WEAK TOROIDALIZATION OVER NON-CLOSED FIELDS

DAN ABRAMOVICH, JAN DENEF, AND KALLE KARU

Contents

1. Introduction 1
2. Notations and definitions 2
3. Proof. 5

References 13

1. Introduction

th-toroidal-reduction

Theorem 1.1. Let k be a field of characteristic zero. Let $f: X \rightarrow B$ be a dominant morphism ${ }^{1}$ of k varieties, and let $Z \subset X$ be a proper closed subset. ${ }^{2}$ Then there exists a diagram

where m_{B} and m_{X} are projective birational morphisms and such that
(1) the inclusions on the left are nonsingular strict toroidal embeddings.
(2) f^{\prime} is a toroidal quasi-projective ${ }^{3}$ morphism.
(3) Let $Z^{\prime}=m_{X}^{-1} Z$. Then Z^{\prime} is a strict normal crossings divisor, $Z^{\prime} \subset$ $X^{\prime} \backslash U_{X^{\prime}}$.
(4) The restricted morphism $U_{X^{\prime}} \rightarrow m_{X}\left(U_{X^{\prime}}\right)$ is an isomorphism.

Note that when f is proper, so is f^{\prime}, so f^{\prime} becomes projective.
Toroidal embeddings and toroidal morphisms are defined in Section 2 below. When both varieties X^{\prime} and B^{\prime} are nonsingular, the embeddings $U_{X^{\prime}} \subset X^{\prime}, U_{B^{\prime}} \subset B^{\prime}$ and the morphism f^{\prime} of the theorem can be described as follows: the requirement that the embeddings are strict toroidal is equivalent to the statement that $X^{\prime} \backslash U_{X^{\prime}}, B^{\prime} \backslash U_{B^{\prime}}$ are strict normal crossings divisors. The requirement that f^{\prime} is toroidal is equivalent to the following: after

[^0]base change to an algebraic closure \bar{k} of k, for each closed point $x \in X_{\bar{k}}^{\prime}$, $b=f^{\prime}(x) \in B_{\bar{k}}^{\prime}$, there exist uniformizing parameters x_{1}, \ldots, x_{n} for $\hat{\mathcal{O}}_{X_{\bar{k}, x}^{\prime}}$ and b_{1}, \ldots, b_{m} for $\hat{\mathcal{O}}_{B_{k, b}^{\prime}}$, such that
(1) Locally at x, the product $x_{1} \cdots x_{n}$ defines the divisor $X_{\bar{k}}^{\prime} \backslash U_{X^{\prime}, \bar{k}}$.
(2) Locally at b, the product $b_{1} \cdots b_{m}$ defines the divisor $B_{\bar{k}}^{\prime} \backslash U_{B^{\prime}, \bar{k}}$.
(3) The morphism f^{\prime} gives b_{i} as monomials in x_{j}.

Here we say that z_{1}, \ldots, z_{n} are uniformizing parameters for a local \bar{k}-algebra A if there exist constants $c_{1}, \ldots, c_{n} \in \bar{k}$, such that $z_{1}-c_{1}, \ldots, z_{n}-c_{n}$ form a system of regular parameters for $A .{ }^{4}$

2. Notations and definitions

We work over a field k of characteristic zero. A variety defined over k is an integral separated scheme of finite type over k. If X is a variety defined over k, we let $X_{\bar{k}}$ be its base extension to an algebraic closure \bar{k} of k. Note that the scheme $X_{\bar{k}}$ might not be a variety.

A modification is a proper birational morphism of varieties. An alteration is a proper, surjective, generically finite morphism of varieties. An alteration $Y \rightarrow X$ is called a Galois alteration with Galois group G if the function field extension $K(Y) / K(X)$ is Galois with Galois group G, and if the action of G on $K(Y)$ is induced by an action on Y keeping the morphism $Y \rightarrow X$ invariant.
2.1. Divisors. Let X be a smooth variety defined over k (or more generally a smooth scheme over k), and $D \subset X$ a divisor. We say that D is a strict normal crossings divisor if for every point $x \in X$ there exists a regular system of parameters z_{1}, \ldots, z_{n} at x, such that every irreducible component of D containing x has local equation $z_{i}=0$ for some i. A divisor is a normal crossings divisor if it becomes a strict normal crossings divisor on some étale cover of X. The condition of being a (strict) normal crossings divisor is stable under base extension to algebraic closure: if $D \subset X$ is a (strict) normal crossings divisor, so is $D_{\bar{k}} \subset X_{\bar{k}}$.

Let a finite group G act on a (not necessarily smooth) variety X over k (or more generally a scheme of finite type over k), mapping a divisor $D \subset X$ into D. We say that D is G-strict if the union of translates of each irreducible component of D is normal. In the case where G is the trivial group 1 , we say that D is a strict divisor. Thus, a strict normal crossings divisor is both strict and normal crossings divisor.
2.2. Toroidal embeddings. We refer to $[13,7]$ for details about toric varieties. If V is a toric variety, we denote by $T_{V} \subset V$ the big algebraic torus in V. Toric morphisms are always assumed to be dominant.

[^1]An open embedding of varieties $U \subset X$ defined over \bar{k} (or more generally of schemes of finite type over \bar{k}) is called a toroidal embedding if for every closed point $x \in X$ there exists a toric variety V, a closed point $v \in V$, and an isomorphism of complete local \bar{k}-algebras:

$$
\hat{\mathcal{O}}_{X, x} \cong \hat{\mathcal{O}}_{V, v},
$$

such that the completion of the ideal of $X \backslash U$ maps isomorphically to the completion of the ideal of $V \backslash T_{V}$. The pair (V, v), together with the isomorphism, is called a local model at $x \in X$. A toroidal embedding $U \subset X$ over \bar{k} is called strict if $D=X \backslash U$ is a strict divisor.

An open embedding $U \subset X$ defined over k is called a toroidal embedding if the base extension $U_{\bar{k}} \subset X_{\bar{k}}$ is a toroidal embedding. The toroidal embedding is strict if the divisor $D=X \backslash U$ is strict. Note that if the toroidal embedding $U \subset X$ is strict, then the toroidal embedding $U_{\bar{k}} \subset X_{\bar{k}}$ is also strict, but the converse may not hold.

Let $U_{X} \subset X$ and $U_{B} \subset B$ be two toroidal embeddings defined over \bar{k}, and let $f: X \rightarrow B$ be a dominant morphism mapping U_{X} to U_{B}. (We write such a morphism as $f:\left(U_{X} \subset X\right) \rightarrow\left(U_{B} \subset B\right)$.) Then f is called a toroidal morphism if for every closed point $x \in X$ there exist local models (V, v) at $x \in X$ and (W, w) at $f(x) \in B$, and a toric morphism $g: V \rightarrow W$ such that the following diagram commutes:

Here $\hat{f} \#$ and $\hat{g}^{\#}$ are the ring homomorphisms coming from f and g.
A morphism $f:\left(U_{X} \subset X\right) \rightarrow\left(U_{B} \subset B\right)$ between toroidal embeddings defined over the field k is called a toroidal morphism if its base extension to \bar{k} is a toroidal morphism.

The composition of two toroidal morphisms is again toroidal [2].
sec-toroidal-actions
2.3. Toroidal actions. An action of a finite group G on a toroidal embed$\operatorname{ding} U \subset X$ defined over \bar{k} is called a toroidal action at a closed point $x \in X$ if there exists a local model (V, v) at $x \in X$ and a group homomorphism $G_{x} \rightarrow T_{V}$ from the stabilizer G_{x} of x to the big torus $T_{V} \subset V$, such that the action of G_{x} on the complete local ring

$$
\hat{\mathcal{O}}_{X, x} \cong \hat{\mathcal{O}}_{V, v}
$$

factors through the action of T_{V} on V via the homomorphism $G_{x} \rightarrow T_{V} .{ }^{6}$ (In particular, the image of G_{x} must lie in the stabilizer $T_{V, v}$ of v.) The action is toroidal if it is toroidal at every closed point. The action of G is called strict toroidal if it is both strict and toroidal.

[^2]Let G act on $U \subset X$ toroidally, and assume the quotinet X / G exists. ${ }^{7}$ Then the quotient $U / G \subset X / G$ is again a toroidal embedding (the local models are given by toric varieties V / G_{x}). If $U \subset X$ is a strict toroidal embedding and G acts strictly toroidally, then the quotient $U / G \subset X / G$ is again a strict toroidal embedding.

Let $f:\left(U_{X} \subset X\right) \rightarrow\left(U_{B} \subset B\right)$ be a toroidal morphism that is G equivariant under toroidal actions of G on both embeddings. We say that
${ }_{8 \rightarrow} f$ is G-equivariantly toroidal ${ }^{8}$ if local models can be chosen so that they are compatible with the morphism f and the actions of G on X and B. Assuming again that the quotients X / G and B / G exist, such an f induces a toroidal morphism of the quotient toroidal embeddings ${ }^{9}$

$$
\left(U_{X} / G \subset X / G\right) \rightarrow\left(U_{B} / G \subset B / G\right)
$$

For a toroidal embedding $U \subset X$ defined over k, an action of G is called toroidal if the induced action on $U_{\bar{k}} \subset X_{\bar{k}}$ is toroidal. The action is strict toroidal if it is both strict and toroidal. The quotient of a (strict) toroidal embedding by a (strict) toroidal action is again a (strict) toroidal embedding. A G-equivariant morphism $f:\left(U_{X} \subset X\right) \rightarrow\left(U_{B} \subset B\right)$ is called G equivariantly toroidal if the base extension to \bar{k} is G-equivariantly toroidal. Such a morphism induces a toroidal morphism of the quotient toroidal embeddings.
2.4. Semistable families of curves. The reference here is [4].

A flat morphism $f: X \rightarrow B$ over the field k is a semistable family of curves if every geometric fiber of f is a complete reduced connected curve with at most ordinary double point singularities.

Consider a semistable family of curves $f: X \rightarrow B$ over \bar{k}. If $x \in X$ is in the singular locus of f, then X has a local equation at x :

$$
\hat{\mathcal{O}}_{X, x} \cong \hat{\mathcal{O}}_{B, f(x)}[[u, v]] /(u v-h)
$$

for some $h \in \hat{\mathcal{O}}_{B, f(x)}$. Note that $h=0$ defines the image of the singular locus of f in B. It follows from this that if $U \subset B$ is a toroidal embedding and $f: X \rightarrow B$ is a semistable family of curves, smooth over U, then $f^{-1}(U) \subset X$ is also a toroidal embedding and the map f is toroidal.

A similar statement holds for a semistable family of curves $f: X \rightarrow B$ defined over k : Suppose $U \subset B$ is a toroidal embedding and f is smooth over U, then

$$
f:\left(f^{-1}(U) \subset X\right) \rightarrow(U \subset B)
$$

is a toroidal morphism of toroidal embeddings.
2.5. Resolution of singularities. We will use any one of the canonical resolution of singularities algorithms $[12,6,3] .{ }^{10}$

[^3]A canonical resolution of singularities algorithm applied to a variety X defined over k produces a modification $X^{\prime} \rightarrow X$, with X^{\prime} nonsingular and both X^{\prime} and the morphism defined over k. If $U \subset X$ is a toroidal embedding, then the resolution algorithm gives a toroidal embedding $U^{\prime} \subset X^{\prime}$ and a toroidal modification $f:\left(U^{\prime} \subset X^{\prime}\right) \rightarrow(U \subset X)$. Here $U^{\prime}=f^{-1}(U)$.

Let $U \subset X$ be a nonsingular toroidal embedding. Applying a canonical embedded resolution of singularities to the divisor $D=X \backslash U$ gives a toroidal morphism $f:\left(U^{\prime} \subset X^{\prime}\right) \rightarrow(U \subset X)$ of toroidal embeddings, such that $U^{\prime} \subset X^{\prime}$ is not only nonsingular, but also strict. Indeed, the components of $X^{\prime} \backslash U^{\prime}$ are the components of the strict transform of D and the exceptional divisors. All these components are nonsingular.

Combining these two steps, we can toroidally modify any toroidal embedding $U \subset X$ to a nonsingular strict toroidal embedding. If $f:(U \subset X) \rightarrow$ $\left(U_{B} \subset B\right)$ is a toroidal morphism, then there exist toroidal modifications of both embeddings to nonsingular strict toroidal embeddings such that f induces a toroidal morphism between them. Indeed, we first apply the resolution algorithms to B, then resolve the indeterminacies of f, and finally apply the resolution algorithms to X.

3. Proof.

The purpose of this section is to prove the main theorem.
3.1. Reduction to the projective case. We first blow up Z on X and replace Z by its inverse image; therefore we may assume Z is the support of an effective Cartier divisor. This modification is projective in Grothendieck's sense; below we further modify X by a quasi-projective variety, so the composite modification will be also projective in Hartshorne's sense.

Let us now reduce to the case where both X and B are quasiprojective varieties. By Chow's lemma ($[8], 5.6 .1$) there exist projective modifications $m_{X}: X^{\prime} \rightarrow X$ and $B^{\prime} \rightarrow B$ such that both X^{\prime} and B^{\prime} are quasiprojective varieties. Replacing X^{\prime} with the closure of the graph of the rational map $X^{\prime} \rightarrow B^{\prime}$, we may assume that $X^{\prime} \rightarrow B^{\prime}$ is a morphism, and that m_{X} is still a projective morphism. Indeed the closure of the graph is contained in $X^{\prime} \times_{B} B^{\prime}$, and is hence projective over X^{\prime}. Let $Z^{\prime \prime}$ be the union of $m_{X}^{-1}(Z)$ and the locus where m_{X} is not an isomorphism.

Now we reduce to the projective case. Choose projective closures $X^{\prime} \subset \bar{X}$ and $B^{\prime} \subset \bar{B}$, and again by the graph construction, we may assume that $\bar{X} \rightarrow \bar{B}$ is a morphism. Let $\bar{Z}=Z^{\prime \prime} \cup\left(\bar{X} \backslash X^{\prime}\right)$. Then the theorem for $\bar{Z} \subset \bar{X} \rightarrow \bar{B}$ implies it for $Z \subset X \rightarrow B$, because $m_{X}^{-1}(Z)$ is the support of an effective Cartier divisor. Thus, we may assume that X and B are projective varieties. Replacing Z by a larger subset we may assume at the same time that Z is the support of an effective Cartier divisor on X. ${ }^{11}$

[^4]3.2. Structure of induction. We proceed by induction on the relative dimension $\operatorname{dim} X-\operatorname{dim} B$ of $f: X \rightarrow B$. In the proof we will repeatedly replace X and B with suitable projective modifications, to which f extends, until the requirements of the theorem are satisfied. This is certainly permitted if we replace Z by a proper closed subset of the modification of X, which contains the inverse image of Z and the locus where the modification is not an isomorphism. We will always (often without mentioning) replace Z in this way, taking it large enough so that it is the support of an effective Cartier divisor.
3.3. Relative dimension $\mathbf{0}$. Assume that the relative dimension of f is zero. The proof in this case is a reduction to the Abhyankar's lemma:
lem-abh Lemma 3.4. (Abhyankar, cf. [10]) Let X be a normal variety and f : $X \rightarrow B$ a finite surjective morphism onto a nonsingular variety, unramified outside a divisor D of normal crossings. Then $(B \backslash D \subset B)$ and $\left(X \backslash f^{-1}(D) \subset X\right)$ are toroidal embeddings and f is a toroidal morphism. Moreover, if $f: X \rightarrow B$ is Galois with Galois group G, then G acts toroidally on X, and the stabilizer subgroups of G are abelian.

12 We start the reduction by constructing an alteration $\tilde{X} \rightarrow X$, such that $\tilde{X} \rightarrow B$ is a Galois alteration. Since f is surjective, it is generically finite. Let L be a normalization of the function field $K(X)$ of X over the function field $K(B)$ of B. Then $L / K(B)$ is a finite Galois extension with Galois group G. We choose a projective model \tilde{X} of L such that G acts on \tilde{X}. If we fix an embedding $K(X) \subset L$ then for each $g \in G$ we get a rational $\operatorname{map} \phi_{g}: \tilde{X} \rightarrow X$ corresponding to the embedding $g K(X) \subset L$. We let

$$
\bar{\Gamma} \subset \tilde{X} \times \prod_{g \in G} X
$$

be the closure of the graph of $\prod_{g \in G} \phi_{g}$. Then the group G acts on $\bar{\Gamma}$ and projection to one of the factors X gives us a morphism $\bar{\Gamma} \rightarrow X$. So, we may replace \tilde{X} by $\bar{\Gamma}$ and assume that the rational map $\tilde{X} \rightarrow X$ is a morphism.

Consider the quotient variety \tilde{X} / G. Since G fixes the the field $K(B)$, we have a birational morphism $p: \tilde{X} / G \rightarrow B$, hence a rational map $p^{-1} \circ f$: $X \rightarrow \tilde{X} / G$. Let $X_{0} \subset X \times_{B} \tilde{X} / G$ be the closure of the graph of this rational map, and note that the projection $\tilde{X} \rightarrow \tilde{X} / G$ factors through X_{0} :

$$
\begin{array}{rll}
& & \tilde{X} \\
& \swarrow & \downarrow \\
X_{0} & \rightarrow & X \\
f_{0} \downarrow & & \downarrow f \\
\tilde{X} / G & \rightarrow & B
\end{array}
$$

[^5]In the diagram above the horizontal maps are modifications. Since $\tilde{X} \rightarrow$ \tilde{X} / G is finite, so is $f_{0}: X_{0} \rightarrow \tilde{X} / G$. Thus, we have modified $f: X \rightarrow B$ to a finite morphism $f_{0}: X_{0} \rightarrow \tilde{X} / G$.

Let $D \in \tilde{X} / G$ be the branch locus of f_{0}. We let $B^{\prime} \rightarrow \tilde{X} / G$ be a resolution of singularities such that the inverse image of $D \cup f(Z)$ is a strict divisor of normal crossings, and we let X^{\prime} be the normalization of $X_{0} \times \tilde{X} / G B^{\prime}$. Then the projection $f^{\prime}: X^{\prime} \rightarrow B^{\prime}$ is a finite morphism that ramifies over a divisor of normal crossings. By Abhyankar's lemma such a morphism is toroidal.

Note that, by construction, $U_{B^{\prime}} \subset B^{\prime}$ is a nonsingular strict toroidal embedding. Applying resolution of singularities to X^{\prime} and its divisor X^{\prime} \ $U_{X^{\prime}}$, we may assume that $U_{X^{\prime}} \subset X^{\prime}$ is also a nonsingular strict toroidal embedding. The morphism $f^{\prime}:\left(U_{X^{\prime}} \subset X^{\prime}\right) \rightarrow\left(U_{B^{\prime}} \subset B^{\prime}\right)$ and $Z^{\prime} \subset X^{\prime}$ satisfy the statements of the theorem. This finishes the proof of the theorem in case rel. $\operatorname{dim} f=0$.

Assume now that we have proved the theorem for morphisms of relative dimension $n-1$, and consider the case that f has relative dimension n, with X and Y projective varieties, f surjective, and Z the support of an effective Cartier divisor.
3.5. Preliminary reduction steps. The idea of the proof in case of relative dimension n is to factor the morphism $f: X \rightarrow B$ as a composition $X \rightarrow P \rightarrow B$, where $X \rightarrow P$ has relative dimension 1 and $P \rightarrow B$ has relative dimension $n-1$. We then apply the induction assumption to the morphism $P \rightarrow B$, after having replaced $X \rightarrow P$ by a semistable family of curves (section 2.4), using semistable reduction. In order to apply the semistable reduction theorem [5], we need the the map $X \rightarrow P$ to have geometrically irreducible generic fiber. Let us construct such a factorization.
3.5.1. Normalizing. First, we may replace X with its normalization, therefore we can assume X is normal, replacing Z as explained above. Let $\eta \in B$ be the generic point of B.
3.5.2. Using Bertini's theorem. By the projectivity assumption we have $X \subset \mathbf{P}_{B}^{N}$ for some N. Let $L \subset \mathbf{P}_{\eta}^{N}$ be a general enough $(N-n)$-plane, so that $L \cap X$ is finite and contained in the nonsingular locus of X, and such that no line in L is tangent to X. The set of such L contains a nonempty open subset U_{1} of the Grassmannian $\mathbb{G}\left(N-n, \mathbf{P}_{\eta}^{N}\right)$ of $(N-n)$-planes in \mathbf{P}_{η}^{N}. Let $\mathbf{P}_{\eta}^{N} \longrightarrow \mathbf{P}_{\eta}^{n-1}$ be the projection from $L \subset \mathbf{P}_{\eta}^{N}$. This gives a rational map $X_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$ that is not defined at the finite set of points $L \cap X$. Blowing up these points gives a projective morphism $\tilde{X}_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$ with fibres $M \cap X$ for all $(N-n+1)$-planes $L \subset M$. Indeed the blowup \tilde{X}_{η} is the closure of the graph of $X_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$. Note that \tilde{X}_{η} is normal because X is normal and the center of the blowup is a finite set of nonsingular points. Since X is normal, a general enough $(N-n+1)$-plane in \mathbf{P}_{η}^{N} is disjoint from the singular locus of X. Thus by Bertini's Theorem (see e.g. [11], Chapter

III, Corollary 10.9 and Remark 10.9.2) there exists a nonempty open subset U_{2} of the Grassmannian $\mathbb{G}\left(N-n+1, \mathbf{P}_{\eta}^{N}\right)$ of $(N-n+1)$-planes in \mathbf{P}_{η}^{N}, such that the scheme-theoretic intersection $M \cap X$ is nonsingular for each $M \in U_{2}$. Let Γ be the closed subset of $\mathbb{G}\left(N-n, \mathbf{P}_{\eta}^{N}\right) \times \mathbb{G}\left(N-n+1, \mathbf{P}_{\eta}^{N}\right)$ consisting of the pairs (α, β) with $\alpha \subset \beta$. Note that Γ is irreducible, since it is an image of an open subset of an affine space. Hence, the image of the projection $\left(U_{1} \times U_{2}\right) \cap \Gamma \rightarrow U_{1}$ is dense in U_{1}, because the projections of Γ on the two Grassmannians are surjective. We conclude that there exists a nonempty open set $U_{1}^{\prime} \subset U_{1}$ of planes in the Grassmannian $\mathbb{G}\left(N-n, \mathbf{P}_{\eta}^{N}\right)$, such that the generic fibre of the morphism $\tilde{X}_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$ is smooth, whenever $L \in U_{1}^{\prime}$. Because the field k is infinite, the k-valued points are dense in the Grassmannian, hence we may choose the plane L to be defined over k.
3.5.3. Using Stein factorization. The rational map $X_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$ gives a rational map $X \rightarrow \mathbf{P}_{B}^{n-1}$, defined over k. Let us replace X with the normalization of the closure of the graph of this map, so we may assume we have a morphism $X \rightarrow \mathbf{P}_{B}^{n-1}$, with X normal. The generic fibre of this morphism is smooth (it is the same as the generic fibre of $\tilde{X}_{\eta} \rightarrow \mathbf{P}_{\eta}^{n-1}$). Let $X \xrightarrow{g} P \rightarrow \mathbf{P}_{B}^{n-1}$ be the Stein factorization, where $g: X \rightarrow P$ is a projective morphism of relative dimension 1 with geometrically connected fibers, and the second morphism is finite (see [9], 4.3.1 and 4.3.4). Then the generic fibre of g is geometrically irreducible.

We are now ready to apply the semistable reduction theorem to the morphism g.

Definition 3.6. Let $\alpha: X_{1} \rightarrow X$ be an alteration, and $Z \subset X$ an irreducible divisor. The strict altered transform $Z_{1} \subset X_{1}$ of Z is the closure of $\alpha^{-1}(\eta)$ in X_{1}, where η is the generic point of Z. The strict altered transform of a reducible divisor is the union of the strict altered transforms of its components.
3.7. Semistable reduction of a family of curves. By [5], Theorem 2.4, items (i)-(iv) and (vii)(b), there exists a commutative diagram of morphisms of projective varieties

and a finite group $G \subset \operatorname{Aut}_{P} P_{1}$, with the following properties:
(1) The morphism $a: P_{1} \rightarrow P$ is a Galois alteration with Galois group G (i.e. $P_{1} / G \rightarrow P$ is birational).
(2) The action of G lifts to Aut $_{X} X_{1}$, and $\alpha: X_{1} \rightarrow X$ is a Galois alteration with Galois group G.
(3) There are disjoint sections $\sigma_{i}: P_{1} \rightarrow X_{1}, i=1, \ldots, \kappa$, such that the strict altered transform $Z_{1} \subset X_{1}$ of Z is the union of their images and G permutes the sections σ_{i}.
(4) The morphism $g_{1}: X_{1} \rightarrow P_{1}$ is a semistable family of curves with smooth generic fibre, and $\sigma_{i}\left(P_{1}\right)$ is disjoint from $\operatorname{Sing} g_{1}$ for each i.
Note that the image of $\alpha^{-1}(Z) \backslash Z_{1}$ in X has codimension at least two (by definition of the altered transform), hence it lies over a proper closed subset of P. The same holds for the locus in X_{1} / G where the modification $X_{1} / G \rightarrow X$, induced by α, is not an isomorphism, hence its image in X lies over a proper subset of P. Indeed X is normal, hence any rational map from X to a complete variety is regular outside a subset of codimension ≥ 2. Thus we can find an effective Cartier divisor on X_{1} / G whose support Z^{\prime} contains $\alpha^{-1}(Z) / G$, such that $X_{1} / G \rightarrow X$ is an isomorphism outside Z^{\prime}, and $Z^{\prime} \backslash\left(Z_{1} / G\right)$ lies over a proper closed subset of P / G.

We may replace X, P, Z by $X_{1} / G, P_{1} / G$, and Z^{\prime}, cf. the discussion just above section 3.3. Then $X_{1} / G=X, P_{1} / G=P$, and $\alpha^{-1}(Z) \backslash Z_{1}$ lies over a proper closed subset of P_{1}. Note however that X might not be normal anymore. Finally, observe that the singular locus of $g_{1}: X_{1} \rightarrow P_{1}$ lies over a proper closed subset of P_{1}, since g_{1} is flat (because semistable) with smooth generic fibre (by (4)).
3.8. Using the inductive hypothesis. Let $\Delta \subset P$ be the union of the loci ${ }^{13}$ over which P_{1} or X_{1} are not smooth, and the closure of the image of $\alpha^{-1}(Z) \backslash Z_{1}$ in P. Note that Δ is a proper closed subset of P. We apply the inductive assumption to $\Delta \subset P \rightarrow B$, and obtain a diagram

such that $P^{\prime} \rightarrow P$ and $B^{\prime} \rightarrow B$ are projective modifications, the left square is a toroidal morphism of nonsingular strict toroidal embeddings, $m^{-1} \Delta$ is a divisor of strict normal crossings contained in $P^{\prime} \backslash U_{P^{\prime}}$, and m is an isomorphism on $U_{P^{\prime}}$.

We may again replace P, B by P^{\prime}, B^{\prime}, writing U_{P}, U_{B} instead of $U_{P^{\prime}}, U_{B^{\prime}}$, and further we may replace $X, X_{1}, P_{1}, \sigma_{i}$ by their pullbacks to P^{\prime}, and Z by the union of its inverse image and the inverse image of $P^{\prime} \backslash U_{P^{\prime}}$. With the pullback to P^{\prime} of a variety over P, we mean here the irreducible component of the base change to P^{\prime} that dominates the given variety. After these replacements the properties (1), (2), (3), (4) and the equalities $X_{1} / G=X$, $P_{1} / G=P$, are still true. Moreover, both $\alpha^{-1}(Z) \backslash Z_{1}$ and the singular locus of g_{1} lie over $P \backslash U_{P}$. Now, P and B are nonsingular and $P \backslash U_{P}$ is a strict normal crossings divisor on P. Moreover $P \rightarrow B$ is toroidal, and $P_{1} \rightarrow P$ is unramified over U_{P}.

[^6]Finally, we replace P_{1} by its normalization and X_{1}, σ_{i} by their pullbacks to the normalization. By Lemma 3.4, since P_{1} is normal, it inherits a toroidal structure given by $U_{P_{1}}=a^{-1}\left(U_{P}\right)$ as well, so that $P_{1} \rightarrow P$ is a finite toroidal morphism. Moreover, $P_{1} / G=P$ because P is normal.

To summarize, in addition to properties (1)-(4) above, and the equality $P_{1} / G=P$, we also have that the morphisms $a:\left(U_{P_{1}} \subset P_{1}\right) \rightarrow\left(U_{P} \subset P\right)$ and $\left(U_{P} \subset P\right) \rightarrow\left(U_{B} \subset B\right)$ are toroidal. The embedding $U_{X_{1}} \subset X_{1}$, where $U_{X_{1}}=g^{-1} U_{P_{1}} \backslash \cup_{i} \sigma_{i}\left(P_{1}\right)$, is a toroidal embedding and the morphism $g_{1}:\left(U_{X_{1}} \subset X_{1}\right) \rightarrow\left(U_{P_{1}} \subset P_{1}\right)$ is a G-equivariant toroidal morphism, by section 2.4 and (4). Note also that the divisor $\alpha^{-1}(Z)$ lies in $X_{1} \backslash U_{X_{1}}$.
3.9. Torifying the group action. By Abhyankar's Lemma 3.4, G acts toroidally on ($U_{P_{1}} \subset P_{1}$) and its stabilizers are abelian. If G acts toroidally on ($U_{X_{1}} \subset X_{1}$) and if the morphism $g_{1}: X_{1} \rightarrow P_{1}$ is G-equivariantly toroidal, then the induced morphism $X_{1} / G \rightarrow P_{1} / G=P$ is toroidal, cf. section 2.3. Moreover, by resolution of singularities we find a nonsingular strict toroidal embedding $U_{X^{\prime}} \subset X^{\prime}$ and a toroidal modification $X^{\prime} \rightarrow X_{1} / G$. ${ }^{14}$ We then obtain a toroidal morphism $X^{\prime} \rightarrow X_{1} / G \rightarrow P \rightarrow B=: B^{\prime}$, as required by Theorem 1.1 (because the morphism $X_{1} / G \rightarrow X$ induced by α is a modification). However, in general, G does not act toroidally on X_{1}.

We follow section 1.4 of [1] to construct a suitable modification of X_{1} on which G acts toroidally. In [1] this modification is obtained by two blowups, each followed by normalization. However, there one works over an algebraically closed field \bar{k}, thus we need to verify that the ideals blown up are actually defined over k, so that the modification is also defined over k. We recall the construction of the ideals to be blown up and explain why they are defined over k. For the convenience of the reader we also recall why these constructions yield a toroidal action, although this is all done in [1].
3.9.1. Blowing up the singular locus. A first situation where G does not act toroidally on X_{1} happens when an element of G_{x} exchanges two components of a fiber $g_{1, \bar{k}}: X_{1, \bar{k}} \rightarrow P_{1, \bar{k}}$ passing through a point $x \in X_{1, \bar{k}}$. This problem is solved in [1] by blowing up the singular scheme S of the morphism $g_{1, \bar{k}}$, hence separating all nodes. Note that S is the subscheme of $X_{1, \bar{k}}$ defined by the first Fitting ideal sheaf of $g_{1, \bar{k}}$. This ideal sheaf is obtained from the first Fitting ideal sheaf of g_{1} by base change. Thus S is defined over k. Let X_{2} be the blowup of X_{1} along S, and $X_{2}^{\text {nor }}$ the normalization of X_{2}. The action of G on X_{1} lifts to an action of G on X_{2} and $X_{2}^{\text {nor }}$. Let $U_{X_{2}}$ be the inverse image of $U_{X_{1}}$ in X_{2}. Note that $U_{X_{2}}$ is nonsingular because the morphism g_{1} is smooth on $U_{X_{1}}$. We identify the inverse image of $U_{X_{1}}$ in $X_{2}^{\text {nor }}$ with $U_{X_{2}}$.
3.9.2. Local description. First we recall why $U_{X_{2}} \subset X_{2}^{\text {nor }}$ is a toroidal embedding. Let x be a closed point of $X_{2, \bar{k}}^{\text {nor }}$. Choose a local model (V, v) of $P_{1, \bar{k}}$ at the image of x in $P_{1, \bar{k}}$, compatible with the G-action as in section

[^7]2.3, and let A be the completion of the local ring of the toric variety V at v. As can be seen from the local description (section 2.4) of the semistable family $X_{1, \bar{k}}$ over $P_{1, \bar{k}}$, there are only 3 possible cases for the completion of $X_{2, \bar{k}}$ at the image of x in $X_{2, \bar{k}}$, namely one of the following formal spectra:
$$
\operatorname{Spf} A[[y, z]] /\left(z y^{2}-h\right), \operatorname{Spf} A[[y, z]] /\left(y^{2}-h\right) \text {, or } \operatorname{Spf} A[[z]],
$$
where in the first two cases $h \in A$ is a monomial (i.e. a character of the big torus of V), and $h(x)=0$. The third case holds if and only if the image of x in $X_{1, \bar{k}}$ is not in the singular locus of $g_{1, \bar{k}}$. Only in this case it is possible that x belongs to the inverse image Γ of $\cup_{i} \sigma_{i}\left(P_{1}\right)$ in $X_{2, \bar{k}}$, and then we may assume that $z=0$ is a local equation for Γ at x. The first formal spectrum and the third one are completions of appropriate (not necessarily normal) equivariant torus embeddings. The same ${ }^{15}$ holds for each component of the formal spectrum of the normalization of $A[[y]] /\left(y^{2}-h\right)$. Hence $U_{X_{2}} \subset X_{2}^{\text {nor }}$ is a toroidal embedding. Note also that the divisor $X_{2}^{\text {nor }} \backslash U_{X_{2}}$ is G-strict.
3.9.3. Analyzing the group action. In the first case, the ideal generated by y, as well as the ideal generated by z, is invariant under the action of G_{x}. Hence multiplying y and z by suitable units with residue 1 , we may assume that G_{x} acts on y and z by characters of G_{x}. Indeed, replace y by $\left|G_{x}\right|^{-1} \sum_{\sigma \in G_{x}}(y / \sigma(y))(x) \sigma(y)$. Thus the action of G on $X_{2, \bar{k}}^{\mathrm{nor}}$ is ${ }^{16}$ toroidal at x.

In the third case, if $x \in \Gamma$ then a similar argument as in the first case shows that the action of G on $X_{2, \bar{k}}^{\mathrm{nor}}$ is toroidal at x.

However, in the second and third case, if $x \notin \Gamma$ then the action on $U_{X_{2}, \bar{k}} \subset$ $X_{2, \bar{k}}^{\text {nor }}$ is in general not toroidal at x, but because G_{x} is abelian, we can choose the local formal parameter z such that G_{x} acts on it by a character (indeed consider the representation of G_{x} on the vector space over \bar{k} generated by the G-orbit of z). When this character is nontrivial, the action is not toroidal at x. Indeed, the divisor locally defined at x by $z=0$ is not contained in the toroidal divisor $X_{2, \bar{k}}^{\text {nor }} \backslash U_{X_{2}, \bar{k}}$. Moreover these locally defined divisors, as x varies, might not come from a globally defined divisor (because these are not defined in a canonical way).
3.9.4. Pre-toroidal actions. At any rate, the action of G on $X_{2}^{\text {nor }}$ is pretoroidal in the sense of Definition 1.4 of [1]. A faithful action of a finite group G on a toroidal embedding $U \subset X$ over \bar{k} is called pre-toroidal if the divisor $X \backslash U$ is G-strict and if for any ${ }^{17}$ point x on X where the action is not toroidal we have the following. There exists an isomorphism ϵ, compatible with the G_{x}-action and the toroidal structure, from the completion of X at x to the completion of $X_{0} \times \operatorname{Spec} k[z]$ at $\left(x_{0}, 0\right)$, where $U_{0} \subset X_{0}$ is a toroidal embedding with a toroidal G_{x}-action, x_{0} is a point of X_{0} fixed by G_{x}, the

[^8]toroidal structure on $X_{0} \times \operatorname{Spec} \bar{k}[z]$ is given by $U_{0} \times \operatorname{Spec} \bar{k}[z] \subset X_{0} \times \operatorname{Spec} \bar{k}[z]$ and the action of G_{x} on $X_{0} \times \operatorname{Spec} \bar{k}[z]$ comes from its action on X_{0} and its action on z by a nontrivial character ψ_{x} of G_{x}. Note that the character ψ_{x} only depends on x and not on ϵ. Assume now that the G-action on $U \subset X$ is pre-toroidal.
3.9.5. Blowing up the torific ideal. In [1] (Theorem 1.7 and the proof of Proposition 1.8) it is proved that there exists a canonically defined G equivariant ideal sheaf \mathcal{I} on X, called the torific ideal sheaf, having the following properties. The support of \mathcal{I} is contained in the closed subset of points of X where the G-action is not toroidal. For each closed point x of X, where the G-action is not toroidal, the completion of \mathcal{I} at x is generated by the elements of $\widehat{\mathcal{O}}_{X, x}$ on which G_{x} acts by the character ψ_{x}. And finally, if we denote by \tilde{X} the normalization of the blowup of X along \mathcal{I}, and by \widetilde{U} the inverse image of U in \widetilde{X}, then $\widetilde{U} \subset \widetilde{X}$ is a toroidal embedding on which G acts toroidally.

The proof of this last property follows directly from the following local description at x of the blowup, where we may assume that X_{0} is an affine toric variety, U_{0} is the big torus of X_{0}, G_{x} is a subgroup of U_{0}, G_{x} acts on X_{0} through $U_{0}, X=X_{0} \times \operatorname{Spec} \bar{k}[z], U=U_{0} \times \operatorname{Spec} \bar{k}[z]$, and ϵ is the identity. Locally at x the ideal sheaf \mathcal{I} is generated by z and monomials t_{1}, \cdots, t_{m} in the coordinate ring R of X_{0}. Indeed, at least one monomial of R is contained in \mathcal{I}_{x}, because G_{x} is a subgroup of the big torus of X_{0}. Above a small neighborhood of x, the blowup of X along \mathcal{I} is covered by the charts

$$
\operatorname{Spec} R\left[z, t_{1} / z, \cdots, t_{m} / z\right], \operatorname{Spec} R\left[t_{i}, t_{1} / t_{i}, \cdots, t_{m} / t_{i}\right]\left[z / t_{i}\right]
$$

for $i=1, \cdots, m$. These are torus embeddings of $U_{0} \times \operatorname{Spec} \bar{k}\left[z, z^{-1}\right]$, hence their normalizations are toric. Moreover the embedding $\widetilde{U} \subset \widetilde{X}$ is toroidal, and G_{x} acts toroidally on it, at any point of \widetilde{X} above x, because on the first chart the locus of $z=0$ is contained in the inverse image of $X \backslash U$, and on the other charts the action of G_{x} on z / t_{i} is trivial. The above argument also shows that the support of \mathcal{I} is disjoint from U, because \mathcal{I}_{x} contains a monomial in R. Thus the blowup is an isomorphism above U.

If the toroidal embedding $U \subset X$ and the G-action are defined over k, then the torific ideal sheaf \mathcal{I} is also defined over k, because it is stable under the action of the Galois group of \bar{k} over k. Indeed this is a direct consequence of the above description of the completions of \mathcal{I}. Hence \widetilde{X} is also defined over k.
3.9.6. Conclusion of the proof. We now apply this to $X_{2}^{\text {nor }}$. Let X_{3} be the blowup of $X_{2}^{\text {nor }}$ along the torific ideal sheaf, $X_{3}^{\text {nor }}$ the normalization of X_{3}, and $U_{X_{3}}$ the inverse image of $U_{X_{2}}$ in X_{3}. The blowup morphism $X_{3} \rightarrow X_{2}^{\text {nor }}$ is an isomorphism above $U_{X_{2}}$. Hence $U_{X_{3}}$ is nonsingular, and we identify it with the inverse image of $U_{X_{2}}$ in $X_{3}^{\text {nor }}$. Note that G acts toroidally on
the toroidal embedding $U_{X_{3}} \subset X_{3}^{\text {nor }}$. By the argument in the beginning of section 3.9, we now see that in order to prove Theorem 1.1 it suffices to show that the composition of the morphisms $X_{3}^{\text {nor }} \rightarrow X_{2}^{\text {nor }} \rightarrow X_{1} \rightarrow P_{1}$ is G-equivariantly toroidal. But this is a straightforward consequence of the above given local descriptions of $X_{2, \bar{k}}$ and the blowup of X along \mathcal{I}, with $X=X_{2, \bar{k}}^{\mathrm{nor}}$. This finishes the proof of Theorem 1.1.

References

EGA-II

EGA-III

Hironaka

KKMS
[1] D. Abramovich and A. J. de Jong. Smoothness, semistability, and toroidal geometry. J. Algebraic Geom., 6(4):789-801, 1997.
[2] D. Abramovich and K. Karu. Weak semistable reduction in characteristic 0. Invent. Math., 139(2):241-273, 2000.
[3] E. Bierstone and P. D. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math., 128(2):207-302, 1997.
[4] A. J. de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., (83):51-93, 1996.
[5] A. J. de Jong. Families of curves and alterations. Ann. Inst. Fourier (Grenoble), 47(2):599-621, 1997.
[6] S. Encinas and O. Villamayor. Good points and constructive resolution of singularities. Acta Math., 181(1):109-158, 1998.
[7] W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[8] A. Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math., (8):222, 1961.
[9] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math., (11):167, 1961.
[10] A. Grothendieck and J. P. Murre. The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. Lecture Notes in Mathematics, Vol. 208. Springer-Verlag, Berlin, 1971.
[11] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[12] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109-203; ibid. (2), 79:205-326, 1964.
[13] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal embeddings. I. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973.
(Abramovich) Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, U.S.A.

E-mail address: abrmovic@math.brown.edu
(Denef) University of Leuven, Department of Mathematics, Celestijnenlaan 200 B, B-3001 Leuven (Heverlee), Belgium.

E-mail address: jan.denef@wis.kuleuven.ac.be
(Karu) Dept. of Mathematics University of British Columbia 1984 Mathematics Rd Vancouver, B.C. V6T 1Z2

E-mail address: karu@math.ubc.ca

[^0]: Date: September 23, 2010.
 Abramovich support in part by NSF grants, DMS-0901278. Karu was supported by NSERC grant RGPIN 283301.
 ${ }^{1}$ (Dan) changed to dominant - need to verify all is compatible
 ${ }^{2}$ (Dan) Changed to subset - need to verify all is compatible
 ${ }^{3}$ (Dan) added quasi projective - verify

[^1]: ${ }^{4}$ (Dan) a bit of rephrasing in the whole paragraph - verify
 ${ }^{5}$ (Dan) added Galois alteration, verify

[^2]: ${ }^{6}$ (Dan) Changes - shoudl rethink the compatibility statement?

[^3]: ${ }^{7}$ (Dan) Added assumption on existence of quotient, also in next paragraph
 ${ }^{8}$ (Dan) make lesss vague?
 ${ }^{9}$ (Dan) add reference? A-DJ? (also added assumption on quotient
 ${ }^{10}$ (Dan) Why do we need canonical? also optimize this subsection

[^4]: ${ }^{11}$ (Dan) Changes to accommodate X a subset, Cartier divisors etc

[^5]: ${ }^{12}$ (Jan) rewrite using flattening?

[^6]: ${ }^{13}$ (Jan) changed the loci - verify

[^7]: ${ }^{14}$ (Dan) not necessary to say what has to happen with Z since this is what we woudl have done..

[^8]: ${ }^{15}$ (Jan) will verify again
 ${ }^{16}$ (Jan) introduce this local notion in section 2.3
 ${ }^{17}$ (Dan) Closed?

