) has weights 0, . . . , 2d which survive in the ring of BI it follows that
amin(B) = 0, amax(B) = 2d. Inspecting the description of unstable loci in Section
4.1, Equation (1) we note that Bsst

0 = B ×BI (BI)
sst
0 and Bsst

2d = B ×BI (BI)
sst
2 .5 ←5

Step 3c: B is a cobordism for φ that respects U . We have shown in steps 2d
and 2e that the morphisms q2 : (BI)

sst
2 → X2 and q1 : (BI)

sst
0 → X1 are smooth.

Functoriality of resolution and principalization with respect to qi implies that, once
restricted to (BI)

sst
2 , respectively (BI)

sst
0 , the morphism Breg → BI is an isomor-

phism and the morphism B → BI is the pullback of the principalization X ′2 → X2

of D2, respectively X ′1 → X1 of D1. It follows that B ×BI (BI)
sst
2 �Gm = X ′2 and

B ×BI (BI)
sst
0 � Gm = X ′1 and hence B is a cobordism for φ. Also, we note that

B ∩ P(Ẽ0) = X ′1 and B ∩ P(Ẽ2d) = X ′2, so Assumption 4.2.3 applies.

To show that B is compatible with U it suffices to show that all blowings up in
the sequence B → BO are trivial over P1

U . This is so for the blowing up BI → P1
X2

because I + I{0} is the unit ideal on P1
U . This is so for the blowing up sequence

Breg → BI because P1
U is regular, and this is so the blowing up sequence B → Breg

because P1
U is disjoint from the preimage of D2.

♣

Appendix B. Germs of complex analytic spaces
App:germs

In this section we use germs to extend the category of complex analytic spaces
to include certain Stein compacts. This will be used later to establish a tight con-
nection between the scheme theory and complex analytic geometry. In particular,
this is needed to develop a relative GAGA theory.

B.1. Semianalytic sets. We follow the setup of Frisch [Fri67]. A subset X of an
analytic space X is called semianalytic if its local germs belong to the minimal class
of germs, stable under finite unions and complements, generated by inequalities of
the form f(x) < 0 for real analytic f , see [Fri67, p. 120]. It is called a Stein if X
has a fundamental system of neighborhood of Stein subspaces of X , see [Fri67, p.
123].

B.2. The category of germs. A germ of a complex analytic space (or, simply, a
germ) is a pair (X , X) consisting of an analytic space X and a semianalytic subset
X ⊂ X . We call X the support of (X , X) and we call X a representative of (X , X).
Sometimes, we will use the shorter notation X = (X , X).

A morphism φ : (X , X) → (Y, Y ) consists of a neighborhood X ′ of X and an
analytic map f : X ′ → Y taking X to Y . We say that f is a representative of φ.
Note that a morphism (X , X)→ (Y, Y ) is an isomorphism if it induces a bijection
of X and Y and an isomorphism of their neighborhoods.

We identify an analytic space X with the germ (X,X). In particular, the cate-
gory of analytic spaces becomes a full subcategory of the category of germs.

B.3. The structure sheaf. Given a germ (X , X) we provide its support with the
structure sheaf OX := OX |X = i∗OX , where i : X ↪→ X is the embedding. In
particular, we obtain a functor F : (X , X) 7→ (X,OX) from the category of germs
to the category of locally ringed spaces.

5(Dan) One could explain more - do you think we need to?
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Remark B.3.1. We do not aim to develop a complete theory of semianalytic
germs, so we do not study the natural question whether F is fully faithful.

B.4. Closed polydiscs and convergent power series. Consider an analytic
affine space X = AnC with coordinates t1, . . . ,tn. For any tuple r of numbers
r1, . . . ,rn ∈ [0,∞), by the closed polydisc D = Dr of radius r we mean the subset of
X given by the inequalities |ti| ≤ ri. Note that ri can be zero. By C{t1, . . . ,tn}†r we
denote the ring of overconvergent series in t1, . . . ,tn of radius r. It is a noetherian
regular excellent ring of dimension n, see [Mat80, Theorem 102].

Lem:polydisc Lemma B.4.1. Let D = Dr ⊂ X = AnC be a polydisc and A = OX (D) = Γ(OD).
Then,

(i) C{t1, . . . ,tn}†r
∼−→ A.

(ii) Γ(D, ·) induces an equivalence between the categories of coherent OD-modules
and finitely generated A-modules, and higher cohomology of coherent OD-modules
vanish.

(iii) For any a ∈ D the ideal ma = (t1 − a1, . . . ,tn − an) ⊂ A is maximal, and
any maximal ideal of A is of this form.

(iv) The completion of A along ma is C[[t1 − a1, . . . ,tn − an]].

Proof. The first claim is a classical result of analysis of several complex variables.
Assertion (ii) follows from the fact that D is the intersection of open polydiscs
containing it, and the latter are Stein spaces. Assertion (iv) follows easily from
(iii), so we will only prove (iii).

For any f ∈ A the quotient

g1 = (f(t1, . . . ,tn)− f(a1, t2, . . . ,tn))/(t1 − a1)

lies in A, so f = (t1 − a1)g1 + f1(t2, . . . ,tn) with f1 = f(a1, t2, . . . ,tn). Applying
the same argument to t2 and f1, etc., we will obtain in the end a representation
f = f(a1, . . . ,an) +

∑n
i=1(ti − ai)gi. In particular, A/ma = C and hence ma is

maximal.

Conversely, assume that m ⊂ A is maximal. The norm ‖f‖ = maxx∈D |f(x)| on
A induces a norm on the field κ = A/m, hence the completion K = κ̂ is a Banach
C-field. Thus, K = C by Gel’fand-Mazur theorem, and we obtain that ti − ai ∈ m
for some ai ∈ C. Finally, |ai| ≤ ri as otherwise ti − ai ∈ A×. ♣

B.5. Classes of morphisms. Let φ : (Y, Y ) → (X , X) be a morphism of germs.
We say that φ is without boundary if there exists a representative f : Y ′ → X
such that Y = f−1(X). Let P be one of the following properties: smooth, open
immersion, closed immersion. We say that φ is P if it is without boundary and
has a representative which is P . We say that φ is an embedding of a subdomain
(resp. quasi-smooth) if it possesses a representative which is an open immersion
(resp. smooth).

Remark B.5.1. The above terminology is chosen to match its non-archimedean
analogue as much as possible.

Sec:affgerm

B.6. Affinoid germs. A germ X is called affinoid if it admits a closed immersion
into a germ of the form (Cn, D) where D is a closed polydisc. Such a germ is
controlled by the ring OX(X) very tightly.



FACTORIZATION OF BIRATIONAL MAPS FOR QE SCHEMES 37

Lem:affgerm Lemma B.6.1. Assume that X is an affinoid germ and let A = OX(X) and
f : (X,OX)→ Y = Spec(A) the corresponding map of locally ringed spaces. Then,

(i) A is a quotient of a ring C{t1, . . . ,tn}†r; in particular it is an excellent noe-
therian ring.

(ii) Γ(X, ·) induces an equivalence between the categories of coherent OX-modules
and finitely generated A-modules, and higher cohomology of coherent OX-modules
vanish.

(iii) f establishes a bijection between X and the closed points of Y .

(iv) For any point x ∈ X with y = f(x) the homomorphism OY,y → OX,x is

regular and its completion ÔY,y → ÔX,x is an isomorphism.

Proof. In the case of a closed polydisc the assertion was proved in Lemma B.4.1.
In general, we fix a closed embedding i : X ↪→ D into a closed polydisc. So, OX
becomes a coherent OD-algebra such that the homomorphism φ : OD → OX is
surjective, and then all assertions except the first half of (iv) follow easily from
the case of a polydisc. For example, Γ(X,OX) is a quotient of Γ(D,OD) since
H1(D,Kerφ) = 0, thereby proving (i).

The only new assertion is that φ : OY,y → OX,x is regular. This follows from the

facts that φ̂ is an isomorphisms and the local ring OY,y is excellent (since it is a
localization of the excellent ring A). ♣

Appendix C. The complex relative GAGA Theorem
Sec:relGAGA

C.1. Statement of the theorem. Let (X , X) be an affinoid germ as in Appendix
B with ring of global analytic functions A, and r ≥ 0 an integer. Set PrX = CPr×X
and endow it with a locally ringed space structure using the sheaf OPrX = OPrX |PrX .
We have a germ (PrX ,PrX) and a morphism of locally ringed spaces h : PrX → PrA.
The aim of this appendix is to prove the following extension of Lemma B.6.1:

Th:GAGA Theorem C.1.1 (Serre’s Théorème 3). Let (X , X) be an affinoid germ with ring
of global analytic functions A, and r ≥ 0 an integer. Then the pullback functor h∗ :
Coh(PrA)→ Coh(PrX) is an equivalence which induces isomorphisms on cohomology
groups.

Since (X , X) is closed in (Cn, D) it suffices to consider the case (X , X) = (Cn, D).
So from now on we make this assumption, and write A for the ring of holomorphic
functions on X = D.

We follow the steps of Serre’s original proof [Ser56, §3] in some detail, to alleviate
our skepticism that this generalization might actually work. See also [Ked09], which
sketches Serre’s proof. One difficulty is that we do not know if D × Cr is Stein in
the sense of [Fri67] or [GR04]. The problem is that if {Di} are the open polydiscs
containing D then {Di×Cr} do not form a fundamental family of neighborhoods of
D×Cr, while functions on D×Cr are only guaranteed to extend to some member
of a fundamental family of neighborhoods. This is circumvented in Lemma C.2.2,
which is the only point where we differ from the original arguments.

C.2. Cohomology.

Proposition C.2.1 (Serre’s Théorème 1). Let F be a coherent sheaf on PrA. The
homomorphism h∗ : Hi(PrA,F)→ Hi(PrD, h∗F) is an isomorphism.
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Lem:GAGA-basic-sheaves Lemma C.2.2. (1) We have Hi(PrA,F) = Hi(PrD, h∗F) = 0 for i > r and all
F .

(2) The proposition holds for F = OPrA for all r ≥ 0.

Proof. (1) For Hi(PrA,F) = 0 use the standard Çech covering of PrA, which has
only r + 1 elements. We need to show Hi(PrD, h∗F) = 0.

On the analytic side we mimic the standard argument for vanishing using Çech
cocycles of a covering by closed polydiscs instead of affine spaces. Let h∗F → S• be
the standard flabby resolution of h∗F by discontinuous sections, so Hi(Y, h∗F|Y ) =
Hi(Γ(Y, S•)) for any subset Y ⊂ PrD. Let Cr ' Ui ⊂ CPr be the standard open
sets and let Di ⊂ Ui be the standard closed polydisc of fixed radius > 1. Set
Xi = D ×Di ⊂ PrD and for each subset I ⊂ {0, . . . ,n} let XI = ∩i∈IXi. Then XI

are complex affinoids for I 6= ∅, hence Hi(XI , h
∗F|XI ) = 0 = Hi(Γ(XI , S

•)) for
i > 0 and I 6= ∅.

On the other hand

C•({Xi}, Sj) =
[
⊕|I|=1S

j
XI
→ ⊕|I|=2S

j
XI
→ · · ·

]
is a flabby resolution of Sj so H0(Γ(PrD, C•({Xi}, Sj))) = Γ(PrD, Sj) and for i > 0
we have Hi(Γ(PrD, C•({Xi}, Sj))) = 0.

Consider the double complex Cp,q = ⊕|I|=pΓ(XI , S
q) and its two edges Γ(Pr, S•)

and Čp = ⊕|I|=pΓ(XI , h
∗F). We obtain that

Hi(PrD, h∗F) = Hi(Γ(Pr, S•)) = Hi(C•,•) = Hi(Č•).

The latter is trivial in degrees > r.

(2) We have that Γ(OPrA) = A and Hi(OPrA) = 0 for i > 0 by [Har77, Theorem

III.5.1]. It suffices to show that π∗OPrD = OD and Riπ∗OPrD = 0 for i > 0 where

π : PrD → D is the projection, since D is Stein. For this note that OPrD = j−1
r OPrCPn ,

where jr : PrD → PrCPn is the inclusion:

PrD
π

��

jr // PrCPn

$

��

D
j0
// CPn.

By the topological proper push-forward theorem [Ive86, Corollary VII.1.5] we have

Riπ∗OPrD = j−1
0 Ri$∗OPrCPn ,

and the result follows from Serre’s original GAGA theorems. ♣

allrlem Lemma C.2.3. The proposition holds for F = OPrA(n) for all r ≥ 0 and all inte-
gers n.

Proof. Induction identical to [Ser56, section 13 Lemme 5]: the result holds for r = 0
since D is Stein. Supposing it holds for r− 1 and all n, we have the exact sequence
0 → OPrD (n − 1) → OPrD (n) → OPr−1

D
(n) → 0 and the corresponding sequence for
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PrA. We obtain a canonical homomorphism of long exact sequences

Hi−1(Pr−1
A ,O(n)) //

��

Hi(Pr
A,O(n− 1)) //

��

Hi(Pr
A,O(n)) //

��

Hi(Pr−1
A ,O(n))

��

Hi−1(Pr−1
D ,O(n)) // Hi(Pr

D,O(n− 1)) // Hi(Pr
D,O(n)) // Hi(Pr−1

D ,O(n)).

The vertical arrows on the right and left are isomorphisms by the inductive as-
sumption. It follows that the result holds for r and O(n− 1) if and only if it holds
for O(n). Since we have proven that it holds for O, it holds for all n. ♣

Proof of the proposition. The proof is identical to Serre’s Théorème 1. We apply
descending induction on i for all coherent PrA modules F . The case of i > r is
proved by the lemma. Since F is coherent there is an epimorphism E → F with
E = ⊕mi=1OPrA(−ki). Denoting by G the kernel, G is coherent and we have a short
exact sequence

0→ G → E → F → 0.

Since the map h is flat we have an exact sequence

0→ h∗G → h∗E → h∗F → 0.

In the commutative diagram of cohomologies with exact rows

Hi(PrA, E) //

��

Hi(PrA,F) //

��

Hi+1(PrA,G) //

��

Hi+1(PrA, E)

��

Hi(PrD, h∗E) // Hi(PrD, h∗F) // Hi+1(PrD, h∗G) // Hi+1(PrD, h∗E)

the vertical arrows on the left and right are isomorphisms by Lemma C.2.3. By the
induction hypothesis Hi+1(PrA,G)→ Hi+1(PrD, h∗G) is an isomorphism as well. By
the five lemma the result holds for Hi(PrA,F)→ Hi(PrD, h∗F) as required. ♣

C.3. Homomorphisms.

Proposition C.3.1 (Serre’s Théorème 2). For any coherent PrA-modules F ,G the
natural homomorphism

HomPrA(F ,G)→ HomPrD (h∗F , h∗G)

is an isomorphism. In particular the functor h∗ is fully faithful.

Lemma C.3.2. The sheaf homomorphism

h∗HomPrA(F ,G)→ HomPrD (h∗F , h∗G)

is an isomorphism.

Proof. This follows since OPrD is a flat OPrA-module. Indeed, for a closed point
x ∈ PrD corresponding to a point x′ = h(x) ∈ PrA we have(

h∗HomPrA(F ,G)
)
x

= HomOx′ (Fx′ ,Gx′)⊗Ox′ Ox
= HomOx(Fx′ ⊗Ox′ Ox,Gx′ ⊗Ox′ Ox)

= HomPrD (h∗F , h∗G)x.

♣
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Proof of the proposition. By Serre’s Théorème 1, h∗ preserves cohomology of co-
herent sheaves. Taking H0 in the lemma the result follows. ♣

C.4. The equivalence. It remains to show:

Proposition C.4.1. The functor h∗ is essentially surjective.

Proof. This is an inductive argument on r identical to Serre’s Théorème 3 which
we repeat below. The case r = 0 follows from Lemma B.6.1. Assume the result
is known for r − 1 and let F be a coherent sheaf on PrD. By Lemma C.4.2 below
there is an epimorphism φ : O(−n0)k0 → F , and applying this again to Ker(φ)

we get a resolution O(−n1)k1
ψ→ O(−n0)k0 → F → 0. By Serre’s Théorème 2 the

homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ′, so
the cokernel F of ψ is also the analytification of the cokernel of ψ′. ♣

Lem:global-generation Lemma C.4.2. Assume the proposition holds for r − 1. Then for any coherent
sheaf F on PrD there is n0 so that F(n) is globally generated whenever n > n0.

Proof. By compactness it suffices to show that global sections of F(n) generate
F(n)x for fixed x. By Nakayama it suffices to show that global sections of F(n)
generate the fiber F(n)x ⊗OD,x Cx.

Picking a hyperplane Pr−1
D ' H 3 x we obtain an exact sequence 0→ O(−1)→

O → OH → 0, giving an exact sequence F(−1)
ϕ1→ F ϕ0→ FH → 0. Writing P for

Ker(ϕ0) = Im(ϕ1) we have two exact sequences

0→ G → F(−1)→ P → 0 and 0→ P → F → FH → 0,

noting that G and FH are coherent sheaves on H. Twisting by O(n) gives

0→ G(n)→ F(n− 1)→ P(n)→ 0

and

0→ P(n)→ F(n)→ FH(n)→ 0.

The long exact cohomology sequence gives

H1(PrD,F(n− 1))→ H1(PrD,P(n))→ H2(H,G(n))

and

H1(PrD,P(n))→ H1(PrD,F(n))→ H1(H,FH(n)).

By the assumption FH and G are analytifications of algebraic sheaves, so for
large n the terms on the right vanish by Serre’s Théorème 1. It follows that
dimH1(PrD,F(n)) stabilizes for large n, and when it does the exact sequences
above imply that H1(PrD,P(n)) → H1(PrD,F(n)) is bijective so H0(PrD,F(n)) →
H0(H,FH(n)) is surjective. Since the result holds for analytifications of algebraic
sheaves, FH(n) is globally generated for large n, implying that F(n)x ⊗OD,x Cx is
generated by global sections, as needed. ♣
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