
WEAK TOROIDALIZATION OVER NON-CLOSED FIELDS

DAN ABRAMOVICH, JAN DENEF, AND KALLE KARU

Contents

1. Introduction 1
2. Notations and definitions 2
3. Proof. 5
References 13

1. Introduction

th-toroidal-reduction Theorem 1.1. Let k be a field of characteristic zero. Let f : X → B be
a dominant morphism 1 of k varieties, and let Z ⊂ X be a proper closed ←1

subset. 2 Then there exists a diagram ←2

UX′ ⊂ X ′
mX→ X

↓ ↓ f ′ ↓ f

UB′ ⊂ B′
mB→ B

where mB and mX are projective birational morphisms and such that

(1) the inclusions on the left are nonsingular strict toroidal embeddings.
(2) f ′ is a toroidal quasi-projective3 morphism. ←3

(3) Let Z ′ = m−1
X Z. Then Z ′ is a strict normal crossings divisor, Z ′ ⊂

X ′ r UX′ .
(4) The restricted morphism UX′ → mX(UX′) is an isomorphism.

Note that when f is proper, so is f ′, so f ′ becomes projective.
Toroidal embeddings and toroidal morphisms are defined in Section 2

below. When both varieties X ′ and B′ are nonsingular, the embeddings
UX′ ⊂ X ′, UB′ ⊂ B′ and the morphism f ′ of the theorem can be described as
follows: the requirement that the embeddings are strict toroidal is equivalent
to the statement that X ′

rUX′ , B′
rUB′ are strict normal crossings divisors.

The requirement that f ′ is toroidal is equivalent to the following: after
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2 ABRAMOVICH, DENEF, AND KARU

base change to an algebraic closure k̄ of k, for each closed point x ∈ X ′

k̄
,

b = f ′(x) ∈ B′

k̄
, there exist uniformizing parameters x1, . . . , xn for ÔX′

k̄,x

and b1, . . . , bm for ÔB′

k̄,b
, such that

(1) Locally at x, the product x1 · · · xn defines the divisor X ′

k̄
r UX′,k̄.

(2) Locally at b, the product b1 · · · bm defines the divisor B′

k̄
r UB′,k̄.

(3) The morphism f ′ gives bi as monomials in xj .

Here we say that z1, . . . , zn are uniformizing parameters for a local k̄-algebra
A if there exist constants c1, . . . , cn ∈ k̄, such that z1 − c1, . . . , zn − cn form
a system of regular parameters for A.4

4→

2. Notations and definitions
sec-notation

We work over a field k of characteristic zero. A variety defined over k is
an integral separated scheme of finite type over k. If X is a variety defined
over k, we let Xk̄ be its base extension to an algebraic closure k̄ of k. Note
that the scheme Xk̄ might not be a variety.

A modification is a proper birational morphism of varieties. An alteration
is a proper, surjective, generically finite morphism of varieties. An alteration
Y → X is called a Galois alteration with Galois group G if the function field
extension K(Y )/K(X) is Galois with Galois group G, and if the action of
G on K(Y ) is induced by an action on Y keeping the morphism Y → X
invariant. 5

5→

2.1. Divisors. Let X be a smooth variety defined over k (or more generally
a smooth scheme over k), and D ⊂ X a divisor. We say that D is a strict
normal crossings divisor if for every point x ∈ X there exists a regular
system of parameters z1, . . . , zn at x, such that every irreducible component
of D containing x has local equation zi = 0 for some i. A divisor is a
normal crossings divisor if it becomes a strict normal crossings divisor on
some étale cover of X. The condition of being a (strict) normal crossings
divisor is stable under base extension to algebraic closure: if D ⊂ X is a
(strict) normal crossings divisor, so is Dk̄ ⊂ Xk̄.

Let a finite group G act on a (not necessarily smooth) variety X over k (or
more generally a scheme of finite type over k), mapping a divisorD ⊂ X into
D. We say that D is G-strict if the union of translates of each irreducible
component of D is normal. In the case where G is the trivial group 1, we
say that D is a strict divisor. Thus, a strict normal crossings divisor is both
strict and normal crossings divisor.

sec-toroidal-embeddings

2.2. Toroidal embeddings. We refer to [13, 7] for details about toric va-
rieties. If V is a toric variety, we denote by TV ⊂ V the big algebraic torus
in V . Toric morphisms are always assumed to be dominant.

4(Dan) a bit of rephrasing in the whole paragraph - verify
5(Dan) added Galois alteration, verify
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An open embedding of varieties U ⊂ X defined over k̄ (or more generally
of schemes of finite type over k̄) is called a toroidal embedding if for every
closed point x ∈ X there exists a toric variety V , a closed point v ∈ V , and
an isomorphism of complete local k̄-algebras:

ÔX,x
∼= ÔV,v,

such that the completion of the ideal of X r U maps isomorphically to
the completion of the ideal of V r TV . The pair (V, v), together with the
isomorphism, is called a local model at x ∈ X. A toroidal embedding U ⊂ X
over k is called strict if D = X r U is a strict divisor.

An open embedding U ⊂ X defined over k is called a toroidal embedding
if the base extension Uk̄ ⊂ Xk̄ is a toroidal embedding. The toroidal em-
bedding is strict if the divisor D = X rU is strict. Note that if the toroidal
embedding U ⊂ X is strict, then the toroidal embedding Uk̄ ⊂ Xk̄ is also
strict, but the converse may not hold.

Let UX ⊂ X and UB ⊂ B be two toroidal embeddings defined over k̄,
and let f : X → B be a dominant morphism mapping UX to UB . (We write
such a morphism as f : (UX ⊂ X)→ (UB ⊂ B).) Then f is called a toroidal
morphism if for every closed point x ∈ X there exist local models (V, v) at
x ∈ X and (W,w) at f(x) ∈ B, and a toric morphism g : V →W such that
the following diagram commutes:

ÔX,x
∼=

−−−−→ ÔV,v

f̂#

x
xĝ#

ÔB,f(x)

∼=
−−−−→ ÔW,w

Here f̂# and ĝ# are the ring homomorphisms coming from f and g.
A morphism f : (UX ⊂ X) → (UB ⊂ B) between toroidal embeddings

defined over the field k is called a toroidal morphism if its base extension to
k̄ is a toroidal morphism.

The composition of two toroidal morphisms is again toroidal [2].
sec-toroidal-actions

2.3. Toroidal actions. An action of a finite group G on a toroidal embed-
ding U ⊂ X defined over k̄ is called a toroidal action at a closed point x ∈ X
if there exists a local model (V, v) at x ∈ X and a group homomorphism
Gx → TV from the stabilizer Gx of x to the big torus TV ⊂ V , such that the
action of Gx on the complete local ring

ÔX,x
∼= ÔV,v

factors through the action of TV on V via the homomorphism Gx → TV .
6
←6

(In particular, the image of Gx must lie in the stabilizer TV,v of v.) The
action is toroidal if it is toroidal at every closed point. The action of G is
called strict toroidal if it is both strict and toroidal.

6(Dan) Changes - shoudl rethink the compatibility statement?
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Let G act on U ⊂ X toroidally, and assume the quotinet X/G exists.7
7→

Then the quotient U/G ⊂ X/G is again a toroidal embedding (the local
models are given by toric varieties V/Gx). If U ⊂ X is a strict toroidal
embedding and G acts strictly toroidally, then the quotient U/G ⊂ X/G is
again a strict toroidal embedding.

Let f : (UX ⊂ X) → (UB ⊂ B) be a toroidal morphism that is G-
equivariant under toroidal actions of G on both embeddings. We say that
f is G-equivariantly toroidal 8 if local models can be chosen so that they

8→

are compatible with the morphism f and the actions of G on X and B.
Assuming again that the quotients X/G and B/G exist, such an f induces
a toroidal morphism of the quotient toroidal embeddings9

9→

(UX/G ⊂ X/G)→ (UB/G ⊂ B/G).

For a toroidal embedding U ⊂ X defined over k, an action of G is called
toroidal if the induced action on Uk̄ ⊂ Xk̄ is toroidal. The action is strict
toroidal if it is both strict and toroidal. The quotient of a (strict) toroidal
embedding by a (strict) toroidal action is again a (strict) toroidal embed-
ding. A G-equivariant morphism f : (UX ⊂ X) → (UB ⊂ B) is called G-
equivariantly toroidal if the base extension to k̄ is G-equivariantly toroidal.
Such a morphism induces a toroidal morphism of the quotient toroidal em-
beddings.

sec-semistable

2.4. Semistable families of curves. The reference here is [4].
A flat morphism f : X → B over the field k is a semistable family of

curves if every geometric fiber of f is a complete reduced connected curve
with at most ordinary double point singularities.

Consider a semistable family of curves f : X → B over k̄. If x ∈ X is in
the singular locus of f , then X has a local equation at x:

ÔX,x
∼= ÔB,f(x)[[u, v]]/(uv − h)

for some h ∈ ÔB,f(x). Note that h = 0 defines the image of the singular
locus of f in B. It follows from this that if U ⊂ B is a toroidal embedding
and f : X → B is a semistable family of curves, smooth over U , then
f−1(U) ⊂ X is also a toroidal embedding and the map f is toroidal.

A similar statement holds for a semistable family of curves f : X → B
defined over k: Suppose U ⊂ B is a toroidal embedding and f is smooth
over U , then

f : (f−1(U) ⊂ X)→ (U ⊂ B)

is a toroidal morphism of toroidal embeddings.

2.5. Resolution of singularities. We will use any one of the canonical
resolution of singularities algorithms [12, 6, 3]. 10

10→

7(Dan) Added assumption on existence of quotient, also in next paragraph
8(Dan) make lesss vague?
9(Dan) add reference? A-DJ? (also added assumption on quotient
10(Dan) Why do we need canonical? also optimize this subsection
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A canonical resolution of singularities algorithm applied to a variety X
defined over k produces a modification X ′ → X, with X ′ nonsingular and
bothX ′ and the morphism defined over k. If U ⊂ X is a toroidal embedding,
then the resolution algorithm gives a toroidal embedding U ′ ⊂ X ′ and a
toroidal modification f : (U ′ ⊂ X ′)→ (U ⊂ X). Here U ′ = f−1(U).

Let U ⊂ X be a nonsingular toroidal embedding. Applying a canonical
embedded resolution of singularities to the divisor D = X r U gives a
toroidal morphism f : (U ′ ⊂ X ′) → (U ⊂ X) of toroidal embeddings,
such that U ′ ⊂ X ′ is not only nonsingular, but also strict. Indeed, the
components of X ′

rU ′ are the components of the strict transform of D and
the exceptional divisors. All these components are nonsingular.

Combining these two steps, we can toroidally modify any toroidal embed-
ding U ⊂ X to a nonsingular strict toroidal embedding. If f : (U ⊂ X) →
(UB ⊂ B) is a toroidal morphism, then there exist toroidal modifications
of both embeddings to nonsingular strict toroidal embeddings such that f
induces a toroidal morphism between them. Indeed, we first apply the res-
olution algorithms to B, then resolve the indeterminacies of f , and finally
apply the resolution algorithms to X.

3. Proof.

The purpose of this section is to prove the main theorem.

3.1. Reduction to the projective case. We first blow up Z on X and re-
place Z by its inverse image; therefore we may assume Z is the support of an
effective Cartier divisor. This modification is projective in Grothendieck’s
sense; below we further modify X by a quasi-projective variety, so the com-
posite modification will be also projective in Hartshorne’s sense.

Let us now reduce to the case where both X and B are quasiprojective
varieties. By Chow’s lemma ([8], 5.6.1) there exist projective modifications
mX : X ′ → X and B′ → B such that both X ′ and B′ are quasiprojective
varieties. Replacing X ′ with the closure of the graph of the rational map
X ′

99K B′, we may assume that X ′ → B′ is a morphism, and that mX is
still a projective morphism. Indeed the closure of the graph is contained in
X ′ ×B B

′, and is hence projective over X ′. Let Z ′′ be the union of m−1
X (Z)

and the locus where mX is not an isomorphism.
Now we reduce to the projective case. Choose projective closures X ′ ⊂ X

and B′ ⊂ B, and again by the graph construction, we may assume that
X → B is a morphism. Let Z = Z ′′ ∪ (X r X ′). Then the theorem for
Z ⊂ X → B implies it for Z ⊂ X → B, because m−1

X (Z) is the support
of an effective Cartier divisor. Thus, we may assume that X and B are
projective varieties. Replacing Z by a larger subset we may assume at the
same time that Z is the support of an effective Cartier divisor on X. 11

←11

11(Dan) Changes to accommodate X a subset, Cartier divisors etc
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3.2. Structure of induction. We proceed by induction on the relative di-
mension dimX − dimB of f : X → B. In the proof we will repeatedly
replace X and B with suitable projective modifications, to which f extends,
until the requirements of the theorem are satisfied. This is certainly per-
mitted if we replace Z by a proper closed subset of the modification of X,
which contains the inverse image of Z and the locus where the modification
is not an isomorphism. We will always (often without mentioning) replace
Z in this way, taking it large enough so that it is the support of an effective
Cartier divisor.

sec-relDim0

3.3. Relative dimension 0. Assume that the relative dimension of f is
zero. The proof in this case is a reduction to the Abhyankar’s lemma:

Lemma 3.4. (Abhyankar, cf. [10]) Let X be a normal variety and f :lem-abh
X → B a finite surjective morphism onto a nonsingular variety, unram-
ified outside a divisor D of normal crossings. Then (B r D ⊂ B) and
(X r f−1(D) ⊂ X) are toroidal embeddings and f is a toroidal morphism.
Moreover, if f : X → B is Galois with Galois group G, then G acts toroidally
on X, and the stabilizer subgroups of G are abelian. �

12 We start the reduction by constructing an alteration X̃ → X, such
12→

that X̃ → B is a Galois alteration. Since f is surjective, it is generically
finite. Let L be a normalization of the function field K(X) of X over the
function field K(B) of B. Then L/K(B) is a finite Galois extension with

Galois group G. We choose a projective model X̃ of L such that G acts on
X̃. If we fix an embedding K(X) ⊂ L then for each g ∈ G we get a rational

map φg : X̃ → X corresponding to the embedding gK(X) ⊂ L. We let

Γ ⊂ X̃ ×
∏

g∈G

X

be the closure of the graph of
∏

g∈G φg. Then the group G acts on Γ and

projection to one of the factors X gives us a morphism Γ→ X. So, we may
replace X̃ by Γ and assume that the rational map X̃ → X is a morphism.

Consider the quotient variety X̃/G. Since G fixes the the field K(B), we

have a birational morphism p : X̃/G → B, hence a rational map p−1 ◦ f :

X → X̃/G. Let X0 ⊂ X×B X̃/G be the closure of the graph of this rational

map, and note that the projection X̃ → X̃/G factors through X0:

X̃
ւ ↓

X0 → X
f0 ↓ ↓ f

X̃/G → B

12(Jan) rewrite using flattening?
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In the diagram above the horizontal maps are modifications. Since X̃ →
X̃/G is finite, so is f0 : X0 → X̃/G. Thus, we have modified f : X → B to

a finite morphism f0 : X0 → X̃/G.

Let D ∈ X̃/G be the branch locus of f0. We let B′ → X̃/G be a resolution
of singularities such that the inverse image of D ∪ f(Z) is a strict divisor of
normal crossings, and we let X ′ be the normalization of X0 ×X̃/G B

′. Then

the projection f ′ : X ′ → B′ is a finite morphism that ramifies over a divisor
of normal crossings. By Abhyankar’s lemma such a morphism is toroidal.

Note that, by construction, UB′ ⊂ B′ is a nonsingular strict toroidal
embedding. Applying resolution of singularities to X ′ and its divisor X ′

r

UX′ , we may assume that UX′ ⊂ X ′ is also a nonsingular strict toroidal
embedding. The morphism f ′ : (UX′ ⊂ X ′) → (UB′ ⊂ B′) and Z ′ ⊂ X ′

satisfy the statements of the theorem. This finishes the proof of the theorem
in case rel.dim f = 0.

Assume now that we have proved the theorem for morphisms of relative
dimension n−1, and consider the case that f has relative dimension n, with
X and Y projective varieties, f surjective, and Z the support of an effective
Cartier divisor.

3.5. Preliminary reduction steps. The idea of the proof in case of rel-
ative dimension n is to factor the morphism f : X → B as a composition
X → P → B, where X → P has relative dimension 1 and P → B has
relative dimension n − 1. We then apply the induction assumption to the
morphism P → B, after having replaced X → P by a semistable family
of curves (section 2.4), using semistable reduction. In order to apply the
semistable reduction theorem [5], we need the the map X → P to have ge-
ometrically irreducible generic fiber. Let us construct such a factorization.

3.5.1. Normalizing. First, we may replace X with its normalization, there-
fore we can assume X is normal, replacing Z as explained above. Let η ∈ B
be the generic point of B.

3.5.2. Using Bertini’s theorem. By the projectivity assumption we have
X ⊂ PN

B for some N . Let L ⊂ PN
η be a general enough (N − n)-plane,

so that L∩X is finite and contained in the nonsingular locus of X, and such
that no line in L is tangent to X. The set of such L contains a nonempty
open subset U1 of the Grassmannian G(N−n,PN

η ) of (N−n)-planes in PN
η .

Let PN
η 99K Pn−1

η be the projection from L ⊂ PN
η . This gives a rational map

Xη 99K Pn−1
η that is not defined at the finite set of points L ∩X. Blowing

up these points gives a projective morphism X̃η → Pn−1
η with fibres M ∩X

for all (N − n + 1)-planes L ⊂ M . Indeed the blowup X̃η is the closure of

the graph of Xη 99K Pn−1
η . Note that X̃η is normal because X is normal

and the center of the blowup is a finite set of nonsingular points. Since
X is normal, a general enough (N − n + 1)-plane in PN

η is disjoint from
the singular locus of X. Thus by Bertini’s Theorem (see e.g. [11], Chapter
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III, Corollary 10.9 and Remark 10.9.2) there exists a nonempty open subset
U2 of the Grassmannian G(N − n + 1,PN

η ) of (N − n + 1)-planes in PN
η ,

such that the scheme-theoretic intersection M ∩ X is nonsingular for each
M ∈ U2. Let Γ be the closed subset of G(N − n,PN

η )× G(N − n + 1,PN
η )

consisting of the pairs (α, β) with α ⊂ β. Note that Γ is irreducible, since
it is an image of an open subset of an affine space. Hence, the image of the
projection (U1 × U2) ∩ Γ→ U1 is dense in U1, because the projections of Γ
on the two Grassmannians are surjective. We conclude that there exists a
nonempty open set U ′

1 ⊂ U1 of planes in the Grassmannian G(N − n,PN
η ),

such that the generic fibre of the morphism X̃η → Pn−1
η is smooth, whenever

L ∈ U ′

1. Because the field k is infinite, the k-valued points are dense in the
Grassmannian, hence we may choose the plane L to be defined over k.

3.5.3. Using Stein factorization. The rational map Xη 99K Pn−1
η gives a

rational map X 99K Pn−1
B , defined over k. Let us replace X with the nor-

malization of the closure of the graph of this map, so we may assume we
have a morphism X → Pn−1

B , with X normal. The generic fibre of this

morphism is smooth (it is the same as the generic fibre of X̃η → Pn−1
η ). Let

X
g
→ P → Pn−1

B be the Stein factorization, where g : X → P is a projective
morphism of relative dimension 1 with geometrically connected fibers, and
the second morphism is finite (see [9], 4.3.1 and 4.3.4). Then the generic
fibre of g is geometrically irreducible.

We are now ready to apply the semistable reduction theorem to the mor-
phism g.

Definition 3.6. Let α : X1 → X be an alteration, and Z ⊂ X an irreducible
divisor. The strict altered transform Z1 ⊂ X1 of Z is the closure of α−1(η)
in X1, where η is the generic point of Z. The strict altered transform
of a reducible divisor is the union of the strict altered transforms of its
components.

3.7. Semistable reduction of a family of curves. By [5], Theorem 2.4,
items (i)-(iv) and (vii)(b), there exists a commutative diagram of morphisms
of projective varieties

X1
α
→ X

↓ g1 ↓ g

P1
a
→ P
↓
B

and a finite group G ⊂ AutP P1, with the following properties:

(1) The morphism a : P1 → P is a Galois alteration with Galois group
G (i.e. P1/G→ P is birational).

(2) The action of G lifts to AutX X1, and α : X1 → X is a Galois
alteration with Galois group G.
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(3) There are disjoint sections σi : P1 → X1, i = 1, . . . , κ, such that the
strict altered transform Z1 ⊂ X1 of Z is the union of their images
and G permutes the sections σi.

(4) The morphism g1 : X1 → P1 is a semistable family of curves with
smooth generic fibre, and σi(P1) is disjoint from Sing g1 for each i.

Note that the image of α−1(Z) r Z1 in X has codimension at least two
(by definition of the altered transform), hence it lies over a proper closed
subset of P . The same holds for the locus in X1/G where the modification
X1/G → X, induced by α, is not an isomorphism, hence its image in X
lies over a proper subset of P . Indeed X is normal, hence any rational map
from X to a complete variety is regular outside a subset of codimension
≥ 2. Thus we can find an effective Cartier divisor on X1/G whose support
Z ′ contains α−1(Z)/G, such that X1/G→ X is an isomorphism outside Z ′,
and Z ′

r (Z1/G) lies over a proper closed subset of P/G.
We may replace X, P , Z by X1/G, P1/G, and Z

′, cf. the discussion just
above section 3.3. Then X1/G = X, P1/G = P , and α−1(Z)r Z1 lies over
a proper closed subset of P1. Note however that X might not be normal
anymore. Finally, observe that the singular locus of g1 : X1 → P1 lies over a
proper closed subset of P1, since g1 is flat (because semistable) with smooth
generic fibre (by (4)).

3.8. Using the inductive hypothesis. Let ∆ ⊂ P be the union of the
loci 13 over which P1 or X1 are not smooth, and the closure of the image of ←13

α−1(Z) r Z1 in P . Note that ∆ is a proper closed subset of P . We apply
the inductive assumption to ∆ ⊂ P → B, and obtain a diagram

UP ′ →֒ P ′ m
→ P

↓ ↓ ↓
UB′ →֒ B′ → B

such that P ′ → P and B′ → B are projective modifications, the left square
is a toroidal morphism of nonsingular strict toroidal embeddings, m−1∆
is a divisor of strict normal crossings contained in P ′

r UP ′ , and m is an
isomorphism on UP ′ .

We may again replace P,B by P ′, B′, writing UP , UB instead of UP ′ , UB′ ,
and further we may replace X,X1, P1, σi by their pullbacks to P ′, and Z by
the union of its inverse image and the inverse image of P ′ r UP ′ . With the
pullback to P ′ of a variety over P , we mean here the irreducible component
of the base change to P ′ that dominates the given variety. After these
replacements the properties (1), (2), (3), (4) and the equalities X1/G = X,
P1/G = P , are still true. Moreover, both α−1(Z)rZ1 and the singular locus
of g1 lie over P rUP . Now, P and B are nonsingular and P rUP is a strict
normal crossings divisor on P . Moreover P → B is toroidal, and P1 → P is
unramified over UP .

13(Jan) changed the loci - verify
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Finally, we replace P1 by its normalization andX1, σi by their pullbacks to
the normalization. By Lemma 3.4, since P1 is normal, it inherits a toroidal
structure given by UP1

= a−1(UP ) as well, so that P1 → P is a finite toroidal
morphism. Moreover, P1/G = P because P is normal.

To summarize, in addition to properties (1)-(4) above, and the equality
P1/G = P , we also have that the morphisms a : (UP1

⊂ P1) → (UP ⊂ P )
and (UP ⊂ P ) → (UB ⊂ B) are toroidal. The embedding UX1

⊂ X1,
where UX1

= g−1UP1
r∪iσi(P1), is a toroidal embedding and the morphism

g1 : (UX1
⊂ X1) → (UP1

⊂ P1) is a G-equivariant toroidal morphism, by
section 2.4 and (4). Note also that the divisor α−1(Z) lies in X1 r UX1

.
sec-torification

3.9. Torifying the group action. By Abhyankar’s Lemma 3.4, G acts
toroidally on (UP1

⊂ P1) and its stabilizers are abelian. If G acts toroidally
on (UX1

⊂ X1) and if the morphism g1 : X1 → P1 isG-equivariantly toroidal,
then the induced morphism X1/G → P1/G = P is toroidal, cf. section 2.3.
Moreover, by resolution of singularities we find a nonsingular strict toroidal
embedding UX′ ⊂ X ′ and a toroidal modification X ′ → X1/G.

14 We then
14→

obtain a toroidal morphism X ′ → X1/G → P → B =: B′, as required
by Theorem 1.1 (because the morphism X1/G → X induced by α is a
modification). However, in general, G does not act toroidally on X1.

We follow section 1.4 of [1] to construct a suitable modification of X1

on which G acts toroidally. In [1] this modification is obtained by two
blowups, each followed by normalization. However, there one works over an
algebraically closed field k̄, thus we need to verify that the ideals blown up
are actually defined over k, so that the modification is also defined over k.
We recall the construction of the ideals to be blown up and explain why
they are defined over k. For the convenience of the reader we also recall why
these constructions yield a toroidal action, although this is all done in [1].

3.9.1. Blowing up the singular locus. A first situation where G does not act
toroidally on X1 happens when an element of Gx exchanges two components
of a fiber g1,k̄ : X1,k̄ → P1,k̄ passing through a point x ∈ X1,k̄. This problem

is solved in [1] by blowing up the singular scheme S of the morphism g1,k̄,
hence separating all nodes. Note that S is the subscheme of X1,k̄ defined by
the first Fitting ideal sheaf of g1,k̄. This ideal sheaf is obtained from the first
Fitting ideal sheaf of g1 by base change. Thus S is defined over k. Let X2

be the blowup of X1 along S, and Xnor
2 the normalization of X2. The action

of G on X1 lifts to an action of G on X2 and Xnor
2 . Let UX2

be the inverse
image of UX1

in X2. Note that UX2
is nonsingular because the morphism g1

is smooth on UX1
. We identify the inverse image of UX1

in Xnor
2 with UX2

.

3.9.2. Local description. First we recall why UX2
⊂ Xnor

2 is a toroidal em-
bedding. Let x be a closed point of Xnor

2,k̄
. Choose a local model (V, v) of

P1,k̄ at the image of x in P1,k̄, compatible with the G-action as in section

14(Dan) not necessary to say what has to happen with Z since this is what we woudl
have done..
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2.3, and let A be the completion of the local ring of the toric variety V at
v. As can be seen from the local description (section 2.4) of the semistable
family X1,k̄ over P1,k̄, there are only 3 possible cases for the completion of
X2,k̄ at the image of x in X2,k̄, namely one of the following formal spectra:

SpfA[[y, z]]/(zy2 − h), SpfA[[y, z]]/(y2 − h), or SpfA[[z]],

where in the first two cases h ∈ A is a monomial (i.e. a character of the big
torus of V ), and h(x) = 0. The third case holds if and only if the image of
x in X1,k̄ is not in the singular locus of g1,k̄. Only in this case it is possible

that x belongs to the inverse image Γ of ∪iσi(P1) in X2,k̄, and then we may
assume that z = 0 is a local equation for Γ at x. The first formal spectrum
and the third one are completions of appropriate (not necessarily normal)
equivariant torus embeddings. The same 15 holds for each component of the ←15

formal spectrum of the normalization of A[[y]]/(y2 − h). Hence UX2
⊂ Xnor

2
is a toroidal embedding. Note also that the divisor Xnor

2 rUX2
is G−strict.

3.9.3. Analyzing the group action. In the first case, the ideal generated by
y, as well as the ideal generated by z, is invariant under the action of Gx.
Hence multiplying y and z by suitable units with residue 1, we may as-
sume that Gx acts on y and z by characters of Gx. Indeed, replace y by
|Gx|

−1
∑

σ∈Gx
(y/σ(y))(x)σ(y). Thus the action of G on Xnor

2,k̄
is 16 toroidal ←16

at x.
In the third case, if x ∈ Γ then a similar argument as in the first case

shows that the action of G on Xnor
2,k̄

is toroidal at x.

However, in the second and third case, if x /∈ Γ then the action on UX2,k̄ ⊂
Xnor

2,k̄
is in general not toroidal at x, but because Gx is abelian, we can choose

the local formal parameter z such that Gx acts on it by a character (indeed
consider the representation of Gx on the vector space over k̄ generated by the
G-orbit of z). When this character is nontrivial, the action is not toroidal
at x. Indeed, the divisor locally defined at x by z = 0 is not contained in
the toroidal divisor Xnor

2,k̄
r UX2,k̄. Moreover these locally defined divisors,

as x varies, might not come from a globally defined divisor (because these
are not defined in a canonical way).

3.9.4. Pre-toroidal actions. At any rate, the action of G on Xnor
2 is pre-

toroidal in the sense of Definition 1.4 of [1]. A faithful action of a finite
group G on a toroidal embedding U ⊂ X over k̄ is called pre-toroidal if the
divisorXrU is G-strict and if for any17 point x on X where the action is not ←17

toroidal we have the following. There exists an isomorphism ǫ, compatible
with the Gx-action and the toroidal structure, from the completion of X at
x to the completion of X0×Spec k̄[z] at (x0, 0), where U0 ⊂ X0 is a toroidal
embedding with a toroidal Gx-action, x0 is a point of X0 fixed by Gx, the

15(Jan) will verify again
16(Jan) introduce this local notion in section 2.3
17(Dan) Closed?
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toroidal structure onX0×Spec k̄[z] is given by U0×Spec k̄[z] ⊂ X0×Spec k̄[z]
and the action of Gx on X0 × Spec k̄[z] comes from its action on X0 and its
action on z by a nontrivial character ψx of Gx. Note that the character ψx

only depends on x and not on ǫ. Assume now that the G-action on U ⊂ X
is pre-toroidal.

3.9.5. Blowing up the torific ideal. In [1] (Theorem 1.7 and the proof of
Proposition 1.8) it is proved that there exists a canonically defined G-
equivariant ideal sheaf I on X, called the torific ideal sheaf, having the
following properties. The support of I is contained in the closed subset of
points of X where the G-action is not toroidal. For each closed point x of
X, where the G-action is not toroidal, the completion of I at x is generated

by the elements of ÔX,x on which Gx acts by the character ψx. And finally,

if we denote by X̃ the normalization of the blowup of X along I, and by Ũ

the inverse image of U in X̃, then Ũ ⊂ X̃ is a toroidal embedding on which
G acts toroidally.

The proof of this last property follows directly from the following local
description at x of the blowup, where we may assume that X0 is an affine
toric variety, U0 is the big torus of X0, Gx is a subgroup of U0, Gx acts
on X0 through U0, X = X0 × Spec k̄[z], U = U0 × Spec k̄[z], and ǫ is the
identity. Locally at x the ideal sheaf I is generated by z and monomials
t1, · · · , tm in the coordinate ring R of X0. Indeed, at least one monomial
of R is contained in Ix, because Gx is a subgroup of the big torus of X0.
Above a small neighborhood of x, the blowup of X along I is covered by
the charts

SpecR[z, t1/z, · · · , tm/z], SpecR[ti, t1/ti, · · · , tm/ti][z/ti],

for i = 1, · · · ,m. These are torus embeddings of U0 × Spec k̄[z, z−1], hence

their normalizations are toric. Moreover the embedding Ũ ⊂ X̃ is toroidal,

and Gx acts toroidally on it, at any point of X̃ above x, because on the first
chart the locus of z = 0 is contained in the inverse image of X r U , and
on the other charts the action of Gx on z/ti is trivial. The above argument
also shows that the support of I is disjoint from U , because Ix contains a
monomial in R. Thus the blowup is an isomorphism above U .

If the toroidal embedding U ⊂ X and the G-action are defined over k,
then the torific ideal sheaf I is also defined over k, because it is stable under
the action of the Galois group of k̄ over k. Indeed this is a direct consequence

of the above description of the completions of I. Hence X̃ is also defined
over k.

3.9.6. Conclusion of the proof. We now apply this to Xnor
2 . Let X3 be the

blowup of Xnor
2 along the torific ideal sheaf, Xnor

3 the normalization of X3,
and UX3

the inverse image of UX2
in X3. The blowup morphism X3 → Xnor

2

is an isomorphism above UX2
. Hence UX3

is nonsingular, and we identify
it with the inverse image of UX2

in Xnor
3 . Note that G acts toroidally on
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the toroidal embedding UX3
⊂ Xnor

3 . By the argument in the beginning of
section 3.9, we now see that in order to prove Theorem 1.1 it suffices to
show that the composition of the morphisms Xnor

3 → Xnor
2 → X1 → P1 is

G-equivariantly toroidal. But this is a straightforward consequence of the
above given local descriptions of X2,k̄ and the blowup of X along I, with
X = Xnor

2,k̄
. This finishes the proof of Theorem 1.1. �
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