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Student-Generated Software
for Differential Geometry

Thomas Banchoff and student assistants Jeff Achter, Rashid Ahmad, Cassidy Curtis,
Curtis Hendrickson, Greg Siegle, and Matthew Stone

In a previous article [1], we described the progress made by a team of students working
together with a professor to develop Vector, a software program for third semester calculus, to
be used in an interactive laboratory environment. The original program enabled students to
display graphs of space curves and functions of two variables, and subsequent improvements
have added a number of features for displaying geometric objects associated with curves and
surfaces. An enhanced version of the original program continues to be used as a
supplementary tool in several courses in third-semester calculus at Brown University, with
consultants on hand to assist students using the program and to.receive suggestions for
improving its effectiveness. At present we are using this program in an interactive laboratory
associated with the introductory course in the differential geometry of curves and surfaces.

During the current semester, a new opportunity in the development of the
program has arisen in the undergraduate differential geometry course. Two of
the students in the project are enrolled in the course and are acting as
laboratory assistants for a weekly hour-long session devoted to the specific
topics of the course. The two dozeh students in the class can return to the
fifty-unit laboratory to run the program at other times when the laboratory is
available to all students on a first-come first-serve basis. Students can work
individually or together on assignments which require them to investigate the
behavior of a curve or a surface or a family of such objects. Several of the
challenges we have encountered are interesting in their own right, as we seek
the best ways of utilizing the growing capabilities of the machines and the
programs. By discussing these topics here, we wish to give some feeling for
the way that this project is progressing as a true collaboration between
students and instructors, and to show some of the ways our experience with
the computer laboratory environment suggests changes in the choice of topics
and the presentation of the subject matter.

The Cardioid Series

In dealing with parametric curves, itf"is often desirable to investigate not just
one object but rather a family of curves. A particularly interesting example is
the family which includes the cardioid. We define a family of polar coordinate
function graphs depending on one parameter ¢, by

X(t) = ((c + cos(t))cos(t), (c + cos(t))sin(t)).
The value ¢ =1 (or ¢ = -1) gives a cardioid with a cusp at the origin. What is
the behavior of the other curves infthe family?
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B Figure1

Using Vector, students can enter the coordinate functions for the above
equation, then choose various values of ¢ and display the corresponding
curves, one at a time or several at once. An example is shown in Figure 1.
One of the primary aims of the course is the analysis of singularity behavior,
so it is especially important to analyze the curves near the critical position, say
atc=.9and c=1.1. Inthe first case, the curve is locally convex with a
double point at the origin; in the second, the curve is one-to-one, but it has a
pair of inflection points and an interval where the curvature is negative. This
behavior is typical for deformations of cusps, and students will recognize it
again and again during the course.
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Are there any other
interesting choices for ¢? A
student entering various
other values of ¢ will easily
note that there is a
symmetry, and curves
corresponding to opposite
parameter values are
congruent. This suggests a
special treatment of the
value ¢ = 0, which gives a
doubly-covered circle,
unfolding into a curve with
one double point when cis a
small positive or a small
negative number. What
about large values of ¢? Will
there always be inflection
points if cis greater than 17
Computer investigation
indicates that this is not so,
and it seems that the curves
are convex for all values of ¢
greater than 2.

Naturally in a mathematics course it is not enough only to observe these
phenomena; we also have to prove that what we observe is true.
Experimentation with polar coordinate function graphs suggests a criterion for
double points, either r(t+r) = -r(f) for some tor r(f) = 0 for two different values
of t. These conditions show that there will be double points when |c| < 1, as

observed.

The existence of inflection points is equivalent to the vanishing of the
numerator of the curvature

y'x' - xX"y'=-rr"+ 2r'? + r?
= -(c + cos(t))(-cos(t)) + sin¥(t)
=1+ c?+3ccos(t) +cos?(t) =

This will have solutions exactly when 1 < |c|
on the computer screen.

Animating Parameter Changes

(c + cos(t))?

2, as predicted by the images

In addition to keying in desired values of a parameter, a student can set up a
sequence of examples by instructing the computer to change ¢ from a
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beginning value to an end value in a certain number of steps. The images can
then be played back to give an animated view of the deformation represented
by the change of parameter values. This technique enables a student to
“unfold” a singular phenomenon which arises naturally in the course of a one-
parameter deformation.

Parallel Curves for Function Graphs

Animation techniques are especially effective when a deformation is related to
a physical phenomenon, such as the propagation of wave fronts in the
neighborhood of a curve. This phenomenon leads to the concept of parallel
curves, where the parallel curve at distance ris obtained by moving r units
along the unit normal at each point of the curve. Classical treatments of this
subject emphasized the fact that if the distance is sufficiently small, the parallel
curve to a smooth curve is smooth. With computer graphics, we can deal with
a larger range of phenomena, and we can pay much more attention to the
important subject of singularities of curves and families of curves.

A student can use Vector to enter in the equations for the coordinates of a
parallel curve, with the parameter c as the distance to the parallel curve.
Symbolically we may write X (t) = X(t) + cU(t), where U(t) is the rotation of
the unit tangent vector T(t) = X'(t)/|X"(t)| by n/2 radians. In early versions of
Vector, students entered the explicit-equation for each coordinate separately.
The current version allows students just to enter the original curve and have
the program calculate the auxiliary vectors automatically. By choosing various
values of ¢, it is possible to see where the parallel curve develops cusps, and
where the parallel curve intersects itself.

For the parabola X (t) = (t, t2), the student would enter the equations

X(t) =t-2ct/sqri(1 + 4t2), y(t) = t2 + c/sqrt(1 + 4t2), -2 < t< 2, and then select
various values of ¢. For small values of ¢, the curve appears to be smooth, up
to the value ¢ = 1/2 where the curve seems to have a corner. Closer
inspection shows that the curve is smooth although very flat at the point

X, ,(0). For larger values of ¢, the curve has a pair of cusps and a single

12
intersection point, a fact that is easy to check analytically.

In order to study the relationship between a curve and its parallel curve, it is
important to display both of them at the same time and to relate them to the
same coordinate system. When first given a curve, Vector computes the
maximum and minimum x- and y -coordinates and displays the image on the
largest possible square screen. It is possible to choose an option “View in
Same Space” so that subsequent curves are referred to the coordinate system
of the first curve, even if they do not fit on the screen. It is also possible to
change the roles of curves so that the screen size is determined by any one of
them. We can also resize the screen manually by selecting a square in which
the visible screen will be redrawn, or zoom in on a particular section by
selecting a square which is then expanded to fill the screen. At any stage in
the investigation, it is possible to display the coordinate axes, or to choose a
viewing space centered at the origin. The “bird’s eye view” option shows the
projection into the x-y-plane.

In general the variation of the vector U(t) gives information about the way the
curve deviates from a straight line, and we may define the (geodesic)
curvature k (t by U’( } = -k (t)X'(t). Itis then clear that the parallel curve is
smooth, wﬂ% X (t)=(1- ckg(t))X'(t), so the tangent lines at corresponding
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To illustrate this important
fact, it is possible to display
the curve and its evolute
E(t) = X(t) + (VK (t)HU(t)
simultaneously, afong with
several parallel curves, as
shown in Figure 2, oritis
possible to set up an

~~>a parabola, some parailel curves, and 11s evolute.

animation to show the cusps
of parallel curves moving
along the evolute.

Parallel Regions for Plane Curves

Since Vector was originally written to display surfaces, it is easy to use the
two-parameter capability to create an entire family of parallel curves. We
define a surface by Y{(u,v) = X(u) + vU(u), where X(u) and U(u) represent the
curve and its unit normal vector in the plane, and where v goes from 0 to cin a
certain number of steps. We always have the option of showing only the
curves v = constant, and this family gives the desired set of parallel curves.

We get a bonus from this representation if we show instead the curves

u = constant, along with the original curve. We then have the collection of
normal lines to the curve, and the curve or points where nearby normals
intersect is quite evident. We can then show that this singularity curve is the
evolute of the original curve. Then Y (u,v) = X" (u) + vU'(u) = (1 - vkg(u))X'(u)
and Y(u,v) = U(u). Since X'(u) and U(u) are always linearly independent for a
regular curve X, the only singularities occur if v = 1/kg(u), i.e. at the points of
the evolute E(u) = X(u) + (1/k (u))U(u).

At this stage, we can get additiongl information by using the color capabilities
of the machine. We may assign colors to points of the curve according to the
values of the parameter, and then color the points on the evolute similarly to
establish the correspondence. This is especially clear when we use the same
colors on the rays going out perpendicular to the curve.
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Evolute Curves for Epicycloids

One of the most dramatic “discoveries” that appears from the use of this
program is the evolute phenomenon for the family of epicycloids,

X(t)=({(1+c)cos(t)-ccos{(1+c)t/e), (1 +c)sin(t)-csin({(1+c)t/c)).
Entering in the equations of the curve together with its normal rays produced
images which are unmistakably similar to the original curve, no matter what
the value of ¢ may be." Only if ¢ is integral will the curve close off in the interval
0 < t< 2w, but for other rational values of ¢, the curve will close an appropriate
multiple of 2r, producing some striking images of curves and their (similar)
evolutes. Of course it is then possible (for the better students) to prove the
theorem that the evolute is indeed similar to the original curve.

Nesting of Osculating Circles of a Spiral

| Figure3

It is a fact that osculating circles of a spiral with monotonically increasing
curvature are nested, i.e. the best approximating circle at the beginning of
such an arc completely contains the corresponding circle at the endpoint. This
result is surprising to many students. If a student draws a curve on a paper or
blackboard and sketches in the osculating circles at two nearby points, the
circles almost always appear to cross, even though the theorem predicts that
they wil not intersect. Vector makes it possible to illustrate the theorem and to
see what the collection of osculating circles really looks like. A student can
enter a spiral arc, say the
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The smaller circle is

contained in the larger, and
we don’t need a computer to
show that. But the computer
can show even more. The
program is set up to show
surfaces, so it is possible to
build an entire set of curves
and to show as many of
them as we wish. We can
show not just two circles but
the family of all osculating
circles at all points of the
parabola, and the visual
evidence that they do not
meet is compelling, as shown
in Figure 3.
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There are various capabilities of the machine that make these phenomena
even clearer. We can color the points of the original curve according to the
parameter value, then color the osculating circle at a particular point with the
same color. We can also show a sequence of bands between successive
osculating circles to make the nesting property even more evident.
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Further Topics in the Geometry of Curves and Surfaces

Up to now we have discussed only the two-dimensional capabilities of the
machine. We can gain even more insights by looking at objects in three-
space. We first study surfaces associated with curves, such as the tangential
surface X(u) + vI(u), where T(u) is the unit tangent vector of a space curve, or
the normal surface X(u) + vP(u), where P(u) is the principal normal. We can
then work with tube surfaces, like the normal tube
X(u) + rcos(v)P(u) + rsin(v)B(u)

which are the analogues of the parallel curves in the plane, in order to study
the curvature and torsion properties of curves. We can define more general
tubes, such as the curvature tube

X(u) + (1/k(u))(cos(V)P(u) + sin(v)B(w)),
a useful technique for modelling the growth of shells. A tangent surface is
shown in Figure 4, and a normal tube is shown in Color Plate 3.

We can then go on to study surfaces in their own right, including parallel
B Figure4 surfaces and focal surfaces of function graphs and of parametric surfaces. All
of these capabilities are
already available on Vector
once we enter the
appropriate combinations of
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anticipate a further redesign
in the future. We look
forward to the ability to work
with vector functions, and to
calculate quantities like
curvatures and principal
directions, without having to
enter the explicit equations
for each coordinate. (This
capability existed to a certain
extent in the program EDGE
developed for an earlier

- version of the interactive
laboratory environment in
differential geometry, as
described in [2].)
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We have learned a great deal in the development of these programs, using
the ideas of differential geometry to suggest new directions for the project in
the calculus of curves and surfades. As mentioned in previous articles, the
interaction between faculty and students in this collaboration is one of the
most rewarding aspect of the whole enterprise. We look forward to the next
phases of our project, and the continued use of interactive software in
geometric investigations.
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