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Rational surfaces over nonclosed fields

Brendan Hassett

Abstract. This paper is based on lectures given at the Clay Summer School
on Arithmetic Geometry in July 2006.

These notes offer an introduction to the birational geometry of algebraic sur-
faces, emphasizing the aspects useful for arithmetic. The first three sections are
explicitly devoted to birational questions, with a special focus on rational surfaces.
We explain the special rôle these play in the larger classification theory. The ge-
ometry of rational ruled surfaces and Del Pezzo surfaces is studied in substantial
detail. We extend this theory to geometrically rational surfaces over non-closed
fields, enumerating the minimal surfaces and describing their geometric properties.
This gives essentially the complete classification of rational surfaces up to birational
equivalence.

The final two sections focus on singular Del Pezzo surfaces, universal torsors,
and their algebraic realizations through Cox rings. Current techniques for count-
ing rational points (on rational surfaces over number fields) often work better for
singular surfaces than for smooth surfaces. The actual enumeration of the rational
points often boils down to counting integral points on the universal torsor. Uni-
versal torsors were first employed in the (ongoing) search for effective criteria for
when rational surfaces over number fields admit rational points.

It might seem that these last two topics are far removed from birational ge-
ometry, at least the classical formulation for surfaces. However, singularities and
finite-generation questions play a central rôle in the minimal model program. And
the challenges arising from working over non-closed fields help highlight structural
characteristics of this program that usually are only apparent over C in higher
dimensions. Indeed, these notes may be regarded as an arithmetically motivated
introduction to modern birational geometry.

In general, the prerequisites for these notes are a good understanding of alge-
braic geometry at the level of Hartshorne [Har77]. Some general understanding
of descent is needed to appreciate the applications to non-closed fields. Readers
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interested in applications to positive characteristic would benefit from some expo-
sure to étale cohomology at the level of Milne [Mil80]. There is one place where
we do not fully observe these prerequisites: The discussion of the Cone Theorem
is not self-contained although we do sketch the main ideas. Thankfully, a number
of books ([CKM88], [KM98], [Rei97], [Kol96],[Mat02]) give good introductory
accounts of this important topic.

Finally, we should indicate how this account relates to others in the literature.
The general approach taken to the geometry of surfaces over algebraically closed
fields owes much to Beauville’s book [Bea96] and Reid’s lecture notes [Rei97].
The extensions to non-closed fields draw from Kollár’s book [Kol96]. Readers
interested in details of the Galois action on the lines of a Del Pezzo surface and its
implications for arithmetic should consult Manin’s classic book [Man74] and the
more recent survey [MT86]. The books [CKM88, KM98, Mat02] offer a good
introduction to modern birational geometry; [Laz04] has a comprehensive account
of linear series. We have made no effort to explain how universal torsors and Cox
rings are used for the descent of rational points; the recent book of Skorobogatov
[Sko01] does a fine job covering this material.

I am grateful to Anthony Várilly-Alvarado, Michael Joyce, Ambrus Pál, and
other members of the summer school for helpful comments.

1. Rational surfaces over algebraically closed fields

Let k be an algebraically closed field. Throughout, a variety will designate an
integral separated scheme of finite type over k.

1.1. Classical example: Cubic surfaces. Here a cubic surface means a
smooth cubic hypersurface X ⊂ P3. We recall a well-known construction for such
surfaces:

Let p1, . . . , p6 ∈ P2 be points in the projective plane in general position, i.e.,

• the points are distinct;
• no three of the points are collinear;
• the six points do not lie on a plane conic.

Consider the vector space of homogeneous cubics vanishing at these points; it is an
exercise to show this has dimension four

Ip1,...,p6
(3) = 〈F0, F1, F2, F3〉

and has no additional basepoints.
The resulting linear series gives a rational map

ρ : P2
99K P3

[x0, x1, x2] 7→ [F0, F1, F2, F3]

that is not well-defined at p1, . . . , p6. Consider the blow-up

β : X := Blp1,...,p6
P2 → P2

with exceptional divisors
E1, . . . , E6.

Blowing up the base scheme of a linear series resolves its indeterminacy, so we
obtain a morphism

j : X → P3
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with j = ρ ◦ β.

Proposition 1.1. The morphism j gives a closed embedding of X in P3.

We leave the proof as an exercise.
Given this, we may describe the image of j quite easily. The first step is to

analyze the Picard group Pic(X) and its associated intersection form

Pic(X) × Pic(X) → Z

(D1, D2) 7→ D1 ·D2
.

We recall what happens to the intersection form under blow-ups. Let β : Y → P
be the blow-up of a smooth surface at a point, with exceptional divisor E. Then
we have an orthogonal direct-sum decomposition

Pic(Y ) = Pic(P ) ⊕⊥ ZE, E · E = E2 = −1,

where the inclusion Pic(P ) →֒ Pic(Y ) is induced by β∗.
Returning to our particular situation, we have

Pic(X) = ZL⊕ ZE1 ⊕ · · · ⊕ ZE6.

Here L is the pullback of the hyperplane from P2 with L2 = L ·L = 1 and L ·Ea = 0
for each a. We also have Ea · Eb = 0 for a 6= b.

Since j is induced by the linear series of cubics with simple basepoints at
p1, . . . , p6, we have

j∗OP3(1) = OX(3L− E1 − · · · −E6)

so that

deg(j(X)) = (3L− E1 − · · · −E6)
2 = 9 − 6 = 3.

This proves that the image is a smooth cubic surface. The images of the exceptional
divisors E1, . . . , E6 have degree

Ei · (3L− E1 − · · · −E6) = 1

and thus are lines on our cubic surface.

Proposition 1.2. The cubic surface j(X) ⊂ P3 contains the following 27 lines:

• the exceptional curves Ea;
• proper transforms of lines through pa and pb, with class L− Ea − Eb;
• proper transforms of conics through five basepoints pa, pb, pc, pd, pe, with

class 2L− Ea − Eb − Ec − Ed − Ee.

This beautiful analysis leaves open a number of classification questions:

(1) Does every cubic surface arise as the blow-up of P2 in six points in general
linear position?

(2) Are there exactly 27 lines on a cubic surface?

To address these, we introduce some general geometric definitions:

Definition 1.3. Let Y be a smooth projective surface with canonical classKY ,

i.e., the divisor class associated with the differential two-forms Ω2
Y =

∧2
Ω1

Y . We
say that Y is a Del Pezzo surface if −KY is ample, i.e., there exists an embedding
Y ⊂ PN such that OPN (1)|Y = OY (−rKY ) for some r > 0.

Note that if Y is Del Pezzo then K2
Y > 0.
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Remark 1.4. Let X ⊂ P3 be a cubic surface and H the hyperplane class on
P3. Adjunction

KX = (KP3 +X)|X = (−4H + 3H)|X = −H |X

implies that any cubic surface is a Del Pezzo surface.

Definition 1.5. Let Y be a smooth projective surface. A (−1)-curve is a
smooth rational curve E ⊂ Y with E2 = −1.

Of course, exceptional divisors are the main examples. We also have the fol-
lowing characterization.

Proposition 1.6. Let Y be a smooth projective surface. Let E ⊂ Y be an
irreducible curve with

E2 < 0, KY · E < 0.

Then E is a (−1)-curve. In particular, on a Del Pezzo surface every irreducible
curve with E2 < 0 is a (−1)-curve.

Proof. Let pa(E) denote the arithmetic genus of E. Since E is an irreducible
curve we know that pa(E) ≥ 0 with equality if and only if E ≃ P1. Combining this
with the adjunction formula, we obtain

−2 ≤ 2pa(E) − 2 = E · (KY + E).

Thus E2 = −1, KY · E = −1, and E is a smooth rational curve. �

Remark 1.7. The lines on a cubic surface are precisely its (−1)-curves. Indeed,
if ℓ ⊂ X is a line then the genus formula gives

−2 = 2g(ℓ) − 2 = ℓ2 +KX · ℓ = ℓ2 − 1.

Suppose then that

ℓ = aL− b1E1 − · · · − b6E6

is a line on a cubic surface. Then the following equations must be satisfied

1 = −KX · ℓ = 3a− b1 − b2 − b3 − b4 − b5 − b6
−1 = ℓ2 = a2 − b21 − b22 − b23 − b24 − b25 − b26

and these can be solved explicitly. There are precisely 27 solutions; see Exer-
cise 1.1.6 and [Man74, 26.2], especially for the connection with root systems. Thus
the cubic surfaces arising as blow-ups of P2 in six points in general position have
precisely 27 lines.

We extend this analysis to all smooth cubic surfaces:

Theorem 1.8. Let P19 = P(Sym3(k4)) parametrize all cubic surfaces and let

Z = {(X, ℓ) : X cubic surface, ℓ ⊂ X line } ⊂ P19 × G(1, 3)

denote the incidence correspondence. Let U ⊂ P19 denote the locus of smooth cubic
surfaces and

π1 : ZU := Z ×P19 U → U

the projection. Then π1 is a finite étale morphism.

Since U is connected the degree of π1 is constant, and we conclude

Corollary 1.9. Every smooth cubic surface has 27 lines.
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Proof. (cf. [Mum95, p. 173 ff.]) We claim that Z is proper and irreducible
of dimension 19: Each line ℓ is contained in a 20− 4 = 16-dimensional linear series
of cubic surfaces, so the projection Z → G(1, 3) is a P15 bundle. Consequently, π1

is a proper morphism. In particular, for each one-parameter family of lines in cubic
surfaces (Xt, ℓt), the flat limit

lim
t→0

(Xt, ℓt)

is also a line in a cubic surface.
Let Nℓ/X denote the normal bundle of a line ℓ in a smooth cubic surface X .

We have Nℓ/X ≃ OP1(−1) so that

h0(Nℓ/X) = h1(Nℓ/X) = 0.

Recall that H0(Nℓ/X) (resp. H1(Nℓ/X)) is the tangent space (resp. obstruction
space) of the scheme of lines on X at ℓ. It follows then that ZU is smooth of relative
dimension zero over U , i.e., π1 is étale. Furthermore, proper étale morphisms are
finite. �

One further piece of information can be extracted from this result: The inter-
sections of the 27 lines are constant over all the cubic surfaces. This means that
every cubic surface X contains a pair (and even a sextuple!) of pairwise disjoint
lines (cf. Exercise 1.1.3).

Proposition 1.10. Let X be a smooth cubic surface containing disjoint lines
E1 and E2. Let ℓ1, . . . , ℓ5 denote the lines in X meeting E1 and E2. There is a
birational morphism

ϕ : X → P1 × P1

x 7→ (pE1
(x), pE2

(x))

where pEi
: P3

99K P1 is projection from Ei. This contracts ℓ1, . . . , ℓ5 to distinct
points q1, . . . , q5 ∈ P1 × P1 satisfying the following genericity conditions:

• no pair of them lie on a ruling of P1 × P1;
• no four of them lie on a curve of bidegree (1, 1);

The inverse ϕ−1 is given by the linear system of forms of bidegree (2, 2) through
q1, . . . , q5.

We leave this as an exercise.

Corollary 1.11. Every smooth cubic surface is isomorphic to P2 blown up at
six points.

Proof. We first verify that Blq1,...,q5
P1 × P1 is isomorphic to P2 blown up at

six points. Indeed, we can realize P1 × P1 as a smooth quadric Q ⊂ P3, so that the
fibers of each projection are lines on Q. Let q ∈ Q be any point and R1 and R2 the
two rulings passing though q. Projection from q

pq : Q 99K P2

lifts to a morphism
BlqQ→ P2

contracting the proper transforms of R1 and R2. �

Before concluding, we draw two morals from this story:

• (−1)-curves govern much of the geometry of a Del Pezzo surface;
• classifying (−1)-curves is a crucial step in classifying the surfaces.
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Exercises.

Exercise 1.1.1. Show that six distinct points on the plane impose independent
conditions on cubics if no four of the points are collinear. Show that the resulting
linear system has base scheme equal to these six points.

Exercise 1.1.2. Give a careful proof of Proposition 1.1.

Exercise 1.1.3. Verify that the 27 curves described in Proposition 1.2 are in
fact lines on the cubic surface. Check that each of these has self-intersection −1.
Show that

(1) each line is intersected by ten other lines;
(2) any pair of disjoint lines is intersected by five lines;
(3) each line is contained in a collection of six pairwise disjoint lines.

Exercise 1.1.4. Prove Proposition 1.10.

Exercise 1.1.5. Let X be a smooth cubic surface. Show that the intersection
form on K⊥

X ⊂ Pic(X) is isomorphic to

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

ρ1 −2 1 0 0 0 0
ρ2 1 −2 1 0 0 0
ρ3 0 1 −2 1 0 1
ρ4 0 0 1 −2 1 0
ρ5 0 0 0 1 −2 0
ρ6 0 0 1 0 0 −2

.

Up to sign, this is the Cartan matrix associated to the root system E6.

Exercise 1.1.6. Consider a line on a cubic surface ℓ ⊂ X , and the associated
class λ = 3ℓ + KX ∈ K⊥

X . Verify that λ2 = −12 and λ · η ≡ 0 (mod 3) for each
η ∈ K⊥

X ⊂ Pic(X). Deduce that there are a finite number of lines on a cubic
surface.

1.2. The structure of birational morphisms of surfaces. Our first task
is to show that all (−1)-curves arise as exceptional curves of blow-ups:

Theorem 1.12 (Castelnuovo contraction criterion). [Har77, V.5.7] Let X be
a smooth projective surface and E ⊂ X a (−1)-curve. Then there exists a smooth
projective surface Y and a morphism β : X → Y contracting E to a point y ∈ Y ,
so that X is isomorphic to BlyY . Each morphism ψ : X → Z contracting E admits
a factorization

ψ : X
β
→ Y → Z.

Proof. (Sketch) Let H be a very ample divisor on X such that

H1(X,OX(H)) = 0.

Set L = OX(H+(H ·E)E) so that L|E ≃ OE . For each n > 0 we have the inclusion

OX(nH) →֒ Ln = OX(nH + n(H ·E)E)

which is an isomorphism away from E. Thus the sections in the image of

Γ(X,OX(nH)) →֒ Γ(X,Ln)

induce an embedding of X \ E.
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We claim that L is globally generated, so we have a morphism

β : X → Y := Proj(
⊕

n≥0

Γ(X,Ln)).

Since L|E is trivial, β necessarily contracts E to a point; β is an isomorphism away
from E.

Here is the idea: Since L|E is globally generated, it suffices to show that the
restriction

Γ(X,L) → Γ(E,L|E) ≃ Γ(P1,OP1)

is surjective. Taking the long exact sequence associated to

0 → L(−E) → L → L|E → 0,

we are reduced to showing that H1(X,L(−E)) = 0. Indeed, we can show induc-
tively that H1(X,OX(H + aE)) = 0 for a = 1, . . . , H ·E − 1: The exact sequence

0 → OX(H + (a− 1)E) → OX(H + aE) → OE(H ·E − a) → 0

expresses OX(H + aE) as an extension of sheaves with vanishing H1.
The trickiest bit is to check that Y is smooth and β is the blow-up of a point

of Y . The necessary local computation can be found in [Bea96, II.17] or [Har77,
pp. 415].

For the factorization step, the standard isomorphism

Pic(X) = β∗Pic(Y ) ⊕ ZE

identifies β∗Pic(Y ) with line bundles on X restricting to zero along E. Moreover,
the induced map

Γ(Y,M′) → Γ(X,β∗M′)

is an isomorphism. Suppose that M is very ample on Z so that ψ is induced by
certain sections of ψ∗M. However, M = β∗M′ for some M′ on Y and the relevant
sections of ψ∗M come from sections of M′. �

Theorem 1.13. Let φ : X → Y be a birational morphism of smooth projective
surfaces. Then there exists a factorization

X = X0
β1

→ X1 → · · · → Xr−1
βr

→ Xr = Y

where each βj is a blow-up of a point on Xj. (If φ is an isomorphism we take
X0 = Xr.)

Proof. We assume φ is not an isomorphism. Hence it is ramified and the
induced map

φ∗Ω2
Y → Ω2

X

is not an isomorphism. Since these sheaves are invertible, we can therefore write

φ∗Ω2
Y = Ω2

X(−(m1E1 + · · · +mrEr)),

where the Ei are irreducible φ-exceptional curves, i.e., φ contracts Ei to a point in
Y . Since φ∗KY |Ei

is trivial we have φ∗KY ·Ei = 0. The multiplicity mi is positive
because φ is ramified along Ei. In divisorial notation, we obtain the discrepancy
formula:

(1.1) KX = φ∗KY +
∑

miEi, mi > 0.
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By the Hodge index theorem [Har77, V.1.9], the intersection form on

Λ = ZE1 + · · · + ZEr

is negative definite, so in particular each E2
i < 0. We claim that KX · Ei < 0 for

some i; then Proposition 1.6 guarantees that Ei is a (−1)-curve.
We know that

(
∑

miEi)
2 =

∑

i

miEj · (
∑

j

mjEj) =
∑

i

miEi ·KX

is negative, because the intersection form on Λ is negative definite. Hence some
Ei ·KX must be negative.

Using the Castelnuovo criterion we contract Ei

X = X0 → X1,

so that X0 is the blow-up of X1 at a point. Moreover, φ factors through X1.
This factorization process terminates because the exceptional locus of φ has a finite
number of irreducible components. �

Definition 1.14. A smooth projective surface X is minimal if every birational
morphism φ : X → Y to a smooth variety is an isomorphism.

Theorem 1.13 says that X is minimal if and only if it has no (−1)-curves.

Exercises.

Exercise 1.2.1. Let X be the blow-up of P2 at [0, 0, 1], [0, 1, 0], [1, 0, 0]. Realize
X in P2 × P2 ⊂ P8 using the bihomogeneous equations

x0y0 = x1y1 = x2y2.

Verify that the proper transforms of the lines x0 = 0, x1 = 0, x2 = 0 are (−1)-curves
and write down explicit linear series contracting each one individually.

Exercise 1.2.2. Let X be a cubic surface, realized as P2 blown up at six points.
Describe a basepoint-free linear series on X contracting the six curves

2L− Ea − Eb − Ec − Ed − Ee.

What is the image of the corresponding morphism X → Y ?

1.3. Relative minimality and ruled surfaces. Let f : X → B denote a
dominant morphism from a smooth projective surface to a variety. We say that X
is minimal relative to f if there exists no commutative diagram

X
φ

−→ Y
ց ւ

B

where φ is birational and Y is smooth. In analogy to Theorem 1.13, X is minimal
relative to f if and only if there are no (−1)-curves in the fibers of f .

A ruled surface is a morphism f : X → B from a smooth projective surface to
a smooth curve whose generic fiber is rational; it is minimal if it is minimal relative
to f . If f is smooth then each fiber is isomorphic to P1; in this case, f : X → B is
called a P1-bundle.
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Proposition 1.15. Let X be a smooth projective surface and f : X → B a
P1-bundle. Then each b ∈ B admits an étale-open neighborhood U → B and an
isomorphism:

X ×B U
∼
→ P1 × U

ց ւ
U

Proof. Since f is smooth it admits a multisection M ⊂ X with f |M un-
branched over b; let U ⊂ M denote the open set where f is unramified. The pull-
back g : X ′ := X×BM → M admits the canonical diagonal section Σ. Consider the
direct images of OX′(Σ). Cohomology and base change implies that R1g∗OX′(Σ)
is trivial and E := g∗OX′(Σ) has rank two. Under these conditions cohomology
commutes with base change, so a fiber-by-fiber analysis shows that

g∗g∗OX′(Σ) → OX′(Σ)

is surjective and the induced morphism

X ′ → P(E)

is an isomorphism over M . �

Theorem 1.16. Let f : X → B be a minimal ruled surface. Then X is a
P1-bundle over B.

Before proving this, we’ll require a preliminary result.

Lemma 1.17. Let F denote the class of a fiber of f . Consider a fiber of f
with irreducible components E1, . . . , Er. Then we have E2

i < 0 and F · Ei = 0 for
each i and KX · Ei < 0 for some i. In particular, each reducible fiber contains a
(−1)-curve.

Proof. Each fiber of f is numerically equivalent to F , i.e., has the same
intersection numbers with curves in X . Since these fibers are generally disjoint
from the Ei, we have F ·Ei = 0 for each i and F · F = 0.

Express F =
∑r

i=1miEi where mi > 0 is the multiplicity of the fiber along Ei.
Note that F is connected, e.g., by Stein factorization. Thus each Ei meets some
Ej and

Ei ·
∑

j 6=i

mjEj = Ei · (F −miEi) > 0.

It follows that Ei · Ei < 0.
Finally, KX · F = −2 by adjunction, so KX ·Ei < 0 for some index. �

Proof. (Theorem 1.16)
The key point is to show that the fibers of f are all isomorphic to P1. Since f is

a dominant morphism from a nonsingular surface to a nonsingular curve, it is flat
with fibers of arithmetic genus zero. Each fiber is a Cartier divisor on X and thus
has no embedded points. Under the assumptions of Theorem 1.16, each fiber of f
is irreducible. We also have that each fiber has multiplicity one. Indeed, writing
F = mE we have

−2 = KX · F = mKX ·E

som = 1, 2. However, if m = 2 then adjunction yields 2g(E)−2 = E2+KXE = −1,
which is absurd. Thus each fiber of f is isomorphic to P1, and in particular f is
smooth. �
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We record one additional fact for future reference, whose proof is left as an
exercise:

Proposition 1.18. Let E1, . . . , Er be the components of a fiber of a ruled
surface; let F denote the class of the fiber. The induced intersection form on

(ZE1 + · · · + ZEr)/ZF

is negative definite and unimodular.

We now pursue a finer analysis of the structure of ruled surfaces.

Proposition 1.19. Let C be a variety defined over a field K such that CK̄ ≃
P1

K̄
. Then there exists a closed embedding C →֒ P2 as a plane conic. There is a

quadratic extension K ′/K such that CK′ ≃ P1
K′ .

We leave the proof as an exercise.
We apply Proposition 1.19 in the case where K is the function field of the base

B and C is the generic fiber f :

C ⊂ X
f◦ ↓ ↓ f

Spec(k(B)) → B

The Tsen-Lang theorem says that every quadratic form in ≥ 3 variables over
k(B) represents zero, so C(k(B)) 6= ∅. Each rational point corresponds to a section
Spec(k(B)) → C of f◦, and thus to a rational map from B to X . Since X is proper,
this extends uniquely to a section s : B → X of f . We have proven the following:

Proposition 1.20. Let f : X → B be a ruled surface. There exists a section
s : B → X of f .

Combining this with the argument for Proposition 1.15, we obtain

Corollary 1.21 (Classification of ruled surfaces). Every minimal ruled surface
f : X → B is isomorphic to P(E) for some rank-two vector bundle E on B.

Combining this with Grothendieck’s classification of vector bundles on P1 gives:

Corollary 1.22. Every ruled surface f : X → P1, minimal relative to f , is
isomorphic to a Hirzebruch surface

Fd := P(OP1 ⊕OP1(−d)), d ≥ 0.

In particular, ruled surfaces over P1 are rational.

See Exercise 1.3.3 for more details of the argument.

Exercises.

Exercise 1.3.1. Prove Proposition 1.19. Hint: Note that Ω1
C is an invertible

sheaf on C defined over K and coincides with OP1(−2) over CK̄ . Use the sections
of the dual (Ω1

C)∗ to embed C.

Exercise 1.3.2. Prove Proposition 1.18. Hint: Use the mechanism of the proof
of Theorem 1.16.
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Exercise 1.3.3. Give a detailed proof for Corollary 1.22. For the classification
assertion, show that each vector bundle E on P1 decomposes as

E ≃
r
⊕

i=1

OP1(ai), a1 ≤ a2 ≤ · · · ≤ ar.

To establish rationality, exhibit a nonempty open subset U ⊂ P1 such that E|U ≃
O⊕r

U .

Exercise 1.3.4. For each d ≥ 0, show there exists a diagram

Y
β

ւ
γ

ց
Fd Fd+1

where β (resp. γ) is the blow-up of Fd (resp. Fd+1) at a suitable point.

2. Effective cones and classification

From the modern point of view, the presence of (−1)-curves is controlled by
how the effective cone and the canonical class interact. In this section, we de-
velop technical tools for analyzing this interaction. We continue to work over an
algebraically closed field k.

2.1. Cones of curves and divisors. Let X be a smooth projective complex
variety, N1(X,Z) ⊂ H2(X,Z) the sublattice generated by homology classes of alge-
braic curves in X , and N1(X,Z) ⊂ H2(X,Z) the Néron-Severi group parametrizing
homology classes of divisors in X .

We can extend these definitions to fields of positive characteristic: Consider
the Chow group of dimension (resp. codimension) one cycles in X ; two cycles
are numerically equivalent if their intersections with any divisor (resp. curve) are
equal. We define N1(X,Z) (resp. N1(X,Z)) as the quotient of the corresponding
Chow group by the cycles numerically equivalent to zero. The rank of N1(X,Z)
is bounded by the second (étale) Betti number of X ; see [Mil80, V.3.28] for the
surface case.

Definition 2.1. A Cartier divisor D on a variety X is nef (numerically even-
tually free or numerically effective) if D · C ≥ 0 for each curve C ⊂ X .

Here is the main example: A Cartier divisorD is semiample if ND is basepoint-
free for some N ∈ N. Since ND remains basepoint-free when restricted to curves
C ⊂ X , we have D · C = degD|C ≥ 0.

We have the monoid of effective curves

NE1(X,Z) = {[D] ∈ N1(X,Z) : D effective sum of curves }

and the associated closed cone

NE1(X) = smallest closed cone containing NE1(X,Z) ⊂ N1(X,R),

as well as the monoid of effective divisors

NE1(X,Z) = {[D] ∈ N1(X,Z) : D effective divisor }

and the associated cone of pseudo-effective divisors

NE
1
(X) = smallest closed cone containing NE1(X,Z) ⊂ N1(X,R).
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We also have the nef cone NM
1
(X) ⊂ N1(X,R) and NM1

◦(X) its interior. Note

that NM
1
(X) and NE1(X) are dual in the sense that

NM
1
(X) = {D ∈ N1(X,R) : D · C ≥ 0 for each C ∈ NE1(X)}.

These cones are governed by the following general results:

Theorem 2.2. Let X be a proper variety and D a Cartier divisor on X.

(1) (Nakai criterion) D is ample if and only if Ddim(Z) ·Z > 0 for each closed
subvariety Z ⊂ X.

(2) (Kleiman criterion) Assume X is projective. Then D is ample if and only
if D ∈ NM1

◦(X), i.e., D ·C > 0 for each nonzero class C in the closure of
the cone of curves on X.

It is not difficult to verify that an ample divisor necessarily satisfies these condi-
tions; we leave this as an exercise. We refer the reader to [KM98, §1.5] for proofs
that these conditions are sufficient in general and to [Har77, §V.1] for Nakai’s
criterion in the special case of smooth projective surfaces.

Theorem 2.3. Let X be a smooth projective variety. A divisor D ∈ N1(X,Z)

lies in the pseudoeffective cone NE
1
(X) if and only if, for each ample H and rational

ǫ > 0, some multiple of D + ǫH is effective. It lies in the interior

NE1
◦(X) ⊂ NE

1
(X)

if and only if there exists an N ≫ 0 so that

ND = A+ E

where A is ample and E is effective. Such divisors are said to be big.

Proof. First, any divisor of the form H +E is in the interior of the pseudoef-
fective cone. If B is an arbitrary divisor then nH+B is very ample for some n > 0,
and n(H + E) +B is effective.

Conversely, let D lie in the interior of NE
1
(X). Consider

D − NM1
◦(X) ⊂ N1(X,R),

i.e., the cone of anti-ample divisor classes translated so that the vertex is at D.
Note that the ample cone of X is open, so we can pick a

B ∈ N1(X,Q) ∩ (D − NM1
◦(X))

and m > 0 so that E := mB is an effective divisor. Express

B = D − tA

for A ample and t ∈ Q>0. Thus

D =
1

m
E + tA

and clearing denominators gives the desired result.

If D is not in NE
1
(X) then, for each H ample, there exists an ǫ > 0 so that

D + ǫH is not effective. Conversely, if D ∈ NE
1
(X) then D + ǫH ∈ NE1

◦(X) and
we can write

N(D + ǫH) = A+ E

where N ≫ 0, A is ample, and E is effective. �
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Corollary 2.4. Let X be a smooth projective surface. A nef divisor D is big
if and only if D2 > 0. Indeed, any divisor D (not necessarily nef) such that D2 > 0
and D ·H > 0 for some ample divisor H is big.

In fact, the analogous statement is true in all dimensions [KM98, 2.61].

Proof. If D is big then we can express D = A + E, where A is an ample
Q-divisor and E is an effective Q-divisor. We expand

D2 = D · (A+ E) ≥ D · A = A · A+A · E > 0.

Conversely, if D2 > 0 then the Riemann-Roch formula implies either

h0(OX(mD)) ≥
D2

2
m2, m≫ 0,

or

h2(OX(mD)) ≥
D2

2
m2, m≫ 0.

The latter possibility would imply KX − mD is effective for m ≫ 0, which is
incompatible with D being nef. (Actually, we only need that D · H > 0 for some
ample divisor H .) Given A very ample, a straightforward dimension count shows
that h0(OX(mD − A)) remains positive for m ≫ 0, i.e., that D can be expressed
as a sum of an ample and an effective divisor. �

Exercises.

Exercise 2.1.1. Let X denote the blow-up of P2 at a point. Give examples of
big divisors D on X with D2 < 0.

Exercise 2.1.2. Let X be a smooth projective variety. Verify that the con-
ditions of the Nakai and Kleiman criteria are necessary for a divisor to be ample.
When X is a surface, deduce the sufficiency of the Kleiman criterion from the Nakai
criterion.

Exercise 2.1.3. The volume of a Cartier divisor D on an n-dimensional pro-
jective variety X is defined [Laz04, 2.2.31] as

vol(D) = lim sup
m→∞

h0(X,OX(mD))/(mn/n!).

When X is a smooth surface, show that D is big if and only if vol(D) > 0.

2.2. Examples of effective cones of surfaces. For surfaces that are ob-
tained by blowing up the plane β : X → P2, we write L for the pullback of the line
class on P2 and E1, E2, . . . for the exceptional curves.

(1) Let f1 and f2 denote the rulings of X = P1 × P1, so that Pic(X) =
Zf1 + Zf2. Then we have

NE1(X) = {a1f1 + a2f2 : a1, a2 ≥ 0}

and
NE◦

1(X) = {a1f1 + a2f2 : a1, a2 > 0}.

(2) If X is P2 blown up at one point then

NE1(X) = {aE + b(L− E) : a, b ≥ 0}.

(3) If X is P2 blown up at two points then

NE1(X) = {a1E1 + a2E2 + b(L− E1 − E2) : a1, a2, b ≥ 0}.
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(4) If X is P2 blown up at three non-collinear points then

NE1(X) = 〈L− E1 − E2, L− E1 − E3, L− E2 − E3, E1, E2, E3〉 ,

i.e., the cone generated by the designated divisors.
(5) If X is a cubic surface with lines ℓ1, . . . , ℓ27 then

NE1(X) = 〈ℓ1, . . . , ℓ27〉 .

We describe a technique for verifying these claims, using the crucial fact that

curves and divisors coincide on surfaces, i.e., NE1(X) = NE
1
(X). To decide

whether a collection of irreducible curves Γ = {C1, . . . , CN} generates NE1(X),
it suffices to

• Compute a set of generators Ξ for the dual cone 〈Γ〉∗; there are computer
programs like PORTA [CL97] and Polymake [GJ00] which can extract
Ξ from Γ.

• Check that each Ai ∈ Ξ can be written Ai =
∑

mijCj ,mij ≥ 0.

Here is why this works: If D is effective then we can write

D = M + F, F =
∑

j

njCj , nj ≥ 0,

where M is effective with no support at C1, . . . , CN . (Here F is the portion of the
fixed part of D supported in Γ.) In particular, M ·Cj ≥ 0 for each j, i.e., M ∈ 〈Γ〉∗.
But then M =

∑

i aiAi with ai ≥ 0. Thus we have

M =
∑

ij

aimijCj

and D is an effective sum of the Cj .

Example 2.5. For X = Blp1,p2
P2 take Γ = {E1, E2, L − E1 − E2}, which

generates a simplicial cone. The dual generators are

Ξ = {L− E1, L− E2, L}

and we can write

L− E1 = (L − E1 − E2) + E2, L− E2 = (L− E1 − E2) + E1,
L = (L− E1 − E2) + E1 + E2.

It follows that Γ generates NE1(X).

Exercises.

Exercise 2.2.1. Verify each of our claims about the generators of the effective
cone.

2.3. Extremal rays. We’ll need the following general notion from convex
geometry:

Definition 2.6. Given a closed cone C ⊂ Rn, an element R ∈ C generates an
extremal ray if for each representation

R = D1 +D2, D1, D2 ∈ C

we have D1, D2 ∈ R≥0R.
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We will conflate the element R and the ray R≥0R. For a polyhedral cone, i.e.,
one generated by a finite number of elements

C = 〈C1, . . . , CN 〉 = R≥0C1 + · · · + R≥0CN ,

the extremal rays correspond to the irredundant generators. On the other hand,
for the cone over the unit circle

{(x, y, z) : x2 + y2 − z2 ≤ 0} ⊂ R3

each point of the circle yields an extremal ray.
Our main examples of extremal rays are (−1)-curves:

Proposition 2.7. Let X be a smooth projective surface and E a (−1)-curve.
Then E is extremal in NE1(X).

If β : X → Y is the blow-down of E then

β∗NE1(X) = NE1(Y ),

hence faces of NE1(Y ) correspond to faces of NE1(X) containing E.

Proof. If we could express E = D1+D2 with D1, D2 ∈ NE1(X) not in R≥0E,
then

0 = β∗D1 + β∗D2

for nonzero β∗Di ∈ NE1(Y ). This contradicts the fact that NE1(Y ) is strongly
convex, i.e., that the origin is extremal.

The inclusion

β∗NE1(X) ⊂ NE1(Y )

is clear because the image of an effective divisor is effective. On the other hand,
suppose that D is effective on Y . Since Y is nonsingular, D is a Cartier divisor and
β∗D is a well-defined effective Cartier divisor. The projection formula β∗β

∗D = D
shows that D ∈ β∗NE1(X). �

Corollary 2.8. Let X be Del Pezzo and β : X → Y a blow-down morphism.
Then Y is Del Pezzo.

Proof. Indeed, we have the discrepancy formula

β∗KY = KX − E,

where E is the exceptional curve. Since −KX is positive on NE1(X) \ {0}, −KY is
positive on NE1(Y ) \ {0}. A direct argument that −KY is ample can be extracted
from the proof of the Castelnuovo Contraction Criterion (Theorem 1.12). �

Definition 2.9. Let X be a smooth projective surface. The positive cone C
denotes the component of

{D : D2 > 0} ⊂ N1(X,R)

containing the hyperplane class. (The Hodge index theorem implies this has two
connected components.) Let C denote its closure.

We can formulate a more general version of Proposition 2.7, which complements
Theorem 2.3 and Corollary 2.4:



168 BRENDAN HASSETT

Proposition 2.10. [Kol96, II.4] Let X be a smooth projective surface. Then
each irreducible curve D with D2 ≤ 0 lies in the boundary ∂NE1(X). Furthermore,

(2.1) NE1(X) = C +
∑

D

R≥0D

where the sum is taken over irreducible curves D with D2 < 0.

Proof. Corollary 2.4 implies NE1(X) ⊃ C, and NE1(X) ⊃ C +
∑

D R≥0D
follows immediately. It remains to establish the reverse inclusion.

First, suppose that D is irreducible with D2 ≤ 0. Let H be a very ample divisor
of X . Then for each rational ǫ > 0 we claim that D− ǫH fails to be in the effective
cone. Indeed, if D − ǫH were effective then it could be expressed as a nonnegative
linear combination of irreducible curves, some different from D,

D − ǫH ≡ c0D +
∑

j

cjDj , c0 ∈ [0, 1), cj > 0.

Regrouping terms, for some ǫ′ > 0 we obtain

D − ǫ′H ≡
∑

j

c′jDj , c′j > 0.

However, this contradicts the fact that

D · (D − ǫ′H) < 0.

For D irreducible with D2 < 0 consider the closed cone

V =
〈

z ∈ NE1(X) : z ·D ≥ 0
〉

⊂ NE1(X),

which contains all effective divisors without support along D. Thus NE1(X) is
the smallest convex cone containing V and D. Since D 6∈ V , it follows that D is
extremal in NE1(X).

Conversely, suppose that Z is extremal with Z2 < 0. There is necessarily some
irreducible curve C such that C · Z < 0. Let Zi denote a sequence of effective
Q-divisors approaching Z. Since Zi · C < 0 for i ≫ 0, we must have that C2 < 0.
Moreover C appears in Zi with coefficient ci and c = lim ci > 0. Thus Z − cC is
pseudoeffective and C ∈ R≥0Z by extremality. �

For special classes of surfaces, the negative extremal rays are necessarily (−1)-
curves or (−2)-curves, i.e., smooth rational curves with self-intersection −2:

Corollary 2.11. [Kol96, II.4.14] Suppose X is a smooth projective surface
with −KX nef. Then the sum in expression (2.1) can be taken over D with D2 = −1
or −2 and D ≃ P1.

Proof. Since KX ·D ≤ 0 and D2 < 0 then the adjunction formula

2g(D) − 2 = D2 +KX ·D

allows only the possibilities listed. �

Exercises.

Exercise 2.3.1. Classify extremal rays and describe decomposition (2.1) for:

• P2 blown up at two points or three non-collinear points;
• the Hirzebruch surfaces Fd.
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2.4. Structural results on the cone of curves I. The closed cone of ef-
fective curves has a very nice structure in the region where the canonical class fails
to be nef. There are two different approaches to these structural results. The first
emphasizes vanishing theorems (for higher cohomology) on line bundles and the
resulting implications for linear series, e.g., basepoint-freeness. You can find details
of this approach in references such as [Rei97, D] and [CKM88]. One significant
disadvantage is that the reliance on Kodaira-type vanishing makes generalization
to positive characteristic problematic. The second approach emphasizes the geo-
metric properties of the curves themselves, especially the bend-and-break technique
of Mori. This approach is taken in Mori’s original papers, as well as in [Kol96,
II.4,III.1].

Since both approaches are important for applications, we will sketch the key
elements of each, referring to the literature for complete arguments.

Theorem 2.12 (Cone Theorem). [Rei97, D.3.2] [KM98, Thm. 3.7] [CKM88,
4.7] Let X be a smooth projective surface with canonical class KX. There exists a
countable collection of Ri ∈ NE1(X) ∩N1(X,Z) with KX · Ri < 0 such that

NE1(X) = NE1(X)KX≥0 +
∑

i

R≥0Ri,

where the first term is the intersection of NE1(X) with the halfplane {v ∈ N1(X,R) :
v ·KX ≥ 0}. Given any ample divisor H and ǫ > 0, there exists a finite number of
Ri satisfying (KX + ǫH) ·Ri ≤ 0.

Corollary 2.13. Let X be a Del Pezzo surface. Then NE1(X) is a finite
rational polyhedral cone.

What’s even more remarkable is that the extremal rays can be interpreted geomet-
rically. The following theorem should be understood as a far-reaching extension of
the Castelnuovo contraction criterion (Theorem 1.12):

Theorem 2.14 (Contraction Theorem). [Rei97, D.4] [KM98, Theorem 3.7]
Let X be a smooth projective surface and R a generator of an extremal ray with
KX · R < 0. There exists a morphism φ : X → Y to a smooth projective variety,
with the following properties:

(1) φ∗R = 0 and φ contracts those curves with classes in the ray R≥0R;
(2) φ has relative Picard rank one and Pic(Y ) can be identified with R⊥ ⊂

Pic(X).

Proof. The proofs of Theorems 2.12 and 2.14 are intertwined. We can only
offer a sketch of the arguments required. Some of these work only in characteristic
zero, but we will make clear which ones.

Suppose we want to analyze the part of the effective cone along which KX

is negative. Fix an ample divisor H , which is necessarily positive along NE1(X).
Which divisors τKX +H, τ ∈ [0, 1], are nef? Consider the nef threshold

t = sup{τ ∈ R : τKX +H nef },

i.e., (tKX+H)⊥ is a supporting hyperplane of NE1(X) provided tKX+H is nonzero.
If we choose H suitably general, we can assume this hyperplane meets NE1(X) in
an extremal ray. (Of course, for special H it might cut out a higher-dimensional
face.)
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effective curves
closed cone of

orthogonal complement to H

orthogonal complement to KX

Xorthogonal complement to tK  +H

Figure 1. Finding a supporting hyperplane of the cone of curves
(drawn in the projectivization of N1(X,R))

The first step is the rationality of the nef threshold. The most straightforward
proof [Rei97, D.3.1] uses the Riemann-Roch formula and Kodaira vanishing, and
thus is valid only in characteristic zero:

Lemma 2.15 (Rationality). The nef threshold is rational.

Thus the KX -negative extremal rays of the cone of effective curves are de-
termined by linear inequalities with rational coefficients. These rays here can be
chosen to be integral.

The second step is to show that the (Q-)divisor D := tKX +H is semiample.
Then the resulting morphism φ : X → Y will contract precisely the extremal rays
in the face supported by the hyperplane (tKX +H)⊥, which gives the contraction
theorem.

Lemma 2.16 (Basepoint-freeness). Let D be a nef Q-divisor such that D =
tKX +H for H ample and t > 0. Then D is semiample.

Proof. Since D is nef we have D2 ≥ 0. If D2 > 0 then the Nakai criterion
(Theorem 2.2) implies D is ample unless there exists an irreducible curve E with
D · E = 0. The Hodge index theorem implies E2 < 0. Since KX · E < 0, Propo-
sition 1.6 implies that E is a (−1)-curve. The desired contraction exists by the
Castelnuovo Criterion (Theorem 1.12).

Now suppose D2 = 0. If D is numerically equivalent to zero then −KX is
ample. In this situation, D is semiample if and only if it is torsion, which is a
consequence of the following lemma.

Lemma 2.17. Suppose that X is a smooth projective surface and −KX is nef
and big, e.g., X is a Del Pezzo surface. Then

• H2(X,OX) = 0 and Pic(X) is smooth;
• H1(X,OX) = 0 and the identity component of Pic(X) is trivial.

Proof. Since some positive multiple of −KX is effective, no positive multiple
of KX is effective. Thus

h2(X,OX) = h0(X,OX(KX)) = 0

and Pic(X) is smooth. The identity component has dimension q = h1(X,OX).
Let bi(X) denote the ith Betti number ofX ; in positive characteristic, we define

these using étale cohomology [Mil80]. Recall the formulas [Mil80, III.4.18,V.3.12]
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b1(X) = 2q and

c2(X) = χ(X) = b0(X) − b1(X) + b2(X) − b3(X) + b4(X) = 2 − 4q + b2(X).

Noether’s formula
12χ(OX) = c1(X)2 + c2(X)

and the fact that c1(X)2 = K2
X > 0 imply

12(1 − q) > 2 − 4q + b2(X).

Consequently
10 > 8q + b2(X)

and thus q = 0 or q = b2(X) = 1. To exclude the last case, observe that if the iden-
tity component of the Picard group is positive dimensional then so is the Albanese
variety. (Indeed, these abelian varieties are dual to each other.) Furthermore, the
Albanese map X → Alb(X) [Lan59, II.3] is a dominating morphism to an elliptic
curve. The classes of a fiber and the pullback of an ample divisor from the Albanese
are necessarily independent; thus b2(X) ≥ 2. �

We return to the proof of Lemma 2.16. If D is not numerically trivial then
KX ·D < 0 and Riemann-Roch imply that h0(X,OX(mD)) grows at least linearly
in m. And since Corollary 2.4 ensures that D is not big, h0(OX(mD)) cannot be
a quadratic function of m. Decompose D into a moving and a fixed part

D = M + F, M2 ≥ 0, M · F ≥ 0.

Note that D ·F = M · F +F 2 ≥ 0 (since D is nef), M2 = 0 (as M is not big), and
F 2 ≤ 0 (since F is not big). On the other hand,

0 = D2 = 2M · F + F 2 ≥M · F

so M · F = 0 and F 2 = 0 as well. The Hodge index theorem implies that M
and F are proportional in the Néron-Severi group, provided they are numerically
nontrivial. In particular, if F 6= 0 then KX · F < 0 and h0(F,OX(mF )) grows
linearly in m, contradicting the fact that F is fixed. Thus D = M is moving with
perhaps isolated basepoints, the number of which is bounded by M2 = 0. We
conclude that D is basepoint-free. �

This completes the proof of Theorem 2.14.

Remark 2.18. This argument yields another result we shall use later: Let X
be a smooth projective surface with −KX nef and big. Assume that D is a nef line
bundle on X with D2 = 0. Then D is semiample.

The third step is to bound the denominator of the nef threshold (cf. [Rei97,
D.3.1] and [CKM88, 12.12]):

Lemma 2.19 (Bounding denominators). Assume the nef threshold is rational.
Then its denominator is ≤ 3.

Proof. Again, the argument is a case-by-case analysis of D = tKX + H . If
D2 > 0 then D is orthogonal to a (−1)-curve and t ∈ Z. If D is numerically trivial
then −KX is ample and Lemma 2.17 implies χ(OX) = 1. Express −KX = rL,
where L is a primitive ample divisor and r ∈ N. It suffices to show that r ≤ 3.
Noether’s formula and the argument for Lemma 2.17 give

12 = r2L2 + c2(X) = r2L2 + 2 + b2(X)
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so the only possibilities are r = 1, 2, 3.
It remains to consider the situation where D2 = 0 but D 6≡ 0. As we’ve seen,

D ·KX < 0 in this case. Furthermore, t′KX +H is never effective for t′ > t. Here
we claim 2t ∈ N. Otherwise, there exist m,n ∈ N with m≫ 0 such that

mt = n+ α, 1/2 < α < 1.

Thus nKX +mH is ample, Γ(OX(−nKX −mH)) = 0, and

H2(OX((n+ 1)KX +mH)) = 0

by Serre duality. We deduce

h0(OX((n+ 1)KX +mH)) = χ(OX) + 1
2 ((n+ 1)KX +mH) · (nKX +mH)

= χ(OX) + 1
2 (−α(1 − α)K2

X +m(1 − 2α)D ·KX +m2D2)
= constant +m · positive number

which is positive for m sufficiently large. Thus mH + (n + 1)KX is effective, a
contradiction. �

To complete the proof of Theorem 2.12, we show that theKX -negative extremal
rays have no accumulation points and for any ample H there are finitely many such
rays in the region (KX + ǫH) ≤ 0. Let H1, . . . , Hd denote ample divisors forming
a basis for the Néron-Severi group such that

H = a1H1 + · · · + adHd, a1, . . . , ad ∈ Q>0.

Let tj denote the nef threshold of Hj . Consider the local coordinate functions

bj(γ) =
Hj · γ

−KX · γ

on the open subset of P(N1(X,R)) where KX 6= 0. For KX-negative extremal rays,
bj ≥ tj ; Lemmas 2.15 and 2.19 imply these are rational numbers with denominators
dividing six. It follows that these rays have no accumulation points. The extremal
rays with (NKX +H) · Ri ≤ 0 for some N ∈ N have coordinates satisfying

a1b1 + · · · + adbd ≤ N.

Since the aj and bj are positive rational numbers with bounded denominators, there
are at most finitely many possibilities. �

The structure of the contraction morphism φ : X → Y depends on the inter-
section properties of irreducible curves E generating our extremal ray:
Case E2 < 0: Proposition 1.6 ensures E is a (−1)-curve and φ is the blow-down
of E.
Case E2 = 0: By adjunction, E ≃ P1 and φ : X → Y fibers X over a curve with
generic fiber P1. The extremality implies all fibers are irreducible and reduced, thus
every fiber of φ is a projective line and we have a minimal ruled surface.
Case E2 > 0: Corollary 2.4 implies E is big. Since f contracts E and all its
deformations, φ is constant. Thus Pic(X) = Z and X is Del Pezzo.

Since the first case cannot occur when X is minimal, we obtain:

Corollary 2.20. Let X be a minimal smooth projective surface. Then one of
the following conditions holds:

• KX is nef;
• X is a P1-bundle over a curve B;
• X is Del Pezzo with Pic(X) = Z.
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In the first instance, X is the unique minimal smooth projective surface in its
birational equivalence class.

Proof. We only have to establish uniqueness: Let X ′ be another minimal
smooth projective surface birational to X . Choose a factorization

Y
φ′

ւ
φ

ց
X ′ X

where Y is smooth projective and the morphisms are birational. Indeed, φ and φ′

are sequences of contractions of (−1)-curves (see Theorem 1.13). Express KY =
φ∗KX + F where F is an effective divisor with support equal to the exceptional
locus of φ. If E ⊂ Y is a (−1)-curve contracted by φ′ then

−1 = KY · E ≥ F ·E

as KX is nef. Thus E is contained in the support of F and is contracted by φ′.
Since each φ′-exceptional divisor is φ-exceptional, we have a factorization

φ : Y → X ′ → X.

Since X ′ is minimal, it must equal X . �

Remark 2.21 (Relative version). Given a morphism f : X → B to a variety,
we can also consider the relative cone of effective curves

NE1(f : X → B) = {D ∈ NE1(X) : f∗D = 0}.

When B is smooth, this is the intersection of NE1(X) with the orthogonal com-
plement to f∗Pic(B). The Cone Theorem 2.12 describes its structure in the region
where the canonical divisor KX is negative. There is a relative version of the
Contraction Theorem giving contractions over B

X
φ

−→ Y
ց ւ

B

.

The classification of ruled surfaces (Theorem 1.16) is a prime example.

Exercises.

Exercise 2.4.1. Let X be a smooth projective surface with KX nef. Show
that X is not rational.

Exercise 2.4.2. Let p1, . . . , p8 ∈ P2 be general points. Let p0 be the last
basepoint of the pencil of cubic curves containing these points. Show that X =
Blp0,p1,...,p8

P2 has an infinite number of (−1)-curves.
Hints: Let E0, . . . , E8 denote the exceptional divisors. Consider the elliptic

fibration
η : X → P1

induced by the linear series |f | with f = −KX = 3L− E0 − · · · − E8. Verify that
sections of η are all (−1)-curves. Designate E0 as the zero section of η and let
σi : P1 → X, i = 1, . . . , 8 denote the sections associated with E1, . . . , E8. Given
sections σ, σ′ : P1 → X we have

[(σ + σ′)(P1)] = [σ(P1)] + [σ′(P1)] − [E0] + w(σ, σ′)[f ]
w(σ, σ′) = −[σ(P1) − E0] · [σ′(P1) − E0].
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Use this to analyze m1σ1 + · · · +m8σ8.

2.5. Structural results on the cone of curves II. Our discussion of the
Cone and Contraction Theorems is missing one crucial element: We have not shown
that the extremal rays are generated by classes of rational curves on X . Another
issue is that we cited arguments for the rationality of extremal rays relying on
vanishing theorems; these do not readily extend to positive characteristic. These
gaps can be filled using Mori’s ‘bend-and-break’ technique:

Theorem 2.22 (Bend-and-break). [Kol96, II.5.14] Let X be a smooth projec-
tive variety, C a smooth projective curve, and f : C → X a morphism. Let M be
a nef R-divisor. Assume that −KX · C > 0. Then for each x ∈ f(C) there is a
rational curve x ∈ Dx ⊂ X such that

M ·Dx ≤ 2 dim(X)
M · C

−KX · C
, −KX ·Dx ≤ dim(X) + 1.

This is a deep result that we will not prove here. The main idea is to use the
fact that the anticanonical class is negative to show that f admits deformations
ft : C → X whose images still contain x. This strategy works beautifully provided
C has genus zero, but in higher genus it is necessary to reduce modulo p and
precompose f with the Frobenius map. Then we consider limits of ft(C) ⊂ X as
t → 0; these necessarily contain rational curves x ∈ D′ ⊂ X . We can iterate this
strategy until we obtain a rational curve Dx ∋ x with fairly small anticanonical
degree, i.e., −KX ·Dx ≤ dim(X) + 1.

We still have not mentioned the rôle of the divisor M . This is crucial in
applications to the cone of curves:

Theorem 2.23 (Cone Theorem bis). [Kol96, III.1.2] Let X be a smooth projec-
tive surface with canonical class KX . There exists a countable collection of rational
curves Li ⊂ X with 0 < −KX · Li ≤ 3 such that

(2.2) NE1(X) = NE1(X)KX≥0 +
∑

i

R≥0[Li].

Given any ample divisor H and ǫ > 0, there exists a finite number of Li satisfying
(KX + ǫH) · Li ≤ 0.

Proof. We offer a sketch proof following [Kol96]: Let M be an R-divisor
corresponding to a supporting hyperplane of a KX -negative extremal ray R ∈
NE1(X). Thus M · R = 0 and M · γ > 0 for γ ∈ NE1(X) with γ 6∈ R≥0R; in
particular, M is a nef R-divisor. We show that M is a supporting hyperplane of
the closure W of the cone associated to the right-hand side of (2.2). (We refer the
reader to [Kol96, III.1] for the argument that the right-hand side of (2.2) defines
a closed cone.)

Assume this is not the case. Rescaling M if necessary, we may assume that
M ·D ≥ 1. for each irreducible curveD ⊂ X with [D] ∈W . Consider the functional

φ : N1(X,R)KX<0 → R

γ 7→ −M · γ/KX · γ

which is nonnegative on NE1(X)KX<0 and positive away from R≥0R. Choose a
sequence of effective curves with real coefficients approaching R

Ci =
∑

j

aijCij , aij > 0, lim
i→∞

Ci = R.
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For each i, there exists an index j such that KX ·Cij < 0 and φ(Cij) ≤ φ(Ci). And
we have limi→∞ φ(Ci) = φ(R) = 0.

On the other hand, bend-and-break yields rational curves Li such that
−KX · Li ≤ 3 and

M · Li ≤ 4φ(Cij) < 4φ(Ci).

The left-hand side is bounded from below by 1 while the right-hand side approaches
zero, so we obtain a contradiction. �

2.6. Classification of surfaces.

Theorem 2.24. If X is a Del Pezzo surface with Pic(X) = Z then X ≃ P2.

Proof. Our argument follows [Kol96, III.3.7]. We first offer a short proof in
characteristic zero: Let L be a line bundle generating Pic(X) with L · KX < 0.
Lemma 2.17 ensures that H1(OX) = H2(OX) = 0, so by Hodge theory we have
b1(X) = 0 and b2(X) = 1. Poincaré duality then implies L · L = 1. Noether’s
formula

12χ(OX) = c21(X) + c2(X)

implies c21(X) = K2
X = 9. We conclude that KX = −3L and χ(L) = 3. Since

h2(X,L) = h0(X,KX − L) = 0, we have h0(X,L) ≥ 3. Moreover, the members
of the corresponding linear series are integral curves of genus zero, i.e., P1’s. A
straightforward inductive argument shows that L is basepoint-free and thus induces
a degree-one morphism X → P2, i.e., X ≃ P2.

We only used characteristic zero to show that KX = −3L. Suppose then that
KX = −rL for some r ∈ N, where L is a generator of Pic(X). We have already
seen in the proof of Lemma 2.19 that r = 1, 2, 3. If r = 2 then

2g(L) − 2 = L2 +KXL = −L2

so L2 = 2 and g(L) = 0; Riemann-Roch then gives χ(X,L) = 4. Arguing as
above, L is basepoint-free and defines a morphism φ : X → Pn for n ≥ 3. The
image is a quadric surface or a plane, and the latter possibility would contradict
nondegeneracy. However, a quadric surface cannot be a rank-one Del Pezzo surface.

Finally, suppose that r = 1. The Cone Theorem (Theorem 2.23) implies the
existence of a rational curve f : P1 → X with deg f∗(−KX) = deg f∗L ≤ 3. We
have f∗[P

1] = mL for some m ∈ N with mL2 ≤ 3, and consequently K2
X ≤ 3. Since

every curve in X has positive self-intersection, we can deduce a contradiction from
the following fact:

Lemma 2.25. Let Y be a Del Pezzo surface with K2
Y ≤ 4. Then Y contains a

(−1)-curve.

Such curves C are called lines because −KY · C = 1.
There are two general approaches to this. The most direct (see [Kol96, III.3.6]

or Exercise 2.6.2) is to express Y as a hypersurface in a suitable weighted projective
space, i.e., as a cubic surface in P3 (when K2

Y = 3), a quartic surface in P(1, 1, 1, 2)
(when K2

Y = 2), or as a sextic surface in P(1, 1, 2, 3) (when K2
Y = 1). Proving

this entails a fair amount of ad hoc analysis of linear series. Another approach
(cf. [Isk79]) involves showing that Y lifts to characteristic zero and using the
classification tools available there. �
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Theorem 2.26 (Castelnuovo’s Criterion). [Bea96, V.6] [Kol96, III.2.4] Let
X be a smooth projective minimal surface. Then X is rational if and only if

q(X) = h1(OX) = 0, P2(X) := h0(X,OX(2KX)) = 0.

Proof. The necessity of the numerical conditions is clear, as P2(X) and q(X)
are birational invariants of smooth projective varieties. For sufficiency, we may
assume that X is minimal and falls into one of the three categories of Proposi-
tion 2.20. The third case (where X is Del Pezzo with Pic(X) = Z) is rational by
Theorem 2.24. In the second case (whereX is ruled over a curve B), the assumption
q(X) = 0 implies that B has genus zero. Corollary 1.22 yields that X is rational.
Finally, suppose that KX is nef, so in particular K2

X ≥ 0. We know that KX is not
effective; if Γ(X,OX(KX)) 6= 0 then Γ(X,OX(2KX)) 6= 0. Thus

χ(OX) = h0(OX) − h1(OX) + h2(OX) = 1

and

χ(OX(−KX)) = K2
X + 1 ≥ 1.

Since h2(OX(−KX)) = h0(OX(2KX)) = 0 we conclude h0(OX(−KX)) > 0, i.e.,
−KX is effective. As KX is nef, the only possibility is KX trivial, a contradiction.

�

Corollary 2.27. Del Pezzo surfaces are rational.

Proof. Let X be a Del Pezzo surface. Since −KX is ample we have that
P2(X) = 0. Lemma 2.17 gives h1(OX) = 0. �

Corollary 2.28. Each Del Pezzo surface X is isomorphic to one of the fol-
lowing:

• P1 × P1;
• a blow-up of P2 at eight or fewer points.

Proof. By Corollary 2.8, we just need to show that minimal Del Pezzo surfaces
X are either P2 or P1 × P1. Our previous analysis implies X is P2 or a Hirzebruch
surface Fd. But then X contains a rational curve of self-intersection −d, so d = 0, 1
by Proposition 1.6. �

Remark 2.29. The classification of complex surfaces goes back to the work of
Castelnuovo and Enriques in the late 19th and early 20th centuries. The extension
to positive characteristic is largely due to Zariski, who first proved the Castelnuovo
rationality criterion in this context [Zar58a, Zar58b].

Exercises.

Exercise 2.6.1. Suppose that X is a surface such that KX is not nef and
Pic(X) has rank at least three. Then X contains a (−1)-curve.

Exercise 2.6.2. Let Y be a Del Pezzo surface with K2
Y = 3 (resp. K2

Y = 4).
Show that −KY is very ample and the image under |−KY | is a cubic surface (resp.
complete intersection of two quadric hypersurfaces.) Conclude that Y contains a
line (cf. Corollary 1.9).
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3. Classifying surfaces over non-closed fields

Let k be a perfect field with algebraic closure k̄ and Galois group G = Gal(k̄/k).
Let X be a smooth projective surface over k so that

X̄ = Xk̄ = X ×Spec(k) Spec(k̄)

is connected. We use Pic(X) to denote line bundles on X defined over k.

3.1. Minimal surfaces.

Definition 3.1. A smooth projective surface X over k is minimal if any bira-
tional morphism over k to a smooth surface

φ : X → Y

is an isomorphism.

Theorem 3.2. X is minimal if and only if X̄ admits no Galois-invariant col-
lection of pairwise disjoint (−1)-curves.

Proof. Suppose X is not minimal and admits a birational morphism φ : X →
Y . By Theorem 1.13, X̄ admits a (−1)-curve E contracted by φ. Since φ is
birational there are only a finite number of such curves, so let E1, . . . , Er denote
the curves in the Galois orbit of E. As we saw in the proof of Theorem 1.13, the
intersection form on ZE1 + · · · + ZEr is negative definite, thus the matrix

(

E2
i EiEj

EiEj E2
j

)

, i 6= j,

has positive determinant. It follows that Ei · Ej < 1, which gives the disjointness.
Conversely, let E1, . . . , Er denote a Galois-invariant collection of pairwise dis-

joint (−1)-curves. Let H be an ample divisor on X . Since H ·Ei = H ·Ej for each
i, j, the divisor

H ′ = H +
r
∑

j=1

(H ·Ei)Ei

is also Galois-invariant. We just take Y = Proj(
⊕

n≥0 Γ(X,nH ′)), as in the proof
of Theorem 1.12. �

Remark 3.3 (Galois-invariant classes versus divisors defined over k). Not every
element L ∈ Pic(X̄)G comes from a line bundle defined over k. Applying the
Hochschild-Serre spectral sequence [Mil80, III.2.20], we find

H1(X,O∗
X) = ker

(

H0
GH

1(X̄,O∗
X̄)

d01

2−→ H2
GH

0(X̄,O∗
X̄)

)

which yields

Pic(X) = ker

(

Pic(X̄)G d01

2−→ Br(k)

)

.

Since Br(k) is torsion, some power NL with N > 0 is defined.
On the other hand, when X(k) 6= ∅ the homomorphism d01

2 is trivial. In-
deed, the spectral sequence shows that the image of d01

2 lies in the kernel of the
homomorphism

s∗ : Br(k) → Br(X) = H2(X,O∗
X)
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induced by the structure map s : X → Spec(k). Each rational point x : Spec(k) →
X induces x∗ : Br(X) → Br(k), a left-inverse of s∗. Thus s∗ is injective and d01

2 is
trivial. (See [CTS87] for a comprehensive discussion.)

Example 3.4. Suppose we have a cubic surface X with six conjugate disjoint
lines E1, . . . , E6. Does it follow that X is the blow-up of P2 at six conjugate points?

The divisor class −KX + E1 + · · · + E6 = 3L is definitely defined over k. The
corresponding linear series gives a morphism

X → Y ⊂ P9

blowing down E1, . . . , E6; here Ȳ ≃ P2
k̄

is embedded via the cubic Veronese em-
bedding. This is an example of a Brauer-Severi variety, i.e., a variety Y such that

Ȳ ≃ P
dim(Y )

k̄
. Moreover, the invariant class

L ∈ Pic(X̄)G

comes from Pic(X) if and only if Y ≃ P2
k. A diagram-chase shows that d01

2 (L) ∈
Br(k) vanishes if and only if [Y ] ∈ Br(k) is trivial.

Exercises.

Exercise 3.1.1. Let Y be a Brauer-Severi surface. Show there exists a smooth
cubic surface X admitting a birational morphism φ : X → Y . Hint: A generic
vector field on Y vanishes at three Galois-conjugate points. Blow up along two
such collections of points.

Exercise 3.1.2 (Degree seven Del Pezzo surfaces). Let X be a surface such
that X̄ ≃ Blp1,p2

(P2). Show there exists a birational morphism X → P2, obtained
by blowing up a pair of Galois-conjugate points.

Exercise 3.1.3 (Some degree eight Del Pezzo surfaces). Let X be a surface
such that X̄ ≃ Blp(P

2). Show that X is isomorphic to Blp(P
2) over k.

Exercise 3.1.4 (Degree five Del Pezzo surfaces). [Sko93] [SD72] Let X be a
surface such that X̄ ≃ Blp1,p2,p3,p4

(P2), where the points are distinct and no three
are collinear.

(1) Show that the four points are projectively equivalent to

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]

over k̄.
(2) Show that sections of −KX embed X as a quintic surface in P5.
(3) Show that this surface is cut out by five quadrics. Hint: It suffices to

verify this on passage to k̄.
(4) Choose generic Q0, Q1, Q2 ∈ IX(2). Verify that

Q0 ∩Q1 ∩Q2 = X ∪W,

where W̄ is isomorphic to BlpP2.
(5) Using Exercise 3.1.3, show that the exceptional divisor E ⊂W is defined

over k and intersects X in one point.

Conclude that X(k) 6= ∅.
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Figure 2. Degenerate fibers of a conic bundle

3.2. Conic bundles. Our treatment owes a great deal to Iskovskikh [Isk79].

Definition 3.5. A conic bundle is a dominant morphism f : X → C from a
smooth projective minimal surface X to a smooth curve, so that the generic fiber
is a smooth curve of genus zero.

Of course, over an algebraically closed field this is the same as a minimal ruled
surface. However, without the Tsen-Lang Theorem we cannot construct a section
of f defined over k.

Proposition 1.19 does still apply: It guarantees that each smooth fiber of f is
a plane conic and splits over a quadratic extension. It follows that there exists a
bisection of f , i.e., an irreducible curve D ⊂ C so that f |D : D → C has degree
two. Indeed, intersect the generic fiber (realized as a plane conic) with a line and
take the closure in X .

Theorem 3.6. Let f : X → C be a conic bundle. Then any reducible fibers of
X̄ → C̄ consist of two (−1)-curves intersecting in one point, conjugate under the
Galois action.

Proof. Suppose F is a reducible fiber of X̄; designate the field of definition
of f(F ) ∈ C by k1 ⊃ k. The existence of a reducible fiber guarantees that X̄ is not
relatively minimal and F contains a (−1)-curve (Theorem 1.16). Let E1, . . . , Er be
the Galois-orbit under the action of Gal(k̄1/k1); the Ei are not pairwise disjoint by
minimality (Theorem 3.2).

We claim that the only combinatorial possibility is r = 2, E1 · E2 = 1, and
E2

1 = E2
2 = −1. Write T = E1 ∪ · · · ∪ Er and set n = Ei · (

∑

j 6=i Ej), i.e., the
number of points of intersection of each component with the other components.
We can compute the arithmetic genus using

2pa(T ) − 2 = −2r + rn.

Since F has arithmetic genus zero pa(T ) ≤ 0 and n = 1, i.e., each connected
component of T consists of two (−1)-curves meeting at one point. Reordering
indices if needed, let E1 ∪ E2 denote one of these components.
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By Proposition 1.18, if E1, . . . , Er+s are the irreducible components of F then
the intersection form on

(

r+s
⊕

j=1

ZEj)/ZF

is negative definite. However, we have (E1 + E2)
2 = −1 + 2 − 1 = 0 so necessarily

F = E1 + E2. This proves the claim and the result. �

We have seen (Proposition 1.19) that the generic fiber of f : X → C admits
a natural realization as a smooth plane conic. This is obtained using sections of
the dual to the differential one-forms. We can extend this over all of C using the
relative dualizing sheaf

ωf = Ω2
X ⊗ (f∗Ω1

C)−1.

We have natural homomorphisms

Ω1
f−1(p) → ωf−1(p) = ωf |f−1(p),

where the first arrow is an isomorphism wherever f is smooth.

Corollary 3.7 (Conic bundles really are conic bundles). Let f : X → C be a
conic bundle with relative dualizing sheaf ωf . Then we have an embedding over C

X
j
→֒ P(f∗ω

−1
f )

ց ւ
C

realizing each fiber of X as a plane conic.

Proof. We use the classification of fibers in Theorem 3.6. For the smooth
fibers, the anticanonical embedding has already been discussed in Proposition 1.19.
For the reducible fibers, the anticanonical sheaf is very ample, realizing the fiber as
a union of two distinct lines in P2.

Thus for each p ∈ C, ω−1
f |f−1(p) is very ample and has no higher cohomology.

Cohomology and base change gives that f∗ω
−1
f is locally free of rank three and has

cohomology commuting with base extension. Thus we obtain a closed embedding
over C

j : X →֒ P(f∗ω
−1
f )

in a P2-bundle over C. �

Definition 3.8. A rational conic bundle is a conic bundle f : X → C over a
curve of genus zero.

3.3. Analysis of Néron-Severi lattices. We analyze the Néron-Severi group
of rational conic bundles f : X → P1. Note that KX is defined over the base field.

Theorem 3.6 and Corollary 1.22 imply that X̄ is a blow-up of a Hirzebruch
surface at r points in distinct fibers:

X̄ −→ Fd

ց ւ
P1

.

The corresponding reducible fibers of X̄ → P1 are denoted

E1 ∪ E
′
1, E2 ∪ E

′
2, . . . , Er ∪ E

′
r,
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so that Ei + E′
i = F for each i.

There are a number of natural lattices to consider. We have the relative Néron-
Severi lattice

N1(X̄ → P1,Z) = {D ∈ N1(X̄,Z) : f∗D = 0} = ZF + ZE1 + · · · + ZEr ,

the quotient lattice

N1(X̄ → P1,Z)/ZF = (ZE1 + ZE2 + · · · + ZEr + ZF )/ZF

with matrix
E1 E2 . . . Er

E1 −1 0 . . . 0
E2 0 −1 . . . 0
...

...
...

. . .
...

Er 0 0 . . . −1

,

and the image Λ of the orthogonal complement K⊥
X . This is generated by

ρ1 = E′
1 − E2, ρ2 = E1 − E2, ρ3 = E2 − E3, . . . , ρr = Er−1 − Er

with intersection matrix

ρ1 ρ2 ρ3 ρ4 . . . ρr−1 ρr

ρ1 −2 0 1 0 . . . 0 0

ρ2 0 −2 1 0
. . .

. . .
...

ρ3 1 1 −2 1
. . .

. . .
...

ρ4 0 0 1 −2
. . .

. . . 0
...

...
. . .

. . .
. . .

. . . 1 0

ρr−1 0
. . .

. . .
. . . 1 −2 1

ρr 0 . . . . . . 0 0 1 −2

Up to sign, this is the Cartan matrix associated to the root system Dr.
Recall the traditional description of Dr: Consider

Zr = Ze1 + · · · + Zer

with the standard pairing ei · ej = δij . Consider the index two sublattice

M = {m1e1 + · · · +mrer : m1 + . . .+mr ≡ 0 (mod 2)} ⊂ Zr

with generators

{−e1 − e2, e1 − e2, e2 − e3, . . . , er−1 − er}.

The Weyl groupW (Dr) acts on M via reflections associated to the roots {±ei±ej}.
It can be identified with signed r× r permutation matrices with determinant equal
to the sign of the permutation. It is thus a semidirect product

W (Dr) = (Z/2Z)r−1 ⋊ Sr,

where the first group should be interpreted as the diagonal matrices with entries
±1 and determinant 1 and the second group as the permutation matrices. Each
element ofW (Dr) is thus classified by the induced permutation of signed coordinate
vectors

{e1, e
′
1 = −e1, . . . , er, e

′
r = −er}.
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Identifying Ei with ei and E′
i with e′i, we obtain isomorphisms of lattices

M ≃ −Λ
↓ ↓

Zr ≃ −N1(f : X̄ → P1,Z)/ZF

where the vertical arrows are inclusions of index-two subgroups. The Galois action
of G = Gal(k̄/k) on Pic(X̄) induces actions on both Λ and N1(X̄ → P1,Z)/ZF . It
is worthwhile to compare these to the action of W (Dr) on M and Zr.

Exercises.

Exercise 3.3.1. Let φ : X → Y be a birational extremal contraction of smooth
projective surfaces, i.e., a contraction of a collection of pairwise disjoint (−1)-curves.
Show that

Λ = K⊥
X ∩N1(φ : X̄ → Ȳ ,Z)

is isomorphic to the lattice

Zρ1 + · · · + Zρr−1

with intersections

ρi · ρj =











−2 if i = j

1 if |i− j| = 1

0 if |i− j| > 1

.

This is the Cartan matrix for Ar−1. Interpret the action of the Weyl group
W (Ar−1) ≃ Sr in terms of the geometry of φ.

3.4. Classification of minimal rational surfaces over general fields.

This is due to Manin [Man66] and Iskovskikh [Isk79]; another proof can be found
in [Kol96, III.2].

Theorem 3.9. Let X be a smooth projective minimal surface with X̄ rational.
Then X is one of the following:

• P2;
• X ⊂ P3 a smooth quadric with Pic(X) = Z;
• a Del Pezzo surface with Pic(X) = ZKX ;
• a conic bundle f : X → C over a rational curve, with Pic(X) ≃ Z ⊕ Z.

Notice that the third case includes Brauer-Severi surfaces.
Thus if Y is a smooth projective rational surface over k then there exists a

birational morphism φ : Y → X defined over k, where X is one of the surfaces
listed in Theorem 3.9.

Proof. Since X̄ is rationalKX̄ cannot be nef (Exercise 2.4.1), and there exists
an irreducible curve L ⊂ X̄ such that KX̄ · L < 0. In particular, NE1(X̄) admits
KX̄-negative extremal rays. By the Cone Theorem 2.23, elements of NE1(X̄) can
be expressed as

(3.1) C +
∑

ai[Li], ai > 0,

where C ∈ NE1(X̄) satisfies C ·KX̄ ≥ 0 and the Li are rational curves generating
KX̄-negative extremal rays. Of course, the Galois group G acts on Pic(X̄) and on
the KX̄ -negative extremal rays. Thus for elements of NE1(X̄) the two parts of (3.1)
can be taken to be G-invariant.
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Let NE1(X̄)G denote the closure of the Galois-invariant effective cone in the
real vector space spanned by Galois-invariant curve classes. Since NE1(X̄)G has
KX-negative curves, it necessarily admits a KX-negative extremal ray Z. This
need not be extremal in NE1(X̄), but it does lie in some face of that cone, which
we analyze. Since Z is extremal and KX-negative, it must be proportional to the
average over the orbit of a single extremal ray of X̄:

Z = aE, E =
n
∑

j=1

Lj, Lj = gjL, gj ∈ G.

In other words, the minimal face of NE1(X̄) containing Z is spanned by the Galois
orbit of one extremal ray.

Assume first that Pic(X) ≃ Z, generated by some ample divisor H defined over
k. Then −KX = rH for some positive integer r and X is Del Pezzo. When r > 1
we necessarily have X̄ ≃ P2 or P1×P1 by Corollary 2.28. In the first instance, X is
a Brauer-Severi surface with a line H defined over the ground field; thus Γ(OX(H))
gives an isomorphism X ≃ P2. This is the first case of the theorem. In the second
instance, the line bundle OP1×P1(1, 1) is defined over the ground field. Its global
sections give an embedding X →֒ P3 whose image is a quadric surface. This is the
second case of the theorem. Finally, if −KX generates Pic(X) then we are in the
third case of the theorem.

Now assume that Pic(X) has higher rank, so in particular E ∈ ∂NE1(X̄)G. It
follows that E2 ≤ 0. Indeed, if E2 > 0 then E is big by Corollary 2.4 and thus lies
in the interior of the effective cone by Theorem 2.3. (And there are some extremal
L whose Galois orbits do not lie in any proper face of the cone of curves.)

Suppose now that E2 < 0, which implies that L2 < 0. As before, Proposi-
tion 1.6 implies L is a (−1)-curve. Furthermore, L ∩ Lj = ∅ when L 6= Lj; indeed,
if the Galois conjugates were nondisjoint then their sum would have nonnegative
self-intersection. Theorem 3.2 implies that X is not minimal, a contradiction.

Suppose next that E2 = 0. If L2 < 0 then we would still have that L is a
(−1)-curve. Since E2 = 0 each curve meets precisely one of its Galois conjugates,
transversely at one point. Thus the orbit of L decomposes as

{L1, L
′
1}, {L2, L

′
2}, . . . , {Lr, L

′
r},

where Li ·L′
i = 1 and all other pairs of (−1)-curves are disjoint. Write Fi = Li +L′

i

so that Fi · Fm = 0 for each i,m = 1, . . . , r; the Hodge index theorem implies that
F1 = F2 = . . . = Fr and E = rFi for each i. Contracting E (or equivalently,
L1, L

′
1, . . . , L

′
r) gives a morphism

f : X → C

whose generic fibers are smooth conics and with r > 0 degenerate fibers consisting
of reducible singular conics. This is the conic bundle case of the theorem.

Finally, suppose that E2 = 0 and L2 = 0. Then each Galois conjugate of L
is necessarily disjoint from L, so the Hodge index theorem argument above shows
that [L] is Galois-invariant. Contracting L gives a conic bundle f : X → C without
degenerate fibers. �

Remark 3.10. This almost completes the birational classification of rational
surfaces. It remains to enumerate birational equivalences among the surfaces listed
in Theorem 3.9. This enumeration can be found in [MT86, 3.1.1, 3.3.2]
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Exercises.

Exercise 3.4.1. To get a feeling for the difficulties involved, show that if X is
minimal then X̄ 6= Blp1,...,p9

P2. Specify a Galois action on Pic(X̄), in particular,
a finite group acting linearly, preserving the intersection form, and fixing KX .
Consider the orbits of the (−1)-curves under this action. Convince yourself there
is an orbit consisting of either

• disjoint (−1)-curves; or
• r disjoint pairs of (−1)-curves, with each pair meeting transversely at one

point.

3.5. An application: Rational points over function fields. Our next re-
sult is due to Manin and Colliot-Thélène [CT87]. For more context and discussion,
see [Kol96, IV.6]:

Theorem 3.11. Let B be a smooth curve over C with function field k = C(B).
Suppose that X is a smooth projective surface over k with X̄ rational. Then X(k) 6=
∅.

Of course, this result can be obtained from the Graber-Harris-Starr Theorem
[GHS03]. However, we will present it using our classification techniques.

Proof. We first reduce to the case where X is minimal. Suppose we have a
birational morphism φ : X → Y to a smooth projective surface. We can factor φ
as a sequence

X = X0 → X1 → X2 → · · · → Xr = Y

where each intermediate morphism is the blow-up of a Galois-orbit of points.
Suppose x ∈ Xi(k) is a rational point. If x is contained in the center of the

blow-up βi : Xi−1 → Xi then the exceptional divisor E ⊂ Xi−1 is rational over k
and isomorphic to P1. It follows that E(k) 6= ∅ and Xi−1(k) 6= ∅. If x is disjoint
from the center of Xi−1 → Xi then x lies in the open subset U ⊂ Xi−1 over which
βi is an isomorphism. Thus β−1

i (x) is a rational point of Xi.
We consider the minimal cases one by one. The case X = P2 is straightforward.

The case of a quadric surface Q ⊂ P3 follows from the Tsen-Lang Theorem.
We address the cases of Del Pezzo surfaces of degree d = K2

X . Del Pezzo
surfaces with certain degrees always have rational points. We assume without
proof standard results on anticanonical linear series |−KX | and embeddings of X
in projective space:

d = 7 There is no minimal Del Pezzo surface in this degree—see Exercise 3.1.2.
d = 8 (X̄ ≃ BlpP2) There is no minimal Del Pezzo surface of the type—see

Exercise 3.1.3.
d = 5 X always has a rational point—see Exercise 3.1.4.
d = 1 X̄ ≃ Blp1,...,p8

P2 in this case and

−KX̄ = 3L− E1 − · · · −E8.

In this situation, |−KX | is the pencil of cubics Ct, t ∈ P1, passing through
p1, . . . , p8. The base locus of this pencil on P2 consists of nine points, i.e.,
p1, . . . , p8 and one additional point p0. The basis locus of |−KX | on X
is just the point p0. Since −KX is defined over k, the unique basepoint
p0 ∈ X(k).



RATIONAL SURFACES OVER NONCLOSED FIELDS 185

We address the remaining cases using the classification results of §2.6. Since
k = C(B), we can use the following variant of the Tsen-Lang Theorem:

Theorem 3.12. Let k be the function field of a curve defined over an alge-
braically closed field. Let F1, . . . , Fr ∈ k[x0, . . . , xn] be nonconstant weighted homo-
geneous polynomials, with weighted degrees satisfying

deg(F1) + · · · + deg(Fr) ≤ n.

Then the system F1 = · · · = Fr = 0 admits a nontrivial solution over k.

d = 3 Here X is a cubic surface in P3 and the result follows from Tsen-Lang.
d = 9 X is a Brauer-Severi surface. However, Exercise 3.1.1 allows us to blow

up X to obtain a cubic surface, which has rational points by the previous
case. (The reader knowledgeable in central simple algebras can prove
Br(C(B)) = 0 using properties of the reduced norm.)

d = 4 Here X is a complete intersection of two quadrics in P4 and our variant
of the Tsen-Lang Theorem applies.

d = 2 Here |−KX | induces a morphism

X → P2

of degree two, branched over a quartic plane curve. It follows that X is
a hypersurface of degree four in the weighted projective space P(2, 1, 1, 1)
of the form w2 = f(x, y, z). An application of the Tsen-Lang Theorem
gives our result.

d = 6 It suffices to show there exists a quadratic extension k′/k over which ratio-
nal points are dense on X . Then after blowing up two suitable conjugate
points we obtain a degree-four Del Pezzo surface, which has a rational
point.

From our analysis of the effective cone of X in §2.2, there are two nef
divisors L,L′ ∈ Pic(X̄) so that

L2 = (L′)2 = 1,−KX · L = −KX · L′ = 3.

Indeed, we take L′ = 2L−E1−E2−E3. Their sections induce morphisms

φ, φ′ : X̄ → P2

blowing down triples of disjoint (−1)-curves. Let k′/k be a quadratic
extension over which L and L′ are Gal(k̄′/k′) invariant. Then Xk′ is a
blow-up of a Brauer-Severi variety Y over k′ at three conjugate points.
The d = 9 case shows that Y (and hence Xk′) has lots of k′-rational
points.

For the conic bundle case we apply the Tsen-Lang theorem twice. First, we
show that C(k) 6= ∅ so C ≃ P1. Taking a generic t ∈ P1(k) so that Xt := f−1(t) is
a smooth conic, a second application gives Xt(k) 6= ∅. �

Exercises.

Exercise 3.5.1. LetX be a degree-one Del Pezzo surface over an arbitrary field
k. Give a complete proof that X(k) 6= ∅, based on the sketch above. Challenge:

When can you show that |X(k)| > 1?

4. Singular surfaces

In this section, we work over an algebraically closed field.



186 BRENDAN HASSETT

0 1l

l3

l

p
02

p23
p

l2p
01

0313
p

p
12

Figure 3. Four general lines in the plane

4.1. Cubic surfaces revisited: the Cayley cubic. In §1.1, we constructed
smooth cubic surfaces by blowing up six points in general position on the plane.
What happens when we relax this assumption?

Consider configurations of six points obtained as pairwise intersections of four
general lines in the plane. Given four lines in general position, we can choose
coordinates to put them in the standard form:

ℓ0 = {x0 = 0}, ℓ1 = {x1 = 0}, ℓ2 = {x2 = 0}, ℓ3 = {x0 + x1 + x2 = 0}.

The intersection points are denoted pij = ℓi ∩ ℓj for 0 ≤ i < j ≤ 3.
The points p01, . . . , p23 still impose independent conditions on homogeneous

cubics in x0, . . . , x3, i.e.,

Ip01,...,p23
= 〈y0, y1, y2, y3〉

where
y0 = x1x2(x0 + x1 + x2) y1 = x0x2(x0 + x1 + x2)
y2 = x0x1(x0 + x1 + x2) y3 = −x0x1x2

.

These satisfy the relation

y0y1y2 + y1y2y3 + y2y3y0 + y3y0y1 = 0;

the resulting cubic surface S ⊂ P3 is called the Cayley cubic surface in honor of
Arthur Cayley, who classified singular cubic surfaces [Cay69].

Here are some of its geometric properties:

• S has ordinary double points at

s0 = [1, 0, 0, 0], s1 = [0, 1, 0, 0], s2 = [0, 0, 1, 0], s3 = [0, 0, 0, 1].
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Figure 4. Some lines on the Cayley cubic

It is the unique cubic surface with this configuration of singularities, up
to projective equivalence.

• S contains nine lines, i.e., the lines mij , i, j = 0, . . . , 3 spanned by si and
sj , as well as the lines

{y0 + y3 = y1 + y2 = 0}, {y0 + y1 = y2 + y3 = 0}, {y0 + y2 = y1 + y3 = 0}.

• The birational map

[y0, y1, y2, y3] : P2 ∼
99K S

factors as
X

β

ւ
σ

ց
P2 S

where β is the blow-up of p01, . . . , p23 and σ is the blow-up of s0, . . . , s3.
The exceptional divisors of β are the proper transforms Eij of the mij ;
the exceptional divisors of σ are the proper transforms ℓ′i of the ℓi.

• Express

Pic(X) = ZL⊕ ZE01 ⊕ · · · ⊕ ZE23

where L is the pullback of the hyperplane class of P2 via β. The canonical
class is

KX = −3L+ E01 + E02 + E03 + E12 + E13 + E23

and the proper transforms of the lines are

ℓ′0 = L− E01 − E02 − E03, ℓ
′
1 = L− E01 − E12 − E13, . . .

We have KX · ℓ′j = 0 and (ℓ′j)
2 = −2 for each j, i.e., the exceptional

divisors of the resolution σ are (−2)-curves.
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4.2. Why consider singular cubic surfaces?

Reason 1: Reduction modulo primes
Let X = {F (y0, y1, y2, y3) = 0} ⊂ P3 be a smooth cubic surface defined over Q;
we may assume that F ∈ Z[y0, y1, y2, y3] and the greatest common divisor of the
coefficients of F is 1. Consider the integral model

π : X = {F = 0} ⊂ P3
Z
→ Spec(Z),

which is flat and projective over Spec(Z). For each prime p, we have Xp = X
(mod p), i.e., the fiber of X over p ∈ Spec(Z). If p divides the discriminant of F
then Xp will have singularities. These singular fibers have a strong influence on the
rational points of X .
Reason 1′: Degenerate fibers of families
This is the function-field analog of the previous situation. Let B be a complex
curve and

π : X → B

a family of cubic surfaces, e.g., a pencil

{sF (y0, y1, y2, y3) + tG(y0, y1, y2, y3) = 0} ⊂ P3
y0,y1,y2,y3

× P1
s,t

with π being projection onto the second factor. At least some of the fibers Xb =
π−1(b), b ∈ B must be singular.
Reason 2: Counting rational points
Proving asymptotics for the number of rational points of bounded heights on singu-
lar cubic surfaces is often easier than the case of smooth cubic surfaces. Examples
include toric cubic surfaces [dlB98, Fou98, HBM99, Sal98]

y3
0 = y1y2y3,

the Cayley cubic surface [HB03], the ‘E6 cubic surface’ [dlBBD07]

y1y
2
2 + y2y

2
0 + y3

3 = 0;

and a ‘D4 cubic surface’ [Bro06]

y1y2y3 = y4(y1 + y2 + y3)
2.

4.3. What are ‘good’ singularities? Let S be a normal surface. A reso-
lution of singularities σ : X → S is a birational proper morphism from a smooth
surface. Abhyankar proved the existence of resolutions of surface singularities in
arbitrary characteristic [Abh56]. A resolution σ : X → S is minimal if there exists
no nontrivial factorization

X
φ
→ Y → S

with Y smooth. This is equivalent to

• there are no (−1)-curves in the fibers of σ; or
• KX is nef relative to σ.

A relative analog of Corollary 2.20 (see Remark 2.21) implies that minimal resolu-
tions of singularities are unique, in the case of surfaces.

Recall that if φ : X → Y is a birational morphism of smooth projective surfaces
then (cf. Equation 1.1):

KX = φ∗KY +
∑

i

miEi, mi > 0.

The following definition represents a weakening of this condition:
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Definition 4.1. Suppose that S is a normal surface with a unique singularity
p; assume that KS is a Q-Cartier divisor at p. (This is the case when S is a complete
intersection in some neighborhood of p). Then p ∈ S is a canonical singularity if,
for each resolution of singularities σ : X → S we have

KX = σ∗KS +
∑

i

miEi, mi ≥ 0,

where the Ei are exceptional divisors of σ.

Note here that a priori the mi ∈ Q; however, the classification of these singu-
larities shows a posteriori that the mi ∈ Z.

Proposition 4.2. Suppose that (S, p) is a canonical singularity. A resolution
of singularities σ : X → S is minimal if and only if each mi = 0, i.e., KX = σ∗KS.
In this case, each σ-exceptional curve is a (−2)-curve, i.e., a nonsingular rational
curve E with E2 = −2.

Proof. (⇐) Suppose that mi = 0 for each i. Then KX · Ei = 0 for each
σ-exceptional divisor. The Hodge index theorem implies that the σ-exceptional
divisors have negative self-intersection, i.e., E2

i < 0. The adjunction formula implies
that E2

i = −2 and Ei is a nonsingular curve of arithmetic genus zero.
(⇒) Assume that σ is minimal, i.e., the fibers of σ contain no (−1)-curves.

Suppose that KX 6= σ∗KS so that some mi 6= 0. It follows that (
∑

imiEi)
2 < 0

and thus (
∑

imiEi)·Ej < 0 for some σ-exceptional curve Ej . Consequently E2
j < 0

and KXEj < 0, so Ej is a (−1)-curve by Proposition 1.6. �

Proposition 4.2 suggests the following variation on this definition

Definition 4.3. A normal surface S has Du Val singularities if it admits a
resolution σ : X → S such that KX ·E = 0 for each σ-exceptional divisor E.

Patrick Du Val first classified surface singularities in terms of their discrepancies
(or in his terminology, the ‘conditions they impose on adjunction’) in [DV34]. This
definition is a priori more general than the class of canonical singularities: We do
not insist that KS is Q-Cartier. However, we shall see later (Remark 4.7) that Du
Val singularities are canonical.

Exercises.

Exercise 4.3.1. We give an example of a surface with ‘bad’ singularities. Sup-
pose that p1, . . . , p4 ∈ ℓ ⊂ P2 are distinct points lying on a line ℓ. Consider

β : X := Blp1,...,p4
P2 → P2

and let ℓ̃ denote the proper transform of ℓ, L the pullback of the hyperplane class
via β, and E1, . . . , E4 the exceptional divisors. Verify that

a. The divisor 4L−E1−E2−E3−E4 is basepoint-free and yields a morphism
φ : X → P10.

b. If Y is the image of X under φ, show that φ : X → Y is an isomorphism
over X \ ℓ̃ and contracts ℓ̃ to a point y ∈ Y .

c. Show that Y is normal at y and the canonical class KY is Q-Cartier.
Compute the divisor φ∗KY .

e. Show that y ∈ Y is not a Du Val singularity.
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4.4. Singular Del Pezzo surfaces.

Definition 4.4. A singular Del Pezzo surface is a projective surface S with
Du Val singularities such that −KS is ample.

If σ : X → S is a minimal resolution of a singular Del Pezzo surface then
σ∗KS = KX , i.e., −KX is semiample.

Here is one good source of singular Del Pezzo surfaces. Suppose X is a smooth
projective surface with −KX nef and big. It has the following properties:

• (−KX)2 > 0;
• Any irreducible curve E with KX · E = 0 is a (−2)-curve.
• There are a finite number of (−2)-curves on X .

The first statement is a particular case of Corollary 2.4. The second is contained in
the proof of Proposition 4.2. The third follows from the fact that K⊥

X is negative
definite, and thus has a finite number of vectors of self-intersection −2.

Theorem 4.5. Let X be a smooth projective surface with −KX nef and big.
Then each nef divisor D on X is semiample.

Corollary 4.6. Let X be a smooth projective surface with −KX nef and
big. Then −KX is semiample. In particular, there exists a birational morphism
σ : X → S to a singular Del Pezzo surface with σ∗KS = KX .

Proof. Remark 2.18 addresses this in the special case where D is not big, i.e.,
when D2 = 0. Thus we may assume that D2 > 0.

The Nakai criterion (Theorem 2.2) implies that D is ample unless D ·E = 0 for
some irreducible curve E ⊂ X . The Hodge index theorem implies that each such
curve satisfies E2 < 0. Since −KX · E ≥ 0, the only possibilities are (−1)-curves
(see Proposition 1.6) or (−2)-curves (see Proposition 4.2). In either case E ≃ P1.

Suppose X admits (−1)-curves as above. We can apply the Castelnuovo con-
traction criterion (Theorem 1.12) to obtain a birational morphism β : X → Y
such that Y admits a big and nef divisor M on Y with β∗M = D and the only
curves orthogonal to M are (−2)-curves. Furthermore, −KY remains nef and big
(cf. Corollary 2.8).

Let E1, . . . , Er denote the (−2)-curves orthogonal toM . We exhibit a birational
morphism to a singular projective variety σ : Y → S contracting precisely these
curves. Such a contraction exists for more general reasons [Rei97, 4.15] [Art62,
2.3] but we will sketch an argument in our situation.

We essentially copy the proof of the Castelnuovo Criterion. Let H be a very
ample line bundle on Y such that each positive multiple nH has no higher co-
homology. Write di = H · Ei for i = 1, . . . , r. Since the intersection matrix of
ZE1 + · · · + ZEr is negative definite, there exist positive integers n and b1, . . . , br
such that

nH ·Ei = −(b1E1 + · · · + brEr) · Ei

for each i. Let B = b1E1 + · · · + brEr so that L := nH + B is orthogonal to each
Ei.

The adjunction formula implies that each effective divisor A supported on
E1 ∪ · · · ∪ Er has nonpositive arithmetic genus; a straightforward induction gives
H1(OA) = 0 as well. Here it is crucial that KY ·Ei = 0 for each i; it is not enough
to assume that each component of the exceptional locus is rational. Thus we have
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OY (L)|B ≃ OB , i.e., an isomorphism of invertible sheaves, not just an equality of
degrees. We obtain the exact sequence

0 → OY (nH) → OY (L) → OB → 0.

Our vanishing assumption show that

Γ(Y,OY (L)) ։ Γ(Y,OB),

i.e., for each point of B there is a section of OY (L) nonvanishing at that point.
The sections of OY (L) induce an embedding away from E1 ∪ · · · ∪ Er, so OY (L)
is globally generated and induces a morphism σ : Y → S contracting precisely
E1, . . . , Er. In particular, OY (L) is the pullback of an ample line bundle on S via
σ.

To complete the argument, we show there exists a Cartier divisor N on S such
that σ∗N is a positive multiple of M . Repeating the previous argument forM+mL
with m≫ 0, we get the same contraction σ : Y → S. Here the argument shows that
mL+M is the pullback of an ample line bundle from S. It follows that M = σ∗N
for some Cartier divisor N on X .

Finally, N is ample on S by the Nakai criterion, as we have contracted all the
curves along which it is nonpositive. �

Remark 4.7. A variation on this argument shows that Du Val singularities are
canonical. Suppose that σ : Y → S is a minimal resolution of Du Val singularities.
The canonical class KY is nef relative to σ and thus globally generated relative to
σ. We obtain a factorization

Y → ProjS





⊕

n≥0

σ∗OY (nKY )





̟
→ S.

Since ̟ is a bijective morphism of normal surfaces, it is an isomorphism. However,
the canonical divisor of the intermediate surface is Q-Cartier by construction.

Remark 4.8. Suppose the base field is algebraically closed of characteristic
zero. There do exist smooth projective rational surfaces admitting nef divisors that
are not semiample [Zar62, §2]. Thus the assumption that −KX be nef and big
in Theorem 4.5 is necessary. (See Exercise 4.4.1 below and [Laz04, 2.3] for more
discussion.)

We record one last consequence of Theorem 4.5, an extension of Corollary 2.13:

Proposition 4.9. Let X be a smooth projective surface with −KX nef and
big. Then NE1(X) is a finite rational polyhedral cone, generated by (−2)-curves
and KX-negative extremal rational curves.

Proof. Apply Proposition 2.10 and Corollary 2.11: NE1(X) is generated by
the nonnegative cone C, along with the (−1)-curves and (−2)-curves. The Hodge
index theorem implies that KX is negative on C \ {0}, so any extremal rays of
NE1(X) arising from C are necessarily KX -negative.

The Cone Theorem 2.23 implies that the KX -negative part of the effective
cone is generated by curves Li with −KX · Li ≤ 3. Theorem 4.5 gives that −KX

is semiample and induces σ : X → S. Thus there are at most a finite number
of classes [Li] arising as KX -negative extremal rays. Indeed, the curves in S with
anticanonical degree ≤ 3 are parametrized by a scheme of finite type, as the curves
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in projective space of bounded degree are parameterized by a Hilbert scheme of
finite type. We see in particular that X admits a finite number of (−1)-curves.

Clearly, there are a finite number of (−2)-curves, as these are all σ-exceptional.
Thus NE1(X) admits a finite number of extremal rays, with the desired interpre-
tations. �

Exercises.

Exercise 4.4.1. Assume the base field is of characteristic zero.
Let C ⊂ P2 denote a smooth cubic plane curve and H the hyperplane class on

P2. Choose points p1, . . . , p9 ∈ C such that the divisors p1 + · · · + p9 and H |C are
linearly independent over Q. Consider the blow-up

X := Blp1,...,p9
P2 β

→ P2

with exceptional curves E1, . . . , E9. Show that D = −KX = 3β∗H −E1 − · · · −E9

is nef but not semiample.
Now choose points q1, . . . , q12 ∈ C such that q1 + · · ·+ q12 and H |C are linearly

independent. Consider the blow-up

Y := Blq1,...,q12
P2 γ

→ P2

with exceptional curves F1, . . . , F12. Show that D′ = 4γ∗H − F1 − · · · − F12 is nef
but not semiample. Indeed, demonstrate that for each n > 0 the divisor nD′ has
the proper transform of C as a fixed component.

4.5. Classification of Du Val singularities. Suppose that σ : X → S is a
minimal resolution of a Du Val surface singularity p ∈ S. Consider the intersection
numbers of the irreducible components E1, . . . , Er of σ−1(p), which we put into a
symmetric matrix (Ei ·Ej)i,j=1,...,r. This has the following properties:

• (Ei ·Ej) is negative definite, by the Hodge index theorem;
• E2

i = −2 for each i, by Proposition 4.2;
• Ei ·Ej = 0, 1 for each i 6= j; indeed, if Ei ·Ej > 1 then (Ei + Ej)

2 > 0;
• we cannot express

{E1, . . . , Er} = {Ea1
, . . . , Eas

} ∪ {Eb1 , . . . , Ebr−s
}

with Eal
· Ebm

= 0 for each l,m; this is because σ−1(p) is connected.

Matrices of this type occur throughout mathematics, especially in the classi-
fication of the simple root systems via Dynkin diagrams/Cartan matrices in Lie
theory. We cannot dwell too much on these interactions, except to refer the reader
to some of the literature on this beautiful theory [Bri71, Dur79, SB01]. We list
the possible matrices that can arise [FH91, 21.2]. First, we have the infinite series

Ar

r ≥ 1

























−2 1 0 . . . . . . 0

1 −2 1
. . .

. . .
...

0 1 −2
. . .

. . .
...

...
. . .

. . .
. . . 1 0

...
. . .

. . . 1 −2 1
0 . . . . . . 0 1 −2

























Ei ·Ei =











−2 if i = j

1 if |i− j| = 1

0 otherwise
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Dr

r ≥ 4































−2 0 1 0 . . . 0 0

0 −2 1 0
. . .

. . .
...

1 1 −2 1
. . .

. . .
...

0 0 1 −2
. . .

. . . 0
...

. . .
. . .

. . .
. . . 1 0

0
. . .

. . .
. . . 1 −2 1

0 . . . . . . 0 0 1 −2































Ei ·Ei =







































−2 if i = j

1 if |i− j| = 1,

i, j ≥ 3

or if {i, j}

= {1, 3}, {2, 3}

0 otherwise

and then the exceptional lattices

E6

















−2 1 0 0 0 0
1 −2 0 0 0 1
0 0 −2 1 0 0
0 0 1 −2 0 1
0 0 0 0 −2 1
0 1 0 1 1 −2

















E7





















−2 1 0 0 0 0 0
1 −2 1 0 0 0 0
0 1 −2 0 0 0 1
0 0 0 −2 1 0 0
0 0 0 1 −2 0 1
0 0 0 0 0 −2 1
0 0 1 0 1 1 −2





















E8

























−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 0 0 0 1
0 0 0 0 −2 1 0 0
0 0 0 0 1 −2 0 1
0 0 0 0 0 0 −2 1
0 0 0 1 0 1 1 −2

























Remarkably, in characteristic zero there is a unique singularity associated to
each of these matrices.

Proposition 4.10. Assume that the base field is algebraically closed of char-
acteristic zero. Then, up to analytic isomorphism, there is a unique Du Val surface
singularity associated to each Cartan matrix enumerated above:

Ar, r ≥ 1 z2 = x2 + yr+1

Dr, r ≥ 4 z2 = y(x2 + yr−2)
E6 z2 = x3 + y4

E7 z2 = y(x3 + y2)
E8 z2 = x3 + y5

For a modern proof of this, we refer the reader to [KM98, §4.2]. It turns out
that these singularities are also related to the class of ‘simple’ hypersurface singu-
larities, which can be independently classified [AGZV85]. There are a multitude
of classical characterizations of Du Val singularities [Dur79].
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Example 4.11. The Cayley cubic surface has four A1 singularities. The toric
cubic surface

y3
0 = y1y2y3

has three A2 singularities at [0, 1, 0, 0],[0, 0, 1, 0], and [0, 0, 0, 1].

5. Cox rings and universal torsors

We work over an algebraically closed field k unless specified otherwise.

5.1. Universal torsors. Universal torsors are an important tool in higher-
dimensional arithmetic geometry. They play a fundamental rôle in the modern
theory of descent for rational varieties [CTS87]. They are also an important tech-
nique and conceptual tool for counting rational points of bounded height [Sal98].

Let X be a smooth projective variety. Assume that Pic(X) is a free abelian
group of rank r, generated by the line bundles L1, . . . , Lr on X . Let TX =
Hom(Pic(X),Gm) denote the Néron-Severi torus ofX , i.e., the torus with character
group Hom(TX ,Gm) = Pic(X).

Definition 5.1. [CTS87] The universal torsor over X

TX → U
↓
X

is a principal homogeneous space overX with structure group TX with the following
universal property: Given a line bundle L on X , if λL : TX → Gm = GL1 denotes
the corresponding character then the line bundle VλL

associated to U equals L. In
other words, if U is given by a cocycle {τij} ∈ H1(X,TX) then L is given by the
cocycle {λL(τij)} ∈ H1(X,Gm).

Constructing U is straightforward in some sense: Choose L1, . . . , Lr freely gen-
erating Pic(X) and write

Pi = L−1
i \ 0X ⊂ L−1

i

for the complement of the zero-section. This is a Gm-principal bundle arising from
L−1

i . Then we can take

U = P1 ×X · · · ×X Pr

and TX -action

TX × U → U
(t; s1, . . . , sr) 7→ (λ−L1

(t)s1, . . . , λ−Lr
(t)sr)

where si is a local section of Pi and λL is the character associated with L.
However, for arithmetic applications it is important to have a more concrete

presentation of the universal torsor.

Example 5.2. Consider the case X = Pn. The standard quotient presentation

Pn = (An+1 \ 0)/Gm

can be interpreted as an identification:

OPn(−1) \ 0Pn

∼
→ An+1 \ 0

ց ւ
Pn
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In other words, we regard OPn(−1) as the ‘universal line’ over Pn. Since OPn(−1)
generates Pic(Pn), we have

U = OPn(−1) \ 0Pn = An+1 \ 0,

equivariant with respect to the action of Gm = TPn . Note that we can regard

An+1 = Spec

(

⊕

N∈Z

Γ(Pn,OPn(N))

)

.

More generally, the universal torsor

TPm×Pn → U
↓

Pm × Pn

can be identified with

Am+n+2
x0,...,xm,y0,...,yn

\ ({x0 = · · · = xm = 0} ∪ {y0 = · · · = yn = 0}) .

Here the torus acts by the rule

(t1, t2) · (x0, . . . , xm, y0, . . . , yn) = (t1x0, . . . , t1xm, t2y0, . . . , t2yn).

Decomposing the polynomial ring under this action, we can regard

Am+n+2 = Spec





⊕

N1,N2∈Z

Γ(Pm × Pn,OPm×Pn(N1, N2))



 .

Exercises.

Exercise 5.1.1. Realize the universal torsor over X = P1 × P1 × P1 as an
explicit open subset U ⊂ A8. Describe the action of TX on U .

5.2. Universal torsors over nonclosed fields. We can only offer a brief
summary here; we refer the reader to [CTS87] and [Sko01] for details and arith-
metic applications.

Let k be a perfect field with absolute Galois group G. Suppose that X is
defined over k and X̄ satisfies the assumptions made in §5.1. The Galois action
on Pic(X̄) allows us to define the torus TX over k. Precisely, the action induces a
representation on the character group

̺ : G→ Aut(Hom(TX̄ ,Gm)) = Aut(Pic(X̄)),

which gives the descent data for TX . A universal torsor over X is a principal
homogeneous space

TX → U
↓
X

defined over k, such that the universal property is satisfied on passage to the alge-
braic closure.

Note our use of the indefinite article: Over a nonclosed field, a variety may
have more than one universal torsor. Indeed, since any universal torsor U comes
with a TX -action over X , given a cocycle η ∈ H1

G(TX̄) we can twist to obtain

TX → Uη

↓
X,
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another universal torsor over k. However, if the Galois action on Pic(X̄) is trivial
then

H1
G(TX̄) = H1

G(Gr
m) = 0

by Hilbert’s Theorem 90. Here the universal torsor is unique whenever it exists.
On the other hand, there may be obstructions to descending a universal torsor

over X̄ to the field k. These reside in H2
G(TX̄); indeed, the situation is analogous

to the descent obstruction for line bundles discussed in Remark 3.3. Whenever
X(k) 6= ∅ this obstruction vanishes [CTS87, 2.2.8], which makes universal torsors
an important tool for deciding whether X has rational points.

5.3. Cox rings. Let X be a normal projective variety such that the Weil
divisor class group is freely generated by D1, . . . , Dr.

Definition 5.3. The Cox ring of X is defined as

Cox(X) =
⊕

(n1,...,nr)∈Zr

Γ(X,OX(n1D1 + · · · + nrDr))

with multiplication

Γ(X,OX(m1D1 + · · · +mrDr)) × Γ(X,OX(n1D1 + · · · + nrDr)) →
Γ(X,OX((m1 + n1)D1 + · · · + (mr + nr)Dr))

defined by (s, t) 7→ st.

Example 5.4. We start with the eponymous example [Cox95]: Let X be a
projective toric variety of dimension n

Gn
m ×X → X.

Let D1, . . . , Dd denote the boundary divisors, i.e., the irreducible components of
the complement of the dense open torus orbit. Let si ∈ Γ(X,OX(Di)) denote the
canonical section, i.e., the one associated with the inclusion

OX →֒ OX(Di).

(Actually, si is canonical up to a nonzero scalar.) Recall that

• each effective divisor D on X can be expressed as a nonnegative linear
combination

D ≡ n1D1 + · · · + ndDd, n1, . . . , nd ≥ 0;

• the canonical section s of OX(D) admits a unique expression

s = f(s1, . . . , sd)

where f is a polynomial over k in d variables.

Thus the Cox ring of X is a polynomial ring

Cox(X) ≃ k[s1, . . . , sd]

with generators indexed by the boundary divisors.

We list some basic properties of the Cox ring of a smooth projective variety.
We continue to assume that D1, . . . , Dr are divisors freely generating Pic(X).



RATIONAL SURFACES OVER NONCLOSED FIELDS 197

• Cox(X) is graded by Pic(X), i.e.,

Cox(X) ≃
⊕

L∈Pic(X)

Cox(X)L, Cox(X)L ≃ Γ(X,L).

Indeed, for a unique choice of (n1, . . . , nr) ∈ Zr we have an isomorphism

L ≃ OX(n1D1 + · · · + nrDr).

• Cox(X) has a natural action by TX via the rule

(t1, . . . , tr) · s = tn1

1 · · · tnr

r s

when s ∈ Γ(X,OX(n1D1 + · · · + nrDr)).
• The nonzero graded pieces of Cox(X) are indexed by NE1(X,Z). If

Cox(X) is finitely generated then NE
1
(X) is a finitely generated ratio-

nal polyhedral cone.

5.4. Two theorems. We start with a general result:

Proposition 5.5. Let X be a projective variety and A1, . . . , Ar semiample
Cartier divisors on X. Then the ring

(5.1)
⊕

n1,...,nr≥0

Γ(OX(n1A1 + · · · + nrAr))

is finitely generated.

Proof. (based on [HK00, 2.8], with suggestions from A. Várilly-Alvarado) It
suffices to show that for some positive N ∈ N the ring

⊕

n1,...,nr≥0

Γ(OX(N(n1A1 + · · · + nrAr)))

is finitely generated. Indeed, the full ring is integral over this subring, so our result
follows by finiteness of integral closure. Since A1, . . . , Ar are semiample, there exists
an N > 0 such that NA1, . . . , NAr are globally generated. Thus we may assume
that A1, . . . , Ar are globally generated.

We first consider the special case r = 1. We obtain a morphism

φ : X → Pm := P(Γ(OX(A1))
∗),

with φ∗OPm(1) = OX(A1). This admits a Stein factorization

X
f
→ Y

g
→ Pm

with g finite and f having connected fibers, so in particular f∗OX = OY . Further-
more, g∗OPm(1) is ample on Y and thus

⊕

n≥0

Γ(Y, g∗OPm(n))

is finitely generated. The projection formula gives

g∗Γ(Y, g∗OPm(n))
∼
→ Γ(X,OX(nA1))

for each n ∈ N, so
⊕

n≥0

Γ(X,OX(nA1))

is also finitely generated.
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Now suppose r is arbitrary. Consider the vector bundle

V = A1 ⊕ · · · ⊕Ar

and the associated projective bundle

π : P(V ∗) → X.

We have the tautological quotient bundle

π∗V ։ OP(V ∗)(1);

since V is globally generated (being the direct sum of globally generated line bun-
dles), OP(V ∗)(1) is semiample. In particular, the ring

(5.2)
⊕

n≥0

Γ(P(V ∗),OP(V ∗)(n))

is finitely generated.
The tautological quotient induces

Symnπ∗V ։ OP(V ∗)(n),

and taking direct images via the projection formula we obtain

SymnV
∼
→ π∗OP(V ∗)(n)

and

Γ(X, SymnV ) = Γ(P(V ∗),OP(V ∗)(n)).

Since (5.2) is finitely generated, the algebra
⊕

n≥0

Γ(X, SymnV )

is finitely generated as well. Using the decomposition

SymnV =
⊕

n1+···+nr=n
n1,...,nr≥0

OX(n1A1 + · · · + nrAr),

we conclude that (5.1) is finitely generated. �

Remark 5.6 (due to A. Várilly-Alvarado). If A1 and A2 are ample then there
exists an N ∈ N such that the multiplication maps

Γ(X,OX(Nm1A1)) ⊗ Γ(X,OX(Nm2A2)) → Γ(X,OX(N(m1A1 +m2A2)))

are surjective for each m1,m2 ≥ 0. However, this fails for semiample divisors.
Let h : X → P1×P1 be a double cover branched over a smooth curve of bidegree

(2d, 2d); composing with the projections yield morphisms gi : X → P1, i = 1, 2, with
connected fibers. Let f1 and f2 be the fibers of P1×P1; take A1 and A2 to be their
preimages on X . Then we have

Γ(X,OX(mA1)) = Γ(P1,OP1(m))

for each m ≥ 0, i.e., sections of

Γ(X,OX(m1A1)) ⊗ Γ(X,OX(m2A2))

are obtained via pullback from sections of Γ(P1 × P1,OP1×P1(m1,m2)). Since
m1A1 +m2A2 is very ample on X for suitable m1,m2 ≫ 0, we conclude that

Γ(X,OX(m1A1)) ⊗ Γ(X,OX(m2A2)) → Γ(X,OX(m1A1 +m2A2))
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cannot be surjective. Indeed, the decomposable sections cannot separate points in
a fiber of h.

Theorem 5.7. Suppose X is a smooth projective variety with Pic(X) free of
finite rank. Assume that Cox(X) is finitely generated. Then the universal torsor
admits an embedding

ι : U →֒ Spec(Cox(X))

that is equivariant under the action of the Néron-Severi torus TX.

Proof. First, we construct the morphism ι. Again, let D1, . . . , Dr denote divi-
sors freely generating the divisor class group of X . The cone of effective divisors of
X is finite rational polyhedral and strictly convex, so we can chooseD1, . . . , Dr such
that each effective divisor on X can be written as a nonnegative linear combination
of D1, . . . , Dr. (Of course, the Di themselves need not be effective.)

Let L1, . . . , Lr designate the line bundles associated to the invertible sheaves
OX(D1), . . . ,OX(Dr). Writing Pi = L−1

i \ 0X we have

U = P1 ×X · · · ×X Pr ⊂ L−1
1 ×X · · · ×X L−1

r

which we interpret as the natural inclusion of

SpecX





⊕

(n1,...,nr)∈Zr

OX(n1D1 + · · · + nrDr)





into

SpecX





⊕

n1,...,nr≥0

OX(n1D1 + · · · + nrDr)



 .

For each (n1, . . . , nr) ∈ Zr
≥0, we have

Γ(X,OX(n1D1 + · · · + nrDr)) ⊗OX → OX(n1D1 + · · · + nrDr)

which induces

SpecX

(

⊕

(n1,...,nr)∈Z
r

≥0

OX(n1D1 + · · · + nrDr)
)

−→

SpecX

(

⊕

(n1,...,nr)∈Z
r

≥0

Γ(OX(n1D1 + · · · + nrDr)) ⊗OX

)

.

Since each effective divisor is a nonnegative sum of the Di, the target is isomorphic
to X × Spec(Cox(X)). Thus we get a morphism

U → X × Spec(Cox(X))
ց ւ

X

and composing with the projection yields

ι : U → Spec(Cox(X)).

Our construction is clearly equivariant with respect to the actions of TX .
We prove ι is an open embedding. First, observe that Spec(Cox(X)) is normal,

i.e., Cox(X) is integrally closed in its fraction field. Since X is normal,
⊕

n1,...,nr≥0

OX(n1D1 + · · · + nrDr)

is a sheaf of integrally-closed domains, whose global sections form an integrally
closed domain (cf, [Har77, Ex. 5.14(a)]). Furthermore, Cox(X) is even a UFD
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[EKW04, Cor. 1.2]; this should not be surprising, as every effective divisor D on
X naturally yields a principal divisor on Spec(Cox(X)), namely, the locus where
the associated section s ∈ Γ(X,OX(D)) ⊂ Cox(X) vanishes.

We next exhibit a finitely-generated TX-invariant subalgebra

R ⊂ Cox(X)

such that the induced morphism

j : U
ι
→ Spec(Cox(X)) → Spec(R)

is an open embedding. Choose ample divisors A1, . . . , Ar freely generating Pic(X).
(Since being ample is an open condition, we can certainly produce these.) For each
ample Ai, we obtain an embedding

X →֒ P(wi)

into a weighted projective space, where the weights

wi = (wi1, . . . , wij(i))

index the degrees of a minimal set of homogeneous generators for the graded ring

xi1, . . . , xij(i) ∈
⊕

N≥0

Γ(X,OX(NAi)).

Take products to obtain

X →֒
r
∏

i=1

P(wi)

and let R denote the multihomogeneous coordinate ring of X , i.e., the quotient of
the polynomial ring in the xij by the multihomogeneous polynomials cutting out
X . We can then identify

U = Spec(R) −
r
⋃

i=1

{xi1 = · · · = xij(i) = 0}.

Thus we have a diagram

U
ι
→ V := Spec(Cox(X))

j ↓ ↓
j(U) ⊂ W := Spec(R)

with V normal and j an open embedding. Let U ′ ⊂ V denote the pre-image of
j(U) in V . The induced morphism

β : U ′ → j(U) ≃ U

is a birational morphism from a normal variety with a section, induced by ι ◦ j−1.
Any such morphism is an isomorphism. Indeed, the composed morphism

U ′ β
→ U

ι
→ U ′

agrees with the identity on a dense subset of U ′, hence is the identity. Thus β and
ι are inverses of each other. �

Theorem 5.8. Let X be a smooth projective surface with −KX nef and big.
Then Cox(X) is finitely generated.
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Proof. Proposition 4.9 implies that NE1(X) is a finite rational polyhedral
cone admitting a finite number of (−1)- and (−2)-curves. Thus the nef cone of X
takes the form

〈A1, . . . , Ar〉

where the Ai are nef divisors. Theorem 4.5 guarantees that each Ai is semiample.
Consider the subring of the Cox ring

Cox′(X) :=
⊕

D∈〈A1,...,Ar〉

Γ(X,OX(D))

which is finitely generated by Proposition 5.5.
We next set up some notation, relying on the fact that −KX is semiample with

associated contraction σ : X → S (Corollary 4.6). Let E1, . . . , Er denote the (−2)-
curves on X , i.e., the curves contracted by σ. Let F1, . . . , Fs denote the (−1)-curves
on X . Choose generators ηi ∈ Γ(OX(Ei)) and ξi ∈ Γ(OX(Fi)), which are unique
up to scalars. We regard these as elements of Cox(X).

Lemma 5.9. Let D be an effective divisor on X . Express

(5.3) D = M + F

where F is the fixed part and M is the moving part. Then the support of F consists
of (−1)- and (−2)-curves.

Proof. Suppose that the fixed part of F contains an irreducible component
C that is not a (−1)- or (−2)-curve. It follows that C2 ≥ 0. Since C is effective,
we have

h2(OX(C)) = h0(OX(KX − C)) = 0.

Otherwise, n(KX − C) would be effective for each n ≥ 0, which contradicts our
assumption that −KX is big. The Hodge index theorem implies −KX · C > 0, so
Riemann-Roch implies h0(OX(C)) > 1, which means that C is not fixed. �

We interpret this via the Cox ring: Each homogeneous element t ∈ Cox(X)
can be identified with an effective divisor D = {t = 0}. Expression (5.3) translates
into t = m · f , where m ∈ Cox′(X) and

f = ηa1

1 · · · ηar

r ξb1
1 · · · ξbs

s , a1, . . . , ar, b1, . . . , bs ∈ N.

It follows then that

Cox(X) = Cox′(X)[η1, . . . , ηr, ξ1, . . . , ξs]

which completes our proof. �

Remark 5.10. We make a few observations on the significance of Theorem 5.8
and recent generalizations.

• Hu and Keel [HK00] showed that smooth projective varieties with finitely
generated Cox rings behave extremely well from the standpoint of bira-
tional geometry. Indeed, they designate such varieties Mori Dream Spaces.

• Shokurov [Sho96, §6] demonstrated how a robust version of the log mini-
mal model program would imply that many classes of varieties have finitely
generated Cox rings. For example, he established that log Fano threefolds
over fields of characteristic zero have this property. These are a natural
generalization of the singular Del Pezzo surfaces discussed here.
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• As an application of their proof of the existence of minimal models for
varieties of log general type (over fields of characteristic zero), Birkar,
Cascini, Hacon, and McKernan proved that log Fano varieties of arbitrary
dimension have finitely generated Cox rings [BCHM06, 1.3.1].

Exercises. Suppose D is an effective divisor on a smooth projective surface
X . Consider the graded ring

R(D) :=
⊕

m≥0

Γ(X,OX(mD)).

In the classic paper [Zar62], Zariski analyzed when this ring is finitely generated.

Exercise 5.4.1. Recall the notation of the second half of Exercise 4.4.1. Show
that R(D′) is not finitely generated.

Exercise 5.4.2. AssumeD admits a Zariski decomposition [Zar62, 7.7] [Laz04,
2.3.19], i.e.,

(5.4) D = P +N

where P and N are Q-divisors with the following properties:

• P is nef;
• N is effective with support

supp(N) = {Ci}

generating a negative definite (or trivial) sublattice of the Néron-Severi
group;

• P · Ci = 0 for each Ci ∈ supp(N).

Deduce that

• for each n ≥ 0 the map

Γ(X,OX(nD − ⌈nN⌉)) →֒ Γ(OX(nD))

is an isomorphism;
• Γ(X,OX(nP )) ≃ Γ(OX(nD)) for n ≥ 0 such that nN is integral.

If −KX is nef and big, deduce also that

• P is semiample;
• supp(N) ⊂ {E1, . . . , Er, F1, . . . , Fs}, the union of the (−1)- and (−2)-

curves on X .

Hint: The second assertion is a corollary of the first. To prove this, note that any
divisor A with

nD − ⌈nN⌉ ≺ A � nD

intersects some component in supp(N) negatively, and thus has that component in
its fixed part.

Exercise 5.4.3. Let X be the Hirzebruch surface F2, Σ the class of a section
at infinity, f the class of a fiber:

Σ f
Σ 2 1
f 1 0

This admits a unique (−2)-curve E = Σ − 2f .
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• Show that Cox(X) ≃ k[η, f0, f∞, t] where

Γ(OX(E)) = kη, Γ(OX(f)) = kf0 + kf∞,

and
Γ(OX(Σ)) = kηf2

0 + kηf0f∞ + kηf2
∞ + kt.

• Show that the Zariski decomposition of the divisor D = Σ − f is

D = P +N, P =
1

2
Σ, N =

1

2
E.

Verify that the fixed part of nD for n ≥ 0 is ⌈nN⌉ = ⌈n/2⌉E.

5.5. More Cox rings of Del Pezzo surfaces. For blow-ups β : X → P2, we
write L for the pullback of the line class on P2 and E1, E2, . . . for the exceptional
curves.

Example 5.11 (Degree Six Del Pezzo Surfaces). Let X be isomorphic to P2

blown up at three non-collinear points, which can be taken to be p1 = [1, 0, 0],
p2 = [0, 1, 0], and p3 = [0, 0, 1]. This is a toric variety under the action of the
diagonal torus. We have seen in §2.2 that NE1(X) is generated by the (−1)-curves:

{E1, E2, E3, E12, E13, E23}

where Eij is the proper transform of the line joining pi and pj with class L−Ei−Ej.
Here we have (cf. [BP04, 3.1]):

Cox(X) = k[η1, η2, η3, η12, η13, η23].

Example 5.12 (Degree Five Del Pezzo Surfaces). This example is due to
Skorobogatov [Sko93] (see also [BP04, 4.1]). Suppose that X is isomorphic to
P2 blown up at four points in linear general position, which can be taken to be
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], and p4 = [1, 1, 1]. Let Ei, i = 1, . . . , 4
denote the exceptional curves and Eij the proper transforms of the lines joining pi,
with class Eij = L − Ei − Ej . Skorobogatov shows there exist normalizations of
the generators ηi5 ∈ Γ(OX(Ei)) and ηij ∈ Γ(OX(Eij)) such that

Cox(X) = k[η12, . . . , η45]/ 〈P1, P2, P3, P4, P5〉

where each Pi is a Plücker relation

Pi = ηjkηlm − ηjlηkm + ηjmηkl, {i, j, k, l,m} = {1, 2, 3, 4, 5}, j < k < l < m.

More geometrically, Cox(X) is the projective coordinate ring of the Grassmannian
G(1, 4) ⊂ P9.

Example 5.13 (E6 cubic surface). See [HT04, §3] for more details. Let S ⊂ P3

denote the (unique) cubic surface with a singularity of type E6

S = {(w, x, y, z) : xy2 + yw2 + z3 = 0} ⊂ P3

and σ : X → S its minimal resolution of singularities. Let E1, . . . , E6 denote
the exceptional curves of σ and ℓ ⊂ X the proper transform of the unique line
{y = z = 0} ⊂ S. The effective cone here is simplicially generated by (−1)- and
(−2)-curves

NE1(X) = 〈ℓ, E1, E2, E3, E4, E5, E6〉

but the corresponding elements ξℓ, ξ1, . . . , ξ6 ∈ Cox(X) do not suffice to generate
it. In this case, for a suitable ordering of the Ei we have

Cox(X) ≃ k[ξ1, ..., ξ6, ξℓ, τ1, τ2, τℓ]/〈τℓξ
3
ℓ ξ

2
4ξ5 + τ2

2 ξ2 + τ3
1 ξ

2
1ξ3〉.
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We mention some other significant results:

• Batyrev and Popov [BP04] showed that the Cox ring of a Del Pezzo
surface X of degree d = 2, 3, 4, 5, 6 is generated by sections associated
with (−1)-curves on X . They show the relations (up to radical) are given
by quadratic expressions analogous to the Plücker-type relations above.
Furthermore, they conjectured that these quadratic relations actually gen-
erate the ideal of all relations.

• The Batyrev-Popov conjecture was proven for Del Pezzo surfaces of degree
d ≥ 4 and cubic surfaces without Eckardt points by Stillman, Testa, and
Velasco [STV07]. Derenthal [Der06a] has also made significant contri-
butions to our understanding of the relations in the Cox ring.

• Laface and Velasco [LV07] established the Batyrev-Popov conjecture when
d ≥ 2. Sturmfels and Xu [SX08] and Testa, Várilly-Alvarado, and Velasco
[TVAV08] address Del Pezzo surfaces of degree one.

• For d = 2, 3, 4, 5 the affine variety Spec(Cox(X)) can be related to ho-
mogeneous spaces G/P , where G is a simply-connected algebraic group
associated to the root system arising fromK⊥

X ⊂ N1(S,Z) (cf. §3.3.) Here
P is the maximal parabolic subgroup associated to a representation of G
naturally connected with the (−1)-curves on X . (This generalized the re-
lation discussed between Grassmannians and Cox rings of degree-five Del
Pezzos.) See [SS07] and [Der07] for details, as well as [Pop01] for the
case of degree four.

• There are numerous examples of singular Del Pezzo surfaces (like the E6

cubic surface) whose Cox rings admit a single relation. These are classified
in [Der06b].

Exercises.

Exercise 5.5.1. LetX be the blow-up of P2 at three collinear points. Compute
generators and relations for Cox(X). Hint: You can find the answer in [Has04].
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de hauteur bornée (Paris, 1996). MR 1679839 (2000b:11074)
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Tübingen.

[Rei97] M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry (Park City,
UT, 1993), IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI,
1997, pp. 3–159. MR 1442522 (98d:14049)

[Sal98] P. Salberger, Tamagawa measures on universal torsors and points of bounded height
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