
BRAUER GROUPS AND QUOTIENT STACKSDAN EDIDIN, BRENDAN HASSETT, ANDREW KRESCH, AND ANGELO VISTOLIAbstract. A natural question is to determine which algebraic stacks arequotient stacks. In this paper we give some partial answers and relate itto the old question of whether, for a scheme X, the natural map from theBrauer group (equivalence classes of Azumaya algebras) to the cohomolog-ical Brauer group (the torsion subgroup of H2(X;Gm ) is surjective.1. IntroductionQuotients of varieties by algebraic groups arise in many situations, for in-stance in the theory of moduli, where moduli spaces are often naturally con-structed as quotients of parameter spaces by linear algebraic groups. Thequotient of a scheme by a group need not exist as a scheme (or even as analgebraic space), and even when a quotient exists, the quotient morphism maynot have expected properties. For example, if Z and G are smooth, then themorphism Z ! Z=G need not be smooth.To overcome this di�culty, it is often helpful to consider quotients as stacks,rather than as schemes or algebraic spaces. If G is a at group scheme actingon an algebraic space Z (G must be separated and �nitely presented over somebase scheme, with the space Z and the action map de�ned over this base), thena quotient [Z=G] always exists as a stack, and this stack is algebraic. Knowingthat an algebraic stack has a presentation as a quotient [Z=G] (with G a linearalgebraic group, say) can make the stack easier to study, for then the geometryof the stack is the G-equivariant geometry on the space Z.A natural question is to determine which algebraic stacks are quotient stacks.In this paper we give some partial answers to this question and relate it to theold question of whether, for a scheme X, the natural map from the Brauergroup (classes of Azumaya algebras modulo an equivalence relation) to thecohomological Brauer group (the torsion subgroup of �etale H2(X;Gm )) is sur-jective.Edidin received support from the NSA, NSF, and the University of Missouri ResearchBoard while preparing this paper. Hassett and Kresch were partially supported by NSFPostdoctoral Research Fellowships. Hassett received additional support from the Instituteof Mathematical Sciences of the Chinese University of Hong Kong and NSF. Vistoli waspartially supported by the University of Bologna, funds for selected research topics.1



2 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLISome quick answers to this natural question are (the �rst two are folklore):(i) all orbifolds are quotient stacks (Theorem 2.18); (ii) all regular Deligne-Mumford stacks of dimension � 2 are quotient stacks (Example 2.17); (iii)there exists a Deligne-Mumford stack, normal and of �nite type over the com-plex numbers (but singular and nonseparated) which is not a quotient stack(Example 2.21).In fact, the example in (iii) is a stack with stabilizer group Z=2 at everypoint; it is a gerbe over a normal (but nonseparated) scheme, of dimension 2over the complex numbers. Theorem 3.6 says such a stack is a quotient stackif and only if a certain class in the cohomological Brauer group associatedwith it lies in the image of the map from the Brauer group. So, (iii) yields anexample, of independent interest, of non-surjectivity of the Brauer map for a�nite-type, normal, but nonseparated scheme (Corollary 3.11). This stands incontrast with the recent result of S. Schr�oer [Sch], which says that the Brauermap is surjective for any separated geometrically normal algebraic surface.The paper is organized as follows: In Section 2 we review the de�nition ofalgebraic stacks and state accompanying results relative to quotient stacks.Additional results concern �nite covers of stacks by schemes. In Section 3 wereview gerbes and Brauer groups and state the result relating the Brauer mapto gerbes being quotient stacks. Finally in Section 4 we give proofs.Acknowledgements. The authors thank Andrei Caldararu, Bill Graham,and Amnon Yekutieli for helpful discussions. They are also grateful to LaurentMoret-Bailly and the referee for a number of corrections and suggestions.2. Stacks and quotient stacks2.1. Stacks. Here we give a brief review of stacks. Some references are [D-M],[Vi] and [L-MB].Stacks are categories �bered in groupoids satisfying descent-type axioms;the stacks of interest to us will be algebraic and hence admit descriptionsin the form of groupoid schemes. First, recall that a groupoid is a smallcategory C in which all arrows are isomorphisms. Write R = Hom(C) andX = Obj(C). There are two maps s; t : R ! X sending a morphism to itssource and target, respectively; a map e : X ! R taking an object to theidentity morphism of itself; a map i : R! R taking a morphism to its inverse;and a map m : R�t;X;sR! R taking a pair of composable morphisms to theircomposition. Write j = (t; s) : R! X �X. There are obvious compatibilitiesbetween these maps.A groupoid scheme consists of schemes R and X de�ned over a �xed basescheme L, together with maps s; t; e; i;m satisfying the same compatibilityconditions as above. A groupoid scheme is called �etale (respectively smooth,respectively at) if the maps s and t are �etale (resp. smooth, resp. faithfullyat and locally of �nite presentation). The stabilizer of a groupoid scheme is



BRAUER GROUPS AND QUOTIENT STACKS 3the scheme S = j�1(�X) (here �X � X �X is the diagonal). This is a groupscheme over X.Let L be a �xed ground scheme and let F be a category together witha functor p : F ! Sch =L. For a �xed L-scheme B, let F (B) denote thesubcategory of F consisting of objects mapping to B and morphisms mappingto 1B. Roughly, a category �bered in groupoids (over L) is pair consisting of acategory F and a functor p : F ! Sch =L, such that:(i) For all L-schemes B, F (B) is a groupoid.(ii) For any morphism of L-schemes f : B 0 ! B and any object x 2 F (B),there is an object f�x in F (B 0), unique up to canonical isomorphism, togetherwith a morphism f�x ! x lying over f . For the precise de�nition see, e.g.,[D-M, Sec. 4].A morphism of categories �bered in groupoids is simply a functor commutingwith the projection functors to Sch =L. An isomorphism of categories �beredin groupoids is a morphism which is an equivalence of categories.Any contravariant functor Sch =L ! sets determines a category �bered ingroupoids. We say that a category �bered in groupoids over L is representedby a scheme (resp. algebraic space) if it is equivalent to the functor of pointsof a scheme (resp. algebraic space).An important construction is the �ber product. Given morphisms f1 : F1 !F and f2 : F2 ! F , the �ber product F1 �F F2 is the category �bered ingroupoids de�ned as follows: Objects are triples (x1; x2;  ) where x1 is anobject of F1, x2 is an object of F2, and  : f1(x1)! f2(x2) is an isomorphism,lying over an identity morphism of Sch=L. A morphism is speci�ed by a pairof morphisms compatible with the induced isomorphism in F .De�nition 2.1. A category �bered in groupoids (F; p) is a stack if it satis�estwo descent properties.(1) For objects x, y in F (B) the functor IsoB(x; y) : Sch =B ! sets assigningto a B-scheme f : B 0 ! B the set of isomorphisms between f�x and f�y is asheaf for the �etale topology.(2) F has e�ective descent for �etale morphisms.De�nition 2.2. A morphism of stacks is representable if for any morphism ofan algebraic space B ! F , the �ber product B �F F 0 is represented by analgebraic space. A morphism is strongly representable if for any morphism ofa scheme B ! F , the �ber product B �F F 0 is represented by a scheme.Let P be a property of morphism of schemes which is preserved by basechange and is local for the smooth topology. A representable morphism F 0 !F has property P if for all morphisms B ! F of algebraic spaces, the inducedmorphism B �F F 0 ! B has property P.Stein factorization holds for algebraic spaces and implies [Kn, II.6.15] thatif f : X ! Y is a separated quasi-�nite morphism of algebraic spaces, and if Y



4 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLIis a scheme, then X is a scheme. Hence, a representable separated quasi-�nitemorphism is always strongly representable.De�nition 2.3. A stack F is algebraic, or is an Artin stack, if(1) There exists a representable smooth surjective morphism X ! F from ascheme.(2) The diagonal morphism F ! F �L F is representable, quasi-compact, andseparated.Remark 2.4. The representability of the diagonal implies that any morphismfrom an algebraic space is representable. For stacks with quasi-�nite diagonal,any morphism from a scheme is strongly representable.Remark 2.5. A stack F is called a Deligne-Mumford stack if there exists an�etale cover of F by a scheme. By [L-MB, 8.1], this happens if and only ifthe diagonal F ! F �L F is unrami�ed1. A Deligne-Mumford stack has, inparticular, quasi-�nite diagonal. The geometric �bers of the diagonal are groupschemes, so if all the residue �elds of L have characteristic 0 then conversely,any algebraic stack with quasi-�nite diagonal is a Deligne-Mumford stack.Finally, we describe very briey groupoid presentations (or atlases) of al-gebraic stacks: see [L-MB] for a full treatment. By de�nition, any algebraicstack F admits a smooth surjective map from a scheme X; X ! F is calleda smooth atlas. In this case, the �ber product R = X �F X is an algebraicspace. However, for stacks with quasi-�nite diagonal, the diagonal is stronglyrepresentable, so R is in fact a scheme. The smooth groupoid schemeR�X iscalled a presentation for F . Conversely, any smooth groupoid scheme R�Xwith separated, �nite-type relative diagonal R ! X � X determines an al-gebraic stack [R�X]. A theorem of Artin (cf. [L-MB, 10.1]) says that anyfaithfully at groupoid scheme R�X (with separated, �nite-type relative di-agonal) determines an algebraic stack. In this case the groupoid schemeR�Xis called a faithfully at presentation for F . By Remark 2.5, an algebraic stackis a Deligne-Mumford stack if and only if it has an �etale presentation. If F is analgebraic stack with quasi-�nite diagonal, then it is relatively straightforward([K-M, Lemma 3.3]) to show that F has a quasi-�nite faithfully at atlas ofschemes.If the group scheme G acts on the algebraic space Z (we assume G at,separated, and of �nite presentation over the ground scheme L; the space Zshould be an L-space and the action map Z �LG! Z an L-morphism), thenthe action determines a groupoid Z�LG�Z. This will be a at atlas for thestack whose �ber over any L-scheme T is the category of principal G-bundles1As explained in [L-MB, 4.2], `unrami�ed' should be understood to mean `locally of �nitetype and formally unrami�ed'.



BRAUER GROUPS AND QUOTIENT STACKS 5E ! T together with G-equivariant morphisms E ! Z. This is an algebraicstack, denoted [Z=G].As noted above, any algebraic space is an algebraic stack; the followingresult says when the converse holds.Proposition 2.6. ([L-MB, 2.4.1.1 and 10.1]) Let F be an algebraic stack, andlet s; t : R�X be a faithfully at presentation for F . Then F is an algebraicspace if and only if the map R ! X � X is a monomorphism. If we setS = (t� s)�1(�X) then this is equivalent to S ! X being an isomorphism byeither s or t.We call attention to the map S ! X of Proposition 2.6. The �ber product ofthe diagonal F ! F �F with itself is an algebraic stack IF := F �F�F F . Theprojection (to either factor) IF ! F is the stabilizer map, and is representedby the stabilizer S ! X of the groupoid space R�X, for any atlas X.2.2. Results on stacks. The �rst theorem states that stacks with quasi-�nitediagonal are �nitely parametrized; i.e., admit �nite covers by schemes. This isthe strongest possible result since any �nitely parametrized stack must havequasi-�nite diagonal. This result extends results of Vistoli [Vi] and Laumonand Moret-Bailly [L-MB] for Deligne-Mumford stacks. The �rst result of thisform of which the authors are aware is due to Seshadri [Se, Theorem 6.1] inthe context of group actions on varieties. In fact, the use of Lemma 4.1 wasinspired by reading his paper.Theorem 2.7. Let F be an algebraic stack of �nite type over a Noetherianground scheme L. Then the diagonal � : F ! F �L F is quasi-�nite if andonly if there exists a �nite surjective morphism X ! F from a (not necessarilyseparated) scheme X.Remark 2.8. Existence of �nite scheme covers is an important ingredient in in-tersection theory on Deligne-Mumford stacks. It is used, for instance, to de�neproper pushforward for nonrepresentable morphisms (of cycles modulo ratio-nal equivalence with Q coe�cients). General intersection-theoretic machineryhas recently been developed for Artin stacks whose geometric stabilizers area�ne groups [Kr]. All of intersection theory on Deligne-Mumford stacks, asin [Gi] and [Vi], generalizes to Artin stacks with quasi-�nite diagonal, whereTheorem 2.7 is used to provide nonrepresentable proper pushforwards.De�nition 2.9. Let F be a stack, of �nite type over a Noetherian base schemeL. We say F is a quotient stack if F is isomorphic to a stack of the form [Z=G]where Z is an algebraic space, of �nite type over L, and G is a subgroup schemeof the general linear group scheme GLn;L for some n, with G at over L.



6 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLIRemark 2.10. Every a�ne group scheme of �nite type over a �eld is a subgroupscheme of GLn, so the condition on G in De�nition 2.9 is the natural notionof linear algebraic group over a general Noetherian base.Remark 2.11. The quotient Z 0 := Z�LGLn;L=G (where G acts on Z and actsby translation on GLn;L) exists as an algebraic space, and [Z 0=GLn] ' [Z=G].So every quotient stack is a quotient by GLn for some n.We state two foundational results, followed by two results giving su�cientconditions for a stack to be a quotient stack. Recall that f : E ! F is aprojective morphism if and only if f factors, up to 2-isomorphism, as a closedimmersion followed by projection E ! P(E) ! F , where E is a �nite-typequasi-coherent sheaf on F and P(E) denotes its projectivization.Lemma 2.12. Let F be an algebraic stack of �nite type over a Noetherianscheme. The following are equivalent.(i) F is a quotient stack.(ii) There exists a vector bundle V ! F such that at every geometric point,the stabilizer action on the �ber is faithful.(iii) There exists a vector bundle V ! F and a locally closed substack V 0 � Vsuch that V 0 is representable and V 0 surjects onto F .Lemma 2.13. Let � : E ! F be a at projective map of stacks (of �nite typeover a Noetherian base scheme) which is surjective. If E is a quotient stack,then so is F .Theorem 2.14. Let F be an algebraic stack of �nite type over a Noetherianscheme, and let f : X ! F be a �nite cover by a scheme or algebraic space.If the coherent sheaf f�OX is the quotient of a locally free coherent sheaf thenF ' [Z=GLn] where Z is an algebraic space. In particular, if every coherentsheaf on F is the quotient of a locally free coherent sheaf, then F is a quotientstack.Remark 2.15. If the ground scheme L is normal and separated, and has theproperty that every coherent sheaf on L is the quotient of a locally free sheaf(e.g., if L is a�ne, or regular) and if F = [Z=GLn] where Z is a schemeequivariantly embedded in a regular Noetherian separated scheme, then theequivariant resolution theorem of [Th] implies that every coherent sheaf on Fis the quotient of a locally free coherent sheaf on F .Corollary 2.16. Let F be an algebraic stack of �nite type over a Noetherianscheme. If F has a �nite at cover by an algebraic space then F is a quotientstack. In particular, if F is regular and has a �nite cover by a Cohen-Macaulayalgebraic space then F is a quotient stack.



BRAUER GROUPS AND QUOTIENT STACKS 7Example 2.17. Assume the base scheme is a �eld (or more generally, any uni-versally Japanese scheme, for instance SpecZ). Any regular stack of dimension� 2 with quasi-�nite diagonal is a quotient stack.We emphasize the second statement of Corollary 2.16 because the Deligne-Mumford stacks considered by Mumford in [Mu] satisfy (ii). In particular theyare quotient stacks, and the intersection product he constructs is a special caseof the intersection product of [E-G].Finally, if F is Deligne-Mumford then we have the following result which weobtained based on conversations with Bill Graham. In the characteristic zerosetting, this result is familiar from the study of orbifolds.Theorem 2.18. If F is a smooth Deligne-Mumford stack of �nite type overthe Noetherian base scheme such that the automorphism group of a generalgeometric point of F is trivial, then F is a quotient stack.Thus any stack which admits a representable morphism to a smooth Deligne-Mumford stack with trivial generic stabilizers, also, is a quotient stack.Corollary 2.19. Let F be a smooth Deligne-Mumford stack of �nite type overa Noetherian base scheme. Assume F has �nite stabilizer, and suppose theautomorphism group of a general geometric point of F has trivial center. ThenF is a quotient stack.Recall that an algebraic space Q has quotient singularities if locally in the�etale topology Q is isomorphic to quotients U=H, where H is a �nite groupand U is smooth. By [Vi, Proposition 2.8], any separated scheme of �nite typeover a �eld of characteristic zero with quotient singularities is a moduli spacefor a smooth stack F which has generically trivial stabilizer, so we have thefollowing consequence.Corollary 2.20. Any separated scheme of �nite type over a �eld of character-istic 0 which has at worst quotient singularities is a quotient Q = Z=G whereZ is a smooth algebraic space and G is a linear algebraic group.Lastly, as promised, not every Deligne-Mumford stack is a quotient stack.Example 2.21. Let Y be the scheme Spec C [x; y; z]=(xy � z2), whose non-singular locus is Y reg = Y r f0g. There is a unique (up to 2-isomorphism)nontrivial involution of Y reg � B(Z=2) which commutes with the projectionmap to Y reg. Let F be the stack gotten by glueing two copies of Y �B(Z=2)via this involution. Then F is not isomorphic to [Z=G] for any algebraic spaceZ and algebraic group G.



8 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLI3. Gerbes and Brauer groupsIn this section we give a brief review of gerbes and Brauer groups and stateour accompanying results. References for gerbes are [Mi] and [L-MB]. ForBrauer groups, see [Gr] and [Mi].3.1. Gerbes. In what follows we �x a base scheme X, assumed Noetherian,and we take G to be a group scheme, at, separated, and of �nite type overX. The gerbes that arise in the theorem that relates gerbes to Brauer groups(Theorem 3.6) have G equal to the algebraic torus Gm or a group of roots ofunity �n. We only discuss gerbes that are modeled on some group scheme Gover the base.De�nition 3.1. A G-gerbe overX is a morphismF ! X, with F an algebraicstack, such that there exists a faithfully at map, locally of �nite presentation,X 0 ! X, such that F �X X 0 ' BG�X X 0.We say the G-gerbe F ! X is trivial if F ' BG. Note that a gerbeF ! X which admits a section x 2 F (X) satis�es F ' B(AutF (x)) whereAutF (x) is group scheme (or group space) IsoF (x; x) (such a gerbe is calledneutral). Nontrivial gerbes are easy to construct, much the way one constructsnontrivial vector bundles, or torsors. For instance, one can glue two copies ofA 1 �B(Z=2) along a nontrivial involution of (A 1 r f0g)�B(Z=2) to obtain anontrivial (Z=2)-gerbe over P1.De�nition 3.2. Let G and H be two group schemes over X. The sheaf ofband isomorphisms, denoted Band(G;H), is the shea��cation of the quotientof the sheaf of group isomorphisms Iso(G;H) by the conjugation action of H.When G = H, this is the sheaf of outer automorphisms of G, which is denotedOut(G).De�nition 3.3. Given a G-gerbe F ! X, the associated torsor of outer auto-morphisms is the sheaf P over X de�ned as follows. Let T be an X-scheme. Ifthere exists an object t 2 F (T ), then we de�ne P (T ) to be Band(AutF (t); G�XT ). One checks that if ~t denotes another object in F (T ), then there is acanonical element Band(AutF (t);AutF (~t )) obtained by chosing local isomor-phisms of t with ~t; this canonically identi�es Band(AutF (t); G �X T ) withBand(AutF (~t ); G �X T ). In general, P (T ) is de�ned as the di�erence kernelP (T 0)�P (T 0�T T 0) with respect to any at cover T 0 ! T such that t0 2 F (T 0)exists. Elements of P (T ) pull back in the obvious fashion.There is an obvious action of Out(G) on P , making it into a torsor. Thistorsor is classi�ed by some � 2 H1(X;Out(G)). This is the �rst obstructionto triviality of F .For the remainder of this section, we assume that Out(G) is a �nite atgroup scheme over X. This is the case when (i) G is �nite group (viewed



BRAUER GROUPS AND QUOTIENT STACKS 9as a group scheme over SpecZ and hence over any base); (ii) G = �n forany positive integer n; (iii) G = Gm . Now there are two ways to remove the�rst obstruction to triviality for a gerbe. First, one can hope that � is inthe image of H1(X;Aut(G)) ! H1(X;Out(G)), and then use the Aut(G)-cocycle to substitute, in place of G, a new group schemeG0, locally isomorphicto G. For instance, if the symmetric group S3 acts on A 1 r f0g by � � z =sgn(�)z, then F := [A 1rf0g=S3] is nontrivial as a (Z=3)-gerbe overX := A 1rf0g. Its �rst obstruction class is the nontrivial element of H1(X;Aut(Z=3)) =H1(X;Out(Z=3)). Twisting, we obtain a group schemeG0 overX, and we �ndin this example that F ' BG0.The second method, which doesn't require hoping, is to pull back to thetotal space of the Out(G)-torsor. So, the �rst obstruction to triviality vanishesupon �nite at pullback.Assume our G-gerbe has trivial �rst obstruction, and let a trivialization of Pbe �xed. If the center of G is trivial, then one can use the stack axioms to gluelocal sections of F ! X to get a section de�ned over X; the cocycle conditionwill automatically be satis�ed. In general, the obstruction is a 2-cocycle withvalues in the center Z of G. The class � 2 H2(X;Z) is the second obstructionto triviality of F (this depends on the choice of trivialization of P ; a di�erentchoice will di�er by a global section  of Out(G), and the class in H2(X;Z)resulting from the new section is the result of  applied to � by the obviousaction of Out(G) on Z).Remark 3.4. A gerbe F is said to be banded (it is becoming standard to trans-late as band the French verb lier) by G if the gerbe is endowed with a globalsection of the associated torsor of outer automorphisms. When G is abelian,to say that F is banded by G is equivalent to saying that for every X-schemeU and object u 2 F (U), there is chosen an isomorphism G(U) �! AutF (u),compatible with pullbacks.If G is abelian, then by cohomological machinery, the set of isomorphismclasses of gerbes on X banded by G is in bijection with H2(X;G) ([Mi, xIV.2]).For G �nite and at with at center Z let F ! X be a gerbe banded by G,with second obstruction � 2 H2(X;Z), then the Z-gerbe E ! X associatedwith � admits a �nite at representable morphism to F . So, such a G-gerbe iscovered by a gerbe banded by G, which in turn is covered by a gerbe bandedby the center of G.Proposition 3.5. Let G be a �nite at group scheme over X. Assume thatthe center, Z, and the sheaf of outer automorphisms Out(G) are �nite and atas well. Let F ! X be a G-gerbe. Then there exists an Out(G)-torsor Y ! Xand a gerbe E ! Y banded by Z, such that E admits a �nite at representablesurjective morphism to F .



10 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLI3.2. Brauer groups. Let X be a Noetherian scheme. The Brauer groupBr(X) is the group of Azumaya algebras (sheaves of algebras, �etale-locallyisomorhic to endomorphism algebras of vector bundles), modulo the equiva-lence relation E � E 0 if E � End(V ) ' E 0 � End(V 0) for some pair of vectorbundles V and V 0 on X. By the Skolem-Noether theorem, the rank n2 Azu-maya algebras on X are classi�ed by H1(X;PGLn). The exact sequence1! Gm ! GLn ! PGLn ! 1;identi�es the obstruction to a rank n2 Azumaya algebra being the endomor-phism algebra of a vector bundle as an element { in fact, an n-torsion ele-ment { of the �etale cohomology group H2(X;Gm ). There is thus determineda homomorphism Br(X)! H2(X;Gm):It is a fact that this homomorphism is always injective [Mi, IV Th. 2.5].The cohomological Brauer group, denoted Br0(X), is de�ned to be the torsionsubgroup of H2(X;Gm). When X is regular, the map Br0(X) ! Br0(k(X))is injective, where k(X) denotes the generic point of X. For a �eld, Br, Br0and the full second cohomology group agree. It is only in the presence ofsingularities that the cohomological Brauer group may di�er from the fullcohomology group H2(X;Gm ).The Brauer map is the injective group homomorphismBr(X)! Br0(X):A major question in the study of Brauer groups is: for which schemes X isthe Brauer map an isomorphism? The article [Ho] identi�es some classes ofschemes for which this is known. The Brauer map is known to be an iso-morphism for abelian varieties, low-dimensional varieties (general varieties ofdimension 1 and regular varieties of dimension 2), a�ne varieties, and sepa-rated unions of two a�ne varieties. Recently the Brauer map has been shownto be an isomorphism for separated geometrically normal algebraic surfaces[Sch]. Also known in general is that if � 2 Br0(X) is trivialized by a �nite atcover, then � lies in the image of the Brauer map.Theorem 3.6. LetX be a Noetherian scheme. Let � be an element ofH2(X;Gm ).The following are equivalent.(i) � lies in the image of the Brauer map.(ii) There exists a at projective morphism of schemes � : Y ! X, surjective,such that ��� = 0 in H2(Y;Gm ).(iii) The Gm-gerbe with classifying element � is a quotient stack.Furthermore, if n� = 0 and � 2 H2(X;�n) is a pre-image of � under the mapof cohomology coming from the Kummer sequence, then conditions (i), (ii),and (iii) are equivalent to



BRAUER GROUPS AND QUOTIENT STACKS 11(iv) The �n-gerbe with classifying element � is a quotient stack.Remark 3.7. Here we are writing `G-gerbe with classifying element �' (forG = Gm or �n) to refer to a gerbe, banded by G, whose second obstruction totriviality is � 2 H2(X;G). Such a gerbe is de�ned uniquely up to isomorphism,hence the abusive terminology `the G-gerbe: : : '.Remark 3.8. In characteristic p > 0 (or in mixed characteristic) the cohomol-ogy groups above are at cohomology groups. By [Gr, III.11], sheaf cohomol-ogy with values in Gm , or in �n when n in invertible, is the same in the �etaleand at topologies.Remark 3.9. Statements (i) and (ii) do not involve stacks, so the implications(i) , (ii) have independent interest. One direction, (i) ) (ii), is well-known:if � is in the image of the boundary homomorphism H1(X;PGLm+1) !H2(X;Gm ) then pullback to the associated Pm-bundle trivializes �; the Pm-bundle is the famous Brauer-Severi scheme. The other direction, (ii) ) (i),seems to have been known only as folklore, until recently. The result nowappears in the Ph.D. thesis of A. Caldararu [Ca, Prop. 3.3.4].Remark 3.10. The question of whether a general Deligne-Mumford stack is aquotient stack is hard (even with strong hypothesis such as smooth and properover a �eld). But for gerbes over schemes over a �eld of characteristic zero,Lemma 2.13 can be used, in conjunction with Proposition 3.5 and Theorem3.6, to reduce the question to the case of �n-gerbes. Indeed, by Proposition3.5, any G-gerbe has a �nite at representable cover by an abelian group gerbe,which in turn admits a closed immersion to a product of cyclic group gerbes.Example 2.21 then tells us:Corollary 3.11. Let X be the union of two copies of Spec C [x; y; z]=(xy�z2),glued along the nonsingular locus. Then the Brauer map Br(X) ! Br0(X) isnot surjective. So the nonseparated union of two a�ne schemes need not havesurjective Brauer map. 2Going the other way, Theorem 3.6 provides an example of a stack with a�ne(but not quasi-�nite) diagonal of �nite type over a �eld which is not a quotientstack. (Note that the stack in Example 2.21 only has quasi-a�ne diagonal.)Example 3.12. Let X be a normal separated surface over a �eld (if onewishes, C ) such thatH2(X;Gm ) contains a non-torsion element� [Gr, II.1.11.b].Then the Gm -gerbe F classi�ed by � has a�ne diagonal and is not a quotientstack.2R. Hoobler has pointed out that it is possible to verify directly, using cohomologicalmethods, that the scheme X in this statement satis�es Br(X) = 0 and Br0(X) =Z=2.



12 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLI4. Proofs of results4.1. Finite parametrization of stacks. Here we prove Theorem 2.7, whichstates that that every stack with quasi-�nite diagonal has a �nite cover by ascheme. We begin with an easy, but very useful lemma.Lemma 4.1. Suppose that p1 : F1 ! F and p2 : F2 ! F are representable(respectively strongly representable) morphisms. Assume that F is covered byopen substacks U1, U2 such that the �ber products U1 �F F2 and F1 �F U2 arerepresentable by algebraic spaces (resp. schemes). Then the �ber product isF1 �F F2 is also represented by an algebraic space (resp. scheme).Proof. The inverse images of U1�F F2 and F1�F U2 in F1�F F2 are representedby algebraic spaces (resp. schemes), because p1 and p2 are representable (resp.strongly representable). But these inverse images are open substacks whichcover F1 �F F2.Proof of Theorem 2.7. Since F is �nitely presented over the ground scheme,we may assume that F is obtained by base change from a stack of �nite typeover SpecZ. Hence to obtain a cover we may assume that F is of �nite typeover SpecZ. Also, since the morphism Fred ! F is �nite and surjective we canassume F is reduced. By working with each irreducible component separatelywe can assume F is integral. Finally by normalizing we can assume that F isnormal.Suppose that F has an open cover F 1; : : : ; F k such that F i has a �nitecover by a scheme Z i. The composite morphism Z i ! F i ,! F is quasi-�nite.Thus, by Zariski's Main Theorem [L-MB, Theorem 16.5] the morphismZ i ! Ffactors as an open immersion followed by a �nite representable map Z i ,! Zi !F . Since F is assumed to be irreducible, the �nite representable morphismZi ! F has dense image so it must be surjective. Set Z = Z1�F Z2 : : :�F Zk.The induced map Z ! F is �nite, representable and has dense image, so it issurjective. Since any �nite representable morphism is strongly representable,we can, by applying the Lemma, conclude that Z is a scheme.Thus, to prove the theorem it su�ces to prove that F has a cover by opensubstacks which admit �nite covers by schemes. By [K-M, Lemma 3.3.1], Fhas a quasi-�nite at cover by a scheme V . Let Vi be an irreducible componentof V . Once again applying Zariski's Main Theorem, the quasi-�nite morphismVi ! F factors as Vi ,! F 0 ! F , where the �rst map is an open immersionand the second map is �nite (and by density surjective). Replacing F by F 0we may therefore assume that F is generically a scheme. In particular, we canassume that F has a generic point SpecK.Let s; t : R�X be a smooth presentation for F . Since we are workinglocally we can assume that X is a normal variety. By [K-M, Lemma 3.3.1],the smooth cover can be re�ned to a quasi-�nite at cover by a scheme V



BRAUER GROUPS AND QUOTIENT STACKS 13and the morphism V ! X is the composition of a closed immersion and an�etale morphism. Again since we are working locally we may assume that V isirreducible. In particular we may also assume that V is normal.Since the morphism V ! F is quasi-�nite, it is open. Replacing F by anopen substack, we may assume that V ! F is surjective. Now we construct a�nite cover of F by a scheme. The map V ! F is generically �nite, so K(V )is a �nite extension of K (recall that SpecK is the generic point of F ). Let K 0be a normal extension of K containing K(V ). Then K 0 is Galois over a �eldK 00 which is a purely inseparable extension of K. Let F 0 be the normalizationof F in K 0. Let U1 be the pre-image of V in F 0, and for � 2 Gal(K 0=K 00) letU� be the translate of U1 under the action of �. Each U� is a scheme. Sincenormalization commutes with smooth pullback ([L-MB, Lemma 16.2.1]), wemay invoke [Bour, Prop. V2.3.6] to deduce that Gal(K 0=K 00) acts transitivelyon the �bers of F 0=F . Hence the U� cover F 0, so F 0 is a scheme which is a�nite cover of F .As a corollary of independent interest, we obtain Chow's Lemma for stackswith �nite diagonal, extending [D-M, Theorem 4.12] (a stack with quasi-�nitediagonal is separated if and only if the diagonal is �nite).Corollary 4.2. Let F be an algebraic stack of �nite type over a Noetherianground scheme. If the diagonal of F is �nite, then F admits a proper, surjec-tive, generically �nite morphism from a quasi-projective scheme.4.2. Stacks which are quotient stacks. In this section we give proofs ofLemmas 2.12 and 2.13, and from these deduce Theorems 2.14 and 2.18.In Lemma 2.12, the implication (i) ) (iii) is well-known: if F ' [X=G], letG act linearly on some a�ne space A m , freely on some open U � A m suchthat the structure map from U to the base scheme is surjective. Now we takeV 0 � V to be [X � U=G] � [X � A m=G] with the diagonal G-action. Clearly,(iii) implies (ii). If V ! F is a vector bundle of rank n such that at everygeometric point, the stabilizer action is faithful on the �ber, then the stabilizeraction on frames is free at every geometric point, hence the associated framebundle P is an algebraic space (Proposition 2.6), and F ' [P=GLn]. Thisestablishes (ii) implies (i), and we have proved Lemma 2.12.To prove Lemma 2.13, let E and F be �nite-type stacks over a Noetherianground scheme, and let � : E ! F be a at, projective morphism. Let O(1)denote a relatively ample invertible sheaf on E, and for a coherent sheaf E onE, we let E(k) denote E 
 O(k). We know that for k su�ciently large, wehave Ri��E(k) = 0 for i > 0 and hence ��E(k) locally free (these are localassertions, and for schemes this is well known).Suppose E is a quotient stack. Then there is a locally free coherent sheafE on E, such that the geometric stabilizer group actions on �bers are faithful.



14 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLIReplacing E by E �OE if necessary, the stabilizer actions on �bers of E(k) foreach k will be faithful as well. Choose k such that Ri��E(k) = 0 for i > 0and such that the natural map of sheaves ��(��E(k))! E(k) is surjective. Wemay also suppose E(k) is very ample when restricted to the �bers of �. If welet F := ��E(k), then F is a locally free coherent sheaf on F such that thestabilizer group actions on �bers are faithful. Indeed, if p : Spec
 ! F is ageometric point, with stabilizer group �, then Y := E�F Spec
 is a projectivescheme with very ample coherent sheaf E(k)
OY that is generated by globalsections, and since � acts faithfully on the �bers of E(k) it follows that � actsfaithfully on H0(Y; E(k)
OY ). Lemma 2.13 is proved.Now Theorem 2.14 is proved as follows. Let f : X ! F be a �nite coverof F by a scheme (or algebraic space). By assumption there is a surjectionof sheaves E ! f�OX. Let V be the vector bundle associated with E. Thenthere is a closed immersion of X into the stack V . Since X is representableand X ! F is surjective, F is a quotient stack by Lemma 2.12.Remark 4.3. If, in the situation of Theorem 2.14, the stack F admits a �nitemap to a scheme Q (this occurs exactly when F has �nite stabilizer and hencehas a moduli space [K-M], and the moduli space is a scheme) then Z (thealgebraic space for which we have F ' [Z=GLn]) is in fact a scheme. Thereason that Z is a scheme is as follows: Let Y ! F be a �nite cover of F bya scheme. Then, since Z ! F is a�ne, the �ber product Z �F Y is an a�neQ-scheme. Thus, by Chevalley's theorem for algebraic spaces [Kn, III.4.1] itfollows that Z is an a�ne Q-scheme as well.Finally, Theorem 2.18 is a direct consequence of Lemma 2.12, provided weknow that the tangent bundles and higher jet bundles of smooth Deligne-Mumford stacks enjoy faithful actions by the stabilizers of geometric points.Proposition 4.4. Let s; t : R�X be an �etale presentation of a smooth Deligne-Mumford stack F . Let ' : S ! X be the stabilizer group scheme. Assume thatno component of Sre(X) dominates a component of X. Then for some k > 0,S acts faithfully on the bundle of k-jets in X.Proof. Let x be a point in X. Replacing X by an �etale cover if necessary, wemay assume the points of '�1(x) all have residue �eld equal to the residue�eld of x. Then, for any r 2 '�1(x), r 6= e(x), the induced mapss#; t# : bOX;x ! bOR;rare isomorphisms. Thus the compositebOX;x s#! bOR;r (t#)�1! bOX;xgives an automorphism of the completed local ring bOX;x. By assumption onS, s 6= t in a neighborhood of r 2 R so the automorphism is nontrivial. Thus,



BRAUER GROUPS AND QUOTIENT STACKS 15r must act nontrivially on the vector space OX;x=mkx for some k > 0. Then,there exists k such that the stabilizer group '�1(x) acts faithfully on the spaceof k-jets at x.By Noetherian induction on X, there is a k for which the stabilizer actionon k-jets is faithful at all points of X.Example 4.5. Let k be a �eld of characteristic p > 0. The map z 7! zp � zrealizes C = P1 as a cyclic cover of P1, of degree p, branched only over in�nity.So, P1 is the coarse moduli space of the stack F = [C=(Z=p)], where a generatorof Z=p acts on C by [z : w] 7! [z + w : w]. The stabilizer of F acts faithfullyon the tangent bundle everywhere except at the point over in�nity. For n � 2,the action on n-jets is faithful at all points.Finally, Corollary 2.19 follows from the following construction. Let F bea smooth Deligne-Mumford stack with �nite stabilizer IF ! F . There is anopen dense substack F 0 on which the restriction I0 ! F 0 of the stabilizer mapis �etale. Let J0 be the closure of I0 in IF ; then �0 : J0 ! F is �etale, since any�nite unrami�ed morphism from a scheme to a normal Noetherian scheme,such that every component dominates the target, is �etale. Then E := �0�OJ0 isa locally free coherent sheaf F . We claim that the total space of the associatedvector bundle has trivial generic stabilizers, from which it follows (since Fembeds in any vector bundle as the zero section) that F is a quotient stack.Let p : Spec 
! F be a general geometric point of F , with automorphismgroup G. Then the �ber of �0 over p is canonically isomorphic to G, and theaction of G over this �ber is by conjugation. SinceG, by hypothesis, has trivialcenter, the generic action on �bers of �0�OJ0 is faithful.4.3. A nonquotient stack. We work out Example 2.21. By Lemma 2.12, ifwe can show the stack F of Example 2.21 has no nontrivial vector bundles, itfollows that F is not a quotient stack.Let Y = Spec C [x; y; z]=(xy�z2), with nonsingular locus Y reg. The nontriv-ial involution i of Y reg � B(Z=2) is speci�ed by (it su�ces to say how i actson pairs consisting of map T ! Y reg and trivial Z=2-torsor on T )i(T f! Y reg; T �Z=2! T ) = (T f! Y reg; f�(A 2 r f0g ! Y reg)):The stack F is the union of two copies of Y �B(Z=2), glued via i.By [M-P] the scheme Y has no nontrivial vector bundles (this fact holdsmore generally for any a�ne toric variety [Gu]), and since Y is normal andthe glueing is over a locus whose complement has codimension 2, the schemeY qY regY (this is the scheme over which F is a gerbe) also has no nontrivial vec-tor bundles. Every vector bundle on F splits into (+1)- and (�1)-eigenbundlesfor the stabilizer action, so we deduce that the (+1)-eigenbundle is trivial.We claim the (�1)-eigenbundle is zero. Let F be a locally free coherentsheaf on F such that the stabilizer action is multiplication by �1 on sections,



16 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLIand let Fi (i = 1; 2) denote the restriction of F over the i-th copy of Y . Thenthere is a given isomorphismF1jF reg ' i�(F2jF reg):Let L denote the (pullback to F reg of the) unique 2-torsion invertible sheaf onY reg; for any locally free coherent sheaf F on F reg such that the stabilizer actsby (�1) we have i�F ' L
F . HenceF1jY reg ' L
 (F2jY reg):But this is impossible unless F1 = F2 = 0, for otherwise FijY (i = 1; 2) isfree of some rank m � 1, and hence we have L�m ' O�m on Y reg. ButY reg sits inside [A 2=(Z=2)] with complement of codimension 2, so this impliesan isomorphism on [A 2=(Z=2)] between a free coherent sheaf and a nontriviallocally free coherent sheaf.4.4. Gerbes and the Brauer group. Here we prove Theorem 3.6. For (i)) (iii), let  2 H1(X;PGLn) be the class of an Azumaya algebra representinga given cohomological Brauer group element � 2 H2(X;Gm). If P ! X is thePGLn-bundle associated with , then by the de�nition of the boundary mapin nonabelian cohomology, the gerbe represented by � is [P=GLn].For (iii)) (i), we note that if F is the Gm -gerbe associated with �, then avector bundle B on F decomposes into eigenbundles indexed by characters inbGm . Given a faithful stabilizer action on �bers, the characters whose eigenbun-dles are nonzero must generate bGm ; then the decomposition of B
r 
 (B_)
sfor suitable integers r and s has nonzero eigenbundle B1 ! F for the unitcharacter. The complement of the zero section of B1 is a Brauer-Severi schemeover X, and the associated Azumaya algebra represents �.As we have remarked, (i)) (ii) is well-known. The implication (ii) ) (iii)is an immediate consequence of Lemma 2.13.Finally, suppose � is n-torsion with pre-image � in H2(X;�n), and let usshow (iii) , (iv). Let F be the Gm -gerbe associated with �, and let F 0 bethe �n-gerbe associated with �. There is a natural representable morphism� : F 0 ! F , hence (iii) ) (iv). For the reverse implication, let E be a locallyfree coherent sheaf on F 0 such that the stabilizer action on sections is faith-ful. Consider the quasi-coherent sheaf F := ��E with its decomposition intoeigensheaves F =L�2bGm F�. We claim each F� is locally free of �nite type,and F� 6= 0 if and only if the eigensheaf of E corresponding to the restrictionof � to �n is nonzero. Indeed, it su�ces to verify the claims �etale locally, andthe claims hold in the case of trivial gerbes. We can choose a �nite set Sof characters which generates Gm such that F� 6= 0 for every � 2 S. ThenL�2S F� is a locally free coherent sheaf on F , such that the stabilizer actionon sections is faithful.
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