
INVARIANCE IN LOGARITHMIC GROMOV–WITTEN THEORY

DAN ABRAMOVICH AND JONATHAN WISE

Abstract. Gromov–Witten invariants have been constructed to be deformation invariant,
but their behavior under other transformations is subtle. In this note we show that logarith-
mic Gromov–Witten invariants are also invariant under appropriately defined logarithmic
modifications.

1. Introduction
sec:intro

1.1. Main result. Consider two complex projective varieties X, Y with a projective bira-
tional toroidal morphism h : Y → X as defined in [KKMSD73]. By the work [Kat89, Kat94]
of Kato this means that these varieties are naturally endowed with fine and saturated log-
arithmically smooth structures, which we denote X and Y , and the morphism Y → X is
logarithmically étale.

Following [GS13, Che10, AC11] there are algebraic stacks M(Y ) and M(X), of stable
logarithmic maps of curves to Y and X, admitting virtual fundamental classes [M(Y )]vir

and [M(X)]vir. Following [AMW12, Theorem B.6] we obtain a natural associated morphism
of moduli stacks M(h) :M(Y )→M(X). The main result of this paper is as follows:

maintheorem Theorem 1.1.1. With the assumptions above, we have

M(h)∗
(
[M(Y )]vir

)
= [M(X)]vir.

1.2. Implication for logarithmic Gromov–Witten invariants. The papers [GS13, AC11]
provide technical conditions under which the stackM(X) decomposes as an infinite disjoint
union of open and closed substacksM(X) =

∐
MΓ(X) of finite type, each admitting a pro-

jective coarse moduli space. When these conditions hold for X, they automatically hold for
the modification Y as well. Under those conditions one defines in [GS13, AC11] logarithmic
Gromov–Witten invariants of X and Y . The theorem above implies that the logarithmic
Gromov–Witten invariants of X and Y coincide. 1

1.3. Gromov–Witten invariants and birational invariance. Algebraic Gromov–Witten
invariants are virtual curve counts on a complex projective variety X, thus are biregular in-
variants. The formalism of virtual fundamental class shows that they are automatically
deformation invariant: if X appears as a fiber of a smooth family, then its invariants co-
incide with the invariants of other smooth fibers. This is a key property in the study of
Gromov–Witten invariants.

Unfortunately, the behavior of Gromov–Witten invariants under most other transforma-
tions, in particular a birational transformation Y → X, is subtle. A number of authors
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have addresses this question, and found that good behavior can be proven in many special
situations. Here is a non-exhaustive list:

(1) Gathmann [Gat01, Theorem 2.1] provided a procedure for calculating the behavior
of genus-0 invariants under point blowing up.

(2) J. Hu [Hu00, Theorem 1.2] showed the birational invariance of genus ≤ 1 Gromov–
Witten numbers under blowing up a point or a smooth curve, as well as arbitrary
genus invariants when dimX ≤ 3.

(3) Lai [Lai09, Theorem 1.4] showed the birational invariance in genus 0 if Y → X is
the blowing up of a smooth subvariety Z with convex normal bundle with enough
sections, or if Z has contains no images of P1.

(4) Manolache [Man12, Proposition 5.14] showed birational invariance in genus 0 if Z is
the transversal intersection of X with a smooth subvariety of an ambient homoge-
neous space.

A number of authors, including Maulik-Pandharipande [MP06] and J. Hu, T.J. Li and Y.
Ruan [HLR08], considered the behavior of invariants under blowing up using the degeneration
formula.

Theorem 1.1.1 shows that logarithmic Gromov–Witten invariants are well-suited to ques-
tions of birational invariance. It would be interesting to obtain comparison mechanisms
between logarithmic and usual invariants similar to the results of [MP06].

1.4. Setup. As explained in [Ols03], a logarithmic variety X is logarithmically smooth if
and only if it the associated map X → Log to the stack of logarithmic structures is smooth.
As we recall in section 2 below, this map factors as X → X → Log where X → X is a strict
smooth map to a “locally toric stack” X , which has an étale cover by finitely many stacks
of the form [V/T ], where V is a toric variety and T its torus. The stack X is logarithmically
étale. The map Y → X is obtained as the pullback of a toric modification Y → X . This
means that V ′ = Y ×X V is a toric variety for the same torus T .

1.5. Structure of proof. The proof follows [AMW12] closely.
In Section 3.1 we construct moduli stacks of pre-stable logarithmic maps M(Y) and M(X )

with maps ψX : M(X) → M(X ) and ψY : M(Y ) → M(Y) constucted in Section 4. We
show:

Prop:mcx-log-smooth Proposition 1.5.1 (See Corollary 3.1.3). The stacks M(Y) and M(X ) are algebraic and
log smooth.

In order to compare the moduli spaces we construct in Section 3.2 a further stack M′(Y →
X ) with a morphism ψ′Y :M(Y )→M′(Y → X ) constructed in Section 4 and α : M′(Y →
X )→M(Y) such that ψY = α ◦ ψ′Y , see Section 5. We show:

Prop:M’ Proposition 1.5.2 (See Corollary 3.2.2 and Section 5.1). The stack M′(Y → X ) is alge-
braic and the morphism α is étale and strict.
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We construct M′(Y → X ) with a morphism M(h) : M′(Y → X ) →M(X ). We obtain a
diagram

Eq:CostelloEq:Costello (1)

M(Y )
M(h)

//

ψ′
Y

��

M(X)

ψX

��

M′(Y → X )
M(h)

//M(X )

and prove

Prop:cartesian Proposition 1.5.3 (See Section 4). The diagram 1 is cartesian.

Prop:Costello Proposition 1.5.4 (See Proposition 5.3.1). The morphism M(h) is of pure degree 1.

We construct obstruction theories EX relative to ψX and EY relative to ψY and prove

Prop:relative-obstruction Proposition 1.5.5 (See Proposition 6.3.1). We have

[M(X)]vir = (ψX)!
EX [M(X )] and [M(Y )]vir = (ψY )!

EY [M(Y)].

Proposition 1.5.2 implies that EY is an obstruction theory relative to ψ′Y and

[M(Y )]vir = (ψ′Y )!
EY [M′(Y → X )].

Theorem 1.1.1 then follows from Costello’s result [Cos06, Theorem 5.0.1]; see also [Man12,
Proposition 5.29] and [Lai09, Proposition 3.15].

1.6. Acknowledgements. We thank Mark Gross who asked the question, and Steffen Mar-
cus, with whom some of the techniques were developed in [AMW12].

2. Construction of X and Y
Sec:toric-stacks

We treat the logarithmically smooth case. The general case is treated, along with a
diagram involving Kato fans, polyhedral complexes and Berkovich analytic spaces, in a
manuscript in preparation by M. Ulirsch.

2.1. The stack X . We construct the stack X as a universal object depending on X . First,
there is a canonical morphism X → Log; its image is an open substack of Log, but it is too
coarse an object because different strata of X can map to the same point of Log. The idea
is to correct this issue universally.

Let P be a fine, saturated sharp monoid, where sharp means that P has a unique invertible
element P× = {0}. Define a functor S log

P : LogSch◦ → Sets by

S log
P (X,MX) = Hom(P,Γ(X,MX)).

According to [Ols03, Proposition 5.17] this functor is representable by a logarithmically étale
algebraic stack we denote SP =

[
Spec C[P ]

/
Spec C[P gp]

]
. The map SP → Log is étale.

Lem:no-covers Lemma 2.1.1. Every étale cover of SP admits a section.

Proof. An étale cover of SP induces an étale cover of Spec C[P ] and by restriction, an étale
cover of Spec C[P gp]. But Spec C[P gp] is a torus and its connected étale covers all arise from
surjective homomorphisms of tori. Since P is sharp, the closed orbit of Spec C[P ] is a point,
and any surjective homomorphism of tori which extend to an étale map over the closed orbit
of Spec C[P ] is an isomorphism. �
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Proposition 2.1.2. Let (X,MX) be a logarithmic scheme. Then there is an algebraic stack
X and factorization X → X → Log of the morphism X → Log, such that

(1) X → Log is representable and étale, and
(2) whenever X → X → Log factors as X → Y → Log with Y → Log representable and

étale, there is a unique arrow X → Y whose composition with Y → Log is the given
arrow X → Log.

In other words, X → X is an initial map from X to a logarithmic stack X that is repre-
sentable and étale over Log.

Proof. First we work étale locally in X and assume that there is a point x of X such that
MX,x lifts to a chart. Let X = SMX,x

. We show that X is initial among all maps to
étale sheaves over Log. Suppose that we had another factorization X → Y → Log. Then
Y ×Log X → X is étale. It is also surjective since it contains the image of x in X , which is
the unique closed point. Letting Y ′ be the connected component of Y ×Log X containing the
image of x, it follows that Y ′ → X is an isomorphism, since X has no nontrivial étale covers
by Lemma 2.1.1. Composing the inverse of this isomorphism with the projection Y ′ → Y
gives a map X → Y . This is clearly unique.

To treat the general case, consider the collection of all étale spaces X̃ → X admitting a

factorization X̃ → X̃ → Log satisfying conditions (1),(2) of the proposition. This collection
contains all sufficiently small neighborhoods of all geometric points of X. Since the collection
of étale sheaves over Log is closed under colimits, this collection is also closed under colimits.
Hence it is all of ét(X), in particular in includes X. �

2.2. Functoriality. Note that by construction the map X → X is strict.
The universal property characterizing X implies that it is functorial in X with respect to

strict morphisms.
Now suppose that Y is an algebraic stack equipped with two logarithmic structures MY

and M ′
Y , as well as a morphism M ′

Y →MY . Working étale-locally in Y , we see that there is
a map SMY

→ SM ′
Y

, which evidently glues to give a global map.
This shows that the formation ofX → X is in fact functorial with respect to all logarithmic

morphisms Y → X. Of course, in this generality the map Y → X does not commute with
the étale projections to Log.

2.3. Modifications. We want to show that a toroidal modification Y → X, namely a
logarithmically étale modificaiton Y → X, is induced by a logarithmically étale modification
Y → X . By functoriality we have a commutative diagram

eqn:4eqn:4 (2)

Y

��

// X

��

Y // X
and we need to show that the diagram is cartesian and Y → X is a modification. This
can be checked étale locally over X, so we may assume X is a toroidal embedding without
self-intersections, equivalently a Zariski logarithmically smooth scheme. In this case Kato
constructed in [Kat94, Proposition 10.1] a morphsim of monoidal spaces (X,MX)→ F (X)
to the Kato fan F (X) of X; in [Kat94, Proposition 9.9 (2)] it is shown that toroidal modifi-
cations Y → X are equivalent to subdivisions F (Y ) of F (X). We note that F (X ) = F (X),
hence the subdivision F (Y ) of F (X) corresponds to a modification Y → X as required.
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3. Algebraicity
Sec:algebraicitySec:mcx+mcy

3.1. The stacks M(X ) and M(Y).

Proposition 3.1.1. Let Y → X be a logarithmically étale S-morphism of algebraic stacks
that are locally of finite presentation over S. Define M(Y/S) and M(X/S) to be the stacks
of minimal logarithmic morphisms from logarithmically smooth curves into the fibers of Y
and X over S. Then the map M(Y/S)→M(X/S) is representable by logarithmically étale
morphisms of algebraic stacks.

Proof. We factor the map M(Y/S)→M(X/S) as

M(Y/S)→ Log(M(Y/S))→ Log(M(X/S))→M(X/S).

The first of these maps is an open embedding, as minimality is an open condition. The fibers
of the last map are known to be algebraic stacks by the main result of [Ols03]. The algebraic-
ity will therefore follow if we show that Log(M(Y/S))→ Log(M(X/S)) is representable by
algebraic spaces. But given a diagram of solid lines

Y

��

CT

77

//

π′

��

C //

π

��

X

��

T // S,

the lifts of the map C → X can be identified with sections of the étale sheaf Log(Y)×Log(X ) CT
over CT . In other words, lifts of the map T → Log(M(X/S)) to Log(M(Y/S)) can be
identified with sections over T of the étale sheaf π′∗(Log(Y)×Log(X ) CT ). As C is proper over
S and pushforward of étale sheaves commutes with base change, it follows that the fiber of
Log(M(Y/S)) may be identified here with π∗(Log(Y)×Log(X ) C). This is an étale sheaf and
every étale sheaf is representable by algebraic spaces.

For later reference, we prove that M(Y/S)→M(X/S) is logarithmically étale as a lemma:

lem:M-log-etale Lemma 3.1.2. Assume that Y → X is a logarithmically étale S-morphism. Then M(Y/S)→
M(X/S) is logarithmically étale.

Consider the logarithmic lifting problem

T //

��

M(Y/S)

��

T ′ //

;;

M(X/S)

where T ′ is a strict, square-zero extension of T . This corresponds to

Y

��

C

��

//

..

C ′ //

>>

��

X

��

T // T ′ // S.
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Then the extension exists and is unique because Y → X is logarithmically étale and C → C ′

is a strict infinitesimal extension.
�

cor:log-etale-over-point Corollary 3.1.3. If X is a logarithmic algebraic stack that is logarithmically étale over a
point then M(X ) is a logarithmically smooth algebraic stack.

Proof. We know that the stack of pre-stable logarithmic curves is algebraic, and the propo-
sition shows that M(X ) → M is relatively algebraic and logarithmically étale. Since M is
logarithmically smooth, it follows that M(X ) is as well. �

Since the stacks Y and X in Proposition 1.5.1 are logarithmically étale over a point, we
may apply Corollary 3.1.3 to prove the proposition.

Sec:M’
3.2. The stack M′(Y → X ). Our arguments require a further stack M(Y → X ), the moduli
space of diagrams

Eq:M’Eq:M’ (3)

C //

��

Y

��

C // X

in which C and C are pre-stable logarithmic curves, C → C is logarithmically étale. We
write M′(Y → X ) for the open substack of M(Y → X ) where the automorphism group
of (3) relative to its image C → X in M(X ) is finite.22→

cor:rel-log-etale Corollary 3.2.1. Assume that Y → X is a logarithmically étale morphism of logarithmic
algebraic stacks over S. Let Log(F) be the stack of logarithmically commutative diagrams

C //

��

Y

��

C //

��

X

��

T // S

in which C and C are logarithmically smooth curves over T . Then F is representable by
algebraic stacks relative to M(X/S).

Proof. Working relative to M(X/S) we may assume that a diagram

C

��

// X

S

2Jonathan: added definition of M(Y → X )
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is given. Then we are to prove that the stack of all logarithmically commutative diagrams

C

��

//

��

Y

��

C //

��

X

��

T // S

is algebraic. We may identify this as the space of pre-stable logarithmic maps M(Y ×X C/S).
But Y ×X C → C is logarithmically étale, so the proposition implies it is sufficient to show
M(C/S) is algebraic. However, C is locally projective over S so pre-stable maps (not
necessarily logarithmic) to C/S are well known to be algebraic. By [Che10, GS13],3 it ←3

follows that pre-stable logarithmic maps to C/S form an algebraic stack as well. �

Cor:M’-algebraic Corollary 3.2.2. Let Y → X be a logarithmic morphism between algebraic stacks that are
logarithmically étale over a point. Then the stack M′(Y → X ) is algebraic.

Proof. By Corollary 3.1.3, we know that M(X ) is algebraic. By Corollary 3.2.1, we deduce
that M(Y → X ) is relatively algebraic over M(X ), hence is algebraic. But the stability
condition defining M′(Y → X ) inside M(Y → X ) is open, so it now follows that M′(Y → X )
is algebraic. �

This gives the algebraicity statement of Proposition 1.5.2.

4. The cartesian diagram
Sec:cartesian

Our assumptions provide us with a cartesian diagram of logarithmic stacks (2) in which

(1) X and Y are logarithmically étale over a point,
(2) the morphism of algebraic stacks underlying Y → X is representable by algebraic

spaces,4 ←4

(3) the vertical arrows are strict, and
(4) X and Y are proper logarithmic schemes.

We consider the following diagram

eqn:1eqn:1 (4)

M(Y ) //

��

M(X)

��

M′(Y → X ) //M(X )

with the following definitions:

(1) M(X) and M(Y ) are, respectively, the moduli stacks of stable logarithmic maps
into X and Y ,

(2) M(X ) is the moduli space of pre-stable logarithmic maps into X , and
(3) M′(Y → X ) is the moduli space of diagrams (3) described in section 3 above.

3Jonathan: precise reference
4Jonathan: is this necessary?



8 DAN ABRAMOVICH AND JONATHAN WISE

The map M(X) → M(X ) is defined by composition of C → X with X → X . The map
M′(Y → X ) →M(X ) is obtained by sending a diagram (3) to the map C → X . The map
M(Y )→M(X) is defined by [AMW12, B.6]: an object C → Y of M(Y ) induces a stable
map5 C → X; it comes along with a comutative diagram5→

C //

��

Y

��

C // X.

Since Y = X ×X Y this extends uniquely to

C //

��

Y

��

// Y

��

C // X // X .

This gives us the map M(Y )→M′(Y → X ).

Proof of Proposition 1.5.3. We verify that diagram (4) is logarithmically cartesian. As its
vertical arrows are strict,6 this will imply that the underlying diagram of algebraic stacks is6→

cartesian as well.
Suppose that we are given maps S → M′(Y → X ) and S → M(X) along with an

isomorphism between the induced maps S → M(X). These data correspond to a diagram
of solid lines

eqn:3eqn:3 (5)

C

��

''
// YS //

��

YS

��

C // XS
// XS

of logarithmic algebraic stacks over S. We obtain a map C → YS completing the commutative
diagram by the universal property of the fiber product.

It remains only to verify that the stability condition of M(Y ) holds in (5) if and only if
the stability condition of M′(Y → X ) does. Let G be the automorphism group of the image
of (5) in M(Y ), let G′′ be the automorphism group of the image in M(X), and let G′ be
the kernel of G→ G′′. We note that G′′ is finite, so G′ is finite if and only if G is.

On the other handG′ may be identified with the kernel of the map AutM′(Y→X ) → AutM(X ).
Therefore the finiteness of G′ is precisely the stability condition of M′(Y → X ) and the
finteness of G is the stability condition of M(Y ). �

5. The universal logarithmically étale modification
Sec:universal

Let Y → X be a morphism of logarithmic algebraic stacks. We obtain a correspondence

M′(Y → X )

xx &&

M(Y) M(X )

5Jonathan: stable map
6Jonathan: verify?
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where M(Y → X ) is the moduli space of minimal logarithmic diagrams

C //

��

Y

��

C // X

such that C → C is logarithmically étale.
Sec:M’toM

5.1. The arrow M′(Y → X )→M(Y).

Proof of Proposition 1.5.2. 7 Algebraicity was shown in Corollary 3.2.2. A logarithmic infin- ←7

itesimal lifting problem

S //

��

M′(Y → X )

��

S ′ //

99

M(Y)

corresponds to a logarithmic extension problem

C //

��

C ′ //

��

��

Y

��

C

��

//
&&

C ′

��

// X

S // S ′.

Now, C → C contracts chains of semistable components8 so we may apply [AMW12, Ap- ←8

pendix B] to obtain C ′ (uniquely). All that is left is to produce the map C ′ → X and show
it is unique. This follows from the two lemmas below. �

Lemma 5.1.1. C ′ is the pushout of the maps C → C and C → C ′ in the category of
logarithmic schemes.

Proof. The underlying space of C ′ is the pushout of the maps underlying C → C and C → C ′.
Also the logarithmic structure on C ′ is the push-forward of the logarithmic structure on C ′.
This implies the result.9 � ←9

Lemma 5.1.2. C ′ is the pushout of the maps C → C and C → C ′ in the 2-category of
logarithmic stacks.

Proof. The construction of C ′ is local in the étale topology of C, so we may work étale locally
in C. We may therefore assume that given maps C → X and C ′ → X factor through a
smooth, strict chart X → X . But then these maps extend uniquely in a compatible way
to C ′ → X by the previous lemma. The uniqueness of this extension guarantees that the
induced map C ′ → X is independent of the chart. �

7Jonathan: argument below doesn’t address strictness
8Jonathan: justification?
9Dan: How to write this without atrocious notation?
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5.2. The arrow M′(Y → X )→M(X ).

Proposition 5.2.1. Assume that Y → X is logarithmically étale. The map M′(Y → X )→
M(X ) is logarithmically étale.

Proof. Consider a logarithmic lifting problem

S //

��

M′(Y → X )

��

S ′

99

//M(X )

with S ⊂ S ′ a strict infinitesimal extension. This corresponds to the lifting problem,

C

��

&&
// C ′

��

// Y

��

C //

��

C ′ //

��

X

S // S ′.

Because C → C is logarithmically étale and C ⊂ C ′ is a strict infintesimal extension, it
follows that there is an extension C ′ → C ′ of C → C and that this is unique up to unique
isomorphism. The only thing remaining is to construct the map C ′ → Y . But this amounts
to lifting the diagram

C //

��

Y

��

C ′ //

>>

X ,
which we can do uniquely, since Y → X is logarithmically étale. �

5.3. Birationality: proof of Proposition 1.5.4.

prop:univ Proposition 5.3.1. Suppose that X → Y is logarithmically étale, proper, and birational.
Then the maps M(Y → X )→M(X ) and M(Y → X )→M(Y) are birational.

Proof. All of the stacks M(Y → X ), M(X ), and M(Y) are logarithmically smooth. Therefore
they have dense open substacks where their logarithmic structures are trivial. We show that
these dense open substacks are isomorphic.

Consider an S-point of M(Y → X ), where S has the trivial logarithmic structure. We
have a commutative diagram

eqn:2eqn:2 (6)

C //

��

X

��

C // Y

with C → C logarithmically étale and both C and C logarithmically smooth over S. This
implies first that the underlying curves of C and C are smooth, and second that the map of
schemes underlying C → C is a branched cover. But the stabilization of C → C must also
be an isomorphism, so its degree must be 1 and therefore C → C is an isomorphism. This
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proves that M(Y → X ) → M(Y) is an isomorphism over the loci with trivial logarithmic
structures.

Now consider an S-point C → X of M(X ). We may obtain a point of M(Y → X ) by
taking C = C ×X Y . Note that the map C → C is proper and logarithmically étale, so C
is a proper, logarithmically smooth curve over S. It is immediate that this is a section of
M(Y → X ) over M(X ) and remains only to verify that if (6) is an S-point of M(Y → X )
then C = C ×X Y . However, this follows from the fact that C → C is an isomorphism, as
we saw above. �

6. Obstruction theories

6.1. The arrow M(X) → M(X ). First we show that the natural obstruction theory for
M(X) over M(X ) agrees with the one over M defined in [AC11, Che10, GS13]. Let S ⊂ S ′

be a strict square-zero extension over M(X ) with ideal J and assume given an S-point of
M(X). We have a diagram of solid lines

eqn:5eqn:5 (7)

X

��

C //

f ..

��

C ′ //

>>

��

X

S // S ′.

Note that because X is étale over Log, lifts of this diagram are precisely the same as lifts of
the diagram

X

��

C //

f ..

��

C ′ //

==

��

Log

S // S ′.

Since X is smooth over X , the logarithmic lifts of either of these diagrams form a torsor on
C under the sheaf of abelian groups f ∗TX/X ⊗ J = f ∗T log

X ⊗ J . Therefore if we define E (J)

to be the stack on S of f ∗T log
X ⊗ J-torsors on C we obtain an obstruction theory in the sense

of [Wis11] forM(X) over Log(M(X )) or over Log(M). The latter of these is the one defined
in [AC11, Che10, GS13].

6.2. The arrowM(Y )→M′(Y → X ). A similar argument will apply to demonstrate that
this obstruction theory pulls back to an obstruction theory for M(Y ) over M′(Y → X ). A
lifting problem

S //

��

M(Y )

��

S ′

99

//M′(Y → X )
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corresponds to the following lifting problem:

eqn:6eqn:6 (8)

Y

��

C //

��

g ..

C ′

>>

//

��

Y

��

C //

��

C ′ //

��

X

S // S ′.

As before, the lifts form a torsor under g∗TY/Y = g∗T log
Y . But in view of the cartesian

diagram (2), this torsor is precisely the same as the torsor of lifts of the induced diagram (7).
On the other hand, the third row of (8) is obviously irrelevant to the lifting question, so the
obstruction theory is the same as the one for M′(Y → X ) over M(Y).

6.3. Conclusion. We have therefore proved the following precise restatement of Proposition
1.5.5:

prop:obs Proposition 6.3.1. Let E denote the perfect relative obstruction theory for M(X) over
Log(M) and let E ′ denote the perfect relative obstruction theory for M(Y ) over Log(M).
Then

(1) E is also a perfect relative obstruction theory for M(X) over M(X ),
(2) E ′ is also a perfect relative obstruction theory for M(Y ) over M′(Y → X ), and
(3) Φ∗E = E ′.

We may now combine Propositions 5.3.1 and 6.3.1 with Costello’s theorem [Cos06, Theo-
rem 5.0.1] to deduce Φ∗[M(X)]vir = [M(Y )]vir.
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