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1. INTRODUCTION AND PRELIMINARIES

In this article, we discuss a Gröbner basis algorithm related to the stability

of algebraic varieties in the sense of Geometric Invariant Theory. We imple-

ment the algorithm with Macaulay 2, and give some applications to the moduli

theory of curves.

Given an algebraic group G acting on a projective variety X linearized by a

line bundle L, the stability of a point x ∈ X can be determined by examining its

stability with respect to one-parameter subgroups ρ : Gm → G. For each ρ, we

let ρ(α).x specialize to a point x⋆ ∈ X and look at the character with which G

acts on the fibre Lx⋆: If the character is negative (resp. positive, nonnegative),

then x and x⋆ are stable (resp. unstable, semistable) with respect to ρ. The

negative of this character is called the Hilbert-Mumford index µL(x, ρ) of x with
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respect to ρ. Assuming L is very ample, X is a closed subvariety of PN := P(Γ(L))

and the Hilbert-Mumford index of x with respect to ρ admits the following

simple description:

µL(x, ρ) = −min{wtρ(xi) | xi(x) 6= 0}

where xi’s are homogeneous coordinates of P
N that diagonalize the action of ρ.

While computing the Hilbert-Mumford index of a given point in a projec-

tive space is simple and does not require an algorithm, this becomes quite a

daunting task if the ‘point’ is itself complicated, sitting inside a large projective

space. Our object of study in this paper is the prime example: In many moduli

problems, algebraic geometers use the Hilbert scheme that parametrizes sub-

schemes, and describing its points is not suitable for manual computation even

for relatively simple subvarieties of a projective space of reasonable size: for

instance, describing Hilbert points of genus two, degree six curves in P4 using

degree two generators would require 1365 variables!

The main algorithm in this paper uses Gröbner bases to effectively compute

the Hilbert-Mumford index of the Hilbert point of a variety. The algorithm is

implemented with Macaulay 2 in §2.2: Interested readers are invited to copy

and paste the code mumfordIndex and use it to verify our computations or to

carry out other stability computations. The Macaulay 2 script is available at

http://www.science.marshall.edu/hyeond.

As an application, we use the algorithms to prove the stability (with respect

to a ρ) of certain curves of genus two with cusps, which play an important role

in the geometry of the moduli space of tri-canonical curves [HL07b]. We also

prove the instability of the bicanonical elliptic bridges (Definition 5), which was

used in working out the GIT of bi-canonical curves [HL09, Proposition 10].
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2. HILBERT-MUMFORD INDEX OF HILBERT POINTS

Let X ⊂ PN = P(V) be a projective variety with Hilbert polynomial P and

Hilb, the component containing X of the Hilbert scheme parametrizing the

subschemes of PN that have Hilbert polynomial P. We let [X] denote the Hilbert

point of X in Hilb.

For m ≫ 0, we have a projective embedding

(2.1) φm : Hilb →֒ Gr(P(m), SymmV∗) →֒ P := P




P(m)∧

SymmV∗



 .

The mth Hilbert point [X]m of X is the image φm([X]) in P.

Let x0, . . . , xN be homogeneous coordinates for P
N. Let Bm denote the mono-

mial basis {xa =
∏N

i=0 xai

i |
∑

ai = m} of SymmV∗. The exterior products

xa(1) ∧ xa(2) ∧ · · · ∧ xa(P(m)), xa(i) ∈ Bm

form a basis Wm for
∧P(m)

SymmV∗.

Let ρ" : Gm → SLN+1(k) be a one-parameter subgroup. If x0, . . . , xN diago-

nalize the action of ρ", that is,

ρ"(t) · xi = tr′

ixi, r ′
0 ≥ · · · ≥ r ′

N,
∑

r ′
i = 0,

then the bases Bm and Wm diagonalizes the action of ρ" on SymmV∗ and∧P(m)
SymmV∗: For xa :=

∏N

i=0 xai

i , we have

ρ"(t) · xa = twtρ"(x
a)xa, wtρ"(x

a) =

N∑

i=0

riai.

For M = xa(1) ∧ xa(2) ∧ · · ·∧ xa(P(m)),

ρ"(t) · M = twtρ"(M)M, wtρ"(M) =

P(m)∑

j=1

wtρ"(x
a(j)).

By definition, the Hilbert-Mumford index is

(2.2) µ([X]m, ρ") = max{−wtρ"(M) | M 6= 0 on [X]m}.

Let ρ : Gm → GLN+1(k) be the associated one-parameter subgroup with weights

ri = r ′
i−r ′

N such that r0 ≥ r1 ≥ · · · ≥ rN = 0 and r ′
i = ri−

1
N+1

∑
rj. In practice,
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we frequently start with a 1-PS ρ of GLN+1(k) with weight ri and compute the

Hilbert-Mumford index with respect to the 1-PS ρ ′ of SLN+1(k) with integral

weights (N + 1)ri −
∑

rj. Since ρ ′ = (N + 1)ρ", the (semi)stability with respect

to ρ ′ is equivalent to the (semi)stability with respect to ρ".

Given M ∈ Wm, the ρ-weight and the ρ ′-weight of M are related by

(2.3) wtρ′(M) = (N + 1)wtρ(M) − r · m · P(m)

where r =
∑N

i=0 ri. Combining (2.2) and (2.3), we obtain

(2.4) µ([X]m, ρ ′) = (N + 1) · max{−wtρ(M) | M 6= 0 on [X]m} + r · m · P(m).

For notational convenience, we define µ([X]m, ρ) := µ([X]m, ρ ′).

2.1. A Gröbner basis algorithm for computing the Hilbert-Mumford in-

dex. This algorithm seems to have been known to certain experts (see [Bay82]

and [BM88]). Indeed, Lemma 3.3 and Corollary 3.4 of [BM88] deal with the

generic case of our Proposition 1. We write the details here in a form conve-

nient for our application.

Given a one-parameter subgroup ρ of GLN+1(k) such that ρ(α) · xi = αrixi,

r0 ≥ r1 ≥ · · · ≥ rN = 0, introduce the following ρ-weighted graded lexico-

graphic order, denoted simply by ‘≺’. This is a total order on the set of mono-

mials {xa} defined by declaring that xa ≺ xb if

(1) deg xa < deg xb or

(2) deg xa = deg xb and wtρ(x
a) < wtρ(x

b) or

(3) deg xa = deg xb and wtρ(x
a) = wtρ(x

b) and aj < bj where

j = min{i | ai 6= bi}.

Given f ∈ S := k[x0, . . . , xN], we let in≺(f) denote the term of f with maximal

order. For an ideal I of S, we let

in≺(I) := 〈in≺(f) | f ∈ I〉.

Let IX be the homogeneous ideal of a subscheme X ⊂ P
N. Note that the mono-

mials {xa(1), . . . , xa(P(m))} that are not in in≺(IX) form a basis of (S/IX)m and

(S/in≺(IX))m.
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Proposition 1. The Hilbert-Mumford index of the mth Hilbert point of X with

respect to the associated one-parameter subgroup ρ ′ of SLN+1(k) is:

(2.5) µ([X]m, ρ ′) = −(N + 1)

P(m)∑

i=1

wtρ(x
a(i)) + m · P(m) ·

N∑

j=0

rj

where {xa(1), . . . , xa(P(m))} are degree m monomials not in in≺(IX)

Proof. Let Z = {xb(1), . . . , xb(P(m))} be another P(m)-element subset of Bm that

gives rise to a basis for (S/IX)m. Note that Z being a basis is equivalent to that

xb(1) ∧ · · · ∧ xb(P(m)) is nonzero on the Hilbert point [X]m. Consider the normal

form
∑P(m)

j=1 cijx
a(j) of xb(i) determined uniquely by

xb(i) ≡

P(m)∑

j=1

cijx
a(j) (mod IX), cij ∈ k.

Since both {xa(1), . . . , xa(P(m))} and Z are bases for the quotient space (S/IX)m,

the matrix (cij) is invertible. This allows us to reorder xb(i)’s as follows: Deter-

mine τ1 by the condition that the τ1th row contains the pivot element of the

matrix (cij), where pivot is simply the first nonzero entry of the first column.

Given new {b(τ1), . . . , b(τj−1)}, we define τj by the condition that the τjth row

contains the pivot of the (P(m)−j+1)×(P(m)−j+1) matrix obtained from (cij)

by deleting the rows and columns that contain the first j − 1 pivots. Our choice

of τi’s insures that after the reordering, we have a one to one correspondence

xa(i) 7→ xb(τi) between {xa(1), . . . , xa(P(m))} and Z such that

xb(τi) ≡

P(m)∑

k=1

c ′
ikx

a(k) (mod IX)

where c ′
ik := cτik and c ′

ii 6= 0. It follows that

wtρ (in≺ (gi)) = wtρ(x
b(τi)) ≥ wtρ(x

a(i)), gi := xb(τi) −

P(m)∑

k=1

c ′
ikx

a(k) ∈ IX.

Hence
P(m)∑

i=1

wtρ(x
b(τi)) ≥

P(m)∑

i=1

wtρ(x
a(i))

and the assertion follows from (2.4). �

The proposition translates into the following stability statements:
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Corollary 1. [X]m is stable (resp. semistable) with respect to ρ if and only if

∑
wtρ(x

a(i)) < (resp. ≤)
mP(m)

N + 1

∑
ri.

In terms of the corresponding one-parameter subgroup ρ ′ of SLN+1(k),

Corollary 2. [X]m is stable (resp. semistable) with respect to ρ ′ if and only if

P(m)∑

i=1

wtρ′(xa(i)) < (resp. ≤)0.

The upshot of the formula (2.5) is that the monomials xa(1), . . . , xa(P(m)) can

be systematically computed by using Gröbner basis and can easily be imple-

mented with a computer algebra system.

Moreover, considering the functoriality of the Hilbert-Mumford index and the

tautological ring of the Hilbert scheme reveals that one only needs to compute

the Hilbert-Mumford index for mth Hilbert points for finitely many m to obtain

the Hilbert-Mumford indices for all m. The results in the remainder of the

section are taken from [HH07].

Proposition 2. Let X, ρ, {xa(1), . . . , xa(P(m))} be as before. The filtered Hilbert

function PX,ρ on Z defined by

PX,ρ(m) =

P(m)∑

i=1

wtρ′(xa(i))

is a polynomial in m for m ≫ 0.

Proof. For m ≫ 0, we have the Grothendieck embedding (2.1) such that φ∗
mO(+1) =

det π∗OX (m) where π : X → Hilb is the universal variety. Let n be the dimen-

sion of X. There are Cartier divisors ([KM76]) L0, . . . , Ln+1 on Hilb such that

det π∗OX (m) =

n+1∑

i=0

(
m

i

)
Li

and it follows from the functoriality of the Hilbert-Mumford index that

µφ∗
mO(+1)([X]m, ρ) =

n+1∑

i=0

(
m

i

)
µLi([X], ρ)

which is a polynomial in m. �
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When this is put into practice to actually compute µ([X]m, ρ) for all m, one

needs to somehow determine M for which PX,ρ(m) is a polynomial for all m ≥

M. An obviously necessary condition is that the mth Hilbert point of X be

defined, which leads us to the Castelnuovo-Mumford regularity:

Proposition 3. If X and limt→0 ρ(t) · X are M-regular, then we have

PX,ρ(m) =

n+1∑

i=0

(
m

i

)
µLi([X], ρ)

for m ≥ M.

A very useful corollary of this is

Corollary 3. Let C ⊂ P(V) be a projective variety, ρ : Gm → SL(V) a one-

parameter subgroup, and C⋆, the variety to which ρ(t).C specializes. Suppose

that C and C⋆ satisfy

(1) C (resp. C⋆) is connected of pure dimension one;

(2) V∗ → Γ(OC(1)) (resp. Γ(OC⋆(1))) is an isomorphism;

(3) OC (resp. OC⋆) is 2-regular.

Then for each m ≥ 2 we have

(2.6)

µ([C]m, ρ) = (m−1)

((
1

2
µ([C]3, ρ) − µ([C]2, ρ)

)
m + 3µ([C]2, ρ) − µ([C]3, ρ)

)
.

Proof. (1) and (3) together imply that µ([C]m, ρ) is a polynomial in m for m ≥

2. (2) implies that det π∗OX (1) = L0 + L1 is trivial, and the formula (2.6)

follows immediately. �

The conditions in the above corollary are satisfied by a large class of curves,

including the c-semistable curves i.e. reduced complete connected curves C

such that

• C has nodes, ordinary cusps and tacnodes as singularities;

• the dualizing sheaf ωC is ample;

• C does not have a genus-one connected subcurve that meets the rest of

the curve in one point not counting multiplicity.

Corollary 4. Let C be a bicanonical c-semistable curve i.e., a c-semistable curve

embedded by the bicanonical system
∣∣ω⊗2

C

∣∣:

C →֒ PΓ(C, ω⊗2
C ) ≃ P(V).
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Let C⋆ denote the curve to which ρ(t).C specializes. If C⋆ is also a bicanonical

c-semistable curve, then for all m ≥ 2, C is

(1) m-Hilbert stable if and only if µ([C]3, ρ) ≥ 2µ([C]2, ρ) > 0;

(2) m-Hilbert strictly semistable if and only if µ([C]3, ρ) = µ([C]2, ρ) = 0;

(3) m-Hilbert unstable if and only if µ([C]3, ρ) ≤ 2µ([C]2, ρ) < 0.

2.2. Macaulay 2 implementation. Here we give a Macaulay 2 [GS] imple-

mentation of the algorithm according to Proposition 1. The code has

Input: A homogeneous ideal I of a graded ring S and a weight vector w.

Output: A sequence consisting of

(1) The regularity reg(I) of I;

(2) Values of the filtered Hilbert function PX,ρ(m) for m < reg(I), where

X is the projective variety defined by I and ρ is the 1-PS whose weight

vector is w;

(3) The polynomial which coincides with PX,ρ(m) for m ≥ reg(I).

Function:

mumfordIndex = (I,w) -> (

S = ring I;

r = dim Proj(S/I);

regI = regularity resolution I;

MUm = (I,w,m) -> (

S = ring I;

N = numgens S;

K = coefficientRing S;

Sw = K[gens S, Weights => w, MonomialOrder => GLex];

W = map(Sw, S, vars Sw);

I = W(I);

P = hilbertPolynomial I;

inI = ideal leadTerm I;

Sbar = Sw/inI;

F = map(Sbar, Sw, vars Sbar);

Bm = basis(m, Sw);

-- Computes a basis of the degree m piece of Sw.

Bmbar = basis(m, Sbar);
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-- Computes a basis of the degree m piece of Sbar.

Bm = flatten entries Bm;

PSm = #Bm;

monomialWeight = (f) ->

(expf = flatten exponents f;

sum(expf, w, times));

e = apply(0..(PSm-1),i->(if F(Bm_i)===F(0) then 0 else 1));

TOTALWT = sum for i from 0 to PSm-1 list

product{monomialWeight(Bm_i), e_i};

-- Computes the total weight.

mu = sum{product{N,-TOTALWT}, product{m, P(m), sum w}}

-- Computes the Hilbert-Mumford index.

);

b = transpose matrix(QQ,table(1,r+2,(i,j)->MUm(I,w,regI + j)));

A = matrix(QQ,table(r+2,r+2, (i,j) -> (regI + i)^j));

c = A^(-1)*b;

QQ[m];

fHilbFun = sum(r+2, i->c_(i,0)*m^i);

-- Computes the filtered Hilbert polynomial.

if regI > 2 then

val = apply(i = 2..(regI-1), i->MUm(I,w,i))

else val = ();

print(regI, val, fHilbFun)

)

Remark 1. The subprogram MUm computes µ([X]m, ρ) for a given m. After run-

ning MUm, the initial ideal in≺(I) and the monomial basis {xa(1), . . . , xa(P(m))} for

(S/I)m can be retrieved with the commands inI and Bmbar, respectively.

2.3. State polytopes. In [BM88], Bayer and Morrison considered the weight

polytope of the mth Hilbert point [I]m :=
∧P(m)

SymmV∗/Im: For a fixed max-

imal torus H ⊂ SLN+1(k), the weight polytope is simply the convex hull of the

characters of H that appear in the weight decomposition. This is called the

(mth) state polytope of I and is denoted by Statem(I). The main theorem of
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[BM88] says that the vertices of Statem(I) are precisely

∑

xa∈(in≺I)m

a, ≺ a monomial order.

Let ρ be a 1-PS of SLN+1(k) with weight vector w. It follows from the definition

of Statem(I) that

µ([I]m, ρ) = max{−w.v | v a vertex of Statem(I)}

and Proposition 1 says that the maximum is achieved precisely at the vertex

associated to in≺w(I), where ≺w is the w-weighted lexicographic total order

on the monomials.

State polytopes have received deserved attention after the fundamental work

[Bay82] and [BM88]. Especially of our interest is [KSZ92] which proves that

the Chow polytope can be realized as a suitable limit of the state polytopes.

The Chow polytope Chow(I) of an ideal I is the weight polytope (with respect

to a maximal torus) of the Chow form Ch(I). The precise statement is

lim
m→∞

(n + 1)!

mn+1
Statem(I) = Chow(I)

where n is the dimension of the projective variety defined by I. Let w ∈ RN+1

and consider the linear functional Lw(x) = −w.x. Since Lw achieves its max-

imum on Statem(I) at the vertex associated to in≺w(I)m, its maximum on

Chow(I) is achieved at

lim
m→∞

(n + 1)!

mn+1

∑

xa∈in≺w (I)m

a.

It follows that

Corollary 5. For any 1-PS ρ of SLN+1(k), we have

lim
m→∞

(n + 1)!

mn+1
µ([I]m, ρ) = µ(Ch(I), ρ).

In particular, if a projective variety is asymptotically Hilbert semistable, then it is

Chow semistable.
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3. APPLICATIONS

In this section, we shall give two concrete applications of the algorithm de-

veloped in the previous section. These examples played important roles in our

work on moduli problems of ν-canonical curves for ν = 2, 3 [HL07a, HL07b,

HL09, HH07].

3.1. The rational bicuspidal curve of genus two. When constructing a mod-

uli space, one hopes to avoid objects with infinite automorphisms as the moduli

space often fails to be separated at such points. Fortunately, such objects are

often destablized by a one-parameter subgroups of the automorphism group.

However, if the object is not destabilized by one of these subgroups, then it

has a rather good chance of being semistable. In the moduli problem of tri-

canonical curves of genus two [HL07b], the rational curve C0 with two cusps

and no other singularities turns out to be at the focal point of the whole prob-

lem: It is the only pseudo-stable curve ([Sch91]) with infinite automorphisms

to which other cuspidal pseudo-stable curves specialize under the action of

Aut(C0) (Figure 1).

In this section, we test C0 against the one-parameter subgroups ρ coming

from Aut(C0) and show that it is Hilbert strictly semistable with respect to

ρ. Then we prove in §3.2 that [C0]m is the flat limit of the families {ρ(α) ·

[C ′]m} where C ′ is any other pseudo-stable cuspidal curve. This implies that

all cuspidal curves are strictly semistable with respect to ρ, and that all such

curves are semistable if one of them is. The results in this section appeared

without computational details in [HL07b] where we proved that these curves

are semistable using a standard degeneration argument.

We first find a normalization map for C0 from the classical projective geo-

metric construction of a cusp. Let ν6(P
1) denote the rational sextic curve

ν6 : P1 → P6

[s, t] 7→
[
s6, s5t, s4t2, s3t3, s2t4, st5, t6

]
.

To create a cusp at ν6(0) = [0, . . . , 0, 1], we project ν6(P
1) from [0, . . . , 0, 1, 0]

on the tangent line Tν6(0)ν6(P
1) = {X0 = · · · = X4 = 0}. The image under this

projection is

π[0,...,0,1,0] ◦ ν6(P
1) = {[s6, s5t, s4t2, s3t3, s2t4, t6] | [s, t] ∈ P

1}.
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We successively project C ′ from [0, 1, 0, . . . , 0] ∈ T[1,0,...,0]C
′ = {X2 = · · · = X5 =

0} and get

C0 = {[s6, s4t2, s3t3, s2t4, t6] | [s, t] ∈ P
1}

which has ordinary cusps at [0, . . . , 0, 1] and [1, 0, . . . , 0]. From this, it is clear

that C0 admits automorphisms coming from automorphisms [s, t] 7→ [αs, t],

α ∈ Gm, of P1. Such an automorphism corresponds to the one-parameter

subgroup ρ of GL5(k) with weights (6, 4, 3, 2, 0). We shall prove that [C0]m is

semistable with respect to ρ, for all m, via an explicit computation of Hilbert-

Mumford index µ([C0]m, ρ). Although this can be done by simply plugging the

ideal of C0 and w = {6, 4, 3, 2, 0} in mumfordIndex (§2.2), we shall first carry

out the algorithm step by step and present the computations in a traditional

manner as if we did them by hand.

• We first find the ideal IC0
of C0 from the parametrization map:

IC0
= 〈−x1x4 + x2

3, −x0x4 + x1x3, −x0x4 + x2
2, −x0x3 + x2

1〉.

• We compute a Gröbner basis for IC0
with respect to the ρ-weighted GLex:

x1x4 − x2
3, x0x4 − x2

2, x1x3 − x2
2, x0x3 − x2

1, x2
2x4 − x3

3, x0x
2
2 − x3

1

• The leading terms of the Gröbner basis elements are:

x1x4, x0x4, x1x3, x0x3, x
2
2x4, x0x

2
2

These generate the initial ideal in≺(IC0
).

• The degree 2 monomials not in the initial ideal are:

(3.1) x2
0, x0x1, x0x2, x2

1, x1x2, x2
2, x2x3, x2x4, x2

3, x3x4, x2
4

These monomials have total weight 66. On the other hand, we have

P(2) · 2

5

4∑

i=0

ri =
11 · 2

5
· 15 = 66.

Therefore, by Proposition 1, the 2nd Hilbert point of the tri-canonical image of

C0 is at best strictly semistable with respect to ρ. Similarly, we find that the

degree three monomials not contained in the initial ideal in≺(IC0
) are:

x3
0, x2

0x1, x2
0x2, x0x

2
1, x0x1x2, x3

1, x2
1x2, x1x

2
2, x3

2,

x2
2x3, x2x

2
3, x2x3x4, x2x

2
4, x3

3, x2
3x4, x3x

2
4, x3

4
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of which total weight is 153. On the other hand, we have

P(3) · 3

5
·

4∑

i=0

ri =
17 · 3

5
· 15 = 153.

Therefore, by Proposition 1, the 3rd Hilbert point of the tri-canonical image of

C0 is strictly semistable with respect to ρ. Now it follows from Corollary 4 that

C0 is m-Hilbert strictly semistable for all m ≥ 2.

Remark 2. (µ([C0]m, ρ) as computed by Macaulay 2) First, compute the ideal of

C0:

i12 : P1 = QQ[s,t];

i13 : P4 = QQ[x_0..x_4];

i14 : f = map(P1,P4,{s^6,s^4*t^2,s^3*t^3,s^2*t^4,t^6})

6 4 2 3 3 2 4 6

o14 = map(P1,P4,{s , s t , s t , s t , t })

o14 : RingMap P1 <--- P4

i15 : C0 = kernel f

2 2 2

o15 = ideal (x - x x , x x - x x , x - x x , x - x x )

3 1 4 1 3 0 4 2 0 4 1 0 3

o15 : Ideal of P4

Run mumfordIndex to compute the filtered Hilbert function PC0/ρ(m):

i7 : mumfordIndex(C0, {6,4,3,2,0})

(2, (), 0)

Reading the output sequence, the regularity of C0 is 2 and the filtered Hilbert

function PC0/ρ(m) agrees with the zero polynomial for all m ≥ 2 (hence the

empty sequence () in the second entry). Thus C0 is m-Hilbert strictly semistable

for all m ≥ 2.

We can run the subprogram MUm to find µ([C0]m, ρ) for m = 2, 3 and the

monomials not in the initial ideal:

i8 : MUm(C0, {6,4,3,2,0}, 2)

o8 = 0

i11 : inI

2 2

o11 = ideal (x x , x x , x x , x x , x x , x x )
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1 4 0 4 1 3 0 3 2 4 0 2

o11 : Ideal of Sw

The degree two monomials not in the initial ideal are

i12 : Bmbar

o12 = | x_0^2 x_0x_1 x_0x_2 x_1^2 x_1x_2 x_2^2 x_2x_3 x_2x_4

x_3^2 x_3x_4 x_4^2 |

1 11

o12 : Matrix Sbar <--- Sbar

whose weights sum up to

i13 : TOTALWT

o13 = 66

Similarly, we compute µ([C0]3, ρ) by

i14 : MUm(C0, {6,4,3,2,0}, 3)

o14 = 0

The degree 3 monomials not in the initial ideal are

i15 : Bmbar

o15 = | x_0^3 x_0^2x_1 x_0^2x_2 x_0x_1^2 x_0x_1x_2 x_1^3

x_1^2x_2 x_1x_2^2 x_2^3 x_2^2x_3 x_2x_3^2 x_2x_3x_4

x_2x_4^2 x_3^3 x_3^2x_4 x_3x_4^2 x_4^3 |

1 17

o15 : Matrix Sbar <--- Sbar

and their weights sum up tp

i16 : TOTALWT

o16 = 153

3.2. Degeneration of cuspidal curves. There are three types of genus two

pseudo-stable curves with a cusp:

(a) C0, the rational curve with two cusps;

(b) C ′
0, the rational curve with a cusp and a node;

(c) C1, a curve with one cusp and no other singularities, normalized by a

smooth elliptic curve.

In this section, we shall prove C ′
0 and C1 specialize to C0 under the ρ-action.

Since C ′
0 is in the closure of the locus of C1 in the Hilbert scheme, we only need

to prove it for C1.
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C' C

C

0 1

0

.

FIGURE 1. C1 and C ′
0 degenerate to C0 along the action of ρ

3.2.1. Flat limit of ρ(α).[C1]. Computation of flat limits is rather well known

(cf. [BM88]). We quickly recapitulate the algorithm here: Given S = k[x0, . . . , xN]

and a one-parameter subgroup ρ : Gm → GLN+1(k) defined by ρ(α).xi =

αwtρ(xi)xi, we define the graded ρ-weight order ≺ρ as follows: let xa and xb

be monomials. Then xa ≺ρ xb if

(1) deg xa < deg xb or

(2) deg xa = deg xb and wtρ(x
a) < wtρ(x

b).

Note that ≺ρ is a partial order and ≺ in §2.1 is a total order that refines ≺ρ.

Given g =
∑

cax
a ∈ S, and a homogeneous ideal I of S, we define

(a) in≺ρ(g) is the sum of the terms (of g) of maximal order1;

(b) in≺ρ(I) := 〈in≺ρ(f) | f ∈ I〉.

(c) g̃(x0, . . . , xN, α) := αbg(α−r0x0, . . . , α
−rNxN), b = max{wtρ(x

a) | ca 6=

0};

(d) Ĩ := 〈g̃, g ∈ I〉 ⊂ S[α].

1Bayer and Mumford take the minimal weight term to be the initial term. Here we are using

the dual action of ρ on the ideal, hence the reversal of the signs of the weights.
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Note that for a fixed α 6= 0, Iα = 〈g̃ | g ∈ I〉 is the ideal defining ρ(α).C where

C ⊂ P
N is the projective variety defined by I. The problem at hand is to com-

pute the ideal of the limit variety of the family ρ(α).C as α tends to zero. First,

we have:

Theorem 3. ([Eis95] P.343) For any ideal I ⊂ S, the k[α]-algebra S[α]/̃I is free

as k[α]-algebra. Furthermore, we have

S[α]/̃I⊗k[α] k[α, α−1] ≃ (S/I)[α, α−1]

S[α]/̃I⊗k[α] k[α]/(α) ≃ S/in≺ρ(I).

This means precisely that Ĩ is the homogeneous ideal of the flat projective

closure in P
N of the family ρ(α).C, and that the flat limit is given by the initial

ideal in≺ρ(I). These ideals can be readily computed by using Gröbner basis:

Proposition 4. ([Eis95] P.369) Let {g1, . . . , gt} be a Gröbner basis for I with

respect to ≺ (§2.1). Then

(1) g̃1, . . . , g̃t generate Ĩ;

(2) in≺ρ(g1), . . . , in≺ρ(gt) generate in≺ρ(I).

Remark 4. This algorithm can be easily implemented with Macaulay 2. The

following function flatLimit takes an ideal I and a weight vector w, and com-

putes the projective closure tI and the flat limit of the one-parameter family

ρ(α).I, α ∈ C∗, where ρ is the one-parameter subgroup with the prescribed

weight vector w. The Gröbner basis computation occurs in saturate(I,a).

flatLimit = (I,w) -> (

R = ring I;

N = numgens R - 1;

K = coefficientRing R;

Ra = K[gens R, a];

wmax = max w;

f = map(Ra, R, gens ideal apply(0..N, j -> a^(wmax-w_j)*(gens Ra)_j));

-- the new weights wmax-w_j corresponds to those of the inverse of lambda

I = f(I);

tI = saturate(I,a);

substitute(tI, {a=>0})

)

Using this algorithm, we shall prove that limα→0 ρ(α).C1 = C0.
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(A) We first compute the ideal of C1. Let ν : Cν
1 → C1 be the normalization of

C1 and p ∈ Cν
1 be the closed point over the cusp q of C1. The dualizing sheaf

ωC1
can be expressed

ωC1
(U) =





ζ ∈ ωCν

1
(ν−1U)

∣∣∣∣∣∣

∑

y∈ν−1(x)

Resy(ν∗f · ζ) = 0 for all x ∈ U and f ∈ OC1 ,x






to an open set U ⊂ C1. It follows that ν∗ωC1
= ωCν

1
(2p) = OCν

1
(2p) and

ν∗OC1
(1) ≃ OCν

1
(6p). This means that the tri-canonical image of C1 is given by

a g4
6 of Cν

1. In other words, C1 is the image of a suitable projection

P(Γ(Cν
1,OCν

1
(6p))) 99K P

4

following the embedding η : Cν
1 →֒ P(Γ(Cν

1,OCν
1
(6p))) = P

5 given by |OCν
1
(6p)|.

The projection is from a point on the tangent line Tp(C
ν
1), creating the cusp q.

Consider the normal form E := {x2
0x2 = x1(x1 − x2)(x1 − ℓx2)} ⊂ P2 of Cν

1

given by |OCν
1
(3p)| where p = [1, 0, 0]. Then η(Cν

1) ⊂ P5 is the image of E under

the second Veronese embedding

(⋆)
v2 : P2 −→ P5

[x0, x1, x2] 7→
[
x2

0, x0x1, x
2
1, x0x2, x1x2, x

2
2

]
.

The tangent line T to E at p is {x2 = 0}. If y0, . . . , y5 are the homogeneous

coordinates of P5 in (⋆), the second Veronese image of T is given by the ideal

〈y3, y4, y5, y
2
1 − y0y2〉. Hence the tangent line to v2(T) at p = η([1, 0, 0]) =

[1, 0, . . . , 0] is {y0 = y3 = y4 = y5 = 0} and y1 is a local parameter of v2(T) at

p. Since v2(T) and η(Cν
1) agree to order one, it follows that the tangent line to

η(Cν
1) at p = η([1, 0, 0]) = [1, 0, . . . , 0] is {y0 = y3 = y4 = y5 = 0} and y1 is a

local parameter of Oη(Cν
1 ),p. Therefore, the projection

pr : P5
99K P4

[y0, . . . , y5] 7→ [y0, y2, y3, y4, y5]

kills the tangent direction and replaces p with a cusp.

The ideal Iv2(E) of η(Cν
1) = v2(E) ⊂ P5 is generated by:

y2
1 − y0y2, y2

4 − y2y5, y3y4 − y1y5, y2
3 − y0y5, y2y3 − y1y4, y1y3 − y0y4,

y2y4ℓ − y4y5ℓ − y2
2 + y0y4 + y0y5 + y2y5, y2y5ℓ − y4y5ℓ − y2y4 + y0y5 + y2y5,

y1y4ℓ − y1y5ℓ − y1y2 + y0y3 + y1y4
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The ideal of pr ◦ η(Cν
1) ⊂ P4 is the kernel of the homomorphism

k[z0, . . . , z4] → k[y0, . . . , y5]/Iv2(E)

(z0, . . . , z4) 7→ (y0, y2, y3, y4, y5).

It is generated by:

z2
3 − z1z4, z2

2 − z0z4, z1z4ℓ − z3z4ℓ − z1z3 + z0z4 + z1z4,

z1z3ℓ − z3z4ℓ − z2
1 + z0z3 + z0z4 + z1z4

(B) Second, we compute the Gröbner basis of IC1
with respect to the total

weight order:

(3.2)

z1z4 − z2
3, z1z3 − z2

2 − z2
3ℓ − z2

3 + z3z4ℓ, z0z4 − z2
2,

z0z3 − z2
1 + z2

2ℓ + z2
2 + z2

3ℓ
2 + z2

3ℓ + z2
3 − z3z4ℓ

2 − z3z4ℓ,

z2
2z4 − z3

3 + z2
3z4ℓ + z2

3z4 − z3z
2
4ℓ,

z0z
2
2 − z3

1 + 2z1z
2
2ℓ + 2z1z

2
2 + z2

2z3ℓ
2 + z2

2z3

+z3
3ℓ

3 + z3
3ℓ

2 + z3
3ℓ + z3

3 − z2
3z4ℓ

3 − z2
3z4ℓ

2 − z2
3z4ℓ

(C) From (B) we obtain a Gröbner basis for ĨC1
with terms without α under-

lined:

z3z4ℓα
4 − z2

3ℓα
2 − z2

3α
2−z2

2 + z1z3, −z2
2 + z0z4, −z2

3 + z1z4,

−z3z
2
4ℓα

4 + z2
3z4ℓα

2 + z2
3z4α

2−z3
3 + z2

2z4,

−z3z4ℓ
2α6 − z3z4ℓα

6 + z2
3ℓ

2α4 + z2
3ℓα

4 + z2
3α

4 + z2
2ℓα

2 + z2
2α

2−z2
1 + z0z3,

−z2
3z4ℓ

3α8 − z2
3z4ℓ

2α8 + z3
3ℓ

3α6 − z2
3z4ℓα

8 + z3
3ℓ

2α6 + z3
3ℓα

6

+z2
2z3ℓ

2α4 + z3
3α

6 + z2
2z3α

4 + 2z1z
2
2ℓα

2 + 2z1z
2
2α

2−z3
1 + z0z

2
2

(D) Substituting α = 0, we obtain the ideal of the flat limit:

〈z2
3 − z1z4, z1z3 − z0z4, z

2
2 − z0z4, z

2
1 − z0z3〉

This is precisely the ideal of the tri-canonical model of C0, regardless of ℓ.

3.3. Hilbert unstable curves - Instability of elliptic bridges.

Definition 5. An elliptic tail (resp. elliptic bridge) is a connected subcurve of

arithmetic genus one meeting the rest of the curve in one node (resp. two

nodes).
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1
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FIGURE 2. Generic elliptic bridges

E'

q

r

D

FIGURE 3. Flat limit of ρ(t).C

In this section, we shall prove that a bicanonically embedded elliptic bridge is

Hilbert unstable. Readers looking for context as to why this particular stability

problem is important are invited to take a look at [HH07] and [HL09].

Let C be a generic elliptic bridge of genus g consisting of a genus g − 2 curve

D meeting in two nodes q and r with a genus one subcurve E.

Proposition 5. Let C0 be the curve in Figure 3 consisting of D and two conics C1

and C2, where D is embedded by |ω⊗2
D (2q+2r)| and C1 and C2 meet D in nodes q

and r respectively and meet each other in a tacnode. Then there is a one-parameter

subgroup ρ : Gm → SLN+1 such that

(1) ρ(t) · C specializes to a bicanonical c-semistable curve C0;

(2) PC0,ρ(m) = −3(g − 1)(m − 1). In particular, C0 is Hilbert unstable.

Since PC,ρ(m) = PC0,ρ(m), it follows that C is also Hilbert unstable.
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Proof. Note that ω⊗2
C |D = ω⊗2

D (2q + 2r) and ω⊗2
C |E = OE(2q + 2r), which imply

that D and E are embedded in linear subspaces of P3g−4 of dimensions 3g − 6

and 3, respectively. Hence we can choose coordinates such that

xN−1 = xN = 0 on D

x0 = · · · = xN−4 = 0 on E.

We can extract equations for E embedded by |2q + 2r| by argument similar to

extracting the normal form of elliptic curve embedded in P2 by |3p0|.

Let {1q, x} and {1r, y} be bases for Γ(2q) and Γ(2r), respectively. We may

assume that 2q 6≡ 2r: we first prove that an elliptic bridge with 2q 6≡ 2r is

unstable, and can deduce that an elliptic bridge with 2q ≡ 2r is also unstable

since the unstable locus is closed. Under this assumption, we can choose x and

y such that x ∈ Γ(2q − r) and y ∈ Γ(2r − q) and hence the vanishing order at q

and r (on E) are as follows:

1q x 1r y

ordq 2 0 0 1

ordr 0 1 2 0

(3.3)

x · 1r y · 1q xy 1q · 1r

ordq 0 3 1 2

ordr 3 0 1 2

Let xN−3 = x·1r, xN−2 = y·1q, xN−1 = xy and xN = 1q·1r. One sees immediately

that the image of E under |2q + 2r| lies on the Segre surface

{f1 := xN−3xN−2 − xN−1xN = 0}.

Also, since dim Γ(4q + 4r) = 8, there is a nontrivial linear relation between the

9 elements

1 x y xy x2 y2 x2y xy2 x2y2

x2
N xN−3xN xN−2xN xN−3xN−2 x2

N−3 x2
N−2 xN−3xN−1 xN−2xN−1 x2

N−1

Let f2 denote a linear relation:

f2 := c0x
2
N−3 + c1xN−3xN−1 + c2xN−3xN + c3x

2
N−2 + c4xN−2xN−1

+c5xN−2xN + c6x
2
N−1 + c7xN−1xN + c8x

2
N.



STABILITY COMPUTATION VIA GRÖBNER BASIS 21

Because of our choice of coordinates that have specific vanishing orders at q

and r, it follows that

(A) TqE = {x0 = · · · = xN−4 = xN−2 = xN = 0}, q = [0, . . . , 0, 1, 0, 0, 0]

(B) TrE = {x0 = · · · = xN−4 = xN−3 = xN = 0}, r = [0, . . . , 0, 0, 1, 0, 0] .

(A) implies that c0 = c1 = 0 and c2 6= 0 while (B) forces c3 = c4 = 0 and c5 6= 0.

Moreover, for E to be smooth, c6 must not be zero.

Taking all these into account, the generic form of f2 is as follows.

f2 = x2
N−1 + xN−3xN + xN−2xN + c1xN−1xN + c2x

2
N, ci ∈ k.

The j-invariant of E can be computed by realizing it as a double cover of P1

([HL07a]) via E →֒ P
1 × P

1 π
→ P

1 where π is the projection to one of the

factors:

j(E) =
−2833(c2

1 − 12c2)
3

4(c2
1 − 12c2)3 + 27(2c3

1 − 72c1c2 − 2433)
.

Let ρ : Gm → GLN+1(k) be a one-parameter subgroup defined by the diagonal

matrix

(3.4) ρ(t) =




t2

. . .

t2

t

1




To compute µ([C]m, ρ), we shall first compute the ideal of the flat limit C0 of

the family ρ(t) · C.

For fixed t 6= 0, the two generators f1 and f2 of the ideal of C give rise to

f̃1(x0, . . . , xN) = t4f1(t
−2x0, t

−2x1, . . . , t
−2xN−2, t

−1xN−1, xN)

= xN−3xN−2 − t3xN−1xN xN−3xN−2 = in≺ρ(f1)

f̃2(x0, . . . , xN) = t2f1(t
−2x0, t

−2x1, . . . , t
−2xN−2, t

−1xN−1, xN)

= x2
N−1 + xN−3xN + xN−2xN + tc1xN−1xN + t2c2x

2
N

 x2
N−1 + xN−3xN + xN−2xN = in≺ρ(f2)

Let I ′ = 〈xN−3xN−2, x
2
N−1 + xN−3xN + xN−2xN〉 ⊃ in≺ρ(IE) where IE = 〈f1, f2〉 is

the homogeneous ideal of E. The Hilbert polynomial of Proj (S/I ′) is P(m) =

4m which is the same as the Hilbert polynomial m · degOE(2q + 2r) + 1 − 1 of

the flat limit. Since I ′ ⊃ in≺ρ(IE), we conclude that I ′ is equal to in≺ρ(IE), the

ideal defining the flat limit.
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The curve E ′ of arithmetic genus 1 defined by I ′ consists of two conics

(3.5)
C ′

1 = {xN−3 = 0, x2
N−1 + xN−2xN = 0}

C ′
2 = {xN−2 = 0, x2

N−1 + xN−3xN = 0}

meeting in a tacnode p ′ = [0, . . . , 0, 1]. The flat limit of ρ(t) · D is obviously D

itself since ρ acts trivially on D.

It remains to show that [C]m is strictly semistable with respect to ρ. Equiva-

lently, we may show that µ([C0]m, ρ) = 0. Let I0 denote the ideal of C0. Recall

that µ([C]m, ρ) = µ([C0]m, ρ), the right hand side of which we shall compute by

using the formula

−(N + 1)

P(m)∑

i=1

wtρ(x
a(i)) + mP(m)

N∑

i=0

ri

where xa(1), . . . , xa(P(m)) are degree m monomials not in in≺(I0), and ri =

wtρ(xi).

First, we shall consider the second Hilbert point of C0. We need to sort out

the degree 2 monomials (of weight < 4) that are not in in≺(I ′). The following

are the degree 2 monomials with ρ-weight less than 4:

ρ-weight

3 xjxN−1, j ≤ N − 2

2 x2
N−1, xjxN, j ≤ N − 2

1 xN−1xN

0 x2
N

Among these, clearly xjxN and xjxN−1, j = 0, . . . , N−4, are of weight < 4 and in

in≺(I0) since they are in I0. Therefore, the only degree 2 monomials of weight

< 4 that are possibly not in in≺(I0) are

(3.6)

ρ-weight

3 xN−3xN−1, xN−2xN−1

2 xN−3xN, xN−2xN, x2
N−1

1 xN−1xN

0 x2
N

I claim that in the table (3.6), xN−3xN is the only monomial that is in in≺(I0).

Clearly, in≺(I0) ⊂ in≺(I ′). A Gröbner basis of I ′ is:

xN−3xN + xN−2xN + x2
N−1, xN−3xN−2, x2

N−2xN + xN−2x
2
N−1.
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Hence the initial ideal is

(3.7) in≺(I ′) = 〈xN−3xN, xN−3xN−2, x
2
N−2xN〉

and the only degree 2 monomials in in≺(I ′) are xN−3xN and xN−3xN−2. Hence

among the monomials in the list, xN−3xN is the only possible element in in≺(I0).

Since f2 = x2
N−1 + (xN−3 + xN−2)xN ∈ I ′ vanishes entirely on D, f2 ∈ I0 and

in≺(f2) = xN−3xN ∈ in≺(I0).

On the other hand, if xN−3xN−2 = in≺(f) for some f ∈ I0, then f must be of the

form

axN−3xN−2 + bx2
N−2 + xN−1g1 + xNg2,

for some a, b ∈ k and linear polynomials g1, g2. But this would imply that

xN−2 = 0 or axN−3 + bxN−2 = 0 entirely on D, which contradicts that D is

nondegenerate in {xN−1 = xN = 0}. Hence xN−3xN−2 6∈ in≺(I0). Therefore, the

total weight
∑P(2)

i=1 wtρx
a(i) is

∑P(2)

i=1 wtρ(x
a(i)) = 2 + 2 · 3 + 2 + 1 + 4 · (7g − 7 − 6)

= 11 + 28g − 52 = 28g − 41.

On the other hand,

2 · P(2)

3g − 3

N∑

i=0

ri =
2 · 7(g − 1)

3(g − 1)
· (1 + 2(3g − 5))

= 28g − 42.

Hence

µ([C]2, ρ) = µ([C0]2, ρ)

= −(3g − 3) · (28g − 41 − (28g − 42))

= −3(g − 1) < 0.

It follows that ρ destabilizes the 2nd Hilbert point of C.
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Now let’s consider the 3rd Hilbert point of C. The degree 3 monomials of

ρ-weight less than 6 are

ρ-weight

5 xixjxN−1, i, j ≤ N − 2

4 xjx
2
N−1, xixjxN, i, j ≤ N − 2

3 x3
N−1, xixN−1xN, i ≤ N − 2

2 x2
N−1xN, xjx

2
N, j ≤ N − 2

1 xN−1x
2
N

0 x3
N

Among these monomials, xixjxN−1, xjx
2
N−1, xixjxN and xjx

2
N, are obviously con-

tained in in≺(I0) if i ≤ N − 4 or j ≤ N − 4 since they are in I0. Hence we need

to consider

(3.8)

ρ-weight

5 x2
N−3xN−1, xN−3xN−2xN−1, x2

N−2xN−1

4 x2
N−3xN, xN−3xN−2xN, x2

N−2xN, xN−3x
2
N−1, xN−2x

2
N−1

3 x3
N−1, xN−3xN−1xN, xN−2xN−1xN

2 x2
N−1xN, xN−3x

2
N, xN−2x

2
N

1 xN−1x
2
N

0 x3
N

First, note that xN−3xN−2xN−1 and xN−3xN−2xN are in in≺(I0) since they are in

I0. Then we argue similarly as in the 2nd Hilbert point case. By examining the

initial ideal (3.7), we deduce that among the monomials in (3.8), the following

monomials are the only possible elements in in≺(I0):

xN−3xN−2xN−1, x
2
N−3xN, xN−3xN−2xN, xN−3xN−2xN−1, xN−2x

2
N−1, xN−3x

2
N.

We have

g1 = xN−2 · (x
2
N−1 + (xN−3 + xN−2)xN) − xN · (xN − 3xN−2)

= x2
N−2xN + xN−2x

2
N−1 ∈ I0

Hence x2
N−2xN = in≺(g1) ∈ in≺(I0). Therefore, the total weight is

∑P(3)

i=1 wtρ(x
a(i)) = 2 · 5 + 2 · 4 + 2 · 3 + 2 · 2 + 1 · 1 + 6 · (11(g − 1) − 10)

= 29 + 6(11g − 21) = 66g − 97.
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On the other hand,

3 · P(3)

3g − 3

N∑

i=0

ri =
3 · 11(g − 1)

3(g − 1)
· (1 + 2(3g − 5))

= 66g − 99.

Hence

µ([C]3, ρ) = µ([C0]3, ρ)

= −(3g − 3) · (66g − 97 − (66g − 99))

= −6(g − 1) < 0.

It follows that ρ destabilizes the 3rd Hilbert point of C. From µ([C0]2, ρ) and

µ([C0]3, ρ), we obtain the filtered Hilbert function

PC0,ρ(m) = (m − 1)[−3(g − 1)(3 − m) − 6(g − 1)(m/2 − 1)]

= −3(g − 1)(m − 1).

This has negative values for all m ≥ 2, and it follows that [C]m is unstable with

respect to ρ for all m ≥ 2.

�

Corollary 6. Let C0 and ρ be as in Proposition 5. Then µ(Ch(C0), ρ) = 0.
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