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REAL TIME COMPUTER GRAPHICS
TECHNIQUES IN GEOMETRY

BY
THOMAS BANCHOFF AND CHARLES STRAUSS

This paper contains three geometric examples, each of which could be given
as an exercise to an undergraduate. Like most exercises, they represent illustra-
tions of some mathematical phenomenon which had been observed by a teacher
or textbook writer. What unifies the three and makes them noteworthy is that
each was first observed by the authors while interacting at a graphics terminal
with pictures produced by a computer. Once the observation has been made, it
has not been difficult to write out the verification, so far anyway. The hope is
that soon such methods will lead to more subtle observations and ultimately to
some significant mathematical results. For now, these examples may serve as a
demonstration of the power of computer graphics in suggesting geometric prob-
lems and in aiding in their solutions. '

Example. The evolute of the cardioid. A graphics routine for parallel
curves to curves in the plane takes in a curve in parametric form X t),a<t<b,
and a number -n of equal subdivisions of the parameter domain and displays the
parallel curve

Y,(0) = X(t) + N Q)

where the oriented distance r is put in by a control dial. The unit normal N(¢)
is eithér given by a formula or is obtained. by taking the average of the normal
vectors to the edges adjacent to the point X(¢#) in the polygonal approximation
determined by the partition. '

If X(r) is smooth, and if X'() #0 for all ¢, then, for sufficiently small
r, the parallel curve Y,(£) is also smooth; but, for large 7, the curve may develop
cusps:
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Y(©)=X'(t) +rN'(t)
=X'(6) + r(= k(DX'(1))
= (1 = re())X'(0).
We get a cusp only when Y (1) =0, ie., when r=1/k(t). The locus of

cusps of parallel curves is called the evolute, so the equation of E(f), in the
smooth case for k() # 0, is given simply by ‘

() = X(@) + (1 (@OWN@.

We may also describe the evolute as the envelope of the normal lines, so
that E(¢) is the limit as 2 — 0 of the intersection of the line X(#) + uN(@)
and the line X(¢ + &) + uN(t + k). In a visual display which includes the seg-
ments from X(#) to X(£) +rN(t) for selected points along the parameter do-
main, the evolute appears as the fold curve where this strip-intersects itself,

FIGURE 1

The visual display can suggest results which might not be apparent from the
equations themselves. After an observation has been made, it is often straight-
forward to make the verification.

The cardioid is given in parametric form by

X0 = (1 +cos()(cos(t), sin(t)), 0<+t<m,

with tangent vector X'(f) = (= sin (¢) - sin (2¢), cos(f) + cos (2£)) which is non-
zero except at the point £ =7 where the curve has a cusp. The computer pic-
ture of the curve plus its normal lines suggested that the evolute itself was similar
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to the original curve, although rotated, dilated and translated. (See Figure 2)
Once this observation was made, it was not difficult to check.
By standard formulas of elementary calculus, we find

O =@ + 205 ()%, K(@©)=3 2 + 205 ()",

NO=Q +2cos(t))"/’(— cos (£) — cos (2t), — sin (f) — sin (2)).
Thus ‘ ;
E(t) = X(2) + (1/x(@ON()

= ((l + cos(f))cos (t) = %— (cos (¢) + cos(21)),
(1 + cos (t))sin - -23: (sin (¢) + sin (2t))>
= (13 (cos(t) — cos? (1) + %, -_l; (sin (f) — sin (#)cos (t)))

=10 - eos()east, sin) + (3,9).

Thus the evolute of the cardioid is anothe_r cardioid, scaled do.wn by 1/3, rotated,
and shifted by (2/3, 0).

FIGURE 2

. For a general discussion of such evolute curves, see for example the book
of Lockwood [2]. >
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2, Example. The graph of the complex exponential and its inverse. As part
of a program to demonstrate the usefulness of the computer graphics routine in
studying surfaces in 4-space, an investigation was carried out of the graph of
w=e’ in complex 2-space viewed as real 4-space. Letting z=x + iy and
w =u + v, we obtain the locus

(x, », e*cos (), e*sin ()).

The domain used was — 2 <x < 2, — 27 < y < 4n, cross-hatched by choosing
equal subdivisions in the x- and y-domain. Projection to the (x, y, u) space
gives the graph of the real part of ¢* as a surface in 3-space, and projection to
(x, y. v) gives the graph of the imaginary part. A smooth rotation in the u-v-plane
through angle « corresponds to the graph of

(x, y, e*(cos(¥)cos (@) + sin (»)sin (@)))
= (%, », Re(e¥*)ef®) = (x, y, XlV¥®) -
A rotatjon of this:locus into (x, u, v) space produced a surface which

should have been expected but which as a matter of fact appeared as a surprise.

" Under a rotation in the y-v-plane, the surface wraps itself around into a surface
of revolution, an exponential horn with equation

(x, e*cos(p), e¥sin (¥)).
(See Figure 3.)

FIGURE 3

A further rotation in the x-y-plane brings the surface into a right conoid

(7. *cos(y), €¥sin ().
(See Figure 4.)
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FIGURE 4 -

We can identify the significance of these last two projections of the surface
in 4-space by reparametrizing in terms of # and v. The first becomes -

(n (G +v*)*%), u,v)
and the second becomes
(tan™ (v/u), u, v).

But the functions In((u? + v*)*) and tan"!(v/u) are precisely the real
and imaginary parts of the function In(w). This should have been anticipated
since the locus (z, €%) viewed another way gives the locus (In(w), w). “As in the
case of a curve graphed in the Euclidean plane, an accurate graph of a function
can be looked at from a different point of view to give the inverse function.

The domain of the inversg function In{w) here is given by the image of
the function e, where we have

e < wi<e? and —2m < arg(w) <dm,

a multiply covered domain in the w-plane.

3. Example. Deformation of a cusp of an algebraic curve. An algebraic
curve in complex 2-space may be described by a relation between variables z
and w, for example, 23 =w?,

Such a complex equation yields two real equations so the locus can be con-
sidered a real surface in real Euclidean 4-space. We may parametrize this locus by
choosing a radial domain { = re?, 0<r< 1,0 <60 < 27, and taking z = 2,

w = ¢3. We then have a mapping of the disc into complex 2-dimensional space
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