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Abstract

Cards are shuffled in the following way: a place j in the deck is fixed,
and at each time we pick the card at place j and insert it into the deck in a
random place. We let n =number of cards go to infinity, and j vary in the
interval 1 ≤ j ≤ n/2. We will give an upper bound for the randomization
time of this shuffle in the sense of [1], that specializes to n log n when
j = O(1) and to n(log n + log log n + O(1)) when j = O(n). The reason
for the extra term is that while the case j = O(1) relates directly to the
“coupon collector’s problem”, we will give a coupling argument that in
general relates to the “double coupon collector’s problem”, (also known
as the “double dixie cup problem”) which has a log log n term.

KEY WORDS: Random walks on groups, coupling time, uniform
distribution

1 introduction

Consider the following method of mixing a deck of n cards: Fix an integer
j, 1 ≤ j ≤ n. At each time, the card in position j is removed and replaced at
a random position. In this paper we show that it takes O(n log n) steps to mix
up the n cards.

The problem arose in a work of Aldous and Diaconis [2]. They proved a
precise result for the case j = 1. Their method of proof (strong uniform times)
breaks down for other values of j. Aldous [1] treated j = 1 by coupling. The
problem of other values of j has been posed by Diaconis in talks.

The shuffle is treated as a Markov chain on the symmetric group Sn. A
careful description of the basic shuffle is given in section 2. Let P k be the law
of the chain, started from the identity permutation, after k steps. Let U be the
uniform distribution on Sn. The distance between P k and U is measured by
total variation:

‖P k − U‖ = sup
A∈Sn

|P k(A)− U(A)| (1)
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The main result shows that

k = n log n+ n log
(

1 + 2j
(

1− j

n

)
log n
n

)
+ nx (2)

steps are sufficient.

Theorem 1 There is a function φ(x) such that φ(x) → 0 as x → ∞, such
that for any j, 1 ≤ j ≤ n and k defined by (2), ‖P k − U‖ ≤ φ(x).

Remark The function φ, along with the proof of theorem 1 is given in
section 5. The rate of convergence is sharp in the sense of the following theorem:

Theorem 2 For every ε > 0 there is x such that for any choice of j = j(n),
and k = n log n− nx we have

lim
n→∞

‖P k − U‖ > 1− ε

The proof of theorem 2 is elementary, while the proof of theorem 1 is via the
coupling method.

It is natural to conjecture that n log n+ nx steps are sufficient, as is shown
for j = 1 in [2]. The extra term plays a role only in the range j > n/ log n, in
particular, when j = n/2.

I would like to thank Persi Diaconis for suggesting the problem and dis-
cussing and helping during the work. I would also like to thank J.F.Burnol and
R.Stong for helpful discussions and remarks.

2 the shuffle

To fix ideas, cards are elements of 1, . . . , n and if i is a card and π ∈ Sn then
π(i) is the place of the card in the deck π. We will now carefully describe the
basic shuffle, and its inverse.

Definition 3 Let n and j be fixed. Let ck ∈ Sn be the following correspond-
ing cycles:

ck =
{

(j, j − 1, . . . , k) 1 ≤ k ≤ j
(j, j + 1, . . . , k) j ≤ k ≤ n

Define probability measures µ, µ′ on Sn:

µ(π) =
{

1/n π = ck, k = 1, . . . , n
0 otherwise

µ′(π) = µ(π−1).
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We define markov chains X,X ′ on Sn generated by these probabilities:

PX(π, η) = µ(ηπ−1)

PX′(π, η) = µ′(ηπ−1).

It is easy to see that PX′ is the j-at random shuffle, and PX is the inverse
shuffle.

Proof of theorem 2: The theorem can be proved directly from the defi-
nition of the total variation distance in formula (1), once we produce an event
A ∈ Sn with ‖P kX′(A) − U(A)‖ large. Following [1] we fix m and look at the
event

Am = {π ∈ Sn|π(s) ≥ n/2 for all n−m < s ≤ n},

that is, the event that the last m cards end up in the lower half of the deck. It
is clear that U(Am) ∼= 1/2m for large n. Let us show that P kX′(Am) is close to
1 for suitable x. In fact, in order that any card from the last m cards end up
in the upper half, the card which starts in position n−m+ 1 has to get to the
half at some time before k. This is a version of the coupon collector’s problem:
the probability that a card at place n − k + 1 > n/2 moves one place upward
at a given time is k/n, and we sum up the waiting times for these events for
m ≤ k ≤ n/2. These waiting times are independant, of mean n/k and variance
of order n2/k2, and thus, by Chebyshef’s inequality P kX′(Sn−A) < a/(x−logm)
for some constant a.

3 the coupling

For backgroung on coupling see e.g. [1]. First, a technical definition.

Definition 4 Let π1, π2 ∈ Sn. Let k be a card. We say that k is matched if

π−1
1 (k) < j and π−1

2 (k) < j or π−1
1 (k) = j and π−1

2 (k) = j

or π−1
1 (k) > j and π−1

2 (k) > j

We say that k is coupled if all cards are matched and π−1
1 (k) = π−1

2 (k). We
denote by l the number of unmatched cards for π1 and π2.

That is, the card is matched if it is on the same side of j in the two decks
π1, π2.

Our coupling works on the process X ′ and is designed first to match all
cards and then to couple them. An intuitive, but rather precise description of
the coupling is as follows:

1. Pick a card at random from deck 1.
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2. If the card is matched, or if the cards at place j are different, take the
same card from deck 2 and insert them at place j of the decks.

3. If the card is not matched and the cards at place j are the same, pick an
unmatched card from the same side of j at uniform distribution (There
are exactly l/2 such cards in deck 2) and insert the cards at place j.

More formally:

Definition 5 Define the following Markov chain Y on Sn × Sn:

PY ((π1, π2), (ck1π1, ck2π2)) =



1/n π−1
1 (k1) = π−1

2 (k2) matched;
π−1

1 (j) = π−1
2 (j)

2/nl π−1
1 (j) = π−1

2 (j);
neither π−1

1 (k1) nor π−1
2 (k2)

is matched, and
{k1 < j and k2 < j
or k1 > j and k2 > j}

1/n π−1
1 (k1) = π−1

2 (k2); π−1
1 (j) 6= π−1

2 (j)

and 0 otherwise. One easily checks that the “rows” sum to 1, and thus give
transition probabilities.

This markov chain has the followig rather obvious properties, after the first
step was done:

1. The number of unmatched cards is even; matching occures in pairs; no
unmatching occurs.

2. If π−1
1 (j) 6= π−1

2 (j) the corresponding cards are on the same side of j:

π2π
−1
1 (j) < j and π1π

−1
2 (j) < j, or

π2π
−1
1 (j) > j and π1π

−1
2 (j) > j

3. If at some t, π−1
1 (j) 6= π−1

2 (j), then at time t+1 we have π−1
1 (j) = π−1

2 (j)

4. The relative orders in the two decks of the cards that have been coupled at
j at some time before, are the same, that is, if the previously coupled cards
are in deck 1 in places i1 < i2 < . . . < j < . . . < ih and in deck 2 in places
i′1 < i′2 < . . . < j < . . . < i′h then for every k we have π−1

1 (ik) = π−1
2 (i′k)

The last property deserves a definition:
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Definition 6 A card k is said to be almost coupled in the markov chain at
time T , if at some t < T we have Yt(k, k) = (j, j)

We still need to verify

Lemma 7 The process (PY ,U , δ) is a coupling for the process (PX , δ).

Proof: Since both PX and PY are Markovian, it is enogh to show that

∀τ PX(π, π′) =
∑
σ

PY ((π, τ), (π′, σ)) =
∑
σ

PY ((τ, π), (σ, π′))

The process is completely symmeteric, therefore it is enough to consider only
the first equality. This equality is obvious enough, once one is convinced by the
intuitive description of the coupling in the beginning of the section.

The basic result on coupling that we use here is the coupling lemma (see [1]):

Lemma 8 Let T = min{t| the two components of Yt are equal } be the cou-
pling time. Then ‖P k − U‖ ≤ Prob{T > k}.

4 estimation of matching time

Let T be the coupling time for Y . Write T = T1 + T2, where T1 is the time
untill we have complete matching, and T2 = T − T1.

Now T1 ≤
∑dn/2e
s=1 T

(2s)
1 , where T (l)

1 is the time for getting an extra matching
given we start with l unmatched cards and the cards at j are the same. (In fact,
the sum goes up to the number of unmatches cards at time 0, call it 2s0 where
s0 is a random variable with mean around (j − 1)(n− j)/n and variance of the
same order of magnitude.)

Define h to be the number of matched cards in places r, with r < j; h to be
the number of matched cards in places r, with r > j.

Whenever the cards at j are the same, we may pick an unmatched card in
probability l/n, say it is in place k. Given this, k < j in probability 1/2. Two
new matchings will occure in the following step, unless the next card is matched
in place < j. Similarly for k > j.

Thus, the probability for new matchings in the following two steps is

l

2n
· n− h− 1

n
+

l

2n
· n− h− 1

n
=
l(n− 2 + l)

2n2
≥ l

2n

This already shows that E(T1) = n log n + O(n). Let us study this more
carefully. Write α = (n+ l−2)/(2n) and p = l/n. Let Z be a geometric random
variable with parameter p, that is Prob(Z = k) = p(1− p)k−1. The generating
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function of Z is z(t) = pt
1−(1−p)t . Write X = T

(l)
1 We have the following renewal

equation:

Prob{X = n} =
n−2∑
m=1

(1− α)Prob{Z = m}Prob{X = n−m− 1}

+αProb{Z = n− 1}.

Writing x(t) for the generating function of X, this translates into

x(t) = t(1− α)z(t)x(t) + αtz(t)

or

x(t) =
αtz(t)

1− (1− α)tz(t)
=

αt2p

1− (1− p)t− (1− α)t2p

¿From this we can immediately compute the mean and variance of X:

x′(t) =
αz(t) + αtz′(t)
1− (1− α)tz(t)

+
αtz(t)((1− α)z(t) + (1− α)tz′(t))

(1− (1− α)tz(t))2

Thus
E(X) = x′(1) =

1
α

(
p+ 1
p

)

Similarly we get after computation

V ar(X) = p−2O(1)

Summing up we get V ar(T1) = O(n2) and E(T1) = n log s0 + O(n) with s0 =
(j − 1)(n− j)/n, if j varies such that the limit exists.

Following [3] we may do the following computation of the limit of the nor-
malized characteristic function of T1:

E(eiθ(T1−n log s0(n))/n) = s−iθ0

s0∏
s=1

e2iθ/ns(n+ 2s− 2)/n2

1− eiθ/n(n− 2s)/n− e2nθ/ns(n− 2s+ 2)/n2

= s−iθ0

s0∏
s=0

1
(1− iθ

s )
eiθ/n

(1− iθ
n )

1
(1 +O(1/(sn)))

The last two terms go to 1 by easy bounds. The main term is interesting only
for s0 →∞, and then the limit is given by the product formula for the gamma
function:

lim siθ0

s0∏
s=1

(1− iθ/s)−1 = Γ(1− iθ)
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Taking inverse Fourier transform of the gamma function (using the integral
formula of gamma and a change of variable) we get

lim Prob{(T1 − n log s0)/n < t) = e−e
−t

.

The reason we may assume that the number of initially unmatched cards is a
constant 2s0 is that by Chebyshev’s inequality, it contributes only an n1/2 term
which goes to zero when divided by n.

Remark: From this section we immediately get a bound on coupling time
of 2n log n+O(n). In the following sections we improve this considerably.

5 estimation of coupling time

In order to improve our estimate we use the property of the preserved relative
order of almost coupled cards. The main point is to compare the coupling
time to the time of getting two complete sets of n coupons, when at each given
time a new coupon is drawn uniformly and independently, from the possible n
coupons. The limit distribution of this time S was given in [3]. They show that
lim Prob{Sn/n− (log n+ log log n) < x} = e−e

−x

.
Diaconis gives the following heuristic argument for an easy estimation of this

problem: Suppose that we need to get n coupons, s0 of them are needed twice.
Let us estimate how many are left after n log n trials: the number of times we
got a given coupon is approximately a Poisson random variable with parameter
λ = log n. The probability of having exactly one copy is log n/n and for no copy
is 1/n. The expected number of coupons we still need is r = s0 log n/n+ 1, and
the expected time for getting them is approximately n log(r). If we repeat the
argument when we wait n(log n+log r+x) for big x, we are quite sure to have a
complete set, just by Markow’s inequality. A direct repetition of the argument
in [3] shows that for s0(n)→∞ we have

lim Prob{Sn/n− (log n+ log r) < x} = e−e
−x

.

Proof of theorem 1: Let N = n(log n+ log(1 + s0 log n/n) + x), where s0
is the number of cards not matched at the beginning, which has expected value
around 2j(1− j/n). We will show that Prob{(T −N)/n > 0} < 100(1 + x)e−x.

We want to estimate the probability that there is card which is not almost
coupled, and thus it is enogh to bound the expected number of these cards. For
each particular unmatched card we bound the probability that it is not almost
coupled by the probability of this event in a slightly delayed process, in which
the term (n+ l− 2)/(2n) determining the probability that it is matched, given
that it was chosen in one of the decks in the previous step is replaced by 1/2.
Whith a further delay in case the cards at j are different, we can easily cook up
a process in which the waiting time t for matching this card has the following
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renewal equation:

Prob{t = k} =
k−2∑
l=1

1
2

Prob{u = l}Prob{t = k − l − 1}

+
1
2

Prob{u = k − 1}

where u is an exponential random variable with parameter 2/n. Namely, in this
delayed process we choose our card in probability 2/n, and in the next step we
match it in probability 1/2.

Now using this renewal equation it can be easily shown that the waiting
time t for matching the card has the same distribution as the following random
variable:

Let Xi be independent Boolean random variable with probability 2/n. Let
Yi be independent, and independent of the Xi, Boolean random variables with
probability 1/2. Let s = min{i : XiYi = 1} and let v = X1 + · · · + Xs. Then
s+ v has the distribution of our matching time.

It may be easily verified that

s ∼ Exponential(1/n)

and
v|(s = k) ∼ Binomial(k, 1/(n− 1)) + 1.

We have

P = Prob{ some card is not coupled at time N}

≤ s0Prob
{

a given card is not almost coupled
in the modified process at time N

}
+(n− s0)(1− 1/n)N

≤ s0

N∑
k=1

(
Prob{s = k}

k∑
m=1

Prob{v = m|s}(1− 1/n)N−k−m
)

+ e−x

=
s0
n

N∑
k=1

(
1− 1

n

)N−2 k∑
m=1

(
k − 1
m− 1

)(
n

(n− 1)2

)m−1(
n− 2
n− 1

)k−m
+ e−x

=
s0
n

N∑
k=1

(
1− 1

n

)N−2(
1 +

1
(n− 1)2

)k−1

+ e−x.

The second term in the summand is less than 3 independently of k < 2n log n.
We get a bound

P ≤ 12
s0
n
N(1− 1

n
)N ≤ 12

s0
n

N

n s0n log n
e−x + e−x ≤ 100(1 + x)e−x.
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Again, a simple use of Chebyshev’s inequality allows using a constant 2j(1−j/n)
for s0 rather than a random variable describing the initially non-matched cards,
with a little loss in the constants
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