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Abstract. We determine the Mori cone of holomorphic symplectic varieties

deformation equivalent to the punctual Hilbert scheme on a K3 surface. Our

description is given in terms of Markman’s extended Hodge lattice.

Introduction

Let X be an irreducible holomorphic symplectic manifold. Let (, ) denote the
Beauville-Bogomolov form on H2(X,Z); we may embed H2(X,Z) in H2(X,Z) via
this form. Fix a polarization h on X; by a fundamental result of Huybrechts
[Huy99], X is projective if it admits a divisor classH with (H,H) > 0. It is expected
that finer birational properties of X are also encoded by the Beauville-Bogomolov
form and the Hodge structure on H2(X), along with appropriate extension data.
In particular, natural cones appearing in the minimal model program—the moving
cone, the nef cone, the pseudo-effective cone—should have a description in terms
of this form.

Now assume X is deformation equivalent to the punctual Hilbert scheme S[n] of
a K3 surface S with n > 1. Recall that

(1) H2(S[n],Z)(,) = H2(S,Z)⊕⊥ Zδ, (δ, δ) = −2(n− 1)

where the restriction of the Beauville-Bogomolov form to the first factor is just the
intersection form on S, and 2δ is the class of the locus of non-reduced subschemes.
Recall from [Kov94] that for K3 surfaces S, the cone of (pseudo-)effective divisors
is the closed cone generated by

{D ∈ Pic(S) : (D,D) ≥ −2, (D,h) > 0}.

The first attempt to extend this to higher dimensions was [HT01]. Further work on
moving cones was presented in [HT09, Mar13], which built on Markman’s analysis of
monodromy groups. The characterization of extremal rays arising from Lagrangian
projective spaces Pn ↪→ X has been addressed in [HT09, HHT12] and [BJ14].
The paper [HT10] proposed a general framework describing all types of extremal
rays; however, Markman found counterexamples in dimensions ≥ 10, presented in
[BMT14].

The formalism of Bridgeland stability conditions [Bri07, Bri08] has led to break-
throughs in the birational geometry of moduli spaces of sheaves on surfaces. The
case of punctual Hilbert schemes of P2 and del Pezzo surfaces was investigated by
Arcara, Bertram, Coskun, and Huizenga [ABCH13, Hui12, BC13, CH13]. The
effective cone on (P2)[n] has a beautiful and complex structure as n increases,
which only becomes transparent in the language of stability conditions. Bayer
and Macr̀ı resolved the case of punctual Hilbert schemes and more general moduli
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spaces of sheaves on K3 surfaces [BMT14, BM13]. Abelian surfaces, whose moduli
spaces of sheaves include generalized Kummer varieties, have been studied as well
[YY14, Yos12].

In this note, we extend the results obtained for moduli spaces of sheaves over K3
surfaces to all holomorphic symplectic manifolds arising as deformations of punctual
Hilbert schemes of K3 surfaces. Our principal result is Theorem 1 below, providing
a description of the Mori cone (and thus dually of the nef cone).

In any given situation, this also leads to an effective method to determine the
list of marked minimal models (i.e., birational maps f : X 99K Y where Y is also a
holomorphic symplectic manifold): the movable cone has been described by Mark-
man [Mar11, Lemma 6.22]; by [HT09], it admits a wall-and-chamber decomposition
whose walls are the orthogonal complements of extremal curves on birational mod-
els, and whose closed chambers corresponds one-to-one to marked minimal model,
as the pull-backs of the corresponding nef cones.
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1. Statement of Results

Let X be deformation equivalent to the Hilbert scheme of length-n subschemes of
a K3 surface. Markman, see [Mar10, Theorem 1.10] and [Mar11, Cor. 9.5] describes
an extension of lattices

H2(X,Z) ⊂ Λ̃
and weight-two Hodge filtrations

H2(X,C) ⊂ Λ̃C

with the properties listed below. We will write

θX : H2(X) ⊂ Λ̃X
to denote the extension of Hodge structures with pairing; here θX is defined canon-
ically up to a choice of sign.

• The orthogonal complement of θX
(
H2(X,Z)

)
has rank one, and is gener-

ated by a primitive vector of square 2n− 2 and type (1, 1);
• as a lattice

Λ̃ ' U4 ⊕ (−E8)2

where U is the hyperbolic lattice and E8 is the positive definite lattice
associated with the corresponding Dynkin diagram;
• any parallel transport operator φ : H2(X,Z) → H2(X ′,Z) naturally lifts

to an isometry of lattices φ̃ : Λ̃X → Λ̃X′ such that

φ̃ ◦ θX = θX′ ◦ φ;
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the induced action of the monodromy group on Λ̃/H2(X,Z) is encoded by
a character cov (see [Mar08, Sec. 4.1]);
• we have the following Torelli-type statement: X1 and X2 are birational if

and only if there is Hodge isometry

Λ̃X1 ' Λ̃X2

taking H2(X1,Z) isomorphically to H2(X2,Z);
• if X is a moduli space Mv(S) of sheaves (or of Bridgeland-stable complexes)

over a K3 surface S with Mukai vector v then there is an isomorphism from
Λ̃ to the Mukai lattice of S taking H2(X,Z) to v⊥.

Generally, we use v to denote a primitive generator for the orthogonal complement
of H2(X,Z) in Λ̃. Note that v2 = (v, v) = 2n− 2. When X 'Mv(S) we may take
the Mukai vector v as the generator.

As the dual of θX we obtain a homomorphism1

θ∨X : Λ̃X � H2(X,Z)

which restricts to an inclusion

H2(X,Z) ⊂ H2(X,Z)

of finite index. By extension, it induces a Q-valued Beauville-Bogomolov form on
H2(X,Z).

Assume X is projective. Let H2(X)alg ⊂ H2(X,Z) and Λ̃alg ⊂ Λ̃X denote
the algebraic classes, i.e., the integral classes of type (1, 1). Since the orthogonal
complement of iX

(
H2(X)

)
is generated by an algebraic class, it follows dually that

a ∈ Λ̃X is of type (1, 1) if and only if θ∨(a) is. The Beauville-Bogomolov form
on H2(X)alg has signature (1, ρ(X) − 1), where ρ(X) = dim(H2

alg(X)). The Mori
cone of X is defined as the closed cone in H2(X,R)alg containing the classes of
algebraic curves in X. The positive cone (or more accurately, non-negative cone)
in H2(X,R)alg is the closure of the connected component of the cone

{D ∈ H2(X,R)alg : D2 > 0}
containing an ample class. The dual of the positive cone in H2(X,R)alg is the
positive cone.

Theorem 1. Let (X,h) be a polarized holomorphic symplectic manifold as above.
The Mori cone in H2(X,R)alg is generated by classes in the positive cone and the
images under θ∨ of the following:

{a ∈ Λ̃alg : a2 ≥ −2, |(a, v)| ≤ v2/2, (h, θ∨(a)) > 0}.
This generalizes [BM13, Theorem 12.2], which treated the case of moduli spaces

of sheaves on K3 surfaces. This allows us to compute the full nef cone of X from its
Hodge structure once a single ample divisor is given. As another application of our
methods, we can bound the length of extremal rays of the Mori cone with respect
to the Beauville-Bogomolov pairing:

Proposition 2. Let X be a projective holomorphic symplectic manifold as above.
Then any extremal ray of its Mori cone contains an effective curve class R with

(R,R) ≥ −n+ 3
2

.

1We will often drop the subscript X from the notation when the context is clear.
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The value −n+3
2 had been conjectured in [HT10]. Proposition 2 has been ob-

tained independently by Mongardi [Mon13]. His proof is based on twistor defor-
mations, and also applies to non-projective manifolds.

2. Deforming extremal rational curves

In this section, we consider general irreducible holomorphic symplectic manifolds,
not necessarily of K3 type. Our arguments are based on the deformation theory
of rational curves on holomorphic symplectic manifolds, as first studied in [Ran95].
Recall the definition of a parallel transport operator φ : H2(X,Z) → H2(X ′,Z)
between manifolds of a fixed deformation type: there is a smooth proper family
π : X → B over a connected analytic space, points b, b′ ∈ B with Xb := π−1(b) ' X
and Xb′ ' X ′, and a continuous path γ : [0, 1] → B, γ(0) = b, γ(1) = b′, such that
parallel transport along γ induces φ.

Proposition 3. Let X be a projective holomorphic symplectic variety and R the
class of an extremal rational curve P1 ⊂ X with (R,R) < 0. Suppose that X ′ is
deformation equivalent to X and φ : H2(X,Z)→ H2(X ′,Z) is a parallel transport
operator associated with some family. If R′ := φ(R) is a Hodge class, and if there
exists a Kähler class κ on X ′ with κ.R′ > 0, then a multiple of R′ is effective and
represented by a cycle of rational curves.

Note that X ′ need not be projective here.

Proof. Fix a proper holomorphic family π : X → B over an irreducible analytic
space B with X = Xb. We claim there exists a rational curve ξ : P1 → X with class
[ξ(P1)] ∈ Q≥0R satisfying the following property: for each b′′ near b such that R
remains algebraic there exists a deformation ξb′′ : P1 → Xb′′ of ξ.

Let ω denote the holomorphic symplectic form on X, f : X → Y the birational
contraction associated with R, E an irreducible component of the exceptional locus
of f , Z its image in Y , and F a generic fiber of E → Z. We recall structural results
about the contraction f :

• ω restricts to zero on F [Kal06, Lemma 2.7];
• the smooth locus of Z is symplectic with two-form pulling back to ω|E

[Kal06, Thm. 2.5] [Nam01, Prop. 1.6];
• the dimension r of F equals the codimension of E [Wie03, Thm. 1.2].

Second, we review general results about rational curves ξ : P1 → X:

• a non-constant morphism ξ : P1 → X deforms in at least a (2n + 1)-
dimensional family [Ran95, Cor. 5.1];

• the fibers of E → Z are rationally chain connected [HM07, Cor. 1.6];
• a non-constant morphism ξ : P1 → F deforms in at least a (2r + 1)-

dimensional family [Wie03, Thm. 1.2].

Let ξ : P1 → F ⊂ X be a rational curve of minimal degree passing through the
generic point of F . We do not assume a priori that F is smooth. The normal bundle
Nξ was determined completely in [CMSB02, §9], which gives a precise classification
of F . The fact that rational curves in F deform in (2r − 2)-dimensional families
implies that every rational curve through the generic point of F is doubly dominant,
i.e., it passes through two generic points of F . Using a bend-and-break argument
[CMSB02, Thm. 2.8 and 4.2], we may conclude that the normalization of F is
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isomorphic to Pr. Note that the generic ξ : P1 → F is immersed in X by [Keb02,
§3].

Using standard exact sequences for normal bundles and the fact that ξ : P1 → F
is immersed in X, one sees that (cf. [CMSB02, Lemma 9.4])

Nξ ' OP1(−2)⊕OP1(−1)r−1 ⊕O2(n−r)
P1 ⊕OP1(1)r−1.

The crucial point is that h1(Nξ) = 1. Thus we may apply [Ran95, Cor. 3.2] to
deduce that the deformation space of ξ(P1) ⊂ X has dimension 2n − 2; [Ran95,
Cor. 3.3] then implies that ξ(P1) persists in deformations of X for which R remains
a Hodge class. This proves our claim.

Example. The extremality assumption is essential, as shown by an example sug-
gested by Voisin: Let S be a K3 surface arising as a double cover of P1×P1 branched
over a curve of bidegree (4, 4) and X = S[2]. We may regard P1 × P1 ⊂ X as a
Lagrangian surface. Consider a smooth curve C ⊂ P1 × P1 ⊂ X of bidegree (1, 1).
The curve C persists only in the codimension-two subspace of the deformation space
of X where P1 × P1 deforms (see [Voi92]); note that NC/X ' OP1(2)⊕OP1(−2)2.

We return to the proof of Proposition 3. Consider the relative Douady space
parametrizing rational curves of class [ξ(P1)] in fibers of X → B and their special-
izations. Remmert’s Proper Mapping theorem [Rem57, Satz 23] implies that its
image BR ⊂ B is proper and that over each b′ ∈ BR there exists a cycle of rational
curves in X ′b that is a specialization of ξb′′(P1).

To prove the Proposition 3, we need to produce a family $ : X+ → B+ over an
irreducible base, with both X and X ′ as fibers, such that X ′ lies over a point of B+

R

and R′ = φ(R) coincides with φ+(R). Here φ+ is the parallel transport mapping
associated with $. Then the Proper Mapping theorem would guarantee that R′ is
in the Mori cone of X ′.

Lemma 4. Let X,X ′, R be as in Proposition 3. There exists a smooth proper
family $ : X+ → B+ over an irreducible analytic space, points b, b′ ∈ B+ with
X+
b ' X and X+

b′ ' X ′, and a section

ρ : B+ → R2$∗Z

of type (1, 1), such that ρ(b) = R and ρ(b′) = R′.

Proof. This proof is essentially the same as the argument for Proposition 5.12 of
[Mar13]. We summarize the key points.

Let M denote the moduli space of marked holomorphic symplectic manifolds of
K3 type [Huy99, Sec. 1]. Essentially, this is obtained by gluing together all the local
Kuranishi spaces of the relevant manifolds. It is non-Hausdorff. Let M◦ denote a
connected component of M containing X equipped with a suitable marking.

Consider the subspace M◦R such that R is type (1, 1) and κ.R > 0 for some Kähler
class, which may vary from point to point of the moduli space. This coincides with
an open subset of the preimage of the hyperplane R⊥ under the period map P
[Mar13, Claim 5.9]. Furthermore, for general periods τ—those for which R is
the unique integral class of type (1, 1)—the preimage P−1(τ) consists of a single
marked manifold [Mar13, Cor. 5.10]. The proof of this in [Mar13] only requires
that (R,R) < 0. (The Torelli Theorem implies two manifolds share the same
period point only if they are bimeromorphic [Mar11, Th. 1.2], but if R is the only
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algebraic class, the only other bimeromorphic model would not admit a Kähler class
κ′ with κ′.R > 0.) Finally, M◦R is path-connected by [Mar13, Cor. 5.11].

Choose a path γ : [0, 1] →M◦R joining X and X ′ equipped with suitable mark-
ings, taking R and R′ to the distinguished element R in the reference lattice. Cover
the image with a finite number of small connected neighborhoods Ui admitting
Kuranishi families. We claim there exists an analytic space B+

γ([0, 1]) ⊂ B+ ⊂ ∪mi=1Ui

with a universal family. Indeed, we choose B+ to be an open neighborhood of
γ([0, 1]) admitting a deformation retract onto the path, but small enough so it is
contained in the union of the Ui’s. The topological triviality of B+ means there is
no obstruction to gluing local families. �

This completes the proof of Proposition 3. �

3. Proof of Theorem 1

In the case where X = Mv(S) is a smooth moduli space of Gieseker-stable
sheaves (or, indeed, of Bridgeland-stable objects) on a K3 surface S, the statement
is proven in [BM13, Theorem 12.2]. We will prove Theorem 1 by reduction to this
case.

The key argument is based on important results of Markman on the cone of
movable divisors and its relation to the monodromy group. Let Comov be the inter-
section of the movable cone with the positive cone in H2(X,R)alg. Each wall of the
movable cone corresponds to a divisorial contraction of an irreducible exceptional
divisor E on some birational model of X; the wall is contained in the orthogonal
complement E⊥ of E with respect to the Beauville-Bogomolov form.

Theorem 5 (Markman). (1) Let X be an irreducible holomorphic symplectic
manifold. Consider the reflection ρE : H2(X,R) → H2(X,R) that leaves
E⊥ fixed and sends E to −E. Then ρE is defined over Z, acts by a mon-
odromy transformation, and extends to a Hodge isometry of the extended
lattice H2(X) ⊂ Λ̃.

(2) Let WExc be the Weyl group generated by reflections ρE for all irreducible
exceptional divisors E on all marked birational models of X. Then Comov is
a fundamental domain of the action of WExc on the positive cone.

Proof. These results are reviewed in [Mar11, Section 6]. The first statement was
originally proved in [Mar13, Corollary 3.6]. The second statement is [Mar11, Lemma
6.22]. (Note that the definition of WExc in [Mar11, Definition 6.8] is slightly different
to the one given above; by [Mar11, Theorem 6.18, part (3)] they are equivalent.) �

Corollary 6. Let R ∈ H2(X) be an algebraic class with (R,R) < 0. Then there
exists a birational model X ′ of X, and a parallel transport operator ψ : H2(X) →
H2(X ′) such that one of the two following conditions hold:

(1) ψ(R) generates an extremal ray of the Mori cone.
(2) Neither ψ(R) nor −ψ(R) is in the Mori cone.

In either case X ′ admits a Kähler class κ with κ.ψ(R) > 0.

Note that ψ may be non-trivial even when X = X ′.
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Proof. The statement immediately follows from the following claim: There exists
X ′, ψ such that the orthogonal complement ψ(R)⊥ intersects the nef cone in full
dimension, and such that there exists an ample class h with h.ψ(R) > 0. Case (1)
corresponds to the case that ψ(R)⊥ contains a wall of the nef cone, and case (2) to
the case that ψ(R)⊥ intersects the interior. Either way, we have a Kähler class κ
meeting ψ(R) positively.

We first proof the claim with “nef cone” replaced by “movable cone” and “am-
ple class” by “movable class”. Since (R,R) < 0, the orthogonal complement R⊥

intersects the positive cone; therefore, we can use the Weyl group action of WExc

to force the intersection of ψ(R)⊥ and the movable cone to be full-dimensional. In
case ψ(R)⊥ contains a wall of the movable cone, R is proportional to an irreducible
exceptional divisor E⊥, and the reflection ρE at E can be used to ensure the second
condition.

Now we use the chamber decomposition of the movable cone, whose chambers
are given by pull-backs of nef cones of marked birational models (see [HT09]): at
least one of the closed chambers intersects ψ(R)⊥ in full dimension, such that part
or all of the interior lies on the side with positive intersection with ψ(R). The
identification of H2 of different birational models is induced by a parallel transport
operator. �

To prove Theorem 1, we will use the following facts:

• By assumption, there exists a deformation of X to a Hilbert scheme S[n]

of a projective K3 surface S; by the surjectivity of the Torelli map for K3
surface, we may further deform S such that a given class in Λ̃X becomes
algebraic in H∗(S) ∼= Λ̃S[n] .

• By [BM13, Theorem 12.2], the main theorem holds for any moduli space
Mσ(v) of σ-stable objects of given primitive Mukai vector v on any projec-
tive K3 surface (in particular, for any Hilbert scheme).

• By [BM13, Theorem 1.2], any birational model of Mσ(v) is also a moduli
space of stable objects (with respect to a different stability condition), and
in particular the main Theorem holds.

We will prove Theorem 1 by deformation to the Hilbert scheme X ′, followed
by a second deformation to a birational model X ′′ of X ′ using Corollary 6. By
abuse of notation, we will use the same letters φ, ψ to denote the parallel transport
operators on H2, H2 and Λ̃ for the deformations from X to X ′, and from X ′ to X ′′,
respectively.

We first prove that the Mori cone of (X,h) is contained in the cone described
in Theorem 1. Let R be a generator of one of its extremal rays. Let X ′ be a
deformation-equivalent Hilbert scheme with parallel transport operator φ such that
φ(R) is algebraic. We apply Corollary 6 to φ(R); thus there exists a birational model
X ′′ of X ′ such that ψ ◦φ(R) satisfies property (1) or (2) as stated in the Corollary.
By Proposition 3, ψ ◦φ(R) is effective, excluding case (2); thus ψ ◦φ(R) is extremal
on X ′′. Since X ′′ is a moduli space of stable objects on a K3 surface, it is of the
form θ∨(a) with a as stated in the Theorem. Since the Mori cone is generated by
the positive cone and its extremal rays, this proves the claim.

Conversely, consider a class R = θ∨X(a) where a ∈ Λ̃X,alg satisfies the assumptions
in the Theorem. We may assume (R,R) < 0. Again we deform to a Hilbert
scheme X ′ such that φ(R) is algebraic, and apply Corollary 6 to φ(R). Let R′′ :=
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ψ ◦ φ(R) ∈ H2(X ′′) and a′′ := ψ ◦ φ(a) ∈ Λ̃X′′ be the corresponding classes; since
R′′ is algebraic, the same holds for a′′. By Theorem [BM13, Theorem 12.2], the
class R′′ is effective; by the conclusion of the Corollary, it has to be extremal. Thus
we can apply Proposition 3 to R′′, and conclude that R is effective.

This finishes the proof of Theorem 1.

Proof of Proposition 2. In the case of moduli spaces of sheaves or Bridgeland-stable
objects on a projective K3 surfaces, the statement is proved in [BM13, Proposition
12.6]. By the previous argument, there is a family π : X → B such that Xb1 ∼= X
and Xb0 is a moduli space of sheaves on a K3 surface, and such that the parallel
transport of R is extremal on Xb1 . By [BM13, Theorem 1.2], there exists a wall in
the space of Bridgeland stability conditions contracting R. Let R0 be the rational
curve on Xb0 in the ray R≥0[R] with (R0, R0) ≥ −n+3

2 given by [BM13, Proposition
12.6]. The curve R0 is a minimal free curve in a generic fibre of the exceptional locus
over B (see [BM13, Section 14]); therefore, the deformation argument in Proposition
3 applies directly to R0 (rather than a multiple) and implies the conclusion. �
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Math. Ann., 133:328–370, 1957.
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