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Manin’s conjecture predicts an asymptotic formula for the number of rational points of bounded height on a smooth

projective variety X in terms of global geometric invariants of X. The strongest form of the conjecture implies certain

inequalities among geometric invariants of X and of its subvarieties. We provide a general geometric framework

explaining these phenomena, via the notion of balanced line bundles, and prove the required inequalities for a large

class of equivariant compactifications of homogeneous spaces.

1 Introduction

Let X be a smooth projective variety over a number field. It is generally hoped that global geometric properties

of X should be reflected in its arithmetic properties. For instance, assume that its anticanonical class −KX is

ample. It has been conjectured that such X satisfy:

Potential Density: there exists a finite extension F of the ground field such that X(F ) is Zariski

dense (see [HT00a], [BT99] for first results in this direction and [Cam04], [Abr09] for a description

of a general framework).

Supposing that X has dense rational points over F , we can ask for quantitative versions of density:

Asymptotic Formulas: Let L = (L, ‖ · ‖) be an ample, adelically metrized, line bundle on X and HL

the associated height (for definitions and more background see, e.g., [Tsc09, Section 4.8]). Then there

exists a Zariski open X◦ ⊂ X such that

#{x ∈ X◦(F ) | HL(x) ≤ B} ∼ c(X,L)Ba(X,L) log(B)b(X,L)−1,
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as B→∞. Here a(X,L) and b(X,L) are certain geometric constants introduced in this context in

[FMT89] and [BM90] (and recalled in Section 2) and c(X,L) is a Tamagawa-type number defined in

[Pey95], [BT98b].

When L = −KX the main term of the asymptotic formula reads

#{x ∈ X◦(F ) | H−KX
(x) ≤ B} ∼ c(X,−KX)B log(B)rk Pic(X)−1

as B→∞, where −KX is the metrized anticanonical bundle. For a survey addressing both aspects and containing

extensive references, see [Tsc09].

The Asymptotic Formulas raise many formal questions. How do we choose X◦ ⊂ X? Clearly, we want to

exclude subvarieties Y ( X contributing excessively to the number of rational points. For example, if X is a

split cubic surface and L = −KX then lines on X contribute on the order of B2 points of height ≤ B, more than

the B log(B)6 points expected from X◦.

Furthermore, we should consider carefully whether to include subvarieties Y ( X contributing rational

points at the same rate as those from X◦. For example, if X ⊂ P5 is a complete intersection of two quadrics then

each line of X contributes on the order of B2 points, the same as the conjectured total for X◦ (see Example 3.11).

These lines are parametrized by an abelian surface. Including such subvarieties must have implications for the

interpretation of the Tamagawa-type constant.

Returning to the case of general L, in order for the Asymptotic Formula to be internally consistent, all

Y ( X meeting X◦ must satisfy

(a(Y,L|Y ), b(Y,L|Y )) ≤ (a(X,L), b(X,L))

in the lexicographic order. Moreover, if the constant c(X,L) is to be independent of the open set X◦ ⊂ X we

must have

(a(Y,L|Y )), b(Y, L|Y )) < (a(X,L), b(X,L)). (1)

However, there exist varieties of dimension ≥ 3 where these properties fail; these provide counterexamples to the

Asymptotic Formulas [BT96b]. On the other hand, no counterexamples are known in the equivariant context,

when X is an equivariant compactification of a linear algebraic group G or of a homogeneous space H\G, and

asymptotic formulas for the number of points of bounded height have been established for many classes of such

compactifications (see [Tsc09]).

These arithmetic considerations motivate us to introduce and study the notion of balanced line bundles. A

balanced line bundle is one for which general subvarieties Y satisfy the inequalities above, yielding compatibility

with Manin’s predictions. In this paper, we establish basic properties of balanced line bundles and investigate

varieties that carry such line bundles.
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Throughout the paper, we assume that the ground field is an algebraically closed field of characteristic

zero. In Section 2, we introduce geometric invariants a(X,L) and b(X,L) and explore their basic propeties,

i.e., questions of rationality and birational invariance. Then in Section 3, we define the notion of balanced

line bundles and study some important varieties including flag varieties and some smooth Fano 3-folds. One

important observation is

Proposition 1.1. Let X be a generalized flag variety and L a big line bundle on X. Then L is balanced with

respect to any smooth variety if and only if L is proportional to −KX .

In Section 4, we study balanced line bundles on del Pezzo surfaces. We obtain the complete characterization

of balanced line bundles which is described below:

Proposition 1.2. Let X be a del Pezzo surface and L a big Cartier divisor on X. Then L is balanced if and

only if the Q-divisor a(X,L)L+KX is linearly equivalent to a rigid effective divisor on X.

Here we obtain an interesting equivalence between an analytic concept and a geometric concept. It claims

that the rigidity of the adjoint divisor and the balanced property are equivalent. This observation has been made

already in Proposition 1.1. In Section 5, we study the geometry of equivariant compactifications of homogeneous

spaces and obtain the following result, which is a main result of this paper:

Theorem 1.3. Let

H ⊂M ⊂ G

be connected linear algebraic groups. Let X be a smooth projective G-equivariant compactification of H\G and

Y ⊂ X the induced compactification of H\M . Assume that the projection G→M\G admits a rational section.

Then −KX is balanced with respect to Y , i.e., inequality (1) holds for L = −KX .

A version of this geometric result, for G = Gn
a , appeared in [CLT02, Section 7], where it was used to bound

contributions from nontrivial characters to the Fourier expansion of height zeta functions and, ultimately,

to prove asymptotic formulas for the number of rational points of bounded height (Manin’s conjecture) for

equivariant compactifications of Gn
a . Another application can be found in [GTBT11], where this theorem plays

an important role in an implementation of ideas from ergodic theory (mixing) in a proof of Manin’s conjecture for

equivariant compactifications of G\Gn, where G is an absolutely simple linear algebraic group, acting diagonally

on Gn. In Section 6 we investigate balanced line bundles on toric varieties in the context of the Minimal Model

Program. The main result is

Proposition 1.4. Let X be a smooth projective toric variety and L a big Cartier divisor. Then L is balanced

with respect to all subtoric varieties if and only if the Q-divisor a(X,L)L+KX is linearly equivalent to a rigid

effective divisor on X.

Again, we observe the equivalence between the balanced property and the rigidity of the adjoint divisor.
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2 Generalities

Definition 2.1. Let V be a finite dimensional vector space over R. A closed convex cone Λ ⊂ V is a closed

subset which is closed under linear combinations with non-negative real coefficients. An extremal face F ⊂ Λ is

a closed convex subcone of Λ such that if u, v ∈ Λ and u+ v ∈ F then u, v ∈ F . A supporting function is a linear

functional σ : V → R such that σ ≥ 0 on Λ. A face of the form

F ′ = {σ = 0} ∩ Λ

is called a supported face. A supported face is an extremal face, but the converse is not true, in general. The

converse does hold when Λ is locally finitely generated in a neighborhood of F , i.e., there exist finitely many

linear functionals

λi : V → R

such that λi(v) > 0 for v ∈ F \ {0} and

Λ ∩ {v : λi(v) ≥ 0 for any i},

is finitely generated. Note that when Λ is strict, i.e., does not contain a line, then {0} is a supported face.

We work over an algebraically closed field of characteristic zero. A variety is an integral separated scheme

over this field. Let X be a smooth projective variety. We use

Λeff(X) ⊂ NS(X,R) ⊂ H2(X,R)

to denote the pseudo-effective cone, i.e., the closure of effective Q-divisors on X in the real Néron-Severi group

NS(X,R). Another common notation in the literature is NE
1
(X). Note that the pseudo-effective cone is strict

and convex [BFJ09, Prop. 1.3]. Let Λ◦eff(X) denote the interior of the pseudo-effective cone; a divisor class D

on X is big if [D] ∈ Λ◦eff(X). We denote the dual cone of the cone of pseudo-effective divisors by NM1(X). This

is the closure of the cone generated by movable curves ([BDPP13].)

A rigid effective divisor is a reduced divisor D ⊂ X such that

H0(OX(nD)) = 1 ∀n ≥ 1.

If D is rigid with irreducible components D1, . . . , Dr then

H0(OX(n1D1 + . . .+ nrDr)) = 1 ∀n1, . . . , nr ≥ 1



Balanced line bundles 5

and

span(D1, . . . , Dr) ∩ Λ◦eff(X) = ∅. (2)

Definition 2.2. Assume that L is a big Cartier divisor on X. The Fujita invariant is defined by

a(X,L) = inf{a ∈ R : aL+KX ∼ an effective R-divisor }

= min{a ∈ R : a[L] + [KX ] ∈ Λeff(X)}.

Remark 2.3. Note that a(X,L) only depends on the numerical class of L.

Note that the Fujita invariant is positive if and only if KX is not pseudo-effective. The invariant

κε(X,L) = −a(X,L)

was introduced and studied by Fujita under the name Kodaira energy [Fuj97] (see also [Fuj87], [Fuj92], [Fuj96]).

A similar invariant

σ(X,L) = dim(X) + 1− a(X,L)

appeared in [Som86] under the name spectral value.

Remark 2.4. A smooth projective variety X is uniruled if and only if KX is not pseudo-effective [BDPP13],

[Laz04b, Cor. 11.4.20].

The following result was conjectured by Fujita and proved by Batyrev for threefolds and [BCHM10, Cor.

1.1.7] in general. (See [DC12, Corollay 3.7 and Corollary 3.8] for recent generalizations.)

Theorem 2.5. Let X be projective with Kawamata log terminal singularities such that KX is not pseudo-

effective, and L an ample Cartier divisor on X. Then a(X,L) is rational.

However, this property can fail when L is big but not ample, and the following example going back to

Cutkosky [Cut86] was suggested to us by Brian Lehmann:

Example 2.6. [Leh12, Example 4.9] Let Y be an abelian surface with Picard rank at least 3. The cone of nef

divisors and the cone of pseudo-effective divisors coincide, and the boundary of these cones is circular. Let N

be a Cartier divisor on Y such that −N is ample and X := P(O ⊕O(N)). Let π : X → Y denote the projection

morphism and S ⊂ X the section corresponding to the quotient map O ⊕O(N)→ O(N). Every divisor on

X is linearly equivalent to tS + π∗D where D is a divisor on Y . In particular, KX is linearly equivalent to

−2S + π∗N . The cone of pseudo-effective divisors Λeff(X) is generated by S and π∗Λeff(Y ).
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Consider a big Q-divisor L = tS + π∗D, where t > 0 and D is a big Q-divisor on Y . If t is sufficiently

large, then a(X,L) is characterized by the condition a[D] + [N ] ∈ ∂Λeff(Y ). However, the boundary of Λeff(Y )

is circular, and a(X,L) /∈ Q, in general.

From the point of view of Manin’s conjecture, the global geometric invariants involved in its formulation

should be functorial for birational transformations, and indeed this holds for the Fujita invariant:

Proposition 2.7. Let β : X̃ → X be a birational morphism of projective varieties, where X̃ is smooth, and X

is normal and has only canonical singularities. Assume KX is not pseudo-effective and L is a Cartier divisor

which is big. Setting L̃ = β∗L, we have

a(X,L) = a(X̃, L̃).

Proof . Since X has canonical singularities, we have

KX̃ = β∗KX +
∑
i

diEi,

where the Ei are the irreducible exceptional divisors and the di are nonnegative rational numbers. It follows

that for sufficiently divisible integers m,n ≥ 0 we have

Γ(OX(mKX + nL)) = Γ(OX̃(mKX̃ −
∑
i

mdiEi + nL̃))

= Γ(OX̃(mKX̃ + nL̃)),

where the second equality reflects the fact that allowing poles in the exceptional locus does not increase the

number of global sections. In particular, effective divisors supported in the exceptional locus of β are rigid.

It follows from the assumption that no multiple of KX̃ is effective and that a(X̃, L̃) ≥ 0. Definition 2.2 gives

a(X̃, L̃) = a(X,L) > 0.

Next, we discuss the second geometric invariant appearing in Manin’s conjecture.

Definition 2.8. Let X be a projective variety with only Q-factorial terminal singularities such that KX is not

pseudo-effective. Let L be a big Cartier divisor on X. Define

b(X,L) = the codimension of the minimal supported face of

Λeff(X) containing the R-divisor a(X,L)L+KX .

Remark 2.9. Again b(X,L) only depends on the numerical class of L
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This definition is relatively easy to grasp when Λeff(X) is finitely generated, which holds in a number of

cases:

• A projective variety X is log Fano if there exists an effective Q-divisor ∆ on X such that (X,∆) is

divisorially log terminal (see [BCHM10, p. 424]) and −(KX + ∆) is ample. If X is log Fano then the Cox

ring of X is finitely generated [BCHM10, Cor. 1.3.2], so in particular, Λeff(X) is finite rational polyhedral

and generated by effective divisors.

• Let X be a smooth projective variety that is toric or an equivariant compactification of the additive group

Gn
a . Then Λeff(X) is generated by boundary divisors, i.e., irreducible components of the complement of

the open orbit, [HT99, Thm. 2.5], [BT95, Prop.1.2.11].

Let X be a smooth projective variety with Λeff(X) generated by a finite number of effective divisors and

Pic(X)Q = NS(X,Q). Since each irreducible rigid effective divisor on X is a generator of Λeff(X) (cf. (2)), we

have

Z := ∪rigid effectiveD

is a Zariski closed proper subset of X.

One of the reasons for adopting the terminology of supported faces in the definition of b(X,L) is to simplify

the verification of its birational invariance:

Proposition 2.10. Let X be a normal Q-factorial terminal projective variety such that KX is not pseudo-

effective and β : X̃ → X a smooth resolution. Let L be a big Cartier divisor on X and put L̃ = β∗L. Then

b(X,L) = b(X̃, L̃).

Proof . Let F be the minimal supported face of Λeff(X) containing an R-divisor a(X,L)L+KX and F̃ be the

minimal supported face of Λeff(X̃) containing a(X̃, L̃)L̃+KX̃ . The vector spaces generated by F and F̃ will be

denoted by VF and VF̃ , respectively. There exists a nef cycle ξ ∈ NM1(X̃) such that

F̃ = {ξ = 0} ∩ Λeff(X̃).

Let E1, . . . , En be irreducible components of the exceptional locus of β. The Negativity Lemma ([BCHM10,

Lemma 3.6.2]) implies that NS(X̃) is a direct sum of β∗NS(X) and R[Ei]’s. Since X has only terminal

singularities, it follows from Proposition 2.7 that

a(X̃, L̃)L̃+KX̃ = β∗(a(X,L)L+KX) +
∑
i

diEi,
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where the di’s are positive rational numbers. This implies that F̃ contains β∗(a(X,L)L+KX) and the Ei’s.

Thus a(X,L)L+KX is contained in an extremal face supported by a supporting function β∗ξ, i.e.,

{β∗ξ = 0} ∩ Λeff(X),

so this supported face also contains F . We get a well-defined injection

Φ : VF ↪→ VF̃ /(
∑
i

REi).

On the other hand, let η ∈ NM1(X) be a nef cycle supporting F . Consider a linear functional η̃ : NS(X̃)→ R

defined by

η̃ ≡ η on β∗NS(X) and η̃ · Ei = 0 for any i.

The projection from NS(X̃) to β∗NS(X) maps pseudo-effective divisors to pseudo-effective divisors so that

η̃ ∈ NM1(X̃). Moreover,

η̃ · (a(X̃, L̃)L̃+KX̃) = η̃ · (β∗(a(X,L)L+KX) +
∑
i

diEi) = 0,

so that {η̃ = 0} ∩ Λeff(X̃) contains F̃ . It follows that Φ is bijective and our assertion is proved.

Definition 2.11. Let X be a uniruled projective variety with a big Cartier divisor L. We define

a(X,L) = a(X̃, β∗L), b(X,L) = b(X̃, β∗L)

where β : X̃ → X is some resolution of singularities.

Note that KX̃ is not pseudo-effective by Remark 2.4; Propositions 2.7 and 2.10 guarantee the invariants

are independent of the choice of resolution.

For the anticanonical line bundle, invariants are computed as follows:

Example 2.12 (The anticanonical line bundle). Let X be a projective variety with only Q-factorial terminal

singularities. As in the smooth case, the cone Λeff(X) of pseudo-effective divisors is strict. When the anticanonical

class −KX is big, we have

a(X,−KX) = 1, b(X,−KX) = rk NS(X).

Let β : X̃ → X be a smooth resolution and E1, . . . , En the irreducible components of the exceptional locus; we

have

KX̃ = β∗KX +
∑
i

diEi,
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where di ∈ Q>0, for all i. Hence the minimal extremal face containing −β∗KX +KX̃ contains a simplicial cone

F := ⊕iR≥0[Ei]. The fact that F is a supported face follows from [Bou04, Theorem 3.19], which asserts that the

pseudo-effective cone is locally polyhedral in this region, generated by the prime exceptional divisors. Hence we

may compute

b(X̃,−β∗KX) = rk NS(X̃,R)− n = rk NS(X,R) = b(X,−KX).

Remark 2.13. There exist projective bundles over curves of arbitrary genus g > 0 with big anticanonical divisor

[KMM92, 3.13]. When g > 1 these cannot have potentially dense rational points.

Example 2.14. Example 2.12 can be generalized as follows: Let X be a smooth projective variety and

D =
∑
i eiEi an effective R-divisor whose numerical dimension ν(D) is zero (see [Nak04, Section V.2] or [Leh13,

Theorem 1.1] for definitions). The minimal extremal face containing D contains F = ⊕iR≥0[Ei], and we claim

that F is a supported face of Λeff(X). First we prove that F is an extremal face. Let u, v ∈ Λeff(X) such that

u+ v ∈ F . For any pseudo-effective numerical class α, we denote the negative part and the positive part of the

divisorial Zariski decomposition of α by Nσ(α) and Pσ(α) = α− [Nσ(α)] ∈ Λeff(X) respectively (see [Nak04,

Section III.1], also [Leh13, Section 3]). The assumption ν(D) = 0 implies that

u+ v ≡ Nσ(u+ v) ≤ Nσ(u) +Nσ(v).

This implies that Nσ(u) ≡ u and Nσ(v) ≡ v so that u, v ∈ F . Again by [Bou04, Theorem 3.19], the cone Λeff(X)

is locally rational polyhedral in a neighborhood of F . Hence F is a supported face.

Little is known about the geometric meaning of the invariant b(X,L), in general. Here we consider situations

relevant for our applications to equivariant compactifications of homogeneous spaces.

Definition 2.15. Let X be a Q-factorial terminal and projective variety and D an R-divisor in the boundary

of Λeff(X). We say D is locally rational polyhedral if either D ≡ 0 numerically or there exist finitely many linear

functionals

λi : NS(X,Q)→ Q

such that λi(D) > 0 and

Λeff(X) ∩ {v : λi(v) ≥ 0 for any i},

is finite rational polyhedral and generated by effective Q-divisors. In this case, the minimal extremal face F

containing D is supported by a supporting function.

Theorem 2.16. Let X be a Q-factorial terminal projective variety such that KX is not pseudo-effective and L

a big Cartier divisor on X. Suppose that a(X,L)L+KX has the form c(A+KX + ∆), where A is an ample
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R-divisor, (X,∆) a Kawamata log terminal pair, and c > 0. Then a(X,L)L+KX is locally rational polyhedral

and a(X,L) is rational.

Proof . When D = a(X,L)L+KX ≡ 0, then a(X,L) is rational. Suppose that D 6≡ 0. The local finiteness of

the pseudo-effective boundary is proved in [Leh12, Proposition 3.3] by using the finiteness of the ample models

[BCHM10, Corollary 1.1.5]. Moreover, Lehmann proved that the pseudo-effective boundary is locally defined

by movable curves. The generation by effective Q-divisors follows from the non-vanishing theorem [BCHM10,

Theorem D].

In particular, if L is ample then a(X,L)L+KX is locally rational polyhedral. We have already seen in

Example 2.6 that the local finiteness is no longer true if we only assume that L is big. However, there are certain

cases where the local finiteness of a(X,L)L+KX still holds for any big Cartier divisor L:

Example 2.17 (Surfaces). Let X be a smooth projective surface such that KX is not pseudo-effective. Let L

be a big Cartier divisor on X. If D = a(X,L)L+KX is numerically trivial, then a(X,L) is rational. Suppose

that D is a non-zero pseudo-effective divisor. We prove that D is locally rational polyhedral. We consider

the Zariski decomposition of D = P +N , where P is a nef R-divisor and N is the negative part of D. The

boundary of Λeff(X) is locally rational polyhedral away from the nef cone (see [Bou04, Theorem 3.19] and

[Bou04, Theorem 4.1]). Thus, if N is non-zero, then our assertion follows. Suppose that N is zero. Since

a(X,L)L · P +KX · P = D · P = 0 and L · P > 0, we have KX · P < 0. Therefore, D = P is sitting in the KX -

negative part of the boundary of the cone of curves. Now our assertion follows from Mori’s cone theorem. In

particular, a(X,L) is a rational number.

In general, a(X,L)L+KX is not necessarily of the form of the adjoint divisor c(A+KX + ∆), where A is

an ample R-divisor, (X,∆) a Kawamata log terminal pair, and c > 0.

Example 2.18 (Equivariant compactifications of the additive groups). Let X be a smooth projective

equivariant compactification of the additive group Gn
a . Then Λeff(X) is a simplicial cone generated by boundary

components, by [HT99, Theorem 2.5]. However, this cannot be explained from Theorem 2.16. Indeed, consider

the standard embedding of G3
a into P3:

G3
a 3 (x, y, z) 7→ (x : y : z : 1) ∈ P3.

This is an equivariant compactification, and the group action fixes every point on the boundary divisor D, a

hyperplane section. Let X be an equivariant blow up of 12 generic points on a smooth cubic curve in D. Write

H for the pullback of the hyperplane class and E1, . . . , E12 for the exceptional divisors. Consider

L = 4H − E1 − · · · − E12.
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Then L is big and nef, but not semi-ample (see [Laz04a, Section 2.3.A] for more details). In particular, the

section ring of L is not finitely generated. On the other hand, consider

Λadj(X) = {Γ ∈ Λeff(X) | Γ = c(A+KX + ∆)},

where A is an ample R-divisor, (X,∆) a Kawamata log terminal pair, and c a positive number. Then Λadj(X)

forms a convex cone. The existence of non-finitely generated divisors and [BCHM10, Corollary 1.1.9] imply that

Λadj(X) $ Λeff(X).

It is natural to expect that the invariant b(X,L) is related to the canonical fibration associated to

a(X,L)L+KX . A sample result in this direction is:

Proposition 2.19. Let X be a smooth projective variety such that KX is not pseudo-effective. Let L be a

big Cartier divisor and assume that D = a(X,L)L+KX is locally rational polyhedral and semi-ample. Let

π : X → Y be the semi-ample fibration of D. Then

b(X,L) = rk NS(X)− rk NSπ(X),

where NSπ(X) is the lattice generated by π-vertical divisors, i.e., divisors M ⊂ X such that π(M) ( Y

Proof . Let F be the minimal extremal face of Λeff(X) containing D = a(X,L)L+KX and VF the vector space

generated by F . We claim that VF = NSπ(X). Let H be an ample Q-divisor on Y such that π∗H = D. Let

M be a π-vertical divisor on X. Then for sufficiently large m, there exists an effective Cartier divisor H ′ such

that mH ∼ H ′ and the support of H ′ contains π(M). Thus mD = mπ∗H ∼ π∗H ′ ∈ F and the support of π∗H ′

contains M . We conclude that M ∈ F , and this proves that NSπ(X) ⊂ VF . Next, let Xy be a general fiber of π

and C ⊂ Xy a movable curve on X such that [C] is in the interior of NM1(Xy). Then

FC = {[C] = 0} ∩ Λeff(X),

is an extremal face containing D. The minimality implies F ⊂ FC . On the other hand, the local rational finiteness

of D implies that there exist effective Q-divisors D1, . . . , Dn ∈ F such that D1, . . . , Dn form a basis of VF . Since

D1 · C = · · · = Dn · C = 0, the supports of Di’s are π-vertical. Hence it follows that VF ⊂ NSπ(X).

Remark 2.20. When L is ample, it follows from [KMM87, Lemma 3.2.5] that the codimension of the minimal

extremal face of nef cone containing D is equal to the relative Picard rank ρ(X/Y ).

In Section 6, we explore this further in the case of toric varieties.
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3 Balanced line bundles

Definition 3.1. Let X be a uniruled projective variety, L a big line bundle on X, and Y ( X an irreducible

uniruled subvariety. L is weakly balanced with respect to Y if

• L|Y is big;

• a(Y,L|Y ) ≤ a(X,L);

• if a(Y, L|Y ) = a(X,L) then b(Y, L|Y ) ≤ b(X,L).

It is balanced with respect to Y if it is weakly balanced and one of the two inequalities is strict.

L is weakly balanced (resp. balanced) on X if there exists a Zariski closed subset Z ( X such that L is

weakly balanced (resp. balanced) with respect to every Y not contained in Z. The subset Z will be called

exceptional.

Remark 3.2. The restriction to uniruled subvarieties is quite natural: If Y is a smooth projective variety that is

not uniruled and Y → X is a morphism such that L|Y is big, then a(Y,L|Y ) ≤ 0 < a(X,L) (see Remark 2.4).

Remark 3.3. Any big Cartier divisor can be expressed as a sum of an ample Q-divisor A and an effective

Q-divisor E. In particular, L|Y is big for any Y * Supp(E).

We first explore these properties for projective homogeneous spaces:

Proposition 3.4. Let G be a connected semi-simple algebraic group, P ⊂ G a parabolic subgroup and X = P\G

the associated generalized flag variety. Let L be a big Cartier divisor on X. We have:

• if L is not proportional to −KX then L is not balanced but is weakly balanced with respect to smooth

subvarieties Y ⊂ X;

• if L is proportional to −KX then L is balanced with respect to smooth subvarieties.

Proof . For generalized flag varieties, the nef cone and the pseudo-effective cone coincide so that L is ample.

Moreover, the nef cone of a flag variety is finitely generated by semi-ample line bundles. Also note that since

every rationally connected smooth proper variety is simply connected, all parabolic subgroups are connected.

Assume that L is not proportional to the anticanonical bundle, i.e., D = a(X,L)L+KX is a non-zero

effective Q-divisor. Let π : X → X ′ be the semi-ample fibration of D. Then X ′ is also a G-variety so that there

exists a parabolic subgroup P ′ ⊃ P such that X ′ = P ′\G and π is the natural projection map. We have the

following exact sequence:

0→ Pic(P ′\G)Q → Pic(P\G)Q → Pic(P\P ′)Q → 0.

Indeed, the surjectivity follows from [KKV89, Proposition 3.2(i)]. Note that the picard group of a linear algebraic

group is necessary finite (see [KKLV89, Proposition 4.5]). Then the exactness of other parts follows from
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[KMM87, Lemma 3.2.5]. Let W be a fiber of π. Then a(X,L) = a(W,L|W ) since KX |W = KW and D|W = 0.

The exact sequence and Remark 2.20 imply that

b(X,L) = ρ(X/X ′) = rk Pic(W ) = b(W,L|W ).

Thus L is not balanced with respect to any fiber of π.

Let L be an arbitrary ample Cartier divisor and Y ⊂ X a smooth subvariety. Let g be the Lie algebra of

G. For any ∂ ∈ g, we can construct a global vector field ∂X on X such that for any open set U ⊂ X and any

f ∈ OX(U),

∂X(f)(x) = ∂gf(x · g)|g=1.

It follows that the normal bundle NY/X is globally generated and its determinant is as well.

The restriction

aL|Y +KY = (aL+KX)|Y + det(NY/X)

with det(NY/X) globally generated hence contained in Λeff(Y ). Thus we have a(Y,L|Y ) ≤ a(X,L). Suppose

equality holds; our goal then is to prove that

b(Y, L|Y ) ≤ b(X,L),

and the strict inequality holds when L is proportional to −KX . Let D = aL+KX which is semi-ample.

First we assume that det(NY/X) and D|Y are trivial so that NY/X is the trivial vector bundle of rank

r = codim(Y,X). The above construction of vector fields defines a surjective map:

ϕ : g→ H0(Y,NY/X).

We may assume that e = P ∈ Y so that the Lie algebra p of P is contained in the kernel of ϕ. Consider the

Hilbert scheme Hilb(X) and note that H0(Y,NY/X) is naturally isomorphic to the Zariski tangent space of

Hilb(X) at [Y ]. Consider the morphism:

π : G 3 g 7→ [Y · g] ∈ Hilb(X).

Since Y is Fano, H1(Y,NY/X) = 0, Hilb(X) is smooth at [Y ], and

dim[Y ](Hilb(X)) = r.

Moreover, since ϕ is surjective, π is a smooth morphism and π(G) is a smooth open subscheme in Hilb(X). Let
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H be the connected component of Hilb(X) containing [Y ] and P ′ = Stab(Y ). Since the kernel of ϕ contains p,

we have P ⊂ P ′. This implies that π(G) = P ′\G is open and closed so that

H = π(G) = P ′\G.

In particular, dim(G)− dim(P ′) = r, so the kernel of ϕ is exactly equal to the Lie algebra p′ of P ′. Consider

the universal family U ⊂ X ×H on H. It follows that G acts on U transitively, and we conclude that U = P\G

and Y = P\P ′. Since D|Y is trivial, b(Y, L|Y ) = rk Pic(P\P ′). The exact sequence, which we discussed before,

and [KMM87, Lemma 3.2.5] indicate that rk Pic(P\P ′) = ρ(X/H), the relative Picard rank of π. It follows from

Remark 2.20 and the triviality of D|Y that

ρ(X/H) ≤ b(X,L).

When L is proportional to −KX , b(X,L) = rk NS(X) so that the strict inequality holds.

In the general case, we still know that NY/X and its determinant are globally generated. Consider the

semi-ample fibration Y →W associated to aL|Y +KY = D|Y + det(NY/X) with generic fiber Yw, which is

smooth. Note that NYw/X is trivial, as det(NY/X)|Yw and NYw/Y are both trivial. D|Y is also trivial. The above

construction shows that Yw is the fiber of a fibration ρ : X → B with W ⊂ B; Y is the pullback of W . Theorem

2.16 and Proposition 2.19 imply that

b(Y,L|Y ) = rk NS(Y )− rk NSρ(Y ).

The restriction map

Φ : NS(Y )/NSρ(Y )→ NS(Yw),

is injective; this follows from [KMM87, Lemma 3.2.5]. Note that ρ is an isotrivial family. Hence we have

b(Y,L|Y ) ≤ b(Yw, L|Yw
) ≤ b(X,L).

If L is proportional to −KX , then the last inequality is a strict inequality.

We can also analyze the balanced condition with respect to hypersurfaces:

Proposition 3.5. Let X be a smooth Fano variety of Picard rank one and Y ⊂ X an irreducible smooth effective

divisor. Then −KX is balanced with respect to Y .

Proof . For smooth divisors Y ⊂ X the claim follows from adjunction formula:

−KX |Y +KY ∈ Λeff(Y )◦,
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because Y is an ample divisor on X. Thus we obtain

a(Y,−KX |Y ) < a(X,−KX) = 1.

However, this may fail when Y is singular:

Example 3.6 (Mukai-Umemura 3-folds, [MU83]). Consider the standard action of SL2 on V = Cx⊕ Cy. Let

R12 = Sym12(V ) be a space of homogeneous polynomials of degree 12 in two variables and f ∈ R a form with

distinct roots. Let X be the Zariski closure of the SL2-orbit SL2 · [f ] ⊂ P(R12). Then X is a smooth Fano 3-fold

of index 1 with Pic(X) = Z, for some special f . The complement of the open orbit SL2 · [f ] is an irreducible

divisor

D = SL2 · [x11y] = SL2 · [x11y] ∪ SL2 · [x12],

a hyperplane section on P(R12) whose class generates Pic(X). Furthermore, D is the image of P1 × P1 by a

linear series of bidegree (11, 1), which is injective, an open immersion outside of the diagonal, but not along the

diagonal. In particular, D is singular along the diagonal.

Let β : D̃ → D be the normalization of D which is isomorphic to P1 × P1. Then −β∗KX |D̃ is a line bundle

of bidegree (11, 1) so that

a(D,−KX |D) = a(D̃,−β∗KX |D̃) = 2 > 1 = a(X,−KX).

Thus Proposition 3.5 does not hold for D.

Remark 3.7. The authors do not know whether Proposition 3.5 holds for singular surfaces in P3. It is quite

interesting to see whether the balanced property holds for very singular rational surfaces in P3.

For Fano varieties of index one, one might hope to use the Fujita invariant a(X,L) to identify the exceptional

locus X \X◦. However, this is quite non-trivial even in the following situation, considered in [Deb03] (see also

[LT10] and [Beh06]):

Conjecture 3.8 (Debarre - de Jong conjecture). Let X ⊂ Pn be a Fano hypersurface of degree d ≤ n. Then

the dimension of the variety of lines is 2n− d− 3. In particular, when d = n, for any line C, we have

a(C,−KX |C) = 2 > 1 = a(X,−KX).

The conjecture predicts that the dimension of the variety of lines is n− 3 so that lines will not sweep out X.

Some of simplest examples of Fano threefolds fail to be balanced.



16 B. Hassett et al.

Example 3.9. Let X ⊂ P4 be a smooth cubic threefold, which is Fano of index 2. The Picard group of X

is generated by the hyperplane class L. By Proposition 3.5, −KX is balanced with respect to every smooth

divisor on X. Let Y ⊂ X be a line. Note that 2L restricts to the anticanonical class on X and Y , and

b(Y,L|Y ) = b(X,L) = 1. Thus −KX is weakly balanced, but not balanced, with respect to Y . Since the family

of lines dominates X, −KX is not balanced on X.

Remark 3.10. However, assume that X is defined over a number field. The family of lines dominating X are

surfaces of general type, which embeded into their Albanese varieties. By Faltings’ theorem, lines defined over

a fixed number field lie on a proper subvariety and cannot dominate X.

One can rephrase the above example in the following way: the anticanonical line bundle of a smooth cubic

threefold is not geometrically balanced, but arithmetically balanced. Next example shows that it is also possible

that the anticanonical line bundle is not even arithmetically balanced.

Example 3.11. Let X ⊂ P5 denote a smooth complete intersection of two quadrics. The anticanonical class

−KX = 2L where L is the hyperplane class, which generates the Picard group. The variety A parametrizing

lines Y ⊂ X is an abelian surface [GH78, p. 779]. Four lines pass through a generic point x ∈ X [GH78, p. 781],

so these lines dominate X. We have a(X,L) = a(Y,L|Y ) = 2 and b(X,L) = b(Y,L|Y ) = 1 so X is not balanced.

Suppose that X is defined over a number field F with X(F ) Zariski dense; fix a metrization L of L. Manin’s

formalism predicts the existence of an open set X◦ ⊂ X such that

#{x ∈ X◦(F ) : HL(x) ≤ B} ∼ cB2.

However, each line Y ⊂ X defined over F contributes

#{x ∈ Y (F ) : HL(x) ≤ B} ∼ c′(Y,L)B2,

where c′(Y,L) is a Tamagawa type number associated to Y and L. Moreover, after replacing F by a suitable

finite extension these lines are Zariski dense in X, because rational points on abelian surfaces are potentially

dense (see [HT00b, §3], for instance).

The weakly balanced property may fail too:

Example 3.12. [BT96b] Let f, g be general cubic forms on P3 and

X := {sf + tg = 0} ⊂ P1 × P3,

the Fano threefold obtained by blowing up the base locus of the pencil. The projection onto the first factor

exhibits a cubic surface fibration

π : X → P1,
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so that −KX restricts to −KY , for every smooth fiber Y of π. Thus

a(Y,−KY ) = a(X,−KX) = 1.

Furthermore, the Néron-Severi rank of a smooth fiber of π is 7. On the other hand, by the Lefschetz theorem,

we have rk NS(X) = 2 and

7 = b(Y,−KY ) > b(X,−KX) = 2,

i.e., −KX is not weakly balanced on X.

Let Z be the union of singular fibers of π, exceptional curves in general smooth fibers Y , and the exceptional

locus of the blow up to P3. Note that −KX is balanced with respect to every rational curve on X which is not

contained in Z.

4 del Pezzo surfaces

Let X be a smooth projective surface with ample −KX , i.e., a del Pezzo surface. Their deformation types

are determined by the degree of the canonical class d := (KX ,KX). Basic examples are P2 and P1 × P1; more

examples are obtained by blowing up 9− d general points on P2. We have

• rk NS(X) = 10− d;

• for 1 ≤ d ≤ 7 the cone Λeff(X) is generated by classes of exceptional curves, i.e., smooth rational curves

of self-intersection −1.

Let L be a big Cartier divisor on X. When is it balanced? The only subvarieties of X on which we need to

test the values of a and b are rational curves C ⊂ X, and b(C,L|C) = 1.

It is easy to characterize curves breaking the balanced condition for the Fujita invariant. Let Z be the union

of exceptional curves, if d > 1. Here, exceptional means in traditional sense. When d = 1, let Z be the union of

exceptional curves plus singular rational curves in | −KX |.

Lemma 4.1. Let X be a del Pezzo surface of degree d, C an irreducible rational curve with (C,C) 6= −1, and

L a big Cartier divisor on X. Then

a(C,L|C) ≤ a(X,L), (3)

i.e., L is weakly balanced on X outside of Z.

Proof . If C ′ is an irreducible rational curve with (−KX , C
′) = 1 then C ′ ⊆ Z. Indeed, if (C ′, C ′) < 0, then

(C ′, C ′) = −1, by adjunction, and C ′ is exceptional. On the other hand, if C ′ and −KX are linearly independent,

the Hodge index theorem implies that d(C ′, C ′)− 1 < 0, i.e., (C ′, C ′) = −1 or 0. The second case is impossible

since (KX , C
′) + (C ′, C ′) must be even. If C ′ and −KX are linearly dependent, then d(C ′, C ′)− 1 = 0 so that

d = 1 and C ′ is a singular rational curve in | −KX |.
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Let C ′′ ⊂ X be a rational curve which is not in Z. After rescaling, we may assume that a(X,L) = 1,

in particular, we do not assume that L is an integral divisor. Writing L+KX ∼ D, where D is an effective

Q-divisor, and computing the intersection with C ′′ we obtain

(L,C ′′) = (−KX , C
′′) + (D,C ′′) ≥ (−KX , C

′′).

Since C ′′ is not in Z, (−KX , C
′′) ≥ 2, i.e., (L,C ′′) ≥ 2. It follows that

(L,C ′′) + deg(KC̃′′) = (L,C ′′)− 2 ≥ 0,

where C̃ ′′ is the normalization of C ′′, i.e., a(C ′′, L|C′′) ≤ 1, as claimed.

We proceed with a characterization of b(X,L). Consider the Zariski decomposition

a(X,L)L+KX = P + E,

where P is a nef Q-divisor and E =
∑n
i=1 eiEi, ei ∈ Q>0, (Ei, Ej) < 0. We have (P,E) = 0. Since X is a Mori

dream space, P is semi-ample and defines a semi-ample fibration

π : X → B.

We have two cases:

Case 1. B is a point. Then

a(X,L)L+KX =
n∑
i=1

eiEi

is rigid, and the classes Ei are linearly independent in NS(X). In particular, ⊕iR≥0Ei is an extremal face of

Λeff(X), and in fact the minimal extremal face containing a(X,L)L+KX . It follows that

b(X,L) = rk NS(X)− n.

Case 2. B is a smooth rational curve. Then the minimal extremal face containing

a(X,L)L+KX = P +
n∑
i=1

eiEi

is given by

NSπ(X) ∩ Λeff(X) = {P = 0} ∩ Λeff(X),
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where NSπ(X) ⊂ NS(X) is the subspace generated by vertical divisors, i.e., divisors D ⊂ X not dominating B.

It follows that

b(X,L) = rk NS(X)− rk NSπ(X) = 1.

Proposition 4.2. Let X be a del Pezzo surface and L a big Cartier divisor on X. Then L is balanced if and

only if a(X,L)L+KX ∼ D, where D is a rigid effective divisor.

Proof . Assume that a(X,L) = 1. In Case 1, we must have

L+KX = D =
n∑
i=1

eiEi, ei > 0,

with Ei disjoint exceptional curves. Assume that L is not balanced so that b(X,L) = 1. Let π : X → P2 be the

blowdown of E1, . . . , En and h a hyperplane class on P2. Then

L = −KX +D = 3π∗h+
n∑
i=1

(ei − 1)Ei.

Let C be an irreducible rational curve which is not in Z. If C does not meet any of the Ei then

(L,C) = (3π∗h,C) ≥ 3 > 2.

If C meets at least one of the Ei then

(L,C) = (−KX , C) + (D,C) > 2

since the first summand is ≥ 2. It follows that a(C,LC) < 1, i.e., L is balanced, contradicting our assumption.

In Case 2, we have

L+KX = D = P +
n∑
i=1

eiEi, ei ≥ 0,

where P is nef and Ei are disjoint exceptional divisors. Let π : X → P1 be the fibration induced by the semi-ample

line bundle P . The general fiber F of π is a conic and

rk NS(X)− rk NSπ(X) = 1.

We have (F, F ) = 0, (−KX , F ) = 2, and the class of F is proportional to P . Hence, for any such F ,

a(F,L|F ) = a(X,L), b(F,L|F ) = b(X,L) = 1.

Thus L is not balanced.
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5 Equivariant geometry

Let G be a connected linear algebraic group, H ⊂ G a closed subgroup, and X a projective equivariant

compactification of X◦ := H\G, a quasi-projective variety [Bor91, Ch. II]. Applying equivariant resolution of

singularities we may assume that X is smooth and the boundary

∪α∈ADα = X \X◦

is a divisor with normal crossings with irreducible components Dα. If H is a parabolic subgroup of a semi-simple

group G, then there is no boundary, i.e., A is empty, and H\G is a generalized flag variety which was discussed

in Section 3. Throughout, we will assume that A is not empty.

Let X(G)∗ be the group of algebraic characters of G and

X(G,H)∗ = {χ : G→ Gm |χ(hg) = χ(g), ∀h ∈ H }

the subgroup of characters whose restrictions to H are trivial. Let PicG(X) be the group of isomorphism classes

of G-linearized line bundles on X and Pic(X) the Picard group of X. For L ∈ PicG(X), the subgroup H ⊂ G

acts linearly on the fiber Lx at x = H ∈ H\G. This defines a homomorphism

PicG(X)→ X(H)∗

to characters of H. Let Pic(G,H)(X) be the kernel of this map. We will identify line bundles and divisors with

their classes in Pic(X).

Proposition 5.1. Let G be a connected linear algebraic group and H a closed subgroup of G. Let X be a smooth

projective equivariant compactification of X◦ := H\G with a boundary ∪α∈ADα. Then

1. we have an exact sequence

0→ X(G,H)∗ → ⊕α∈AZDα → Pic(X)→ Pic(X◦)→ 0;

2. we have an exact sequence

0→ X(G,H)∗Q → Pic(G,H)(X)Q → Pic(X)Q;

and the last homomorphism is surjective when

C(G,H) := Coker(X(G)∗ → X(H)∗)
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or equivalently, Pic(X◦), is finite.

3. we have a canonical injective homomorphism

Φ : ⊕α∈AQDα ↪→ Pic(G,H)(X)Q;

which is an isomorphism when C(G,H) is finite.

Proof . The first statement is easy. The second assertion follows from [MFK94, Corollary 1.6] and [KKV89,

Proposition 3.2(i)].

For the last assertion: Corollary 1.6 of [MFK94] implies that some multiple of Dα is G-linearizable.

After replacing Dα by a multiple of Dα, we may assume that G acts on the finite-dimensional vector space

H0(X,OX(Dα)), via this G-linearization. Let sα be the section corresponding to Dα. Then sα ∈ H0(X,OX(Dα))

is an eigenvector of the action by G. After multiplying by a character of G, if necessary, we may assume that

sα is fixed by the action of G. We let Φ(Dα) be this G-linearization.

Suppose that Φ(
∑
α dαDα) = OX , with trivial G-linearization, where dα ∈ Z. Then there exists a rational

function f such that

div(f) =
∑
α

dαDα.

We may assume that f is a character of G whose restriction to H is trivial. By the definition of Φ, the function

f must be fixed by the G-linearization. This implies that f ≡ 1. When C(G,H) is finite, the surjectivity of Φ

follows from (1) and (2).

From now on we consider the following situation: let H ⊂M ⊂ G be connected linear algebraic groups.

Typical examples arise when G is a unipotent group or a product of absolutely simple groups and H and M are

arbitrary subgroups such that H\M is connected. Let X be a smooth projective G-equivariant compactification

of H\G, and Y the induced compactification of H\M .

Lemma 5.2. Let π : X → X ′ be a G-equivariant morphism onto a projective equivariant compactification of

M\G. Assume that the projection G→M\G admits a rational section. Then

• π(Dα) = X ′ if and only if Dα ∩ Y 6= ∅;

• if Dα ∩ Y 6= ∅ then Dα ∩ Y is irreducible;

• if Dα ∩ Y 6= ∅ and Dα′ ∩ Y 6= ∅, for α 6= α′ then Dα ∩ Y 6= Dα′ ∩ Y .

Proof . We have the diagram
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H\G

��

⊂ X

π

��

⊃ Y

π

��
M\G ⊂ X ′ ⊃ M · e = point

The first claim is evident. To prove the second assertion, choose a rational section σ : M\G 99K G of the

projection G→M\G. We may assume that a rational section is well-defined at a point M ∈M\G. Consider

the diagram

Dα

π

��

⊃ D◦α

π

��
X ′ ⊃ M\G

where D◦α = Dα ∩ π−1(M\G). We define a rational map

Ψ : D◦α 99K Dα ∩ Y

x 7→ x · (σ ◦ π(x))−1.

Since Ψ is dominant, Dα ∩ Y is irreducible. Since the G-orbit of Dα ∩ Y is D◦α, the third claim follows.

Remark 5.3. When M is a connected solvable group, then G is birationally isomorphic to M × (M\G) so that

the projection G→M\G has a rational section. See [Bor91, Corollary 15.8].

Theorem 5.4. Let

H ⊂M ⊂ G

be connected linear algebraic groups. Let X be a smooth projective G-equivariant compactification of H\G and

Y ⊂ X the induced compactification of H\M . Let L be a big Cartier divisor on X. Assume that

• the projection G→M\G admits a rational section;

• and a(X,L)L+KX is linearly equivalent to a rigid effective Q-divisor D.

Furthermore, assume that either

1. Λeff(X) is finitely generated by effective divisors; or

2. there exists a birational contraction map f : X 99K Z contracting D, where Z is a normal projective variety.

Then L is balanced with respect to Y .

Proof . Let X ′ be any smooth projective equivariant compactification of M\G. We consider a G-rational map

π : X 99K X ′ mapping

π : G 3 g 7→Mg ∈M\G.
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After applying a G-equivariant resolution of the indeterminacy of the projection π if necessary, we may assume

that π is a surjective morphism and X is a smooth equivariant compactification of H\G with a boundary

divisor ∪αDα. Note that Y is a general fiber of π so that Y is smooth. Write the rigid effective Q-divisor

D = a(X,L)L+KX by

D = a(X,L)L+KX =
n∑
i=1

eiEi,

where Ei’s are irreducible components of a(X,L)L+KX and ei ∈ Q>0. Our goal is to show that

(a(Y,L|Y ), b(Y,L|Y )) < (a(X,L), b(X,L)).

Since the Ei’s are rigid effective divisors, they are boundary components. This implies that

a(X,L)L|Y +KY = (a(X,L)L+KX)|Y =
n∑
i=1

eiEi|Y ∈ Λeff(Y ).

It follows that

a(Y, L|Y ) ≤ a(X,L).

Assume that a(Y, L|Y ) = a(X,L) =: a. Let F be the minimal supported face of Λeff(X) containing

D = aL+KX =
∑
eiEi and VF a vector subspace generated by F . Either condition (1) or (2) guarantees

that F is generated by Ei’s so that

b(X,L) = rk NS(X)− n.

(See Proposition 2.10 and Example 2.12.) Let F ′ be the minimal supported face of Λeff(Y ) containing

D|Y = aL|Y +KY =
∑

eiEi|Y .

Let V ′ be a vector subspace generated by all components of Ei ∩ Y . Since F ′ contains all components of Ei ∩ Y ,

we have b(Y, L|Y ) ≤ codim(V ′). Consider the restriction map:

Φ : NS(X)/VF → NS(Y )/V ′.

It follows from [KKV89, Proposition 3.2(i)], Lemma 5.2, and the exact sequence (1) in Proposition 5.1 that Φ

is surjective. On the other hand, π∗NS(X ′) is contained in the kernel of Φ, so Φ has the nontrivial kernel. We

conclude that

b(Y,L|Y ) ≤ codim(V ′) < b(X,L).
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Remark 5.5. Conditions (1) or (2) can be replaced by the condition: the numerical dimension ν(D) is zero

(see [Leh13] for definitions). Note that (2) implies that the numerical dimension ν(D) is zero.

Corollary 5.6. Let H ⊂M ⊂ G be connected linear algebraic groups and X a smooth projective equivariant

compactification of H\G. Let Y ⊂ X be the induced compactification of H\M . Assume that the projection

G→M\G admits a rational section. Then −KX is balanced with respect to Y .

Note that −KX is necessarily big by [FZ13, Thm. 1.2].

The existence of rational sections is important, and the second statement in Lemma 5.2 is not true in

general:

Example 5.7. Consider the standard action of PGL3 on P2. Let P5 be the space of conics and consider

X◦ = {T = (C, [p1, p2, p3]) ∈ P5 ×Hilb[3](P2) | T satisfies (∗)},

(∗) : C is smooth, pi’s are distinct, and pi ∈ C.

Let X be the Zariski closure of X◦, it is the Hilbert scheme of conics with zero dimensional subschemes of

length 3, and is a smooth equivariant compactification of a homogeneous space S3\PGL3. Consider a P2-

fibration f : X → Hilb[3](P2), the fiber over a general point Z ∈ Hilb[3](P2) is a P2, parametrizing conics passing

through Z. On f−1(Z), degenerate conics correspond to two lines passing through Z; these form three boundary

components li on P2. However, general points on these components are on the same PGL3-orbit, so there exists

an irreducible boundary divisor D ⊂ X such that D ∩ f−1(Z) = l1 ∪ l2 ∪ l3. In other words, there is a non-trivial

monodromy action on li’s. However, the monodromy action on the Picard group is trivial, and the balanced

property still holds with respect these fibers.

6 Toric varieties

Manin’s conjecture for toric varieties was settled by Batyrev and Tschinkel via harmonic analysis on the

associated adele groups in [BT98a] and [BT96a]. Implicitly, [BT96a] established a version of the balanced

property. Here, we will use MMP to determine balanced line bundles. We expect that these techniques would

also be applicable to some non-equivariant varieties. We refer to [FS04] for details concerning toric Mori theory,

though most of properties we use hold formally for Mori dream spaces.

We start by recalling basic facts regarding toric Mori theory, which also hold for all Mori dream spaces (see

[HK00, Section 1]):

Proposition 6.1 (D-Minimal Model Program). Let X be a Q-factorial projective toric variety and D a Q-

divisor. Then the minimal model program with respect to D runs, i.e.,

1. for any extremal ray R of NE1(X), there exists the contraction morphism ϕR;
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2. for any small contraction ϕR of a D-negative extremal ray R, the D-flip ψ : X 99K X+ exists;

3. any sequence of D-flips terminates in finite steps;

4. and every nef line bundle is semi-ample.

Proof . See Theorem 4.5, Theorem 4.8, Theorem 4.9, and Proposition 4.6 in [FS04].

Proposition 6.2 (Zariski decomposition). Let X be a Q-factorial projective toric variety and D a Q-effective

divisor. Applying D-MMP we obtain a birational contraction map f : X 99K X ′, with nef proper transform D′

of D. Consider a common resolution:

X̃
µ

~~}}
}}

}}
}}
ν

��
X

f
//___ X ′

Then

1. µ∗D = ν∗D′ + E, where E is a ν-exceptional effective Q-divisor;

2. the support of E contains all divisors contracted by f ;

3. if g : X̃ → Y is the semi-ample fibration associated to ν∗D′, then for any ν-exceptional effective Cartier

divisor E′, the natural map

OY → g∗O(E′),

is an isomorphism.

Proof . The assertions (1) and (2) follow from the Negativity lemma (see [FS04, Lemma 4.10]). Also see [FS04,

Theorem 5.4].

The invariant b(X,L) can be characterized in terms of Zariski decomposition of a(X,L)L+KX :

Proposition 6.3. Let X be a Q-factorial projective toric variety and D an effective Q-divisor on X. Suppose

that

1. D = P +N , where P is a nef divisor and N ≥ 0;

2. let g : X → Y be the semi-ample fibration associated to P . For any effective Cartier divisor E which is

supported by Supp(N), the natural map

OY → g∗O(E),

is an isomorphism.
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Then the minimal extremal face of Λeff(X) containing D is generated by vertical divisors of g and components

of N .

Proof . When D is big, the assertion is trivial. We may assume that dim(Y ) < dim(X). Let F be the minimal

extremal face of Λeff(X) containing D. Since F is extremal, it follows that F contains all vertical divisors of g

and components of N .

On the other hand, our assumption implies that for general fiber Xy, N |Xy is a rigid divisor on

Xy (see [Leh14, Theorem 6.1]), and its irreducible components generate an extremal face F ′ of Λeff(Xy).

Let α ∈ NM1(Xy) be a nef cycle supporting F ′ and Fα := {α = 0} ∩ Λeff(X). Since Xy is a general fiber,

α ∈ NM1(X) so that Fα is an extremal face (see [Pet12, Theorem 6.8]). Since D · α = 0 and F is minimal we

have F ⊂ Fα. Let D′ ∈ F be an effective Q-divisor. D′ is linear equivalent to a torus-invariant effective Q-divisor,

so we may assume that D′ is a boundary divisor. Let T ⊂ Y be the big torus of Y . Then g−1(T ) ∼= Xy × T .

Since D′ · α = 0, D′ is a sum of vertical divisors of g and components of N ; our assertion follows.

Remark 6.4. Note that since the cone of pseudo-effective divisors is finitely generated, every extremal face is

a supported face.

Proposition 6.5. Let X be a projective toric variety and Y an equivariant compactification of a subtorus of

codimension one (possibly singular). Let L be a big Cartier divisor on X. Then L is weakly balanced with respect

to Y .

Proof . Let M be the class of OX(Y ). Applying an equivariant embedded resolution of singularities, if necessary,

we may assume that X and Y are smooth or at least Q-factorial terminal. Due to a group action of a torus, Y

is not rigid, so that

a(X,L)L|Y +KY = (a(X,L)L+KX)|Y +M |Y ∈ Λeff(Y ).

Note that a(X,L)L+KX is an effective Q-divisor on X. Thus we have

a(Y, L|Y ) ≤ a(X,L).

Suppose that a(Y,L|Y ) = a(X,L) =: a. Let D = aL+KX + Y and consider the Zariski decomposition of D:

X̃
µ

��~~
~~

~~
~~
ν

��

⊃ Ỹ

D ⊂ X
f

//___ X ′ ⊃ D′,

where D′ is the strict transform of D, which is nef, and Ỹ is the strict transform of Y . We may assume that

both X̃ and Ỹ are smooth. Let F be the minimal extremal face of Λeff(X̃) containing

aµ∗L+KX̃ + Ỹ .
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Since aµ∗L+KX̃ ∈ F , it follows that codim(F ) ≤ b(X,L). Since X has only terminal singularities, we have

aµ∗L+KX̃ + Ỹ = aµ∗L+ µ∗KX +
∑
i

diEi + Ỹ ,

where di’s are positive integers and Ei’s are µ-exceptional divisors. It follows that F is the minimal extremal

face containing µ∗D and all µ-exceptional divisors. Let g : X̃ → B be the semi-ample fibration associated to

ν∗D′. Note that dim(B) < dim(X̃) since D is not big. Proposition 6.3 implies that F is generated by all vertical

divisors of g and all ν-exceptional divisors. We denote the vector space, generated by F , by VF .

Let F ′ be the minimal extremal face of Λeff(Ỹ ) containing

aµ∗L|Ỹ +KỸ = (aµ∗L+KX̃ + M̃)|Ỹ ,

where M̃ be the class of OX̃(Ỹ ). Then F ′ is also the minimal extremal face containing µ∗D|Ỹ and all components

of (Ei ∩ Ỹ )’s so that F ′ is the minimal extremal face containing ν∗D′|Ỹ and all components of (Gj ∩ Ỹ )’s, where

Gj ’s are all ν-exceptional divisors. In particular, F ′ contains all vertical divisors of g|Ỹ : Ỹ → H = g(Ỹ ). Since

a multiple of ν∗D′ admits a section vanishing along Ỹ , H is a Weil divisor of B, which is a subtoric variety.

Let V ′ ⊂ NS(Ỹ ) be a vector space generated by vertical divisors of g|Ỹ and components of (Gj ∩ Ỹ )’s. Then

b(Y, L) ≤ codim(V ′). Consider the following restriction map:

Φ : NS(X̃)/VF → NS(Ỹ )/V ′.

We claim that Φ is surjective. Let N be an irreducible component of the boundary divisor of Ỹ which dominates

H. There exists an irreducible component N ′ of the boundary divisor of X̃ such that N ′ contains N . Since N

meets with a general fiber of g|Ỹ , N ′ also meets with a general fiber of g. This implies that N ′ dominates B.

As in the proof of Lemma 5.2,

N ′ ∩ Ỹ = mN + (vertical divisors of g|Ỹ ).

Our claim follows from this. Hence

b(Y, L) ≤ codim(V ′) ≤ codim(VF ) ≤ b(X,L).

Proposition 6.6. Let X be a Q-factorial terminal projective toric variety and L a big Cartier divisor on X.

Suppose that the positive part of Zariski decomposition of D := a(X,L)L+KX is nontrivial. Then L is not

balanced.
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Proof . After blowing up, if necessary, we may assume that D itself admits a Zariski decomposition

D = P +N,

where P is a nef Q-divisor and N ≥ 0 is the negative part. Let g : X → Y be the semi-ample fibration associated

to P . We consider a general fiber Xy of g. Since a(X,L)L|Xy
+KXy

= N |Xy
is a rigid effective divisor, we

conclude that a(X,L) = a(Xy, L|Xy ). Let V ⊂ NS(X) be the vector space generated by vertical divisors of g

and components of N and V ′ ⊂ NS(Xy) the vector space generated by components of N |Xy
. The restriction

map

Φ : NS(X)/V → NS(Xy)/V ′,

is surjective, by Lemma 5.2. On the other hand, let T be the big torus of Y . Then the preimage g−1(T ) of T is

a product of T and a general fiber Xy. It follows that Φ is injective. Thus we have

b(X,L) = b(Xy, L|Xy
).

Hence L is not balanced on X.

An alternative proof of Theorem 5.4 for toric varieties is provided below:

Proposition 6.7. Let X be a Q-factorial terminal projective toric variety, L a big Cartier divisor on X, and Y

an equivariant compactification of a subtorus of codimension one (possibly singular). Suppose that the positive

part of the Zariski decomposition of a(X,L)L+KX is trivial. Then L is balanced with respect to Y .

Proof . We follow the notations in the proof of Proposition 6.5. We only need to explain why b(Y, L|Y ) < b(X,L),

when a(Y,L|Y ) = a(X,L). Since aµ∗L+KX̃ is rigid, it follows that

codim(VF ) < b(X,L).

Thus our assertion follows.

Corollary 6.8. Let X be a Q-factorial terminal projective toric variety. A big Cartier divisor L is balanced

with respect to all toric subvarieties if and only if a(X,L)L+KX is rigid.

In general, it is possible that for a codimension one subtoric variety Y ⊂ X, the rank of NS(Y ) exceeds the

rank of NS(X). However, the balanced property still can be verified:

Example 6.9. Consider the standard action of G3
m = {(t0, t1, t2)} on P3 by

(t0, t1, t2) · (x0 : x1 : x2 : x3) 7→ (t0x0 : t1x1 : t2x2 : x3).
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Consider the subtorus

M = {(t0, t1, (t0t1)−1)} ⊂ G3
m,

and let S be the equivariant compactification of M defined by

x0x1x2 = x3
3.

This is a singular cubic surface with three isolated singularities of type A2. We denote them by p1, p2, p3 ∈

P3. Since they are fixed under the action of G3
m on P3, the blow-up B := Blp1,p2,p3(P3) is an equivariant

compactification of G3
m. Moreover, the closure S̃ of M in B is the minimal desingularization of S and the

class of S̃ in Pic(B) is ample. Put X := B × P1 and Y := S̃ × P1. We have a diagram

X

π

��

Y?
_oo

��
B S̃,? _oo

Then Y is a nef divisor, and we have

rk NS(Y ) = 8 > rk NS(X) = 5.

However, the anticanonical class −KX is still balanced with respect to Y since

a(Y,−KX |Y ) = a(X,−KX) = 1

b(Y,−KX |Y ) = 1 < b(X,−KX) = 5.

This shows that, in general, we cannot expect to control the subgroup of NS(X) generated by vertical divisors.

In the proof of Proposition 6.5, we were able to control the quotient by this subgroup.
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