CUBIC FOURFOLDS, K3 SURFACES, AND
RATIONALITY QUESTIONS

BRENDAN HASSETT

This is a survey of the geometry of complex cubic fourfolds with a
view toward rationality questions. Smooth cubic surfaces have been
known to be rational since the 19th century [Dol05]; cubic threefolds
are irrational by the work of Clemens and Griffiths [CGT72]. Cubic
fourfolds are likely more varied in their behavior. While there are
examples known to be rational, we expect that most cubic fourfolds
should be irrational. However, no cubic fourfolds are proven to be
irrational.

Our organizing principle is that progress is likely to be driven by the
dialectic between concrete geometric constructions (of rational, stably
rational, and unirational parametrizations) and conceptual tools dif-
ferentiating various classes of cubic fourfolds (Hodge theory, moduli
spaces and derived categories, and decompositions of the diagonal).
Thus the first section of this paper is devoted to classical examples of
rational parametrizations. In section two we focus on Hodge-theoretic
classifications of cubic fourfolds with various special geometric struc-
tures. These are explained in section three using techniques from mod-
uli theory informed by deep results on K3 surfaces and their derived
categories. We return to constructions in the fourth section, focusing
on unirational parametrizations of special classes of cubic fourfolds. In
the last section, we touch on recent applications of decompositions of
the diagonal to rationality questions, and what they mean for cubic
fourfolds.
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1. INTRODUCTION AND CLASSICAL CONSTRUCTIONS

Throughout, we work over the complex numbers.

1.1. Basic definitions. Let X be a smooth projective variety of di-
mension n. If there exists a birational map p : P" -=» X we say that
X is rational. 1t is stably rational if X x P™ is rational for some m > 0.
If there exists a generically finite map p : P* --» X we say that X is
unirational; this is equivalent to the existence of a dominant map from
a projective space of arbitrary dimension to X.

A cubic fourfold is a smooth cubic hypersurface X C P°, with defin-
ing equation

F(u,v,w,z,y,2) =0

where F' € Clu,v,w,z,y, z] is homogeneous of degree three. Cubic
hypersurfaces in P5 are parametrized by

P(Clu, v, w, z,vy, 2]3) ~ P

with the smooth ones corresponding to a Zariski open U C P%,
Sometimes we will consider singular cubic hypersurfaces; in these

cases, we shall make explicit reference to the singularities. The singular

cubic hypersurfaces in P> are parametrized by an irreducible divisor

A =PP\U.

Birationally, A is a P* bundle over P°, as having a singularity at a
point p € P5 imposes six independent conditions.
The moduli space of cubic fourfolds is the quotient

C :=[U/PGLg].

This is a Deligne-Mumford stack with quasi-projective coarse moduli
space, e.g., by classical results on the automorphisms and invariants of
hypersufaces [MEK94] ch. 4.2]. Thus we have

dim(C) = dim(U) — dim(PGLg) = 55 — 35 = 20.

1.2. Cubic fourfolds containing two planes. Fix disjoint projec-
tive planes

P={u=v=w=0},P={r=y=2=0}CP

and consider the cubic fourfolds X containing P; and P,. For a concrete
equation, consider

X = {uz? +vy? + w2? = vz + 0%y + w2}
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which is in fact smooth! See [HKOT7, §5] for more discussion of this
example.
More generally, fix forms

Fi,F, € C[U,U,w;x7yvz]

of bidegree (1,2) and (2, 1) in the variables {u, v, w} and {x,y, z}. Then
the cubic hypersurface

X:{F1+F2:0}C]P)5

contains P, and P;, and the defining equation of every such hypersur-
face takes that form. Up to scaling, these form a projective space of
dimension 35. The group

{9 € PGLg : g(P1) = P1,9(P%) = P}

has dimension 17. Thus the locus of cubic fourfolds containing a pair
of disjoint planes has codimension two in C.

The cubic fourfolds of this type are rational. Indeed, we construct
a birational map as follows: Given points p; € P, and py € P, let
((p1,p2) be the line containing them. The Bezout Theorem allows us
to write

{pl,psz(pbm)} if 5(?1&2) ZX

( nx=
(p1,p2) { ¢(p1, p2) otherwise.

The condition ¢(py, py) C X is expressed by the equations
S = {Fl(u7 v,w;T,Y, Z) = FZ(ua v,w;x,Y, Z) = 0} C Pl,[x,y,z] XPQ,[u,v,w]'

Since S is a complete intersection of hypersurfaces of bidegrees (1,2)
and (2,1) it is a K3 surface, typically with Picard group of rank two.
Thus we have a well- defined morphism

pZP1><P2\S — X
(p1,p2) —  p(p1,p2)

that is birational, as each point of P°\ (P; U P») lies on a unique line
joining the planes.

We record the linear series inducing this birational parametrization:
p is given by the forms of bidegree (2,2) containing S and p~! by the
quadrics in P° containing P, and P»;

1.3. Cubic fourfolds containing a plane and odd multisections.
Let X be a cubic fourfold containing a plane P. Projection from P
gives a quadric surface fibration

q: X :=Blp(X) — P?
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with singular fibers over a sextic curve B C P2, If ¢ admits a rational
section then X is rational over K = C(P?) and thus over C as well.
The simplest example of such a section is another plane disjoint from
P. Another example was found by Tregub [Tre93]: Suppose there is a
quartic Veronese surface

VeePlc X

meeting P transversally at three points. Then its proper transform
V C X is a section of ¢, giving rationality.
To generalize this, we employ a basic property of quadric surfaces
due to Springer (cf. [Has99, Prop. 2.1] and [Swa89)]):
Let Q C 3. be a quadric surface smooth over a field K.
Suppose there exists an extension L/K of odd degree
such that Q(L) # 0. Then Q(K) # () and @ is rational
over K via projection from a rational point.
This applies when there exists a surface W C X intersecting the generic
fiber of ¢ transversally in an odd number of points. Thus we the fol-
lowing;:
Theorem 1. [Has99] Let X be a cubic fourfold containing a plane P
and projective surface W such that

deg(W) — (P, W)
1s odd. Then X 1is rational.

The intersection form on the middle cohomology of X is denoted by

()

Theorem [I] gives a countably infinite collection of codimension two
subvarieties in C parametrizing rational cubic fourfolds. Explicit bira-
tional maps p : P? x P? -Z5 X can be found in many cases [Has99,
§5].

We elaborate the geometry behind Theorem [I} Consider the relative
variety of lines of the quadric surface fibration ¢

f: F(X/P?) — P2
For each p € P2, f~1(p) parametrizes the lines contained in the quadric
surface ¢~!(p). When the fiber is smooth, this is a disjoint union of
two smooth PYs; for p € B, we have a single P! with multiplicity two.
Thus the Stein factorization
f:FR(X/P?) -8 —P?
yields a degree two K3 surface—the double cover S — P? branched

over B—and a P'-bundle r : F}(X/P?) — S. The key to the proof is
the equivalence of the following conditions (see also [Kuzl5, Th. 4.11]):
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e the generic fiber of ¢ is rational over K;
e ¢ admits a rational section;
e r admits a rational section.

The resulting birational map p=t : X --» P? x P? blows down the
lines incident to the section of ¢, which are parametrized by a surface
birational to S.

Cubic fourfolds containing a plane have been re-examined recently
from the perspective of twisted K3 surfaces and their derived categories
[Kuz10, MS12, [Kuz15]. The twisted K3 surface is the pair (.S, ), where
7 is the class in the Brauer group of S arising from r; note that n =0
if and only if the three equivalent conditions above hold. Applications
of this geometry to rational points may be found in [HVAVTI].

Remark 2. The technique of Theorem [I]applies to all smooth projective
fourfolds admiting quadric surface fibrations ¥ — P over a rational
surface P. Having an odd multisection suffices to give rationality.

1.4. Cubic fourfolds containing quartic scrolls. A quartic scroll
is a smooth rational ruled surface ¥ — P° with degree four, with the
rulings embedded as lines. There are two possibilities:

e P! x P! embedded via the linear series |Opiyp1 (1, 2)]
e the Hirzebruch surface Fy embedded via |O, (€ + f)| where f
is a fiber and £ a section at infinity (f¢ =1 and &2 = 2).

The second case is a specialization of the first. Note that all scrolls of
the first class are projectively equivalent and have equations given by

the 2 X 2 minors of:
uvoT oy
vow Yy z

Lemma 3. Let ¥ be a quartic scroll, realized as the image of P* x P!
under the linear series |Opiypi(1,2)|. Then a generic point p € P°
lies on a unique secant to . The locus of points on more than one
secant equals the Segre threefold P! x P? associated with the Veronese
embedding P* — P? of the second factor.

Proof. The first assertion follows from a computation with the dou-
ble point formula [Ful84, §9.3]. For the second, if two secants to
Y, U(s1,s2) and £(s3,s4), intersect then si,...,s, are coplanar. But
points s1,...,s4 € X that fail to impose independent conditions on
|Op1p1 (1, 2)| necessarily have at least three points on a line or all the
points on a conic contained in . O



6 BRENDAN HASSETT

Surfaces in P® with ‘one apparent double point’ have been studied
for a long time. See [Edg32] for discussion and additional classical
references and [BRS15] for a modern application to cubic fourfolds.

Proposition 4. If X is a cubic fourfold containing a quartic scroll %
then X is rational.

Here is the idea: Consider the linear series of quadrics cutting out
Y. It induces a morphism

Blg(X) — P(I'(Zx(2))) ~ P,
mapping X birationally to a quadric hypersurace. Thus X is rational.

Remark 5. Here is another approach. Let R ~ P! denote the ruling
of 3; for r € R, let £(r) C ¥ C X denote the corresponding line. For
distinct r1, 7 € R, the intersection

span(f(ry),£(r2)) N X
is a cubic surface containing disjoint lines. Let Y denote the closure
{(z,71,72) : @ € span(l(ry), £(r5)) N X} C X x Sym*(R) ~ X x P°.

The induced 7 : Y — P? is a cubic surface fibration such that the
generic fiber contains two lines. Thus the generic fiber Y, K = C(P?),
is rational over K and consequently Y is rational over C.

The degree of m; : ¥ — X can be computed as follows: It is the
number of secants to ¥ through a generic point p € X. There is one
such secant by Lemma [3] We will return to this in §4]

Consider the nested Hilbert scheme
Scr = {¥ C X C P°: ¥ quartic scroll, X cubic fourfold}

and let 7 : Scr — P denote the morphism forgetting ¥. We have
dim(Scr) = 56 so the fibers of 7 are positive dimensional. In 1940,
Morin [Mor4()] asserted that the generic fiber of 7 is one dimensional,
deducing (incorrectly!) that the generic cubic fourfold is rational. Fano
[Fand3] corrected this a few years later, showing that the generic fiber
has dimension two; cubic fourfolds containing a quartic scroll thus form
a divisor in C. We will develop a conceptual approach to this in §2.1]

1.5. Cubic fourfolds containing a quintic del Pezzo surface.
Let T C P° denote a quintic del Pezzo surface, i.e., T = Bly, 1, ps ps (P?)
anti-canonically embedded. Its defining equations are quadrics

Qi = ajkalm_ajlakm_’_ajmakly {17 R 5} = {iaj7k7l7m}aj <k<Il< m,
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where the a,, are generic linear forms on P°. The rational map
Q:P -5 P*
[u,v,w,x,y,z] = [Q17Q27Q37Q47Q5]

contracts each secant of T to a point. Note that a generic p € P° lies
on a unique such secant.

Proposition 6. A cubic fourfold containing a quintic del Pezzo surface
15 rational.

Indeed, restricting @ to X yields a birational morphism Bly(X) —
P4

1.6. Pfaffian cubic fourfolds. Recall that if M = (m,;) is skew-
symmetric 2n X 2n matrix then the determinant

det(M) = Pf(M)?,

where Pf(M) is a homogeneous form of degree n in the entries of M,
known as its Pfaffian. If the entries of M are taken as linear forms in
u, v, w, T,Y, z, the resulting hypersurface

X ={P{(M)=0}CP

is a Pfaffian cubic fourfold.
We put this on a more systematic footing. Let V' denote a six-
dimensional vector space and consider the strata

Gr(2,V) C Phaff(V) c P(A V),

where Pfaff (V') parametrizes the rank-four tensors. Note that Pfaff(V)
coincides with the secant variety to Gr(2, V'), which is degenerate, i.e.,
smaller than the expected dimension. We also have dual picture

Gr(2,V*) C Plaff(V*) C P(/\ V).

A codimension six subspace L C P(A\* V) corresponds to a codimension
nine subspace L+ € P(A\°V*). Let X = L+ N Pfaff(V*) denote the
resulting Pfaffian cubic fourfold and S = L N Gr(2,V) the associated
degree fourteen K3 surface.

Beauville and Donagi [BD85| (see also [Tre84]) established the fol-

lowing properties, when L is generically chosen:
e X is rational: For each codimension one subspace W C V, the

mapping
QW X - W
6 — ker(@)nW
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is birational. Here we interpret ¢ : V' — V* as an antisymmetric
linear transformation.
e X contains quartic scrolls: For each point [P] € S, consider

Yp = {[¢] € X : ker(¢) N P # 0}.

We interpret P C V as a linear subspace. This is the two-
parameter family described by Fano.
e X contains quintic del Pezzo surfaces: For each W, consider

Tw = {[¢] € X : ker(¢p) C W},

the indeterminacy of @y . This is a five-parameter family.
e The variety F;(X) of lines on X is isomorphic to S, the Hilbert
scheme of length two subschemes on S.

Tregub [Tre93] observed the connection between containing a quartic
scroll and containing a quintic del Pezzo surface. For the equivalence
between containing a quintic del Pezzo surface and the Pfaffian condi-
tion, see [BealOO, Prop. 9.2(a)].

Remark 7. Cubic fourfolds X containing disjoint planes P, and P,
admit ‘degenerate’ quartic scrolls and are therefore limits of Pfaffian
cubic fourfolds [Tre93]. As we saw in §1.2] the lines connecting P; and
P, and contained in X are parametrized by a K3 surface

SCP1><P2.

Given s € S generic, let ¢, denote the corresponding line and L; =
span(PB;, £s) ~ P3. The intersection

LinX=~RUQ;

where @); is a quadric surface. The surfaces (J; and ()2 meet along the
common ruling /,, hence Q)1 Uy, Q)2 is a limit of quartic scrolls.

Remark 8 (Limits of Pfaffians). A number of recent papers have ex-
plored smooth limits of Pfaffian cubic fourfolds more systematically.
For analysis of the intersection between cubic fourfolds containing a
plane and limits of the Pfaffian locus, see [ABBVAI14]. Auel and
Bolognese-Russo-Stagliano [BRS15] have shown that smooth limits of
Pfaffian cubic fourfolds are always rational; [BRS15] includes a careful
analysis of the topology of the Pfaffian locus in moduli.

1.7. General geometric properties of cubic hypersurfaces. Let
Gr(2,n+ 1) denote the Grassmannian of lines in P”. We have a tauto-
logical exact sequence

0—5— O?;Jrré,nﬂ) —Q—0
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where S and @) are the tautological sub- and quotient bundles, of ranks
2 and n — 1. For a hypersurface X C P", the variety of lines F;(X) C
Gr(2,n+1) parametrizes lines contained in X. If X = {G = 0} for some
homogeneous form G of degree d = deg(X) then Fi(X) = {og = 0},
where

oc € T(Gr(2,n + 1), Sym?(S*))

is the image of G under the d-th symmetric power of the transpose to

n—+1
S — OGJrr(z,nH)'

Proposition 9. [AK77, Th. 1.10] Let X C P",n > 3, be a smooth
cubic hypersurface. Then Fy(X) is smooth of dimension 2n — 6.

The proof is a local computation on tangent spaces.

Proposition 10. Let ¢ C X C P" be a smooth cubic hypersurface con-
taining a line. Then X admits a degree two unirational parametriza-
tion, i.e., a degree two mapping

p: P s X

Since this result is classical we only sketch the key ideas. Consider
the diagram

where the bottom arrow is projection from ¢. The right arrow is a P?
bundle. This induces

where ¢ is a conic bundle. The exceptional divisor £ ~ P(Nyx) C
Bly(X) meets each conic fiber in two points. Thus the base change

Y :=Bl(X) Xpn2 B — F
has a rational section and we obtain birational equvialences
YV -5 PUx BE-Ss P PR x-S Pl

The induced p: Y --» X is generically finite of degree two.
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2. SPECIAL CUBIC FOURFOLDS

We use the terminology very general to mean ‘outside the union of
a countable collection of Zariski-closed subvarieties’. Throughout this
section, X denotes a smooth cubic fourfold over C.

2.1. Structure of cohomology. Let X be a cubic fourfold and h €
H?*(X,Z) the Poincaré dual to the hyperplane class, so that h? =
deg(X) = 3. The Lefschetz hyperplane theorem and Poincaré dual-
ity give
h3
H*(X,Z)=17h, HYX,Z)=7Z—.

3
The Hodge numbers of X take the form

0 1 21 1 0

so the Hodge-Riemann bilinear relations imply that H*(X,Z) is a uni-
modular lattice under the intersection form (,) of signature (21,2).
Basic classification results on quadratic forms [Has00, Prop. 2.1.2] im-
ply
L:=HYX,Z)) ~ (+1)®' & (-1)%2.
The primitive cohomology
L) ={r}t ~ Ao U ¢ B

2 1 0 1
A22(1 2)’ U:<1 0)’

and FEy is the positive definite lattice associated with the correspond-
ing Dynkin diagram. This can be shown using the incidence corre-
spondence between X and its variety of lines F3 (X ), which induces the
Abel-Jacobi mapping [BD85]
(2.1) o HY(X,Z) — H*(F\(X),Z)(-1),
compatible with Hodge filtrations. (See [AT14, §2] for another ap-
proach.) Restricting to primitive cohomology gives an isomorphism

o HY(X, Z)prim — H*(F1(X), Z)prim(—1).

Note that H?(F(X),Z) carries the Beauville-Bogomolov form (,); see
for more discussion. The shift in weights explains the change in
signs

where

(a(z1), () = — (71, 72) .
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2.2. Special cubic fourfolds defined. For a very general cubic four-
fold X, any algebraic surface S C X is homologous to a complete
intersection, i.e.,

H**(X,7) := H (X, Z) N H*(Q%) ~ Zh?
SO
[S] =nh? n=deg(S)/3.

This follows from the Torelli Theorem and the irreducibility of the
monodromy action for cubic fourfolds [Voi86]; see §[2.3| below for more
details. In particular, X does not contain any quartic scrolls or any
surfaces of degree four; this explains why Morin’s rationality argument
could not be correct.

On the other hand, the integral Hodge conjecture is valid for cubic
fourfolds [Voil3, Th. 1.4], so every class

vy € H**(X,7)

is algebraic, i.e., arises from a codimension two algebraic cycle with
integral coefficients. Thus if

H**(X,Z) D 7h*

then X admits surfaces that are not homologous to complete intersec-
tions.

Definition 11. A cubic fourfold X is special if it admits an algebraic
surface S C X not homologous to a complete intersection. A labelling
of a special cubic fourfold consists of a rank two saturated sublattice

h* € K C H**(X,Z);
its discriminant is the determinant of the intersection form on K.
Let S C X be a smooth surface. Recall that
c1(Tx) = 3h, co(Tx) = 6h*

so the self-intersection

(S,8) = ca(Ng/x) = co(Tx|S) — ca(Ts) — c1(Ts)er (Tx|S) + c1(Ts)?
— 6H?+3HKs + K2 — v(S),

where H = h|S and x(S5) is the topological Euler characteristic.
(1) When X contains a plane P we have

K2 P
Ke= h2[ 3 1.
Pl1 3
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(2) When X contains a cubic scroll X, i.e., BL,(P?) embedded in
P*, we have

h? ¥
K= h*| 3 3
Y303 7

(3) When X contains a quartic scroll ¥, or a quintic del Pezzo
surface 7" then we have

| h? %y |h? T
Ku= R*[3 4 ~ R*[3 5, T=3hn-3,.
Y, 4 10 T|5 13

We return to cubic fourfolds containing two disjoint planes P, and
P;. Here we have a rank three lattice of algebraic classes, containing a
distinguished rank two lattice:

|2 P P
3 1 1
Pl1 3 0
pl1 0 3

2.3. Structural results. Voisin’s Torelli Theorem and the geometric
description of the period domains yields a qualitative description of the
special cubic fourfolds.

Consider cubic fourfolds X with a prescribed saturated sublattice

h*>e M C L~ HYX,Z)

of algebraic classes. The Hodge-Riemann bilinear relations imply that
M is positive definite. Then the Hodge structure on X is determined
by HY(X,Q3%) C M+ ® C, which is isotropic for (,). The relevant
period domain is

Dy = {[N\ € P(M*-®C): (\\) =0},

or at least the connected component with the correct orientation. (See
[Mar11l, §4] for more discussion of orientations.) The Torelli theorem
[Voi86] asserts that the period map

T C — F\Dth
X — HYX,0%)

is an open immersion; I is the group of automorphisms of the primitive
cohomology lattice LY arising from the monodromy of cubic fourfolds.
Cubic fourfolds with additional algebraic cycles, indexed by a saturated
sublattice

MC M CL,

correspond to the linear sections of Dy, of codimension rank(M'/M).
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Proposition 12. Fix a positive definite lattice M of rank r admitting
a saturated embedding

h>e M C L.

If this exists then M® = {h?}+ C M is necessarily even, as it embeds
in L°.

Let Cy; C C denote the cubic fourfolds X admiting algebraic classes
with this lattice structure

h*e M Cc H**(X,Z) C L.
Then Cyr has codimension v — 1, provided it is non-empty.

We can make this considerably more precise in rank two. For each
labelling K, pick a generator K N LY = Zv. Classifying orbits of prim-
itive positive vectors v € L? under the automorphisms of this lattice
associated with the monodromy representation yields:

Theorem 13. [Has00, §3] Let Cy C C denote the special cubic fourfolds
admitting a labelling of discriminant d. Then Cy is non-empty if and
only if d > 8 and d = 0,2 (mod 6). Moreover, Cq is an irreducible
divisor in C.

Fix a discriminant d and consider the locus C; C C. The Torelli The-
orem implies that irreducible components of C; correspond to saturated
rank two sublattices realizations

ReKclL

up to monodromy. The monodromy of cubic fourfolds acts on L via
Aut(L, h?), the automorphisms of the lattice L preserving h%. Standard
results on embeddings of lattices imply there is a unique K C L modulo
Aut(L, h?). The monodromy group is an explicit finite index subgroup
of Aut(L, h?), which still acts transitively on these sublattices. Hence
C, is irreducible.

The rank two lattices associated with labellings of discrimiant d are:

( h? S
h?| 3 1 itd=6n+2,n>1
S| 1 2n+1
K, =
h? S
B2 3 0 if d =6n,n > 2.
L S| 0 2n
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The cases d = 2 and 6

h: S h: S
(2.2) Ky= h*[3 1 K¢= hZ|3 0
SI1 1 S0 2

correspond to limiting Hodge structures arising from singular cubic
fourfolds: the symmetric determinant cubic fourfolds [Has00, §4.4] and
the cubic fourfolds with an ordinary double point [Has00), §4.2]. The
non-special cohomology lattice K7 is also well-defined for all (X, K,;) €
Ca.

Laza [Laz10], building on work of Looijenga [Loo09], gives precise
necessary and sufficient conditions for when the C;; in Proposition
are nonempty:

e M is positive definite and admits a saturated embedding h? €
M C L;
e there exists no sublattice h? € K ¢ M with K ~ K, or K as
in .
Detailed descriptions of the possible lattices of algebraic classes are
given by Mayanskiy [May11]. Furthermore, Laza obtains a character-
ization of the image of the period map for cubic fourfolds: it is com-
plement of the divisors parametrizing ‘special’ Hodge structures with
a labelling of discriminant 2 or 6.

Remark 14. Li and Zhang [LZ13] have found a beautiful generating
series for the degrees of special cubic fourfolds of discriminant d, ex-
pressed via modular forms.

We have seen concrete descriptions of surfaces arising in special cu-
bic fourfolds for d = 8,12,14. Nuer [Nuelbl §3] writes down explicit
smooth rational surfaces arising in generic special cubic fourfolds of
discriminants d < 38. These are blow-ups of the plane at points in
general position, embedded via explicit linear series, e.g.,

(1) For d = 18, let S be a generic projection into P° of a sextic del
Pezzo surface in PS.
(2) For d = 20, let S be a Veronese embedding of P2.

Question 15. Is the algebraic cohomology of a special cubic fourfold
generated by the classes of smooth rational surfaces?

Voisin has shown that the cohomology can be generated by smooth
surfaces (see the proof of [Voild, Th. 5.6]) or by possibly singular ra-
tional surfaces [Voi07]. Low discriminant examples suggest we might
be able to achieve both.
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A by-product of Nuer’s approach, where it applies, is to prove that
the Cy4 are unirational. However, for d > 0 the loci C4 are of general
type [TVA15]. So a different approach is needed in general.

2.4. Census of rational cubic fourfolds. Using this framework, we
enumerate the smooth cubic fourfolds known to be rational:
(1) cubic fourfolds in Cy4, the closure of the Pfaffian locus;

(2) cubic fourfolds in Cg, the locus containing a plane P, such that
there exists a class W such that (W, (h? — P)) is odd.

For the second case, note that the discriminant of the lattice M =
Zh* + ZP + ZW has the same parity as (W, (h? — P)).

Thus all the cubic fourfolds proven to be rational are parametrized
by one divisor Cy4 and a countably-infinite union of codimension two
subvarieties Cy; C Cs.

Question 16. Is there a rational (smooth) cubic fourfold not in the
enumeration above?

There are conjectural frameworks (see and also predict-
ing that many special cubic fourfolds should be rational. However,
few new examples of cubic fourfolds have been found to support these
frameworks.

3. ASSOCIATED K3 SURFACES

3.1. Motivation. The motivation for considering associated K3 sur-
faces comes from the Clemens-Griffiths [CGT2] proof of the irrationality
of cubic threefolds. Suppose X is a rational threefold. Then we have
an isomorphism of polarized Hodge structures

H*(X,Z) = &} H"(Ci, Z)(-1)

where the C; are smooth projective curves. Essentially, the C; are
blown up in the birational map

P3 -5 X.

If X is a rational fourfold then we can look for the cohomology of
surfaces blown up in the birational map

p: Pt -5 X.

Precisely, if P is a smooth projective fourfold, S C P an embedded
surface, and P = Blg(P) then we have [Ful84) §6.7]

HY(P,Z) ~ H*(P,Z) ®, H*(S,Z)(-1).
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The homomorphism H*(P,Z) — H 4(1:3, Z) is induced by pull-back; the
homomorphism H?(S,Z)(—1) — H*(P,Z) comes from the composition
of pull-back and push-forward

E =P(Ng/p)—— p

|

S

where Ng/p is the normal bundle and F the exceptional divisor. Blow-
ing up points in P contributes Hodge-Tate summands Z(—2) with neg-
ative self-intersection to its middle cohomology; these have the same
affect as blowing up a surface (like P?) with H%(S,Z) ~ Z. Blowing up
curves does not affect middle cohomology.

Applying the Weak Factorization Theorem [Wlo03, [AKMWO02]—
that every birational map is a composition of blow-ups and blow-downs
along smooth centers—we obtain the following:

Proposition 17. Suppose X is a rational fourfold. Then there exist
smooth projective surfaces Sy,...,S, and Ty, ...,T,, such that we have
an isomorphism of Hodge structures

..........

Unfortunately, it is not clear how to extract a computable invari-
ant from this observation; but see [ABGvB13, [Kul08|] for work in this
direction.

3.2. Definitions and reduction to lattice equivalences. In light of
examples illustrating how rational cubic fourfolds tend to be entangled
with K3 surfaces, it is natural to explore this connection on the level
of Hodge structures.

Let (X, K) denote a labelled special cubic fourfold. A polarized K3
surface (S, f) is associated with (X, K) if there exists an isomorphism
of lattices

HYX,7Z) > K+ = f+ c H*(S,Z)(-1)
respecting Hodge structures.

Example 18 (Pfaffians). Let X be a Pfaffian cubic fourfold (see §1.0)
and

| h? 5y | T
K14: h2 3 4 ~ h,2 3 5 >
Yyl 4 10 T|5 13

the lattice containing the classes of the resulting quartic scrolls and
quintic del Pezzo surfaces. Let (S, f) be the K3 surface of degree 14
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arising from the Pfaffian construction. Then (S, f) is associated with
(X, K14).

Example 19 (A suggestive non-example). As we saw in 1.6, a cubic
fourfold X containing a plane P gives rise to a degree two K3 surface
(S, f). However, this is not generally associated with the cubic fourfold.
If Ks C HY(X,Z) is the labelling then

Ky C f~
as an index two sublattice [vG05, §9.7]. However, when the quadric
bundle ¢ : Blp(X) — P? admits a section (so that X is rational), S

often admits a polarization g such that (5, ¢g) is associated with some
labelling of X. See [Kuzl0l [Kuzl5] for further discussion.

Proposition 20. The existence of an associated K3 surface depends
only on the discriminant of the rank two lattice K.

Here is an outline of the proof; we refer to [Has00, §5] for details.

Recall the discussion of Theorem [13]in For each discriminant
d = 0,2 (mod 6) with d > 6, there exists a lattice K7 such that each
special cubic fourfold of discriminant d (X, K) has K+ ~ K. Consider

the primitive cohomology lattice
Ag:= f+C H*(S,Z)(—1)

for a polarized K3 surface (S, f) of degree d. The moduli space Ny of
such surfaces is connected, so A, is well-defined up to isomorphism.

We claim (X, K;) admits an associated K3 surface if and only if there
exists an isomorphism of lattices

L:Kj';)Ad.

This is clearly a necessary condition. For sufficiency, given a Hodge
structure on A4 surjectivity of the Torelli map for K3 surfaces [Siu81]
ensures there exists a K3 surface S and a divisor f with that Hodge
structure. It remains to show that f can be taken to be a polarization
of S, i.e., there are no (—2)-curves orthogonal to f. After twisting and
applying ¢, any such curve yields an algebraic class R € H**(X,Z)
with (R, R) = 2 and (h?, R) = 0. In other words, we obtain a labelling

K¢ = (h*,R) C H'(X,Z).

Such labellings are associated with nodal cubic fourfolds, violating the
smoothness of X.

Based on this discussion, it only remains to characterize when the lat-
tice isomorphism exists. Nikulin’s theory of discriminant forms [Nik79]
yields:
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Proposition 21. [Has00, Prop. 5.1.4]: Let d be a positive integer con-
gruent to 0 or 2 modulo 6. Then there exists an isomorphism

v K 5 Ag(—1)

if and only if d is not divisible by 4,9 or any odd prime congruent to 2
modulo 3.

Definition 22. An even integer d > 0 is admissible if it is not divisble
by 4,9 or any odd prime congruent to 2 modulo 3.

Thus we obtain:

Theorem 23. A special cubic fourfold (X, K;) admits an associated
K3 surface if and only if d is admissible.

3.3. Connections with Kuznetsov’s philosophy. Kuznetsov has
proposed a criterion for rationality expressed via derived categories
[Kuz10, Conj. 1.1] [Kuzl5]: Let X be a cubic fourfold, D°(X) the
bounded derived category of coherent sheaves on X, and Ax the sub-
category orthogonal to the exceptional collection {Ox, Ox(1),Ox(2)}.
Kuznetsov proposes that X is rational if and only if Ay is equivalent
to the derived category of a K3 surface. He verifies this for the known
examples of rational cubic fourfolds.

Addington and Thomas [AT14, Th. 1.1] show that the generic (X, Ky4) €
Cy4 satisfies Kuznetsov’s derived category condition precisely when d is
admissible. In we present some of the geometry behind this result.
Thus we find:

Kuznetsov’s conjecture would imply that the generic
(X, K4) € C4 for admissible d is rational.

In particular, special cubic fourfolds of discriminants d = 26, 38,42, . ..
would all be rational!

3.4. Naturality of associated K3 surfaces. There are a priori many
choices for the lattice isomorphism ¢ so a given cubic fourfold could ad-
mit several associated K3 surfaces. Here we will analyze this more
precisely. Throughout, assume that d is admissible.

We require a couple variations on C; C C:

e Let C) denote labelled cubic fourfolds, with a saturated lattice
K > h? of algebraic classes of rank two and discriminant d.
e Let C), denote pairs consisting of a cubic fourfold X and a sat-
urated embedding of K, into the algebraic cohomology.
We have natural maps
C,— Cl — Cq.
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The second arrow is normalization over cubic fourfolds admitting mul-
tiple labellings of discriminant d. To analyze the first arrow, note that
the K, admits non-trivial automorphisms fixing h? if and only if 6|d.
Thus the first arrow is necessarily an isomorphism unless 6|d. When
6|d the lattice Ky admits an automorphism acting by multiplication
by —1 on the orthogonal complement of h% C) is irreducible if this
involution can be realized in the monodromy group. An analysis of the

monodromy group gives:

Proposition 24. [Has00, §5]: For each admissible d > 6, C); is ir-
reducible and admits an open immersion into the moduli space Ny of
polarized K3 surfaces of degree d.

Corollary 25. Assume d > 6 is admissible. If d =2 (mod 6) then C4
is birational to Ny. Otherwise Cq is birational to a quotient of Ny by
an involution.

Thus for d = 42,78, ... cubic fourfolds X € C; admit two associated
K3 surfaces.
Even the open immersions from the double covers
jL,d . Cé — N d

are typically not canonical. The possible choices correspond to orbits
of the isomorphism

L KCJ[ = Ad(—l)
under postcomposition by automorphisms of Ay coming from the mon-
odromy of K3 surfaces and precomposition by automorphisms of Kj
coming from the the subgroup of the monodromy group of cubic four-
folds fixing the elements of K.

Proposition 26. [Has00, §5.2] Choices of
Jud : Cl— Ny
are in bijection with the set
{a€Z/dZ:a* =1 (mod 2d)}/ £1.
If d is divisible by r distinct odd primes then there are 2"~' possibilities.

Remark 27. The ambiguity in associated K3 surfaces can be expressed
in the language of equivalence of derived categories. Suppose that
(S1, f1) and (Sz, fo) are polarized K3 surfaces of degree d, both asso-
ciated with a special cubic fourfold of discriminant d. This means we
have an isomorphism of Hodge structures

HQ(Sh Z’)plrim ~ H2(527 Z)prim
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so their transcendental cohomologies are isomorphic. Orlov’s Theorem
[Or197, §3] implies S; and Sy are derived equivalent, i.e., their bounded
derived categories of coherent sheaves are equivalent.

Proposition 26| may be compared with the formula counting derived
equivalent K3 surfaces in [HLOY03]. We will revisit this issue in §3.7]

3.5. Interpreting associated K3 surfaces I. We offer geometric
interpretations of associated K3 surfaces. These are most naturally
expressed in terms of moduli spaces of sheaves on K3 surfaces.

Let M be an irreducible holomorphic symplectic variety, i.e., a smooth
simply connected projective variety such that T'(M, Q3,) = Cw where w
is everywhere nondegenerate. The cohomology H?(M,Z) admits a dis-
tinguished integral quadratic form (), called the Beauville-Bogomolov
form [Bea83|]. Examples include:

e K3 surfaces S with (,) the intersection form;
e Hilbert schemes S of length n zero dimensional subschemes
on a K3 surface S, with

(3.1) H2(SM 7)) ~ H*(S,Z) ®, 76, (8,0) = —2(n— 1),
where 20 parametrizes the non-reduced subschemes.

Example 28. Let (S, f) be a generic degree 14 K3 surface. Then
Sl ~ Fy(X) c Gr(2,6) where X is a Pfaffian cubic fourfold (see §1.6)).
The polarization induced from the Grassmannian is 2 f — 54; note that

(2f —50,2f —55) =4-14 —25-2 =6.

The example implies that if F7(X) C Gr(2,6) is the variety of lines
on an arbitrary cubic fourfold then the polarization g = «(h?) satisfies

(9.9) =6, (9. H*(F1(X),Z)) = 2Z.
It follows that the Abel-Jacobi map is an isomorphism of abelian groups
(3.2) a: HY(X,Z) — H*(Fy(X),Z)(—1)
Indeed, « is an isomorphism on primitive cohomology and both
Zh* ® HY (X, Z)prim C HY(X,Z)
and
Zg & H*(F\(X),Z)prim C H*(F(X),Z)

have index three as subgroups.

The Pfaffian case is the first of an infinite series of examples:

Theorem 29. [Has00, §6] [Add16, Th. 2] Fiz an integer of the form
d=2(n*+n+1)/a®, where n > 1 and a > 0 are integers. Let X be
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a cubic fourfold in Cq with variety of lines F1(X). Then there exists a
polarized K3 surface (S, f) of degree d and a birational map

Fi(X) -2 S&

Ifa =1 and X € Cq in generic then Fi(X) ~ SB with polarization
g=2f—(2n+1)0.

The first part relies on Verbitsky’s global Torelli theorem for hy-
perkdhler manifolds [Marll]. The last assertion is proven via a de-
generation/specialization argument along the nodal cubic fourfolds,
which correspond to degree six K3 surfaces (5, f’). We specialize so
that F = $'® admits involutions not arising from involutions of S’.
Thus the deformation space of F' admits several divisors parametrizing
Hilbert schemes of K3 surfaces.

Since the primitive cohomology of S sits in H?(S1?,Z), the Abel-
Jacobi map explains why S is associated with X. If 3|d (d # 6)
then Theorem [29] and Corollary 25| yield two K3 surfaces S; and S,
such that

Fi(X) ~ S~ sl

With a view toward extending this argument, we compute the coho-

mology of the varieties of lines of special cubic fourfolds. This follows

immediately from (3.2)):

Proposition 30. Let (X, Ky) be a special cubic fourfold of discrim-
inant d, F1(X) C Gr(2,6) its variety of lines, and g = «(h?) the
resulting polarization. Then o(Ky) is saturated in H*(F\(X),Z) and

(

g T
g6 0 if d = 6n
710 —2n
Oé(Kd) ~ p T
g6 2 if d = 6n+2.
L T2 —2n

The following example shows that Hilbert schemes are insufficient to
explain all associated K3 surfaces:

Example 31. Let (X, K4) € Czy be a generic point, which admits
an associated K3 surface by Theorem [23] There does not exist a K3

surface S with F}(X) ~ SP, even birationally. Indeed, the H*(M,Z)
is a birational invariant of holomorphic symplectic manifolds but

= (5 3,)
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is not isomorphic to the Picard lattice of the Hilbert scheme

Pic(S?) ~ (24 _02) :

Addington [Add16] gives a systematic discussion of this issue.

3.6. Derived equivalence and Cremona transformations. In light
of the ambiguity of associated K3 surfaces (see Remark and the
general discussion in §3.1] it is natural to seek diagrams

(3.3) Bls, (P) — Blg, (P)
2N
P4 P4

where (3; is the blow-up along a smooth surface S;, with S; and S5
derived equivalent but not birational.

Cremona transformations of P* with smooth surfaces as their centers
have been classified by Crauder and Katz [CK89, §3]; possible centers
are either quintic elliptic scrolls or surfaces S C P* of degree ten given

by the vanishing of the 4 x 4 minors of a 4 x 5 matrix of linear forms.
A generic surface of the latter type admits divisors

|Ks H
Ks| 5 10,
H |10 10

where H is the restriction of the hyperplane class from P*; this lat-
tice admits an involution fixing Kg with H — 4Kg — H. See [Ran88|
Prop. 9.18ff.], [Ran91], and [Bak10l, p.280] for discussion of these sur-
faces.

The Crauder-Katz classification therefore precludes diagrams of the

form (3.3). We therefore recast our search as follows:
Question 32. Does there exist a diagram

X
N
P4 P4
where X is smooth and the (3; are birational projective morphisms, and
K3 surfaces S; and Sy such that

e 51 and S, are derived equivalent but not isomorphic;
e S is birational to a center of 3; but not to any center of (3;
e S, is birational to a center of 35 but not to any center of (3,7
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This could yield counterexamples to the Larsen-Lunts cut-and-paste
question on Grothendieck groups, similar to those found by Borisov
[Borl4]. Galkin and Shinder [GS14, §7] showed that if the class of
the affine line were a non-zero divisor in the Grothendieck group then
for each rational cubic fourfold X the variety of lines F3(X) would be
birational to S for some K3 surface S. (Note that Borisov shows it is
a zero divisor.) We have seen (Theorem that this condition holds
for infinitely many d.

3.7. Interpreting associated K3 surfaces II. Putting Theorem
on a general footing requires a larger inventory of varieties arising from
K3 surfaces. We shall use fundamental results on moduli spaces of
sheaves on K3 surfaces due to Mukai [Muk87], Yoshioka, and others.
Let S be a complex projective K3 surface. The Mukai lattice

H*(S,Z) = H°(S,Z)(—1) ® H*(S,Z) ® H*(S,Z)(1)
with unimodular form
((r1, D1, 1), (r2, D2, 82)) = =118 + D1 Dy — 1351

carries the structure of a Hodge structure of weight two. (The zeroth
and fourth cohomology are of type (1,1) and the middle cohomology
carries its standard Hodge structure.) Thus we have

H*(S,Z) ~ H*(S,7) &, (_01 _01) :
Suppose v = (r,D,s) € H*(S,Z) is primitive of type (1,1) with
(v,v) > 0. Assume that one of the following holds:
o >0
e r =0 and D is ample.

Fixing a polarization h on S, we may consider the moduli space M, (5)
of sheaves Gieseker stable with respect to h. Here r is the rank, D is
the first Chern class, and r + s is the Euler characteristic. For h chosen
suitably general (see [YosO1), §0] for more discussion), M, (S) is a pro-
jective holomorphic symplectic manifold deformation equivalent to the
Hilbert scheme of length @ + 1 zero dimensional subschemes of a K3
surface [YosO1l, §8], [Yos00, Th. 0.1]. Thus H?*(M,(S),Z) comes with
a Beauville-Bogomolov form and we have an isomorphism of Hodge
structures

vt /7o if (v,v) =0

(3.4) H*(M,(S),Z) = {UL if (v,0) >0
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Example 33. The case of ideal sheaves of length two subschemes is r =
1, D =0, and s = —1. Here we recover formula (3.1)) for H?(S®? 7) =
HQ(M(LO:_l) (5)7 Z) .

We shall also need recent results of Bayer-Macri [BM14b, [BM14al:
Suppose that M is holomorphic symplectic and birational to M, (S) for
some K3 surface S. Then we may interpret M as a moduli space of ob-
jects on the derived category of S with respect to a suitable Bridgeland
stability condition [BM14al, Th. 1.2].

Finally, recall Nikulin’s approach to lattice classification and embed-
dings [Nik79]. Given an even unimodular lattice A and a primitive non-
degenerate sublattice N C A, the discriminant group d(N) := N*/N is
equipped with a (Q/27Z)-valued quadratic form gy, which encodes most
of the p-adic invariants of N. The orthogonal complement N+ C A has
related invariants

(d(N*), —gne) =~ (d(N), qn).
Conversely, given a pair of nondegenerate even lattices with comple-

mentary invariants, there exists a unimodular even lattice containing
them as orthogonal complements [Nik79, §12].

Theorem 34. Let (X, K,y) denote a labelled special cubic fourfold of
discriminant d. Then d is admissible if and only if there exists a po-
larized K3 surface (S, f), a Mukai vector v = (r,af,s) € H(S,Z), a
stability condition o, and an isomorphism

w: M,(S) — Fy(X)

from the moduli space of objects in the derived category stable with re-
spect to o, inducing an isomorphism between the primitive cohomology

of (S, f) and the twist of the non-special cohomology of (X, Ky).
This is essentially due to Addington and Thomas |[AT14] [Add16].

Proof. Let’s first do the reverse direction; this gives us an opportunity
to unpack the isomorphisms in the statement. Assume we have the
moduli space and isomorphism as described. After perhaps applying a
shift and taking duals, we may assume r > 0 and a > 0; if a = 0 then
v =(1,0,—1), i.e., the Hilbert scheme up to birational equivalence. We
still have the computation of the cohomology

H?*(M,(S),Z) = v+ ¢ H*(S,Z);

see [BM14b, Th. 6.10] for discussion relating moduli spaces of Bridgeland-
stable objects and Gieseker-stable sheaves. Thus we obtain a saturated
embedding of the primitive cohomology of (.5, f)

Ag — H?*(M,(S),7Z).
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The isomorphism w allows us to identify this with a sublattice of
H*(F(X),Z) coinciding with a(Ky)*. Basic properties of the Abel-
Jacobi map imply that (S, f) is associated with (X, K;), thus d
is admissible by Theorem [23]

Now assume d is admissible and consider the lattice —K7, the or-
thogonal complement of K in the middle cohomology of a cubic four-
fold with the intersection form reversed. This is an even lattice of
signature (2, 19).

If X is a cubic fourfold then there is a natural primitive embedding
of lattices [Marlll §9]

H*(F\(X),Z) — A
where A is isomorphic to the Mukai lattice of a K3 surface
A = UG§4 ey (—Eg)®2.

Here ‘natural’ means that the monodromy representation on H?(Fy(X),Z)
extends naturally to A.

Now consider the orthogonal complement My to —K7 in the Mukai
lattice A. Since d is admissible

— Ky ~ Ay~ (—d) @ U @ (—Eg)®?

so d(—K7) ~ Z/dZ and q_r+ takes value —21 (mod 2Z) on one of

the generators. Thus d(M,) = Z/dZ and takes value 5 on one of the

generators. There is a distinguished lattice with these invariants
(d)e U.

Kneser’s Theorem [Nik79, §13] implies there is a unique such lattice,
i.e., Md ~ (d) &P U

Thus for each generator v € d(—K7) with (v,7) = —3 (mod 2Z),
we obtain an isomorphism of Hodge structures

H*(F\(X),Z) c A~ H*(S,7Z)

where (S, f) is a polarized K3 surface of degree d. Here we take f to
be one of generators of U+ C M. Let v € A generate the orthogonal
complement to H2(Fy(X),Z); it follows that v = (r,af,s) € H*(S,Z)
and after reversing signs we may assume 7 > 0.

Consider a moduli space M, (S) of sheaves stable with respect to
suitably generic polarizations on S. Our lattice analysis yields

¢ : H2<F1(X)7Z) ;) HQ(MU(S)7Z)7
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an isomorphism of Hodge structures taking a(Kj) to the primitive
cohomology of S. The Torelli Theorem [Marlll, Cor. 9.9] yields a bira-
tional map

wy : My(S) -=» Fy(X);

since both varieties are holomorphic symplectic, there is a natural in-
duced isomorphism [Huy99, Lem. 2.6]

@i H*(FU(X),Z) — H*(M,(S),Z),

compatible with Beauville-Bogomolov forms and Hodge structures.

A priori ¢ and w] might differ by an automorphism of the coho-
mology of M,(S). If this automorphism permutes the two connected
components of the positive cone in H?(M,(S),R), we may reverse the
sign of ¢. If it fails to preserve the moving cone, we can apply a se-
quence of monodromy reflections on M, (.S) until this is the case [Mar11l
Thm. 1.5,1.6]. These are analogues to reflections by (—2)-classes on the
cohomology of K3 surfaces and are explicitly known for manifolds defor-
mation equivalent to Hilbert schemes on K3 surface; see [HT01l, [HT09]
for the case of dimension four and [Marlll §9.2.1] for the general pic-
ture. In this situation, the reflections correspond to spherical objects
in the derived category of S orthogonal to v, thus give rise to autoe-
quivalences on the derived category [STO1, [ HLOY04]. We use these to
modify the stability condition on M, (S). The resulting

wy : H*(F(X),Z) = H*(M,(S),Z)

differs from ¢ by an automorphism that preserves moving cones, but
may not preserve polarizations. Using [BMI4al Th. 1.2(b)], we may
modify the stability condition on M, (S) yet again so that the polar-
ization g on Fi(X) is identified with a polarization on M,(S). Then
the resulting

w = w3 : My(S) -=» F(X);

preserves ample cones and thus is an isomorphism. Hence Fi(X) is
isomorphic to some moduli space of o-stable objects over S. ([l

Remark 35. As suggested by Addington and Thomas [AT14] §7.4], it
should be possible to employ stability conditions to show that Ay is
equivalent to the derived category of a K3 surface if and only if X
admits an associated K3 surface. (We use the notation of §3.3])

Remark 36. Two K3 surfaces S; and S are derived equivalent if and
only if
H(S,,7) ~ H(S,,7)
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as weight two Hodge structures [Orl97, §3]. The proof of Theorem
explains why the K3 surfaces associated with a given cubic fourfold are
all derived equivalent, as mentioned in Remark [27]

There are other geometric explanations for K3 surfaces associated
with special cubic fourfolds. Fix X to be a cubic fourfold not containing
a plane. Let M3(X) denote the moduli space of generalized twisted
cubics on X, i.e., closed subschemes arising as flat limits of twisted
cubics in projective space. Then Mj3(X) is smooth and irreducible of
dimension ten [LLSvST5, Thm. A]. Choose [C] € M3(X) such that C
is a smooth twisted cubic curve and W := span(C') N X is a smooth
cubic surface. Then the linear series |Oy (C)| is two-dimensional, so
we have a distinguished subvariety

[C] € P* C M3(X).

Then there exists an eight-dimensional irreducible holomorphic sym-
plectic manifold Z and morphisms

My(X) % 7' %5 7

where a is an étale-locally trivial P? bundle and ¢ is birational [LLSvS15)
Thm. B]. Moreover, Z is deformation equivalent to the Hilbert scheme
of length four subschemes on a K3 surface [AL15]. Indeed, if X is Pfaf-
fian with associated K3 surface S then Z is birational to SI*. It would
be useful to have a version of Theorem [34] with Z playing the role of
F(X).

4. UNIRATIONAL PARAMETRIZATIONS

We saw in that smooth cubic fourfolds always admit unira-
tional parametrizations of degree two. How common are unirational
parametrizations of odd degree?

We review the double point formula [Ful84, §9.3]: Let S’ be a non-
singular projective surface, P a nonsingular projective fourfold, and
f 8" — P a morphism with image S = f(5’). We assume that
f 8" — S is an isomorphism away from a finite subset of S’; equiva-
lently, S has finitely many singularities with normalization f : " — S.
The double point class D(f) € CHo(S’) is given by the formula

D(f) = LIS = (c(f*Tr)e(Ts) )2 N [S]
= LIS = (co(f*Tp) — c1r(Ts)er (f*Tp) + e1(Tsr)? — co(Tsr))

We define

Dscp = 5(I8Th = exTe) + & (T9)er (fTp) = ea(To? + x(T));
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if S has just transverse double points then Dgc-p is the number of these
singularities.

Example 37. (cf. Lemma Let S” ~ P! x P! C P be a quartic scroll,
P =P and f: S — P* a generic projection. Then we have

1
double point.

Proposition 38. Let X be a cubic fourfold and S C X a rational sur-
face of degree d. Suppose that S has isolated singularities and smooth
normalization S', with invariants D = deg(S), section genus g, and
self-intersection (S, S). If

D(D —2) 1
2 2
then X admits a unirational parametrization p : P* ——s X of degree o.

This draws on ideas from [HTO01], §7] and [Voil4l, §5].

(4.1) 0=0(S,X):= + (2 —29) (S,5) >0

Proof. We analyze points © € X such that the projection
f=m PP s P

maps S birationally to a surface S with finitely many singularities, and
f: S — S is finite and unramified. Thus S and S have the same
normalization.

Consider the following conditions:

(1) xis contained in the tangent space to some singular point s € S;
(2) x is contained in the tangent space to some smooth point s € S;
(3) x is contained in a positive-dimensional family of secants to S.

The first condition can be avoided by taking x outside a finite col-
lection of linear subspaces. The second condition can be avoided by
taking = outside the tangent variety of S. This cannot concide with a
smooth cubic fourfold, which contains at most finitely many two-planes
[BHBOG, Appendix]. We turn to the third condition. If the secants to
S sweep out a subvariety Y C P° then Y cannot be a smooth cubic
fourfold. (The closure of Y contains all the tangent planes to S.) When
the secants to S dominate P° then the locus of points in P? on infinitely
many secants has codimension at least two.

Projection from a point on X outside these three loci induces a
morphism

S — S =f(S)

birational and unramified onto its image. Moreover, this image has
finitely many singularities that are resolved by normalization.
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Let W denote the second symmetric power of S. Since S is rational,
W is rational as well. There is a rational map coming from residual
intersection

p W --» X
S1+8 — x
where £(s1,59) N X = {s1,59,2}. This is well-defined at the generic
point of W as the generic secant to S is not contained in X. (An
illustrative special case can be found in Remark )

The degree of p is equal to the number of secants to S through a
generic point of X. The analysis above shows this equals the number
of secants to S through a generic point of P°. These in turn correspond
to the number of double points of S arising from generic projection to
P4, ie.,

deg(p) = Dgcps — Dscx.
The double point formula gives
QDS,X = <S, S) - (CQ(TX|S/) - Cl(TS/)Cl(Tx|S/) + Cl(TS/) - CQ(TS/))
2 = (5,8) |~ (@(Tu]$) - aTs)er(TrlS) + a(Ts) - e(Ts))
where <5’ .S > = D? by Bezout’s Theorem. Taking differences (cf.

P4
yields

Dgeps — Dscx = %(D2 — 4D+ 2He (Ty) + (S, 9)),
where H = h|S. Using the adjunction formula
2 —2=H*+ KgH
we obtain (4.1)). 0

Corollary 39 (Odd degree unirational parametrizations). Retain the
notation of Proposition and assume that S is not homologous to a
complete intersection. Consider the discriminant

d=3(S,S)— D?

of
n? S
Rl3 D .
S| D (S,8)

Then the degree

oS, X) :§_2<5,5>+(2_29)+(D2_D)

has the same parity as %. Thus the degree of p : P* ——» X s odd

provided d is not divisble by four.
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Compare this with Theorem 45| below.

How do we obtain surfaces satisfying the assumptions of Proposi-
tion Nuer [Nuelb, §3] exhibits smooth such surfaces for all d < 38,
thus we obtain

Corollary 40. A generic cubic fourfold X € C4, for d = 14, 18, 26, 30,
and 38, admits a unirational parametrization of odd degree.

There are hueristic constructions of such surfaces in far more exam-
ples [HT01), §7]. Let X € C; and consider its variety of lines F(X);
for simplicity, assume the Picard group of F;(X) has rank two. Recent
work of [BHT15, BM14a] completely characterizes rational curves

R~P'cC i (X)

associated with extremal birational contractions of Fj(X). The inci-
dence correspondence

INC — Fi(X)

|

X

yields
S":=INC|IR— S C X,

i.e., a ruled surface with smooth normalization.

Question 41. When does the resulting ruled surfaces have isolated
singularities? Is this the case when R is a generic rational curve arising
as an extremal ray of a birational contraction?

The discussion of [HT01], §7] fails to address the singularity issues,
and should be seen as a heuristic approach rather than a rigorous con-
struction. The technical issues are illustrated by the following:

Example 42 (Voisin’s counterexample). Assume that X is not special
so that Pic(F;(X)) = Zg. Let R denote the positive degree generator of
the Hodge classes Ny (X,Z) C Hy(Fi(X),Z); the lattice computations
in §3.5[imply that

1
¢R=§@m=3

Moreover, there is a two-parameter family of rational curves P! C
X, [PY] = R, corresponding to the cubic surfaces S’ C X singular along
a line.

These may be seen as follows: The cubic surfaces singular along
some line have codimension seven in the parameter space of all cubic
surfaces. However, there is a nine-parameter family of cubic surface
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sections of a given cubic fourfold, parametrized by Gr(4,6). Indeed,
for a fixed flag

(CPCPb
a tangent space computation shows that the cubic fourfolds

{X : X NP? singular along the line ¢}

dominate the moduli space C.

Let S’ C P3 be a cubic surface singular along a line and X D 5" a
smooth cubic fourfold. Since the generic point of X does not lie on a se-
cant line of S’, it cannot be used to produce a unirational parametriza-
tion of X. The reasoning for Proposition [38 and formula is not
valid, as S’ has non-isolated singularities.

Nevertheless, the machinery developed here indicates where to look
for unirational parameterizations of odd degree:

Example 43 (d = 42 case). Let X € Cyy be generic. By Theorem 29]
Fi(X) ~ TP where (T, f) is K3 surface of degree 42 and g = 2f — 94.
Take R to be one of the rulings of the divisor in T2 parametrizing non-
reduced subschemes, i.e., those subschemes supported at a prescribed
point of T'. Note that R - g =9 so the ruled surface S associated with
the incidence correspondence has numerical invariants:

n* S
h*1 3 9
S|19 41

Assuming S has isolated singularities, we have Dg-xy = 8 and X admits
a unirational parametrization of degree o(S C X) = 13. Challenge:
Verify the singularity assumption for some X € Cys.

5. DECOMPOSITION OF THE DIAGONAL

Let X be a smooth projective variety of dimension n over C. A
decomposition of the diagonal of X is a rational equivalence in CH" (X x
X)

NAx =N{z x X} + Z,

where N is a non-zero integer, z € X (C), and Z is supported on X x D
for some subvariety D C X. Let N(X) denote the smallest positive
integer NV occuring in a decomposition of the diagonal, which coincides
with the greatest common divisor of such integers. If N(X) = 1 we say
X admits an integral decomposition of the diagonal.
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Proposition 44. [ACTP13, Lem. 1.3] [Voil5al Lem. 4.6] X admits a
decomposition of the diagonal if and only if

Ay ={P € CHy : deg(P) = 0}

1s universally N -torsion for some positive integer N, i.e., for each ex-
tension F//C we have NAy(Xrp) = 0. Moreover, N(X) is the annihila-
tor of the torsion.

We sketch this for the convenience of the reader: Basic properties of
Chow groups give the equivalence of the decomposition of NAx with
NAy(Xcexy) = 0. Indeed, Ag(Xc(x)) is the inverse limit of Ay(X x U)
for all open U C X. Conversely, taking the basechange of a decomposi-
tion of the diagonal to the extension F' gives that Ay(Xr) is annihilated
by N.

We recall situations where we have decompositions of the diagonal:

Rationally connected varieties. Suppose X is rationally connected
and choose 5 € Hy(X,Z) such that the evaluation

MO,Q(Xaﬁ) — X xX

is dominant. Fix an irreducible component M of Myo(X, ) Xxxx
C(X x X). Then N(X) divides the index ¢(M). Indeed, each effective
zero-cycle Z C M corresponds to |Z] conjugate rational curves joining
generic 1,7, € X. Together these give |Z|z; = |Z|z, in CHo(X¢(x))-
Thus we obtain a decomposition of the diagonal. See [CT05] Prop. 11]
for more details.

Unirational varieties. If p : P" --» X has degree p then N(X)|o.
Thus N(X) divides the greatest common divisor of the degrees of uni-
rational parametrizations of X. A cubic hypersurface X of dimen-
sion at least two admits a degree two unirational parametrization (see
Prop [10), so N(X)|2. We saw in §4 that many classes of special cu-
bic fourfolds admit odd degree unirational parametrizations. In these
cases, we obtain integral decompositions of the diagonal.

Rational and stably rational varieties. The case of rational vari-
eties follows from our analysis of unirational parametrizations. For the
stably rational case, it suffices to observe that

Ag(Y) ~ Ay(Y x PY)

and use the equivalence of Proposition 44| (see [Voilbal, Prop. 4.7] for
details). Here we obtain an integral decomposition of the diagonal.

Remarkably, at least half of the special cubic fourfolds admit integral
decompositions of the diagonal:
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Theorem 45. [Voildl Th. 5.6] A special cubic fourfold of discriminant
d =2 (mod 4) admits an integral decomposition of the diagonal.

This suggests the following question:

Question 46. Do special cubic fourfolds of discriminant d = 2 (mod 4)
always admit unirational parametrizations of odd degree? Are they
stably rational?

Cubic fourfolds do satisfy a universal cohomological condition that
follows from an integral decomposition of the diagonal: They admit
universally trivial unramified H3. This was proved first for cubic four-
folds containing a plane (d = 8) using deep properties of quadratic
forms [ACTP13], then in general by Voisin [Voil5h, Exam. 3.2].

Question 47. Is there a cubic fourfold X with
Ky=H*?*(X,7Z), d=0 (mod 4),

and admitting an integral decomposition of the diagonal? A unirational
parametriziation of odd degree?
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