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1. General strategy

We are faced with a quasilinear problem with a loss of derivative. Fortunately, we can easily get energy
estimates which allows us to get local existence of a solution, a criterion for blow up and a control on
high energy norms:

Proposition 1.1. There exists ε0 such that: i) (local existence) If the initial data to the problem under
consideration satisfies

‖U(0)‖H10 ≤ ε0,

then there exists a unique local solution U ∈ C([0, 1], H10) such that

‖U‖C([0,1]:H10) ≤ 10ε0.

ii) (propagation of regularity) If U ∈ C([0, T ] : H10) is a solution of the problem satisfying

‖U‖L1([0,T ]:W 5,∞) ≤ 100ε0, (1.1)

for some T > 0 and if U(0) ∈ HN for some N ≥ 10, then U ∈ C([0, T ] : HN ) and

‖U‖C([0,T ]:HN ) ≤ 2‖U(0)‖HN .

This gives us at the same time the local existence of solution and a nice blow-up criterion: we will be
able to extend the solution as long as (1.1) is bounded a priori. We will not dwell much on this question,
but refer to [2] for more details.

In our situation, Proposition 1.1 is essentially a consequence of the following simple lemma:

Lemma 1.2. For each N ≥ 0, there exists high-energy functionals such that

‖U‖2HN . EN . ‖U‖2HN

so long as
‖U‖H10 . εN .

and for any smooth solution of our problem, we have the inequality

∂tEN . ‖U‖W 5,∞EN .
The construction of energies for the Euler-Maxwell problem relies on variations of the physical energies.

On the other hand, we also remark that for some complicated problems, the energies can be very hard
to construct.

As a conclusion, we have reduced the task of proving global existence for solutions to the proof of the
following proposition:

Proposition 1.3. Fix N ≥ 10. There exists ε1 > 0 such that if U ∈ C([0, T ] : HN ) is a solution on
some time-interval [0, T ] such that

‖U‖L∞([0,T ]:HN ) . ε1, (1.2)

and that U(0) satisfy proper assumptions, then

‖U‖L1([0,T ]:W 5,∞) . ε0. (1.3)
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Thus, we only have to show a priori (1.3) under the additional assumption (1.2). If we take N large
enough, the imbalance in regularity allows us to consider derivatives ass essentially bounded operators
and the main focus is to get a norm which is integrable. This is the purpose of the semi linear analysis,
which is the main difficulty.

2. Semilinear analysis

2.1. Reduction to the boundedness of bilinear operators. The main purpose of the semi linear
analysis is to obtain the key a priori bound (1.3). Sometimes, especially in low dimensions (d=2), it can
be replaced by the slightly weaker condition

sup
T>0
‖U‖L1([T,2T ]:W 5,∞) . ε0,

but this is only consistent with EN growing logarithmically. In dimension 1, one never even gets the latter
estimates and one needs to refine the energy method.

The previous analysis was very dependent on the precise structure of the nonlinearity in order to
obtain key cancellations, but rather blind to the precise shape of the equilibrium at which we linearize.
In contrast, the semilinear analysis will be very strongly dependent on the linearized system (and hence
to the precise shape of the equilibrium at which we linearize), but will be mostly independent of the
precise nonlinear structure1.

In order to understand what can be the most important information to control the nonlinear evolution,
we first conjugate by the linear flow. This is most conveniently done after diagonalizing the linearized
system which leads to recast the equation as follows:

(∂t + iΛj)Uj = Nj(~U+, ~U−), 1 ≤ j ≤ k

where Λj are the eigenvalues of the linear system and Nj are explicit but fairly complicated nonlinear

functions2 of ~U+ = (U1, . . . , Uk) and ~U− = (U1, . . . , Uk).
A typical example is given by semilinear Klein-Gordon phases with quadratic nonlinearities:

Λj =
√
m2
j − c2j∆, Nj =

∑
p,q

cj,p,qUpUq +
∑
p,q

dj,p,qUpUq.

When the system is in this form, we can then easily change variables ~U → ~V to account for the
unknown following the linear flow at first order:

Uj(x, t) = e−itΛjVj(x, t).

We remark that in the absence of nonlinear perturbations, we have that ∂tVj ≡ 0 and the linear profiles
Vj are constant. However, the presence of the nonlinear terms will force Vj to be time-dependent, but
we may still hope that these profiles will only vary little (say, remain in a compact set).

Assuming that N is quadratic, the Duhamel formula gives an integral equation for V :

V̂j(ξ, t) = V̂j(ξ, 0) +
∑
p,q

∫ t

s=0

∫
R3

eisΦ
j;p,q(ξ,η)mj;p,q(ξ, η)V̂p(ξ − η, s)V̂q(η, s)dηds,

Φj;p,q(ξ, η) = Λj(ξ)− Λp(ξ − η)− Λq(η),

1A possible exception being the presence of null-forms that can sometimes cancel the most delicate part of the nonlin-

earity. This is very important in particular for pure wave equations and in lower dimensions.
2In the sense that Nj(0) = 0. Usually we can in fact take N to be polynomial in ~U , and in dimension 3, often it suffices

to consider the quadratic terms.
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We thus see that the interaction Vp × Vq → Vj is fully described by the phase Φj;p,q and the multiplier
mj;p,q through the bilinear interaction

FBj;p,q[f, g](ξ) =

∫ t

s=0

∫
R3

eisΦ
j;p,q(ξ,η)mj;p,q(ξ, η)f̂(ξ − η, s)ĝ(η, s)dηds (2.1)

and these are the operators that will concern us in the semi linear analysis.

These consideration brings us to the following problem:

Find a norm B such that

‖eitΛjV ‖W 5,∞ . t−1−ε‖V ‖B
and such that the operators corresponding to the relevant interactions Bj;p,q are bounded3

Bj;p,q : B ∩HN ×B ∩HN → B.

for all j, p, q.

2.2. Localization. In order to understand exactly which information we will be using in our space B,
we may rewrite the bilinear interaction through its (frequency localized) kernel:

Bj;p,qk,k1,k2
[f, g](x) = Pk

∫ t

s=0

∫
R3×R3

K(x, y1, y2, s) · Pk1f(y1, s) · Pk2g(y2, s)dy1dy2ds

K(x, y1, y2, s) =

∫
R3×R3

mj;p,q(ξ, η)ϕk(ξ)ϕk1(ξ − η)ϕk2(η)eisΦ
j;p,q(ξ,η)eiξ[y1−x]eiη[y2−y1]dηdξ,

ϕk(ξ) = ϕ(2−kξ), P̂kf(ξ) = ϕk(ξ)f̂(ξ).

(2.2)

The formula suggests that an important information will be the localization of the functions. Indeed,
for example, assume that we consider a point x out side of the light cone |x| � s. Then, looking at the
gradient of the oscillatory phase

∇ξ
[
sΦj;p,q(ξ, η) + ξ[y1 − x]

]
= s∇ξΦj;p,q(ξ, η) + [y1 − x],

∇η
[
sΦj;p,q(ξ, η) + η[y2 − y1]

]
= s∇ηΦj;p,q(ξ, η) + [y2 − y1].

Since |∇Φ| . 1, we see upon integrating by parts that we have rapid decay unless y1 has a similar location
as x and similarly for y2. Thus, we see that the interactions are essentially pointwise at scales larger than
s (in the sense that whatever is in a ball of radios s is essentially only affected by what is in a ball of
twice the size). This is essentially the finite speed of propagation. It allows us to treat any factor xθ in
front of the output informally as a power of tθ in our estimates.

In addition, we can refine this finite speed of propagation: if on the support of the integral, we have
that |∇ξΦj;p,q| . c � 1, then either |x| ≤ cs, or |x − y1| ≤ 10cs. This is very useful when c is small
and essentially means that we will not consider the regions where ∇ξΦ = 0. However, the regions where
∇ηΦ = 0 will play a very important role4.

3It would be even better to get a space B such that T : B × B → B is bounded. However, this appears difficult in
quasilinear problems due to the loss of derivative induced by looking at the system as a perturbation of the full problem

when the nonlinearity contains derivative of similar order.
4A way to understand this discrepancy between the role of derivatives in ξ and η is from the fact that among the worst

interactions is the one when two inputs f and g are localized at the origin (|y1| � s and |y2| � s and produce an output

located away from the origin: |x| & s. Indeed, in this “low-low → high” case, we have to recover a penalization from
the large distance of the output location with respect to the origin (because of the norm we want to consider), but this
penalization cannot be recovered from information on the inputs. This contradicts ∇ξΦ = 0 but not ∇ηΦ = 0.
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Finally a last advantage in keeping track of the localization comes from the fact that we can use it to
get time-decay from the kernel:

K(x, y1, y2, s) =

i

s

∫
R3×R3

eisΦ
j;p,q(ξ,η)eiξ[y1−x]ϕk(ξ)∂η

{
1

∂ηΦj;p,q(ξ, η)
mj;p,q(ξ, η)ϕk1(ξ − η)ϕk2(η)eiη[y2−y1]

}
dηdξ,

We see that, essentially, when ∇ηΦj;p,q 6= 0, this allows to get a factor of 1/s at the expense of a factor
of y1 − y2.

A related but different fact is that there is a simple way to obtain integrability of the unknowns U
from localization of V through dispersion by the inequality:

‖eitΛPkV ‖L∞ . t−θ2βk‖xθPkV ‖L2

for some β and 0 < θ < 3/2.

Note that there is another tool we can use to bound the interactions which has to do with time-
oscillations: the normal form transformation.

2.3. Relevance of non degenerate space-time resonant surfaces.

2.3.1. “Generic” space time resonant sets in 3d. This discussion is also very neatly explained in [1]. In
general, the phase-space R3

ξ × R3
η is of dimension 6. However, according to previous heuristics, the set

that matters most is the set where the phase is stationary:

R = {∇ηΦ(ξ, η) = 0} ∩ {Φ(ξ, η) = 0}.
In general, this should be a co-dimension 4 set in phase space. However, if the problem is isotropic as is
the case for the Euler-Maxwell problem, all the eigenvalues are also radial and any set built on these will
automatically be invariant under the (joint) action of O(3):

(ξ, η) ∈ R ⇒ (Rξ,Rη) ∈ R, R ∈ O(3).

Therefore, the stationary set is either a point or a union of 2-dimensional spheres. The set of non
degenerate stationary points

R∩ {det∇2
ηηΦ(ξ, η) = 0} = {Φ(ξ, η) = 0} ∩ {∇ηΦ(ξ, η) = 0} ∩ {det∇2

ηηΦ(ξ, η) = 0}
can be expected “generically” to be a strictly smaller manifold surface with similar invariance property,
therefore empty. Thus in many three-dimensional cases, we can expect that the “space-time resonant
set” is non degenerate but not empty. Note however, that if the degenerate stationary set is not empty,
then it is the whole stationary set5 (or at least a sizable portion of it).

2.3.2. Systems of Klein-Gordon equations. In the case of Klein-Gordon, we can use the explicit formulas
to look at the sets. In this case, it is more convenient to consider the set of degenerate coherent point:

D = {∇ηΦ(ξ, η) = 0} ∩ {det∇2
ηηΦ(ξ, η) = 0}

since they only involve the last two eigenvalues. In this case, we directly see that ∇ηΦ = 0 implies that
ξ and η are collinear, in which case, we can diagonalize the Hessian in an appropriate basis to get

− ι2∇2
ηηΦ(ξ, η) =

(
λ′′2(r) 0

0
λ′2(r)
r

)
+ ι2ι3

(
λ′′3(s) 0

0
λ′3(s)
s

)
,

Λi(ξ) = λi(|ξ|), r = |ξ − η|, s = |η|.

5Note also that if this set was included into the slow set: {∇ξΦ(ξ, η) = 0}, which is also rotationally invariant, then one

could get more control on the functions by refining the finite-speed of propagation argument.
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Thus we directly see that if ι1ι2 = +, the Hessian is non degenerate. If ι1ι2 = −, we see that D is
equivalent to

λ′2(r) = λ′3(s) and {λ′′2(r) = λ′′3(s) or s = r} .
Writing that λi(r) =

√
m2
i + c2i r

2, we see that

λ′′i (r) =
m2
i

c4i

(
λ′i(r)

r

)3

,

and we obtain the simpler conditions:

λ′2(r) = λ′3(s) and

{
m2

2

c42

1

r3
=
m2

3

c43

1

s3
or s = r

}
.

If m2 = m3, then we see that λ′2(r) = λ′3(r)⇔ c2r = c3s which is only consistent with the conditions
above if c2 = c3. But in this case, Φ will never vanish on the set {|ξ − η| = |η|}.

Note also that in the case of different masses, it is certainly possible to achieve the conditions above.
In this case, we can freely choose Λ1 so that it vanishes on the set D.

3. General Heuristics

In the following, we give a series of Heuristics which we will follow all along the proofs.

• We will always think of functions as defined modulo recomposition by a Calderón-Zygmund oper-

ator of norm one. In other words, we “identify” f and F−1q(ξ)f̂(ξ) for q a symbol of order 0.
This allows to significantly simplify expressions; on the other hand, it requires that our norms
be bounded upon recomposition by a Calderón-Zygmund operator. If this is true, since we will
only precompose with a finite number of such operators, this assumption is essentially harmless.

However, this essentially means that we will not be able to access functions in L1 or with
“better decay” (since e.g. this would be broken upon application of the Riesz transform).

• When we study free evolution of a profiles u = eitΛf (at frequency ∼ 1), there are always three
different regimes:
(1) profile close to the origin: u1 = eitΛf{|x|≤

√
t}. This part is dependent on very few properties

of f and we may assume that f̂ is smooth as long as we have a bound on ‖f̂‖L∞ .
(2) profile transitioning away from the origin: u2 = eitΛf{

√
t≤|x|≤t}. For this part, the roughness

of f limits the applicability of stationary phase estimates. On the other hand, bounds on
norms of xf give some control on the function.

(3) profile away from the origin: u3 = eitΛf{|x|≥t}. For this part, the dispersion plays little role
(in particular the mass situated in a shell |x| ∼ |t|[l, l + 4] essentially remain in the same
shell). Integration by parts is not helpful and we expect that the main control would come
from norms on xf . In general this region is easily treated by energy-type estimates.

• We will have to quantify various quantities (for several functions at the same time), most of which
will be big. But in almost all cases there will be the following hierarchy:

t ≥ |x| ≥ |ξ|−1 � |ξ|.
In the sense that
(1) since we have nice energy estimates, we can always penalize high frequencies by a very high

factor so that whenever it gets comparable to t, we get good control of the term.
(2) the fact that we can assume |x| ≥ |ξ|−1 is a consequence of the uncertainty principle; in our

case, this can also be seen by Hardy’s inequality.
(3) the fact that t ≥ |x| follows from the fact that the other x’s are outside of the light cone

and therefore when |x| � t, then we simply recover whatever estimates we had on our initial
data.
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• We will consider different degrees of precision about our functions. The more imprecise the
description, the more robust the estimates are likely to be and the easier the proofs.
(1) Energy-estimate description: this is the estimate that is necessary to close the energy

estimates and also serves for terms with similar structure:

‖f‖EE := sup
t

{
t1+β‖eitΛf‖L∞ + ‖f‖HN

}
(2) weighted-norm description: this is the estimate that is necessary to close most of the

cases outside of the space-time resonant set and to get most additional estimates (such as
estimates on ∂tf):

‖f‖WN := sup
t

{
‖x1−β |∇|−2βf‖L2 + t1+β‖eitΛf‖L∞

}
The main feature of this norm is that it allows to make integration by parts thanks to the
weighted control.

(3) sum-space norm: this is the full norm which we use only in the most difficult cases. It
controls all the above descriptions.

4. Linear and bilinear stationary phase (informal)

Here we give two interpretations of how to understand and use oscillatory phases, either in a linear
setting (to prove a dispersion inequality), or a bilinear setting (to understand some part of the result of
bilinear interactions).

4.1. Understanding dispersion. Here we give a non rigorous but (in our opinion) inspiring proof of the
dispersion inequality. We consider a dispersive operator given by a Fourier multiplier iφ and a function f
whose Fourier transform is localized, say in the ring {1/2 ≤ |ξ| ≤ 2} where the Hessian of φ is uniformly
strictly positive.

Recall that the Fourier transform intertwine translation and modulation in the sense that

g(x) = f(x− x0), ĝ(ξ) = f̂(ξ)e−iξ·x0 .

Building on this, we consider the solution u of

(i∂t + φ(i∇))u = 0, u(0) = f.

The solution is of course given in Fourier space as

û(ξ, t) = eitφ(ξ)f̂(ξ),

which we also write as u = S(t)f . Now, fix an arbitrary point ξ0 in the support of f̂ and expand the
phase:

tφ(ξ0 + η) = tφ(ξ0) + t∇φ(ξ0) · η + t∇2φ(ξ0)[η, η] +O(t|η|3),

and thus

û(ξ0 + η, t) = eitφ(ξ0)eit∇φ(ξ0)·ηeiO(t|η|2)f̂(ξ0 + η).

If we restrict the frequency support of f̂ to the set where |η| ≤ εt− 1
2 , we can believe that we may ignore

the third exponential in the line above. The first exponential only represents modulation by a uniform
(in frequency) factor. Thus, introducing a t−

1
2 -net {ξ0}, we see that we may decompose our propagator

into propagators Sξ0 such that6

Ŝξ0(t) = eitφ(ξ)χ(t
1
2 (ξ − ξ0))

and each such operator is essentially a translation by −t∇φ(ξ0).

6Here we consider χ ∈ C∞c (Rd) such that
∑
k∈Zd χ(x+ k) ≡ 1 for all x.
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Now, what about the L∞-norm of u? How big can it be? This essentially has to do with superposition.
Let us introduce a dual t

1
2 -net {x0} in the physical space and for each ξ0 decompose

fξ0(x) =
∑
x0

χ(t−
1
2 (x− x0))fξ0(x) =

∑
x0

fξ0,x0
(x), f̂ξ0(ξ) = χ(t

1
2 (ξ − ξ0))f̂(ξ).

Now we fix x and t and ask how we can estimate u(x, t). We have seen that

u(t) = S(t)f =
∑
ξ0

Sξ0(t)fξ0 =
∑
ξ0,x0

Sξ0(t)fξ0,x0
,

and that Sξ0 is essentially the translation by −t∇φ(ξ0). So, for fixed ξ0 and x, t, the only piece fξ0,x0

that will have a non negligible presence at x will be given by

x− t∇φ(ξ0) = x0 +O(t
1
2 ).

This defines a mapping for each fixed (x, t), ξ0 → x0. In fact, this mapping is 1-to-1 since

|x0 − x1| = t|∇φ(ξ0)−∇φ(ξ1)|+O(t
1
2 ) & t|ξ0 − ξ1|+O(t

1
2 ) & t

1
2

where we have used the fact that ∇2φ is strictly positive. Now, we need only estimate crudely

u(x, t) =
1

(2π)
d
2

∫
Rd

e−ixξeitφ(ξ)f̂(ξ)dξ '
∑
ξ0

∫
Rd

e−ixξeitφ(ξ)f̂ξ0,x0
(ξ)dξ

|u(x, t)| .
∑
ξ0

‖f̂ξ0,x0
‖L∞ · supp(f̂ξ0,x0

)

. t−
d
2

∑
ξ0

‖fξ0,x0
‖L1 . t−

d
2

∑
x0

‖fx0
‖L1 . t−

d
2 ‖f‖L1 .

Of course, when one has an explicit propagator, one can obtain this estimate much more easily. For
example, this is the case for the Schrödinger equation where

u(x, t) =
1

(4πit)
d
2

∫
Rd

e−i
|x−y|2

4t u(y)dy,

but here, we have used only few general assumptions on the dispersion relation. Also, the case of a
function with general support in Fourier space is recovered by scaling.

4.2. Parameterizing the coherent curve. The goal of this subsection is to explain the relevance of
the condition

det[∇2
ηηΦ] 6= 0

in the analysis of quadratic interactions of the form

Î(ξ) =

∫∫
R×R3

χ(s, ξ, η)eisΦ(ξ,η)f̂(ξ − η, s)f̂(η, s)dηds,

where χ stands for a smooth localization function and

Φ(ξ, η) = Λ1(ξ)− ι2Λ2(ξ − η)− ι3Λ3(η), ι1, ι2 ∈ {±}.

The advantage of adding smoothness in f̂ is that we can now integrate by parts in η, except of course
on the stationary set when ∇ηΦ = 0, which is equivalent to

∇Λ2(η − ξ) = −ι1ι2∇Λ3(η).

We would like to parameterize the vanishing of ∇ηΦ by a function7

∇ηΦ(ξ, η)⇔ η = p(ξ).

7it makes more sense to parameterize η in terms of ξ since ξ is fixed by the output, whereas η is inside the integral.
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In fact, it is easier to do the opposite: we let z(η) be the function such that

∇Λ2(z) = −ι2ι3∇Λ3(η), ∇2Λ2(z) · dz
dη

= −ι2ι3∇2Λ3(η).

It is always possible to find such a function z (at least locally) if ∇2Λ2 is invertible (this is the case, e.g. if
Λ2 is strictly convex as in the case of Schrödinger or Klein-Gordon, or more generally if Λ is homogeneous
of degree different from 1). Then we find that

∇ηΦ(ξ, η) = 0⇔ ξ = q(η) = η − z(η).

It is possible to invert this relation when the Jacobian matrix of the mapping η 7→ η − z(η) is invertible;
but this is

Id− dz

dη
= Id− (−ι2ι3[∇2Λ2(z)]−1∇2Λ3(η))

= [∇2Λ2(z)]−1 ·
{
∇2Λ2(z) + ι2ι3∇2Λ3(η)

}
.

We see that the first operator on the righthand side is invertible by hypothesis, while the second precisely
coincides with −ι2∇2

ηηΦ.

In addition, if ∇2
ηηΦ is invertible, we can precisely estimate ∇ηΦ in a neighborhood of the set where

it vanishes. Indeed

∇ηΦ(ξ, η) = ∇η(ξ, p(ξ)) +

[∫ 1

0

∇2Φ(ξ, p(ξ) + s(η − p(ξ)))ds
]
· [η − p(ξ)] ' ∇2

ηηΦ(ξ, p(ξ)) · [η − p(ξ)]

and therefore, when the Hessian is non degenerate,

|∇ηΦ(ξ, η)| ' |η − p(ξ)|. (4.1)

In addition, in this set, we can also understand the size of Φ:

Φ(ξ, η) = Φ(ξ, p(ξ)) + [Φ(ξ, η)− Φ(ξ, p(ξ)]

= Φ(ξ, p(ξ)) +

[∫ 1

0

∇ηΦ(ξ, sη + (1− s)p(ξ))ds
]
· [η − p(ξ)].

Therefore, defining
Ψ(ξ) = Φ(ξ, p(ξ)),

we see that in the neighborhood of the stationary set,

Φ(ξ, η) = Ψ(ξ) +O(|η − p(ξ)|2) (4.2)

and in addition,
∇ξΨ(ξ) = ∇ξΦ(ξ, p(ξ)) + (Dξp)

T∇ηΦ(ξ, p(ξ)) = ∇ξΦ(ξ, p(ξ)) (4.3)

is only determined by whether or not ∇ξΦ vanishes on the stationary set.

5. A new kind of input

Here, we estimate the type of function produced by “space-time” resonance sets.
We consider the following integral which corresponds to inputs that we need to be able to accept: for

f, g ∈ C∞c (R3) and T � 1 define

IT (ξ) =

∫
R×R3

θ(
s

T
)ϕk(ξ)ϕk1(ξ − η)ϕk2(η)eisΦ(ξ,η)f̂(ξ − η)ĝ(η)dηds

such that k, k1, k2 ' 1 localize in the neighborhood of a space-resonant set. IT can also be seen in physical
space as

IT (x) =

∫
R×R3×R3

θ(
s

T
)K(x, y1, y2, s)Pk1f(y1)Pk2g(y2)dy1dy2ds,
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where it suffices to look at the case |y1| , |y2| . 1.
This is relevant since we have that

I(x, t) =
∑
T≤t

IT (x)

is essentially the result of the interaction of two free waves with profiles f and g.
We are interested in bounding the quantity 〈x〉θIT into various spaces. By finite speed of propagation,

we see that this is essentially the same8 as bounding T θIT into various spaces and we can hereafter think
of T as the only large parameter.

In this case, we can understand the Kernel better. Indeed, setting δX = T−
1
2 +δ, we see upon integrating

by parts in η that

KN (x, y1, y2, s) =

∫
R3

eiξ[x−y1]ϕk(ξ)

{∫
R3

(1− ϕ(δ−1
X ∇ηΦ(ξ, η)))eisΦ(ξ,η)eiη[y2−y1]ϕ(ξ − η)ϕ(η)dη

}
dξ

= O(T−100).

Indeed, we simply write that∫
R3

(1− ϕ(δ−1
X ∇ηΦ(ξ, η))eisΦ(ξ,η)eiη[y2−y1]ϕ(ξ − η)ϕ(η)dη

=
i

s

∫
R3

eisΦ(ξ,η)divη

{
∇ηΦ(ξ, η)

|∇ηΦ(ξ, η)|2
(1− ϕ(δ−1

X ∇ηΦ(ξ, η))eiη[y2−y1]ϕ(ξ − η)ϕ(η)

}
dη

and we see that the worst case is when the derivative hits either the localization function or the term
1/∂ηΦ which yield a term of size T 1−2δ. But this is still tramped by the gain of s−1. Iterating this as
many times as we want, we obtain arbitrarily large decay.

Hence we see that we may replace the kernel by

KR(x, y1, y2, s) =

∫
R3×R3

θ(
s

T
)eiξ[x−y1]ϕ(δ−1

X ∇ηΦ(ξ, η))eisΦ(ξ,η)eiη[y2−y1]ϕk(ξ)ϕ(ξ − η)ϕ(η)dηdξ.

At this point, we cannot really integrate by parts in ξ anymore since the cut-off function ϕ(δ−1
X ∇ηΦ(ξ, η))

seems too sensitive. On the other hand, by (4.1), we are now localized to a ball of radius δX � 1 and
the kernel starts to have a simpler shape, see e.g. (4.2).

It is now easier to go back to the Fourier side9 and consider

ĨT (ξ) =

∫
R×R3

θ(
s

T
)ϕ(δ−1

X ∇ηΦ(ξ, η))eisΦ(ξ,η)ϕk(ξ)ϕ(ξ − η)ϕ(η)f̂(ξ − η)ĝ(η)dηds.

At this point, we can still integrate by parts in time. This essentially allows to gain a factor of (TΦ)−1,
so we can decompose

ĨT (ξ) = Ĩ1
T (ξ) + Ĩ2

T (ξ)

Ĩ1
T (ξ) =

∫
R×R3

θ(
s

T
)ϕ(δ−1

T Φ(ξ, η))ϕ(δ−1
X ∇ηΦ(ξ, η))eisΦ(ξ,η)ϕk(ξ)ϕ(ξ − η)ϕ(η)f̂(ξ − η)ĝ(η)dηds,

Ĩ2
T (ξ) =

∫
R×R3

θ(
s

T
)(1− ϕ(δ−1

T Φ(ξ, η)))ϕ(δ−1
X ∇ηΦ(ξ, η))eisΦ(ξ,η)ϕk(ξ)ϕ(ξ − η)ϕ(η)f̂(ξ − η)ĝ(η)dηds,

8Indeed, we see that whenever |x| & T , then the Kernel defining IT has rapid decay, whereas the case |x| � T certainly

has smaller contribution.
9Indeed, since x is so little constrained, it is harder to bound the function IT on the physical side, but since ξ is

constrained, it is easier to bound it on the Fourier side.
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where δT = T−1+δ. Of course, we can now integrate by parts in time in Ĩ2
T to get

Ĩ2
T (ξ) = − i

T

∫
R×R3

θ′(
s

T
)(1−ϕ(δ−1

T Φ(ξ, η)))ϕ(δ−1
X ∇ηΦ(ξ, η))eisΦ(ξ,η)ϕk(ξ)ϕ(ξ−η)ϕ(η)

f̂(ξ − η)ĝ(η)

Φ(ξ, η)
dηds.

Now, using that Φ(ξ, η) = Ψ(ξ) + O(T−1+2δ) and that ∇Ψ(ξ) ' A ξ
|ξ| on the support of integration of

both Ĩ1
T and Ĩ2

T , we see that we essentially have10

Ĩ1
T (ξ) ' Tδ3

X1{|Ψ|≤δT }(ξ) 'T− 1
2 +3δ1{||ξ|−R|≤δT }(ξ)

Ĩ2
T (ξ) . δ3

X

1

Ψ(ξ)
1{|Ψ|≥δT }(ξ) 'T− 3

2 +3δ 1

||ξ| −R|
1{||ξ|−R|≥δT }(ξ).

We now see that
‖ĨT ‖L2 . T−1+5δ,

which means that xI barely fails to be in L2. However, we can also see that

‖ĨT (ξ)‖L1 . T−
3
2 +5δ

is quite small, so that

ĨT (x) = F{ĨT (ξ)} ' T− 3
2 +5δ1{|x|.T}

is still in L1 and in particular is still consistent with eitΛ(F ĨT ) having a t−3/2+ decay.

Conclusion: Thus we need to allow for inputs produced by these interactions and in particular not
bounded in x−1L2. Indeed, these inputs were essentially independent of f , g.

Two things are worth noting: First, since we used very few assumptions on f and g, we should be able
to carry this analysis over also in the case where f and g are time-dependent and suitably controlled.

Second, that we essentially used a bound on ‖f̂‖L∞ and ‖ĝ‖L∞ and our outputs are certainly consistent
with this norm being bounded. Thus it could be advantageous to add this to the information captured
by our norm.
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10Note that since |Φ| . T−1 on the support of Ĩ1T , the exponential is essentially equal to 1, and assuming that f̂ , ĝ & 1

on the space-time resonant set, we practically have a bound from below for Ĩ1T . For Ĩ2T , it would be slightly more advantages
to do one additional integration by parts in time; however, this becomes harder in the nonlinear case when we let f g vary

in time.


