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1 Elements of the geometry of K3 surfaces

1.1 Definitions, key examples, and basic properties

Let k be a field.

Definition 1 A K3 surface is a smooth projective geometrically integral surface
X/k such that the canonical class KX = 0 and H1(X,OX) = 0.

A compact complex manifold X with these properties is also called a K3 surface.

Example 2 Equations of low degree K3 surfaces can be written quite explicitly:

1. Branched double covers: Assume that char(k) 6= 2 and G6 ∈ k[x0, x1, x2]
is homogeneous of degree 6. The branched double cover of P2

X = {[w, x0, x1, x2] : w2 = G6(x0, x1, x2)}

is a K3 surface if it is smooth.
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2. Quartic surfaces: For F4 ∈ k[x0, x1, x2, x3] homogeneous of degree four
consider

X = {F4(x0, x1, x2, x3) = 0} ⊂ P3.

Then X is a K3 surface if it is smooth.

3. Sextic surfaces: Consider F2, F3 ∈ k[x0, x1, x2, x3, x4] homogeneous of de-
grees two and three respectively defining a complete intersection surface

X = {F2 = F3 = 0} ⊂ P4.

Then X is a K3 surface if it is smooth.

4. Degree eight surfaces: Consider quadratic polynomials P, Q, R ∈ k[x0, . . . , x5]
defining a complete intersection surface

X = {P = Q = R = 0} ⊂ P5.

Again, X is a K3 surface if it is smooth.

Observe that in each case the isomorphism classes of the resulting surfaces
depend on 19 parameters. For instance, the Hilbert scheme of quartic surfaces
in P3 can be interpreted as P(Γ(OP3(4))) ≃ P34, and the projective linear group
has dimension 15, so the associated quotient space is 19-dimensional.

From the definition, we can deduce some immediate consequences. Let Ω1
X

and Ω2
X denote the sheaves of 1-forms and 2-forms on X and TX = (Ω1

X)∗

the tangent bundle. Since KX = [Ω2
X ] is trivial, there exists an everywhere

non-vanishing section
ω ∈ Γ(X, Ω2

X).

Contraction by ω induces an isomorphism of sheaves

ιω : TX
∼→ Ω1

X

and thus isomorphisms of cohomology groups

Hi(X, TX)
∼→ Hi(X, Ω1

X).

Serre duality for K3 surfaces takes the form

Hi(X,F) ≃ H2−i(X,F∗)∗

so in particular
H0(X, Ω1

X) ≃ H2(X, TX)∗

and
H2(X,OX) ≃ Γ(X,OX)∗ ≃ k∗.

The Noether formula

χ(X,OX) =
c1(TX)2 + c2(TX)

12

therefore implies that
c2(TX) = 24.
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1.2 Complex geometry

We briefly review the geometric properties of K3 surfaces over k = C.

Computation of Hodge numbers and related cohomology Complex
K3 surfaces are Kähler, even when they are not algebraic [Siu83]. Hodge theory
[GH78] then gives additional information about the cohomology. We have the
decompositions

H1(X, C) = H0(X, Ω1
X)⊕H1(X,OX)

H2(X, C) = H0(X, Ω2
X)⊕H1(X, Ω1

X)⊕H2(X,OX)
H3(X, C) = H1(X, Ω2

X)⊕H2(X, Ω1
X)

where the outer summands are exchanged by complex conjugation. The first
and third rows are flipped by Serre duality.

The symmetry under conjugation yields

Γ(X, Ω1
X) = 0,

so K3 surfaces admit no vector fields. Furthermore, using the Gauss-Bonnet
theorem

χtop(X) = c2(TX) = 24

we can compute
dimH1(X, Ω1

X) = 24− 4 = 20.

We can summarize this information in the ‘Hodge diamond’:

1
0 0

1 20 1
0 0

1

The fact that H1(X, C) = 0 implies that H1(X, Z) is a torsion abelian group;
in fact, we have H1(X, Z) = 0. Otherwise there would exist a non-trivial finite
covering X ′ → X . The canonical class of X ′ remains trivial, hence X ′ is either
an abelian surface or a K3 surface [Bea78, p. 126]. Since

χtop(X ′) = deg(X ′/X)χtop(X) = 24 deg(X ′/X),

we derive a contradiction. Universal coefficient theorems imply then that H2(X, Z)
and H2(X, Z) are torsion-free.

The Lefschetz Theorem on (1, 1)-classes describes the Néron-Severi group of
X :

NS(X) = H2(X, Z) ∩H1(X, Ω1
X).

Thus we get a bound on its rank

ρ(X) := rank(Pic(X)) = rank(H1(X, Ω1
X) ∩H2(X, Z)) ≤ 20.
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Another key application is to deformation spaces, in the sense of Kodaira
and Spencer. Let Def(X) denote the deformations of X as a complex manifold.
The tangent space

T[X]Def(X) ≃ H1(X, TX)

and the obstruction space is H2(X, TX). However, since

H2(X, TX)
ιω→ H2(X, Ω1

X) = 0

we may deduce:

Corollary 3 If X is a K3 surface then the deformation space Def(X) is smooth
of dimension 20.

However, the general complex manifold arising as a deformation of X has no
divisors or non-constant meromorphic functions. If h denotes a divisor, we
can consider Def(X, h), i.e., deformations of X that preserve the divisor h.
Its infinitesimal properties are obtained by analyzing cohomology the Atiyah
extension [Ati57]

0→ OX → E → TX → 0

classified by
[h] ∈ H1(X, Ω1

X) = Ext1(TX ,OX).

We have

T[X,h]Def(X, h) = H1(X, E) = ker(H1(X, TX)
∩[h]→ H2(X,OX))

and using the contraction ιω : TX → Ω1
X we may identify

T[X,h]Def(X, h) ≃ h⊥ ⊂ H1(X, Ω1
X),

i.e., the orthogonal complement of h with respect to the intersection form. The
obstruction space

H2(X, E) ≃ coker(H1(X, TX)
∩[h]−→ H2(X,OX)) = 0,

because H2(X, TX) = 0.
A polarized K3 surface (X, h) consists of a K3 surface and an ample divisor

h that is primitive in the Picard group. Its degree is the positive even integer
h · h, as described in Example 2.

Corollary 4 If (X, h) is a polarized K3 surface then the deformation space
Def(X, h) is smooth of dimension 19.

Let Kg, g ≥ 2 denote the moduli space (stack) of complex polarized K3 surfaces
of degree 2g − 2; our local deformation-theoretic analysis shows this is smooth
and connected of dimension 19.

In fact, the Hodge decomposition of a K3 surface completely determines its
complex structure:
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Theorem 5 (Torelli Theorem) [PŠŠ71] [LP81] Suppose that X and Y are
complex K3 surfaces and there exists an isomorphism

φ : H2(X, Z)
∼→ H2(Y, Z)

respecting the intersection form

φ(α).φ(β) = α.β

and the Hodge decomposition

(φ ⊗ C)(H0(X, Ω2
X)) = H0(Y, Ω2

Y ).

Then there exists an isomorphism X ≃ Y .

The geometric properties of complex K3 surfaces are thus tightly coupled to its
cohomology; most geometric information about X can be read off from H2(X).

Theorem 6 (Surjectivity of Torelli) [LP81] [B+85] Let Λ denote the lattice
isomorphic to the middle cohomology of a K3 surface under the intersection
form. Each Hodge decomposition of Λ⊗C arises as the complex cohomology of
a (not-necessarily algebraic) K3 surface.

The adjunction formula implies that any divisor D on a K3 surface has even
self-intersection, i.e., for D effective we have D · D = 2pa(D) − 2. In fact, the
intersection form on the full middle cohomology is even [LP81, B+85]. Standard
results on the classification of even unimodular indefinite lattices allow us to
explicitly compute

Λ ≃ U⊕3 ⊕ (−E8)
⊕2,

where

U ≃
(

0 1
1 0

)

and E8 is the positive definite lattice associated to the Lie group of the same
name.

The surjectivity of the Torelli map then allows us to create K3 surfaces with
very special geometric proprties ‘out of thin air’:

Example 7 Produce an example of a quartic K3 surface X ⊂ P3 with three
disjoint lines L1, L2, L3.

By the adjunction formula

L2
i + KX .Li = 2g(Li)− 2

we know that L2
i = −2. Letting h denote the polarization class, the middle

cohomology of the desired K3 surface would have a sublattice

M =

h L1 L2 L3

h 4 1 1 1
L1 1 −2 0 0
L2 1 0 −2 0
L3 1 0 0 −2

.
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Using basic lattice theory, we can embed

M →֒ Λ.

Surjectivity of Torelli gives the existence of a K3 surface X with

Pic(X) ⊃M ⊃ Zh;

we can even choose h to be a polarization on X . Global sections of OX(h) give
an embedding [SD74]

|h| : X →֒ P3

with image having the desired properties.

2 The Mori-Mukai argument

The following is attributed to Mumford, although it was known to Bogomolov
around the same time:

Theorem 8 [MM83] Every complex projective K3 surface contains at least one
rational curve. Furthermore, suppose (X, h) ∈ Kg is very general, i.e., in the
complement of a countable union of Zariski-closed proper subsets. Then X con-
tains an infinite number of rational curves.

Results on density of rational curves over the standard topology have recently
been obtain by Chen and Lewis [CL10].

Idea: Let N be a positive integer. Exhibit a K3 surface (X0, h) ∈ Kg and
smooth rational curves Ci → X0, with [C1 ∪ C2] = Nh and [Ci] 6∼ h. Deform
C1 ∪ C2 to an irreducible rational curve in nearby fibers.

Kummer construction (for N = 1) We exhibit a K3 surface X0 containing
two smooth rational curves C1 and C2 meeting transversally at g + 1 points.

Let E1 and E2 be elliptic curves admitting an isogeny E1 → E2 of degree
2g + 3 with graph Γ ⊂ E1 × E2, and p ∈ E2 a 2-torsion point. The surface

(E1 × E2)/ 〈±1〉

has 16 simple singularities corresponding to the 2-torsion points; let X0 denote
its minimal resolution, the associated Kummer surface. Γ intersects E1 × p
transversally in 2g + 3 points, one of which is 2-torsion in E1 × E2. Take C1

and C2 to be the images of Γ and E1× p in X0, smooth rational curves meeting
transversally in g + 1 points. (The intersection of Γ and E1 × p at the 2-torsion
point does not give an intersection point in the Kummer surface.)

The sublattice of Pic(X0) determined by C1 and C2 is:

C1 C2

C1 −2 g + 1
C2 g + 1 −2
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C2

C1

Figure 1: Two smooth rational curves in X0

Figure 2: Deformation of C1 ∪ C2 in nearby K3 surface

The divisor h = C1 + C2 is big and nef and has no higher cohomology (by
Kawamata-Viehweg vanishing). It is also primitive: The divisor (E1 × p) + Γ is
primitive because the fibers of the projections onto E1 and E2 intersect it with
degrees 2 and 2g + 3, which are relatively prime; thus C1 + C2 is primitive as
well. Deform (X0, h) to a polarized (X, h) ∈ Kg

X → B, dim(B) = 1,

with h ample and indecomposable in the effective monoid. Recall that an effec-
tive divisor h is indecomposable if we cannot write h = D1 + D2, for D1 and D2

nontrivial effective divisors.
We have Hi(OX0

(h)) = 0, i > 0 thus C1 ∪C2 is a specialization of curves in
the generic fiber and Def(C1∪C2 ⊂ X ) is smooth of dimension g +1. The locus
in Def(C1 ∪C2 ⊂ X ) parametrizing curves with at least ν nodes has dimension
≥ g + 1 − ν. When ν = g the corresponding curves are necessarily rational.
The fibers of X → B are not uniruled and thus contain a finite number of these
curves, so the rational curves deform into nearby fibers.
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Conclusion For (X, h) ∈ Kg generic, there exist rational curves in the linear
series |h|. However, rational curves can only specialize to unions of rational
curves (with multiplicities), thus every K3 surface in Kg contains at least one
rational curve.

In fact, if D is any nonzero effective indecomposable divisor then D contains
irreducible rational curves. Our argument above proves this when D · D > 0.
Ad hoc arguments give the remaining cases D ·D = 0,−2.

Remark 9 Yau-Zaslow [YZ96], Beauville [Bea99], Bryan-Leung [BL00], Xi Chen
[Che99, Che02], etc. have beautiful enumerative results on the rational curves
in |h|. Assume all the rational curves in |h| are nodal and irreducible; Xi Chen
showed this is the case for generic (S, h) ∈ Kg. Then the number Ng of rational
curves in |h| is governed by the formula

∑
g≥0 Ngq

g =
∏∞

n=1
1

(1−qn)24

= 1 + 24q + 324q2 + 3200q3 + · · ·
Here N0 counts the number of rational curves in a given (−2)-class and N1 the
number of singular fibers of a generic elliptic K3 surface.

Generalized construction (for arbitrary N) Let (X0, h) be a polarized
K3 surface of degree 2g − 2 with

Pic(X0)Q = QC1 + QC2, Pic(X0) = ZC1 + Zh,

where C1 and C2 smooth rational curves satisfying

C1 C2

C1 −2 N2(g − 1) + 2
C2 N2(g − 1) + 2 −2

and
Nh = C1 + C2.

The existence of these can be deduced from surjectivity of Torelli, i.e., take a
general lattice-polarized K3 as above.

Deform (X0, h) to a polarized (X, h) ∈ Kg as above

X → B, dim(B) = 1.

Def(C1∪C2 ⊂ X ) is smooth of dimension N2(g−1)+2; the locus parametrizing
curves with at least N2(g−1)+1 nodes (i.e., the rational curves) has dimension
≥ 1. There are a finite number in each fiber, thus we obtain irreducible rational
curves in |Nh| for generic K3 surfaces in Kg.

This argument proves that very general K3 surfaces admit irreducible ratio-
nal curves in |Nh| for each N ∈ N. In particular, they have admit infinitely
many rational curves. Conceivably, for special K3 surfaces these might coincide,
i.e., so that the infinite number of curves all specialize to cycles

m1C1 + . . . + mrCr

supported in a finite collection of curves.
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Remark 10 Lee-Leung [LL05] and Li-Wu [LW06, Wu07] have enumerated curves
in |2h|, analyzing the contributions of reducible and non-reduced rational curves

A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger [KMPS10]
have recently shown that the BPS count of rational curves in |Nh| (i.e., the
number from Gromov-Witten theory, taking the multiple cover formula into
account) depends only on the self intersection

(Nh) · (Nh) = N2(2g − 2),

not on the divisibility N .
Despite the rapid growth of these numbers as N → ∞, we do not know a

Gromov-Witten proof that K3 surfaces necessarily admit infinitely many ratio-
nal curves.

3 Questions on rational curves

3.1 Key conjectures

Let K be algebraically closed field of characteristic zero and X/K projective K3
surface. The following is well-known but hard to trace in the literature:

Question 11 (Main conjecture) There exist an infinite number of rational
curves on X .

The following extreme version is more easily attributed:

Conjecture 12 (Bogomolov 1981) Let S be a K3 surface defined over num-
ber field F . Then each point s ∈ S(F ) is contained in a rational curve C ⊂ S
defined over Q̄.

While this seems out of reach, significant results of this flavor have been obtained
for Kummer surfaces and related varieties over finite fields [BT05b, BT05a].

Conjecture 12 would imply that S̄ = SQ̄ has an infinite number of rational
curves, because S(Q̄) is Zariski dense in S. Moreover, we can easily reduce
the Main Conjecture to the case of number fields, using the following geometric
result:

Proposition 13 [Blo72, Ran95, Voi92] Let B be a smooth complex variety,
π : T → B a family of K3 surfaces, and D a divisor on T . Then the set

V := {b ∈ B : there exists a rational curve C ⊂ Tb = π−1(b)
with [C] = Db}.

is open. More precisely, any generic immersion

fb : P1 → Tb, fb∗[P
1] = Db,

can be deformed to nearby fibers.
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Thus rational curves deform provided their homology classes remain of type
(1, 1). Note the use of Hodge theory!
Sketch: We indicate the key ideas behind Proposition 13, following [Blo72];
the key concept goes back to Kodaira and Spencer [KS59]: Suppose Z ⊂ X is
a Cartier divisor in a smooth complex projective variety of dimension n, with
normal sheaf NZ/X . Adjunction induces

Ωn
X → ωZ ⊗N ∗

Z/X ,

where ωZ is the dualizing sheaf of Z. Taking cohomology

Hn−2(X, Ωn
X)→ Hn−2(Z, ωZ ⊗N ∗

Z/X)

and applying Serre dualty we obtain the semiregularity map

r : H1(Z,NZ/X)→ H2(X,OX).

The deformation theory of the Hilbert scheme of X at [Z] is governed by
Γ(Z,NZ/X) (infinitesimal deformations) and H1(Z,NZ/X) (obstructions). How-
ever, Hodge-theoretic arguments imply that all the obstructions that actually
arise factor through the kernel of r. Furthermore, if Z is smoothly embedded
in a K3 surface X then

H1(Z,NZ/X) = H1(Z, ωZ) ≃ C,

and the map r vanishes for deformations of X such that

[Z] ∈ H2(X, Z) 7→ 0 ∈ H2(X,OX),

i.e., deformations for which [Z] remains algebraic.
Technical refinements of this argument allow one to relax the assumption

that Z is smoothly embedded in X . We refer the reader to [Ran95] and [Voi92]
for details.

Proof: Main Conjecture/Q̄ ⇒ Main Conjecture/K
Suppose there exists a K3 surface T over K with a finite number of rational

curves. We may assume that K is the function field of some variety B/Q̄.
‘Spread out’ to get some family T → B, and choose a point b ∈ B(Q̄) such that
the fiber Tb has general Picard group

Pic(Tb) = Pic(TK).

Since Tb has an infinite number of rational curves, the same holds for T .

3.2 Rational curves on special K3 surfaces

Bogomolov and Tschinkel [BT00] prove the following result: Let S be a complex
projective K3 surface admitting either
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1. a non-isotrivial elliptic fibration; or

2. an infinite group of automorphisms.

Then S admits an infinite number of rational curves.
The non-isotriviality assumption is much stronger than necessary; the argu-

ment of [BT00] actually goes through for all but the most degenerate elliptic
K3 surfaces, which turn out to be either Kummer elliptic surfaces or to have
Néron-Severi group of rank twenty. These can be dealt with in an ad hoc man-
ner (see [BHT09]), thus every elliptic K3 surface admits infinitely many rational
rational curves.

Here we focus on the case |Aut(S)| =∞; we sketch the existence of infinitely
many rational curves in this context.

Consider the monoid of effective divisors on S. Each nonzero indecomposable
element D contains rational curves by the Mori-Mukai argument (when D ·D >
0) or direct analysis (when D · D = 0,−2). It suffices to show there must be
infinitely many such elements. This is clear, because otherwise the image of

Aut(S)→ Aut(Pic(S))

would be finite, so the kernel would have to be infinite, which is impossible.

Example 14 Let Λ be a rank-two even lattice of signature (1, 1) that does not
represent −2 or 0, and (S, f) polarized K3 surface with Pic(S) = Λ.

The positive cone

CS := {D ∈ Λ : D ·D > 0, D · f > 0}
equals the ample cone and is bounded by irrational lines. The existence of
infinitely-many indecomposable effective divisors implies infinitely-many ratio-
nal curves in S.

Remark 15 K3 surfaces with Aut(S) infinite or admitting an elliptic fibration
have

rank(Pic(S)) ≥ 2.

Thus these techniques do not apply to ‘most’ K3 surfaces. Indeed, I know no
example before 2009 of a K3 surface S/Q̄ with Pic(S) = Z admitting infinitely
many rational curves. This is entirely consistent with the possibility that the
Mori-Mukai argument might break down over a countable union of subvarieties
in Kg.

4 K3 surfaces in positive characteristic

4.1 What goes wrong in characteristic p?

In characteristic zero, K3 surfaces are never unirational (or even uniruled).
Indeed, if there were a dominant map P2

99K X then we could resolve indeter-
minacy to a morphism from a smooth projective rational surface φ : S → X.
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positive cone

indecomposible classes

containing rational curves

Figure 3: ‘Typical’ rank-two K3 surfaces have infinitely many curve classes
containing rational curves

Since the derivative of φ is non-vanishing at the generic point, φ∗ω would be a
nonzero twoform on S.

In characteristic p the derivative of a map can vanish everywhere. This
happens when the associated extension of function fields

k(S)
|

k(X)

has inseparability.

Example 16 Consider the Fermat hypersurface [Tat65, Shi74]

X = {xq+1
1 − xq+1

2 = xq+1
3 − xq+1

4 }

over a field of characteristic p 6= 2, where q = pe. (Our main interest is the
Fermat quartic K3 surface over a field of characteristic 3.) This is unirational.

Setting

x1 = y1 + y2, x2 = y1 − y2, x3 = y3 + y4, x4 = y3 − y4

we can rewrite our equation as

y1y2(y
q−1
1 + yq−1

2 ) = y3y4(y
q−1
3 + yq−1

4 ).

Dehomogenize by setting y4 = 1 and write

y2 = y1u, y3 = uv

12



so we obtain
yq+1
1 (1 + uq−1) = v(uq−1vq−1 + 1).

Take the inseparable field extension t = y
1/q
1 so we have

t(q+1)q(1 + uq−1) = v(uq−1vq−1 + 1)

or
uq−1(tq+1 − v)q = v − tq(q+1).

Setting s = u(tq+1 − v) we get

sq−1(tq+1 − v) = v − tq(q+1)

whence
v = tq+1(sq−1 + tq

2−1)/(sq−1 + 1).

Thus the function field k(X) admits an extension equal to k(t, s) and so there
is a degree q dominant map

P2
99K X.

Example 17 The surface

X = {x4
1 + x4

2 + x4
3 + x4

4 = 0}

is unirational over any field of characteristic p with p ≡ 3 (mod 4).

Example 18 (Branched double covers in characteristic two) Let k be an
algebraically closed field of characteristic two. Fix a generic homogeneous sextic
polynomial

G6 ∈ k[x0, x1, x2]6

and consider the branched double cover

X = {w2 = G6(x0, x1, x2)}.

We regard this as a hypersurface in the weighted projective space with coordi-
nates w, x0, x1, x2.

The surface X is singular as presented. Indeed, passing to an affine open
subset (say z 6= 0) we get the affine surface

w2 = f(x, y), f(x, y) = G6(x, y, 1),

which is singular at solutions to the equations

∂f/∂x = ∂f/∂y = 0. (4.1)

Taking the partial with respect to w automatically gives zero; and for each
solution to (4.1) we can solve for w.
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Expand

f(x, y) = a0x
6 + a1x

5y + a2x
4y2 + a3x

3y3 + a4x
2y4 + a5xy5 + a6y

6 + · · ·
so that

∂f/∂x = a1x
4y + a3x

2y3 + a5y
5 + · · · , ∂f/∂y = a1x

5 + a3x
3y2 + a5xy4 + · · · .

Thus our partials have four common zeros along the line at infinity; we therefore
expect 21 solutions in our affine open subset. One can show, for generic choices
of G6, that the system (4.1) admits 21 distinct solutions, which correspond to
ordinary double points on X .

Let X̃ → X denote the minimal desingularization; it is a K3 surface. Its
Néron-Severi group has rank at least twenty-two, i.e., the 21 exceptional curves
and the pull-back of the polarization from P2.

Finally, X is unirational, as the extension k(X)/k(P2) can be embedded in
the extension k(P2)/k(P2) associated with the Frobenius morphism P2 → P2.
More concretely, we have

k(x, y) ⊂ k(x, y,
√

f(x, y)) ⊂ k(
√

x,
√

y)

because
√

f(x, y) = f(
√

x,
√

y).
We refer the reader to [Shi04] for more discussion of this example.

Shioda has shown that the Néron-Severi groups of these kinds of surfaces
behave quite strangely. Recall that the Néron-Severi group NS(X) of a smooth
projective surface X over an algebraically closed field is the Picard group modulo
‘algebraic equivalence’: D1 ≡ D2 if there is a connected family of divisors
containing D1 and D2.

Proposition 19 Let X be a smooth projective unirational (or even uniruled)
surface over a field of characteristic p. Suppose that X arises as the reduction
mod p of a surface S defined over a field of characteristic zero. Then we have

ρ(X) = rank(NS(X)) = rank(H2(S, Z)).

Thus our Fermat quartic surface

X = {x4
1 + x4

2 + x4
3 + x4

4 = 0}
has ρ(X) = 22!

K3 surfaces with ρ = 22 are said to be supersingular in the sense of Shioda
[RS81, §5]. Artin has a different definition of supersingularity [RS81, §9, Prop. 2]
[Art74], expressed in terms of the height of a K3 surface. This is computed from
its formal Brauer group, which is associated to the system

lim←−
A/k Artinian

Br(X ×k A).

This is implied by Shioda’s definition; the converse remains open. Artin [Art74,
p. 552] and Shioda [Shi77, Ques. 11] have conjectured that supersingular K3
surfaces (in either sense) are all unirational.
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4.2 What goes right in characteristic p?

Assume now that k is a field with char(k) = p.

Theorem 20 [RŠ78] [LN80] [Nyg79] K3 surfaces have no vector fields, i.e., if
X is a K3 surface then Γ(X, TX) = 0.

Unfortunately, there appears to be no really simple proof of this important
theorem. All the proofs I have seen start the same way: K3 surface with vector
fields are unirational.

Given this, we can recover most of the deformation-theoretic results that
make complex K3 surfaces so attractive:

Theorem 21 [Del81] Suppose k is algebraically closed with char(k) = p and let
X be a K3 surface defined over k. Then the formal deformation space Def(X)
is smooth of dimension 20 over k. If h is a primitive polarization of X then
Def(X, h) is of dimension 19 and arises from an algebraic scheme over k.

The argument uses the Chern-class formalism described above and formal de-
formation theory of Schlessinger [Sch68]: For each Artinian local k-algebra A
consider flat proper morphisms

X → Spec A

with closed fiber X0 = X . The formal deformation space is obtained by taking
the inverse limit of all such families over all Artinian k-algebras.

Even more remarkably, we can use the vanishing of vector fields to show that
every K3 surface in characteristic p is obtained as the reduction mod p of a K3
surface in characteristic zero!

For each algebraically closed (or perfect) field k with char(k) = p let W (k)
denote the Witt-vectors with components in k. For example, if k = Fp then
W (k) = Zp, the p-adic integers. When k = F̄p then W (F̄p) is the unique
complete unramified extension of Zp with algebraically closed residue class field.
This can be obtained by adjoining all n-th roots of unity with (n, p) = 1.

Theorem 22 (Deligne’s Lifting Theorem [Del81]) Let (X, L) be a K3 sur-
face over an algebraically closed field k of characteristic p. Consider the defor-
mations spaces over the Witt-vectors

Def(X/W (k)), Def((X, L)/W (k))→ Spec W (k)

i.e., the space associated to taking flat proper morphisms

X → Spec A, X0 = X

where A is an Artinian module over W (k). Then Def(X/W (k)) is smooth over
Spec W (k) and Def((X, L)/W (k)) is flat over Spec W (k).
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This uses the Schlessinger formalism for Artinian W (k)-algebras rather than
k-algebras. For the finite field k = Fp, this is the difference between considering
schemes over Spec Fp[t]/ 〈tn〉 versus schemes over Spec Z/ 〈pn〉. In both contexts,
the obstructions to lifting to order n+1 lie in a Fp-vector space. Another key tool
is crystalline cohomology, which allows us to imitate Hodge-theoretic techniques
in characteristic p.

Corollary 23 Suppose X is a K3 surface over an algebraically closed field k
with char(k) = p. Then there exists a finite extension T of W (k) and a flat
projective scheme

X → Spec T

such that X is isomorphic to the fiber over the closed point.

Remark 24 The question of whether we can lift X to a flat projective scheme
over the Witt vectors

X → Spec W (k)

is quite subtle, especially in characteristic two. We refer the interested reader
to Ogus’ work [Ogu79] for details.

Let S be the surface appearing as the generic fiber of X → Spec T , which is
defined over a field of characteristic zero. We know that

• S is smooth, because X is smooth;

• KS = 0, because KX = 0 and H1(X,OX) = 0 and canonical sheaf com-
mutes with base extension;

• H1(S,OS) = 0 by semicontinuity.

Thus S is a complex K3 surface and we can apply everything we know about
its cohomology. Using the comparison theorem (relating complex and étale
cohomology) and smooth basechange (relating the cohomology of the generic
and special fibers) we find

H2
et(X, µℓn) = H2(S, µℓn) ≃ H2(S, Z/ℓnZ),

for each prime ℓ different from p and n ∈ N. Furthermore, this is compatible
with cup products.

Corollary 25 Let X be a K3 surface over an algebraically closed field and ℓ a
prime distinct from the characteristic. The middle ℓ-adic cohomology of X

H2(X, Zℓ(1)) = lim←−
n∈N

H2
et(X, µℓn)

is given by the Zℓ-lattice

Λ ≃ U⊕3 ⊕ (−E8)
⊕2.

The odd-dimensional cohomologies of X vanish.
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Remark 26 Each smooth projective surface X admits a Z-valued intersection
form on its Picard group. The induced nondegenerate form on the Néron-Severi
group has signature (1, 21) by the Hodge index theorem.

Suppose that k is algebraically closed and X/k is a unirational K3 surface
with ρ(X) = 22, i.e., all the middle cohomology is algebraic. How can the
signature of Λ be (3, 19)? The point is that

Pic(X)→ H2(X, Zℓ(1)) ≃ Λ⊗ Zℓ

as a lattice in an ℓ-adic quadratic form. It only makes sense to compare the
ℓ-adic invariants, not the real invariants!

4.3 Frobenius and the Weil conjectures

Let X be a K3 surface defined over a finite field Fq and X̄ the basechange to
the algebraic closure F̄q. Consider Frobenius x 7→ xq which induces a morphism

X
Fr→ X

ց ւ
Spec Fq

whose fixed-points are precisely X(Fq). We get an induced action on the ℓ-adic
cohomology groups

Fr∗ : Hi(X̄, Zℓ)→ Hi(X̄, Zℓ)

where ℓ is a prime not dividing q. We have the Lefschetz trace formula (due to
Grothendieck!)

#X(Fq) =
∑4

i=0(−1)itrFr∗|Hi(X̄, Qℓ)
= 1 + trFr∗|H2(X̄, Qℓ) + q2.

Here we are using the vanishing of the odd-dimensional cohomology groups.
The fundamental class [X ] and the point class give the 1 and q2 contributions.

The Weil conjectures were proven for K3 surfaces before they were estab-
lished in general:

Theorem 27 [Del72] Let X be a K3 surface defined over a finite field with
Frobenius endomorphism Fr. The characteristic polynomial

pX,Fr∗(t) = det(tI − Fr∗)|H2(X̄, Qℓ)

is integral and its complex roots α satisfy |α| = q.

The proof uses Clifford algebras: The middle integral cohomology of a polarized
complex K3 surface (S, L) carries an integral quadratic form 〈, 〉. Consider the
orthogonal complement

VZ = L⊥ ⊂ H2(S, Z)
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which also inherits a quadratic form of signature (2, 19). Set VQ = V ⊗ Q
and let C(V, 〈, 〉) denote the Clifford algebra of this quadratic form. This is
a 221-dimensional associative Q-algebra, admitting a linear injection i : V →֒
C(V, 〈, 〉), and determined by the following universal property: Given another
Q-algebra and a linear map f : V → A with f(v)2 = 〈v, v〉, there exists a unique
Q-algebra homomorphism g : C(Q, 〈, 〉) → A with f = g ◦ i. If e1, . . . , e21 is a
basis for V then the Clifford algebra has basis ej1 . . . ejr

, j1 < j2 < . . . < jr. We
can decompose this into parts with even and odd degrees

C(V, 〈, 〉) = C+(V, 〈, 〉)⊕ C−(V, 〈, 〉)

each of dimension 220.
Here is the first marvelous insight of Deligne:

The Hodge decomposition on S

H2(S, C) = H0(S, Ω2
S)⊕H1(S, Ω1

S)⊕H2(S,OS)

induces a Hodge decomposition on

C+(V, 〈, 〉)⊗ C = H01 ⊕H01.

Moreover, there is an isogeny-class of abelian varieties A of dimen-
sion 219 such that

H1(A, C) ≃ C+(V, 〈, 〉)⊗ C

as Hodge structures. Moreover, these abelian varieties come with a
huge number of endomorphisms, e.g., the elements of the Clifford
algebra.

This is the Kuga-Satake construction [KS67]. See [vG00] for a user-friendly
introduction to these Hodge-theoretic techniques.

The second step is to do this over the whole moduli space of K3 surfaces in
such a way that everything is defined over a number field. Suppose that S → B
is a single family (say over a 19-dimensional base) containing every complex K3
surface of degree L · L. Then after finite basechange B′ → B we want a family
of 219-dimensional abelian varieties A → B′ such that, fiber-by-fiber, they are
related to S′ ×B B′ → B′ via the Kuga-Satake construction.

Remark 28 Note that we have no general algebro-geometric connection be-
tween S and A, and little explicit information about the field of definition of A.
We only have a connection between their cohomologies. The Hodge conjecture
predicts [vG00, 10.2] the existence of a correspondence

Z → A×A
↓
S

inducing the cohomological connection. However, these are known to exist only
in special cases, such as Kummer surfaces [Voi96].
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Finally, the truly miraculous part: The universal construction relating S×B

B′ and A can be reduced mod p, so as to allow the Weil conjectures for X = S
(mod p) to be deduced from the Weil conjectures for the reductions of the fibers
of A → B. �

4.4 On the action of Frobenius

Again, let X be a K3 surface over a finite field Fq with polarization L. What
can we say structurally about the action of Fr∗ on H2(X̄, Qℓ)?

First, it will make our analysis easier if we replace

H2(X̄, Zℓ) = lim←−
n∈N

H2
et(X̄, Z/ℓnZ)

with the twist
H2(X̄, Zℓ(1)) = lim←−

n∈N

H2
et(X̄, µℓn).

The reason is that the Kummer sequence

0→ µℓn → Gm
×ℓn

→ Gm → 0

gives connecting homomorphisms

Pic(X̄) = H1(X̄, Gm)→ H2
et(X̄, µℓn)

inducing the cycle class map

Pic(X̄)→ H2(X̄, Zℓ(1))

and
Pic(X)→ H2(X̄, Zℓ(1))Γ

where
Γ = 〈Fr〉 = Gal(F̄q/Fq).

Since Frobenius acts via multiplication by q on µℓn , the action of Fr∗ on our
original cohomology group and its twist differ by a factor of q.

Proposition 29 If X is a K3 surface over Fq then

ρ(X) ≤ dim{ξ ∈ H2(X̄, Qℓ) : Fr∗ξ = qξ},

i.e., the multiplicity of q as an eigenvalue of pX,Fr∗(t).

Applying a similar analysis to the cup-product operation yields:

Proposition 30 Fr∗ respects the intersection form, i.e.,

〈Fr∗ξ1, Fr∗ξ2〉 = q2 〈ξ1, ξ2〉 .

If α is a root of pX,Fr∗(t) then q2/α is also a root.
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Since 〈, 〉 is nondegenerate, after passing to a field extension and changing co-
ordinates we may assume the corresponding symmetric matrix is the identity.
Let Φ denote the matrix of Fr∗ in these coordinates, which satisfies

ΦtΦ = q2I.

It follows that

pX,Fr∗(t) = det(tI − Φ)
= (−t)deg(p) det(Φ) det(t−1I − Φ−1)

= (−t)deg(p) det(Φ) det(t−1I − q−2Φt)
= (−t/q2)deg(p) det(Φ) det(q2t−1I − Φt)

= (−t/q2)deg(p) det(Φ)pX,Fr∗(q
2/t).

Corollary 31 Suppose X is a polarized K3 surface. Then the distinguished
subspaces

{ξ ∈ H2(X̄, Qℓ) : Fr∗ξ = ±qξ}, {ξ ∈ H2(X̄, Qℓ(1)) : Fr∗ξ = ±ξ}

are even dimensional.

4.5 Tate conjecture for K3 surfaces

The decomposition of the cohomology under Frobenius should strongly reflect
the geometry:

Conjecture 32 Let X be a K3 surface over a finite field. Then Galois-invariant
cycles come from divisors, i.e.,

Pic(X)⊗Qℓ → H2(X̄, Qℓ(1))Γ

is surjective.

This is a special case of the Tate conjecture [Tat65], a Galois-theoretic analog
of the Lefschetz (1, 1) theorem on the Néron-Severi group.

For most K3 surfaces, the conjecture is known to be true: [NO85]

Theorem 33 The Tate conjecture holds for K3 surfaces over finite fields of
characteristic ≥ 5 that are not supersingular (in the sense of Artin).

The following consequence is well-known to experts (and was ascribed to
Swinnerton-Dyer in [Art74, p. 544]) but we do not know a ready reference:

Corollary 34 The rank of the Néron-Severi group of a K3 surface over the
algebraic closure of a finite field is always even, provided the characteristic is at
least five and the surface is not supersingular, in the sense of Artin.
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Of course, the Artin-supersingular K3 surfaces are expected to have rank 22.
An especially nice special case of the Tate conjecture is K3 surfaces with

elliptic fibrations [ASD73] X → P1. Here the Tate conjecture is related to prov-
ing finiteness of the Tate-Shafarevich group of the associated Jacobian fibration
J(X)→ P1.

Remark 35 For an analysis of the eigenvalues of Frobenius on the non-algebraic
cohomology of a K3 surface, we refer the reader to [Zar93].

4.6 Reduction results

Let S be a projective K3 surface over a number field F with S̄ = SQ̄. Let
oF be the ring of integers with spectrum B = Spec (oF ) and π : S → B a
flat projective model for S. Fix p ∈ B a prime of good reduction for S, i.e.,
Sp = π−1(p) is a smooth K3 surface over a finite field. Let k be a finite field
with algebraic closure k, p = char(k) and X/k K3 surface and X̄ = Xk̄.

Consider the Frobenius endomorphism on X̄ acting on ℓ-adic cohomology

Fr∗ : H2(X̄, Qℓ)→ H2(X̄, Qℓ);

X is ordinary if p ∤ Trace(Fr). This can also be expressed in terms of the
formal Brauer group, i.e., it should have height one [RS81, §9]; thus ordinary
K3 surfaces are not supersingular.

Joshi-Rajan [JR01] and Bogomolov-Zarhin [BZ09] have shown

{p ∈ B : Sp ordinary }

has positive Dirichlet density, even density one after a finite extension of the
ground field.

5 Evaluating the Picard group in practice

In the analysis of complex K3 surfaces S, we used the Hodge decomposition

H2(S, C) = H0(S, Ω2
S)⊕H1(S, Ω1

S)⊕H2(S,OS)

and the description
NS(S) = H2(S, Z) ∩H1(S, Ω1

S)

Our discussion may have left the impression that these objects are well-known,
but much remains mysterious:

Problem 36 Let (S, h) be a polarized K3 surface over a number field k. Give
an algorithm to compute

ρ(S̄) = rank(NS(S̄)).

In particular, is there an effective test for deciding whether Pic(S̄) = Zh?
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There is one obvious constraint:

Proposition 37 Suppose S is a K3 surface over Q, p a prime, and assume
that the reduction X = S (mod p) is a smooth K3 surface. Then there is a
restriction map

Pic(S̄)→ Pic(X̄)

compatible with the isomorphism on cohomology groups

H2(S̄, Zℓ(1))→ H2(X̄, Zℓ(1))

arising from smooth base change.

Corollary 38 If some reduction X = S (mod p) has Néron-Severi group of
rank 2m then

ρ(S̄) ≤ 2m.

As we have seen, the Tate conjecture precludes using reduction mod p to
prove that ρ(S̄) = 1! Terasoma [Ter85], Ellenberg [Ell04], van Luijk [vL07],
and Elsenhans-Jahnel [EJ08a, EJ08b, EJ09a, EJ09b] have demonstrated that
we often can show this be reducing modulo multiple primes, and then comparing
the various restrictions

Pic(S̄)→ Pic(S̄ (mod pi)).

Example 39 (van Luijk’s example) This an a quartic K3 surface S ⊂ P3

over Q with

NS(S̄ (mod 2)) =
h C

h 4 2
C 2 −2

and

NS(S̄ (mod 3)) =
h L

h 4 1
L 1 −2

.

In geometric terms, the reduction mod 2 contains a conic C and the reduction
mod 3 contains a line L. The first lattice has discriminant −12 and the second
lattice has discriminant −9, so these cannot both be specializations of rank-two
sublattice of NS(S̄).

Thus the key questions is: How many primes must we check to determine
the rank of NS(S̄)? Can this be bounded in terms of arithmetic invariants of
S?

There is a variant of this approach that uses just one prime [EJ09b]: Suppose
we can compute Pic(S̄ (mod p)) ≃ Zh⊕ Z[C], for a suitable curve C. Often, if
[C] is in the image of the specialization

Pic(S̄)→ Pic(S̄ (mod p))
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then there must exist a curve C′ ⊂ S̄ with [C′] 7→ [C] or even C′
 C. However,

there are algorithms for determining whether S̄ contains a curve of prescribed
degree. Barring such a curve, we may conclude that Pic(S̄) = Zh.

6 Mori-Mukai in mixed characteristic

Our main goal is the following result

Theorem 40 (Bogomolov, H-, Tschinkel) Let S be a K3 surface defined
over a number field, with Pic(S̄) = Zh where h ·h = 2. Then S admits infinitely
many rational curves.

In other words, S is a double cover of P2 branched over a very general plane
sextic curve. Here the associated involution greatly simplifies our analysis; this
will be apparent in the part of our proof addressing multiplicities of components.

This result is an application of general techniques that should have a wider
range of applications. The first aspect is lifting curves from characteristic p to
characteristic zero:

Problem 41 Let S/F be a K3 surface defined over a number field. Designate
B = Spec (oF ) and S → B a flat projective model for S. Assume p ∈ B is a
prime such that Sp is a smooth K3 surface over k = Fq = oF /p.

Given distinct rational curves

C1, . . . , Cr ⊂ Sp,

does their union lift to a rational curve in S?

Some necessary conditions should be apparent:

• The union C1 ∪ · · · ∪ Cr should ‘remain algebraic’ i.e., there exists a D ∈
Pic(S̄) such that

D 7→ C1 + · · ·+ Cr

under the specialization

Pic(S̄)→ Pic(Sp).

• The K3 surface Sp should not have ‘too many’ rational curves, e.g., it
should not be uniruled.

These are reflected in the following result:

Proposition 42 Let S/F be a K3 surface over a number field. Assume there
exists a prime p ∈ Spec (oF ) satisfying

1. Sp is smooth and non-supersingular;
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2. there exist distinct rational curves C1, . . . , Cr ⊂ Sp and an ample D ∈
Pic(S̄) such that

D 7→ C1 + · · ·+ Cr

under the specialization;

3. no subset of the rational curves has this property, i.e., for each J 6= ∅ (
{1, . . . , r} there exists no D′ ∈ Pic(S̄) such that

D′ 7→
∑

j∈J

Cj .

Then there exists a rational curve C → S̄ such that

C  C1 ∪ · · · ∪Cr .

We sketch the proof, highlighting the main geometric ideas but referring to
[BHT09] for some the deformation-theoretic details.

Choose a partial normalization

φ0 : T0 → C1 ∪ · · · ∪ Cr

where T0 is a nodal connected projective curve of genus zero and φ0 is birational
onto its image. We interpret φ0 as a stable map to Sp. Let M0(Sp, D) denote
the stable map space containing φ0. We make a few observations about this:

• there is a ‘nice’ open subset

M◦

0(Sp, D) ⊂M0(Sp, D)

corresponding to maps birational onto their images; these admit no auto-
morphisms, so this is in fact a space rather than an Artin stack;

• we only use this space for deformation-theoretic purposes, not as a com-
pact moduli space/stack.

We relativize this construction: Let

Y → Def(Sp/W (k̄))

denote the universal formal deformation space of Sp over the Witt vectors and

M =M0(Y, D)→ Def(Sp/W (k̄))

the universal formal stable map space. A deformation theoretic computation
(see [BHT09] for details) shows this has relative dimension ≥ −1. However, at
φ0 the dimension of the fiber is at most zero-dimensional, as Sp is not uniruled.
Thus M maps to a divisor in Def(Sp/W (k̄), namely, the formal deformation
space of the polarized K3 surfaces Def((Sp, D)/W (k̄)). The resulting

M0(Y, D)→ Def((Sp, D)/W (k̄))
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Figure 4: Reductions of a K3 surface mod p have extra curve classes

is therefore algebraizable, of relative dimension zero near φ0.
Hence we get a stable map

φt : Tt → S̄

reducing to φ0 over the prime p. However, we assume that no subset of the
Cj arises as the specialization of a divisor from S̄. It follows that φt(Tt) is
irreducible; since φt remains birational onto its image, we deduce that Tt ≃ P1.
Our desired rational curve is its image in S̄. �

We now assume that S is a K3 surface defined over a number field F with
Pic(S̄) = Zh, not necessarily of degree two. We collect some observations:

1. There exist infinitely many p such that Sp is smooth and non-uniruled
(see Prop. 19 and section 4.6).

2. For all these p, we have rank(Pic(Sp)) ≥ 2 (see Cor. 34); in particular, h
is in the interior of the effective cone of curves.

3. Fix M ∈ N; for sufficiently large p we have the following property: Any
curve C ⊂ Sp with C · h ≤Mh · h satisfies [C] = mh for some m ≤M .

For the last assertion, let µ : B → H denote the classifying map to the
Hilbert scheme of K3 surfaces corresponding to S → B. Note that the Hilbert
scheme parametrizing curves of bounded degree is itself bounded; the same
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holds true for the subset of G ⊂ H corresponding to K3 surfaces admitting
non-complete intersection curves of bounded degree. Since µ(B) 6⊂ G, there are
finitely many primes at which the µ(B) intersects G.

Fix N ; our goal is to exhibit an irreducible curve C ⊂ S̄ such that [C] ∈ |N ′h|
for N ′ ≥ N . Let p be a large prime as described above, so that each non-
complete intersection curve has degree greater than Nh ·h. Choose the smallest
N ′ such that

N ′h =

r∑

j=1

mjCj (6.1)

for Cj indecomposable and not in Zh. We have seen there exist irreducible
rational curves in those classes. Furthermore, our assumption implies that h ·
Cj ≥ N , so we have N ′ ≥ N . We would be done by Proposition 42 if

m1 = m2 = · · · = mr = 1

in Equation 6.1. How can we guarantee this?
Assume that (S, h) has degree two, thus is a double cover S → P2; let

ι : C → C denote the covering involution. A straightforward computation
shows that ι∗(h) = h and ι∗(D) = −D for D ∈ h⊥ ⊂ H2(SC, Z). In this
situation, Equation 6.1 takes the special form

N ′h = C1 + C2, C2 = ι∗(C1),

which has the desired multiplicities.

Remark 43 What happens if we have non-trivial multiplicities? The argu-
ment for Proposition 42 still works under suitable geometric assumptions on
C1, . . . , Cr and their multiplicities.

Suppose that C1, C2 ⊂ Sp are smooth rational curves meeting transversally
with intersection matrix:

C1 C2

C1 −2 3
C2 3 −2

Suppose that D 7→ 2C1 + C2 with D ·D = 2. Write C1 ∩ C2 = {p, q, r} and

T = P1 ∪p′ P1 ∪r′ P1 = C′
1 ∪p′ C2 ∪r′′ C′′

1 ,

i.e., a chain of three rational curves, the inner and outer curves C′
1 and C′′

1

identified with C1 and the middle curve identified with C2. Let φ0 denote the
morphism that restricts to the identity on each component. The associated
stable map φ0 → Sp still is unramified and lacks automorphisms, and can be
utilized in the deformation-theoretic argument for Proposition 42.

Unfortunately, we lack general techniques to ensure that the new rational
curves emerging mod p satisfy any transversality conditions.

Department of Mathematics, Rice University, Houston, Texas 77005,
USA
hassett@math.rice.edu
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Figure 5: Multiplicities and the lifting argument
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