Back


Derivation of the Intrinsic Formula for Κ(u,v)

In lab 7 we saw thath the determinant of the Weingarten matrix is equal to the Gaussian curavture (i.e. det(L) = Κ(u,v)). We then related the Weingarten matrix to the coefficients of the first and second fundamental forms and arrived at yet another formula for Gaussian curvature: Κ(u,v) = det(Lij)/det(gij. We begin with this equation in our proof that Κ(u,v) is intrinsic, despite the fact that the coefficients of the second fundamental form are not intrinsic.

                                        Xuu = Γ111Xu + Γ112Xv + L11N                                         (1)
                                        Xvv = Γ221Xu + Γ222Xv + L22N                                         (2)
                                        Xuv = Γ121Xu + Γ122Xv + L12N                                         (3)
                                        Xvu = Γ211Xu + Γ212Xv + L21N                                         (4)


Take the dot product of equations (1) and (2), and assume that g12 = g21 = 0. This means that Xu · Xv = 0. Also use the fact that Xu · N = Xv · N = 0. So,

Xuu · Xvv = Γ111Γ221(Xu · Xu) + Γ112Γ222(Xv · Xv) + L11L22(N · N)
Xuu · Xvv = Γ111Γ221g11 + Γ112Γ222g22 + L11L22,                   or  

                              L11L22 = Xuu · Xvv111Γ221g11 - Γ112Γ222g22                         (5)


Take the dot product of equations (3) and (4):

Xuv · Xvu = Γ121Γ211(Xu · Xu) + Γ122Γ212(Xv · Xv) + L12L21(N · N)
Xuv · Xvu = Γ121Γ211g11 + Γ122Γ212g22 + L12L21,                   or    

                              L12L21 = Xuv · Xvu - Γ121Γ211g11 - Γ122Γ212g22                       (6)



Now, subtract equation (6) from equation (5) to get:

L11L22 - L12L21 = Xuu · Xvv - Xuv · Xvu111Γ221g11 + Γ121Γ211g11 - Γ112Γ222g22 + Γ122Γ2g22
                        = Xuu · Xvv - Xuv · Xvu - (Γ111Γ221 - Γ121Γ211)g11 - (Γ112Γ222 - Γ122Γ212)g22


The term (Xuu · Xvv - Xuv · Xvu) can be expressed intrinsically using g11 and g22. Since X(u,v) is smooth, we make use of the equality of mixed partials (Xuv = Xvu) in the following calculations.

g11 = Xu · Xu                    
g11/v = Xuv · Xu + Xu · Xuv        
= 2Xu · Xuv          
                                      2g11/v2 = 2Xuv · Xuv + 2Xu · Xuvv                                     (7)

g12 = Xu · Xv                    
g12/u = Xuu · Xv + Xu · Xuv        
                                     2g12/uv = Xuv · Xuv + Xu · Xuvv + Xuuv · Xv + Xuu · Xvv    (8)

g22 = Xv · Xv                    
g22/u = Xuv · Xv + Xv · Xuv        
= 2Xv · Xuv          
                                      2g11/u2 = 2Xuv · Xuv + 2Xv · Xuuv                                     (9)

Combining equations (7), (8), and (9), gives us

2g12/uv - (1/2)(2g11/v2 + 2g22/u2) = XuuXvv - Xuv2

This expression can be simplified further by noting that g12 = 0 and so 2g12/uv = 0 as well. So,

Xuu · Xvv - Xuv2 = -(1/2)(2g11/v2 + 2g22/u2)

Substituting this result into the expression for L11L22 - L12L21 yields:

L11L22 - L12L21 = -(1/2)(2g11/v2 + 2g22/u2) - (Γ111Γ221 - Γ121Γ211)g11 - (Γ112Γ222 - Γ122Γ212)g22


With this last result, we can now calculate the Gaussian curvature.

Κ(u,v) = (L11L22 - L12L21)/g
Κ(u,v) = -(1/2g)[(g11)22 + (g22)11] - (Γ111Γ221 - Γ121Γ211)g11/g - (Γ112Γ222 - Γ122Γ212)g22/g