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1 IntrodutionLet K be a number �eld and onsider a olletion of equationsf1(x1; : : : ; xn) = f2(x1; : : : ; xn) = : : : = fr(x1; : : : ; xn) = 0where the fj are polynomials with oeÆients in K. What are the solutionsto these equations over K? Sometimes, every solution (a1; : : : ; an) 2 Knneessarily satis�es further equations whih are not algebrai onsequenesof our original olletion. For instane, every solution over Q to x31 + x32 = 1satis�es the additional equation x1x2 = 0. Of ourse, solutions over ex-tensions L=K may fail to satisfy these further equations, e.g., the solution(�1; 3p2) to the Fermat equation.This paper is dediated to studying olletions of equations with thefollowing desideratum: All the equations satis�ed by the solutions over Kare algebrai onsequenes of the equations we start with. For instane, thesolutions to x21 + x22 = 1 over Q satisfy no equations that are not multiplesof the original equation.Our approah is geometri. The desired property may be restated inthe language of algebrai geometry: We seek lasses of algebrai varietieswhose K-rational points are dense in the Zariski topology. Here `lasses' ofalgebrai varieties are distinguished by invariants, like the geometri genus�The author was partially supported by National Siene Foundation Grant 0196187.1



or plurigenera, or by geometri properties, like the existene of �brationsby rational or ellipti urves. One of the most profound questions of higherdimensional geometry is the logial relationship between the values of theinvariants and the presene of �brations.However, there is a prie to be paid for working geometrially: It isexeedingly rare for all the varieties with ommon geometri properties tohave dense rational points. Even varieties whih are geometrially Pn may ormay not have rational points over a given number �eld, so we allow ourselves�nite extensions of the given �eld. Then more uniform statements on rationalpoints, depending only on the underlying geometry, are possible.The paper is organized as follows. Basi de�nitions and notation are laidout in x2. General properties of density are disussed systematially in x3.The remainder of the paper is devoted to lasses of examples. Abelian va-rieties and �brations are addressed in x4. Fano varieties, espeially thoseof small dimension, are disussed in x5. K3 surfaes, the simplest lass ofvarieties where density of rational points remains a matter of ontroversy,are studied in x6. Several setions are devoted to the twisting method ofBogomolov and Tshinkel, as applied to ellipti K3 surfaes (Theorem 6.4.)Basi properties of the Tate-Shafarevih group are reviewed in x7. The sim-plest appliation of the method, to nonisotrivial ellipti K3 surfaes, is givenin x8. This approah yields an in�nite number of irreduible, nodal, rationalurves in the K3 surfae (see Corollaries 8.12 and 8.13). A more re�ned ap-proah overing the isotrivial ases, and loser in spirit to the original paper[BT3℄ of Bogomolov and Tshinkel, an be found in x9. A third, independentapproah, originating from a letter of J. Koll�ar, is given in x10. Finally, x11ontains the strongest results now known for general K3 surfaes, as well assome statements for higher dimensional varieties. The Appendix is a shortresum�e of Galois ohomology and prinipal homogeneous spaes.Aknowledgments: The author is very grateful to F. Bogomolov and Y.Tshinkel for their generosity in explaining the ideas in their work, boththrough onversations and orrespondene. He would also like to thank J.L.Colliot-Th�el�ene for his enouragement and for sharing unpublished exposi-tory aounts of some of the results overed here. The argument of x10 is dueto J. Koll�ar, who provided numerous other onstrutive suggestions. The au-thor also bene�tted from onversations with D. Abramovih and A. Kresh,who proposed Remark 6.5 and Proposition 8.2 respetively. The manusript2



was greatly improved by insightful omments from T. Szamuely.This paper is based on letures given at the European Summer ShoolHigher Dimensional Varieties and Rational Points, held at the Alfr�ed R�enyiInstitute of Mathematis of the Hungarian Aademy of Sienes.2 The notion of potential densityWe �x some notation. Throughout this paper, we work over a number �eldK. A variety X=K is a geometrially integral sheme of �nite type over K.Its K-rational points are denoted X(K).De�nition 2.1 Let X be a variety over K. The K-rational points of X aredense if X(K) is not ontained in any Zariski losed subset of X. Rationalpoints of X are potentially dense if there exists a �nite �eld extension L=Kover whih rational points are dense.In the sequel, when we say that `potential density holds for X' we mean thatrational points are potentially dense on X.Our motivation for onsidering potential density is to isolate properties ofrational points that follow from the geometri properties of X, rather thanthose that depend on the ground �eld.Example 2.2 Rational points of Pn are dense over Q .Example 2.3 Consider the urveX = fx2 + y2 = �z2g � P2Q :This has no rational points whatsoever, but rational points are potentiallydense. Indeed, over Q(i) we have an isomorphismX '�! fx2 + y2 = z2g(x; y; z) ! (x; y; iz):However, the urve fx2 + y2 = z2g is isomorphi to P1P1 '�! fx2 + y2 = z2g(s; t) ! (2st; s2 � t2; s2 + t2);whih has dense rational points. 3



Example 2.4 The example above admits generalizations to higher dimen-sions. A Brauer-Severi variety X=K is a variety suh that XKa ' PNKa , i.e.,a variety geometrially isomorphi to Pn. Of ourse, suh an isomorphismmay be realized over some �nite extension L=K, and L-rational points ofX are dense. The oni urve of Example 2.3 is the simplest example of aBrauer-Severi variety.From an arithmeti standpoint, the preise nature of the �eld extensionsL=K over whih rational points beome dense is an extremely interestingtopi. Indeed, Brauer-Severi varieties �rst arose in the study of `generisplitting �elds' for entral simple algebras [Am℄[Ro℄. However, our primaryinterest lies in the interation between density of rational points and geomet-ri properties of algebrai varieties. Consequently, we will not keep trak ofthe �eld extension over whih points beome dense. Indeed, in the sequel wewill take �nite extensions of the ground �eld without expliit omment, andeven suppress the notation for the ground �eld.3 Basi properties of potential density3.1 Behavior under morphismsProposition 3.1 Let g : X 9 9 KY be a dominant rational map of projetivevarieties over a number �eld. Assume that rational points of X are potentiallydense. Then rational points of Y are potentially dense.In partiular, potential density is a birational property.Proof: Choose a number �eld L over whih X; Y; and g are de�ned, and X(L)is Zariski dense. Let U � X be an open subset over whih g is a morphism.We have g(U(L)) � Y (L), and the image of a dense set under a dominantrational map remains dense. �De�nition 3.2 A variety Y de�ned over a number �eld is unirational if,over some �nite �eld extension, there exists a dominant rational map g :PN 9 9 KY .Combining Proposition 3.1 with Example 2.2, we obtainCorollary 3.3 Let Y be a variety over a number �eld and assume that Yis unirational. Then rational points of Y are potentially dense.4



Proposition 3.4 (Chevalley-Weil Theorem [We℄) Let � : X ! Y bean �etale morphism of proper varieties over a number �eld. Assume ratio-nal points of Y are potentially dense. Then rational points of X are alsopotentially dense.Sketh Proof: A good modern aount an be found in [Se2℄. Let L be anumber �eld over whih X; Y; and g are de�ned, and over whih rationalpoints of Y are dense. Choose a ring of integers O = OL;S (with S a �niteset of plaes, inluding the in�nite ones) over whih we have the following:1. X and Y have models X and Y over O, i.e., X ! Spe(O) andY ! Spe(O) are at and projetive, with generi �bers XL and YLrespetively;2. g extends to an �etale morphism g : X ! Y.We hoose S to exlude primes over whih g has rami�ation or indetermi-nay. Sine Y is proper, the valuative riterion implies eah L-rational pointof Y extends to a O-integral point. The O-integral points of Y yield pointsof X de�ned over extensions of L of degree � deg(�), with disriminantontained in S. It is a lassial theorem of Hermite that there are a �nitenumber of suh extensions M1; : : : ;Mr. Over one of them rational points ofX are Zariski dense. �Question 3.5 What lasses of morphisms X ! Y share the lifting propertyof Proposition 3.4?One other lass of suh morphisms is �etale projetive bundles (f. [HT2℄).3.2 Negative resultsAny dense subset of a urve is in�nite, so we have the following restatementof the Mordell Conjeture:Proposition 3.6 (Faltings Theorem [Fa1℄) Let X be a urve of genus� 2 over a number �eld. Then rational points are not potentially dense.Example 3.7 Colliot-Th�el�ene, Skorobogatov, and Swinnerton-Dyer [CSS℄give an example of a variety for whih rational points are not potentiallydense, and the proof of nondensity requires Propositions 3.1, 3.4, and 3.6.5



They desribe a smooth projetive surfae Y , whih itself does not dominateany urve of genus � 2 (or, indeed, any variety of general type), but admitsan �etale double over X that does dominate a urve of genus two:X ! C�etale double over #Y :If rational points were potentially dense on Y they would be potentiallydense on X by Proposition 3.4, and thus potentially dense on C as well,ontraditing Proposition 3.6.Let X be smooth and projetive with anonial bundle !X . We say X isof general type if !X is big, i.e.,h0(!
nX ) � Cndim(X); C > 0;for suÆiently large n. The following onjeture would prelude potentialdensity of rational points for suh varieties:Conjeture 3.8 (Lang-Bombieri Conjeture) Let X be a projetive va-riety of general type de�ned over a number �eld. Then rational points on Xare not potentially dense.This is known for subvarieties of abelian varieties whih are of general type[Fa2℄.Remark 3.9 What is the largest lass of projetive varieties for whih po-tential density might hold? In light of Conjeture 3.8 and Propositions 3.1and 3.4, a variety with dense rational points should admit no �etale oversthat dominate varieties of general type. It is not known whether there areany further onstraints. We refer the reader to [HT2℄ and [Ca2℄ for furtherdisussion of this question.4 Abelian �brations4.1 Abelian varietiesWe start with some de�nitions: 6



De�nition 4.1 Let (A; 0) be an abelian variety de�ned over a �eld F ofharateristi zero. A point p 2 A(F ) is nontorsion if the setZp = fnp : n 2 Zgis in�nite and nondegenerate if this set is dense.Proposition 4.2 Let A be an abelian variety over a number �eld K. Afterpassage to a �nite extension L=K, A(L) ontains a nondegenerate point andL-rational points are dense.Sketh Proof: (f. Proposition 3.1 of [HT℄, where a seond argument an befound) The Mordell-Weil Theorem (see [Se2℄) says that A(K) is a �nitelygenerated abelian group for any number �eld K; the rank of A(K) is just therank of this group. The main ingredient in the proof is a result of Jarden andFrey [FJ℄, Theorem 10.1: After passage to a suitable �nite extension L=Kwe have rank A(L) > rank A(K):The argument of [FJ℄ uses p-adi tehniques: Consider primes p totally ram-i�ed over a �xed prime of K. One reates a point, over a suitable extensionof K, with presribed redution mod pn. The ondition on the redutionmod pn is used to show that this point is not in the span of A(K).This result proves the proposition when A is geometrially simple: Forany nontorsion point p 2 A(L), the Zariski losure of Zp � A(L) ontains apositive-dimensional abelian subvariety, and hene is equal to A. In general,the argument proeeds by indution on the number of simple omponents.We assume A = A1 � A2 where A2 is simple and p1 2 A1(K); p2 2 A2(K)are nondegenerate. If (p1; p2) 2 A1 � A2 is degenerate then it is ontainedin a proper abelian subvariety B � A1�A2, whih orresponds to a rationalhomomorphism � 2 Hom(A1; A2)
 Q : It follows that d�(p1) = dp2 for somepositive d. However, the group Hom(A1; A2) is �nitely generated. Againapplying the result of [FJ℄, we obtain a �nite extension L=K and a pointq 2 A2(L) so that q 62 �(p1) for any � 2 Hom(A1; A2)
 Q : �4.2 Abelian �brations over a �eld and prinipal homo-geneous spaesThroughout this setion, F is a �eld of harateristi zero with algebrailosure F a. 7



De�nition 4.3 A variety XF over F is an abelian �bration if it is geomet-rially an abelian variety, i.e., XFa := XF �F F a is isomorphi to an abelianvariety over F a.Remark 4.4 (Warning) We do not assume that XF has a point over F . Inpartiular, there may not be a group law onXF de�ned over F (f. De�nition4.12.)There are a number of auxiliary abelian �brations assoiated to XF . LetJ0(XF ) denote the Albanese of XF , an abelian variety over F satisfying thefollowing ([La℄ II x3):1. The formation of the Albanese ommutes with �eld extensions E=F ,i.e., J0(XE) = J0(XF )�F E.2. There is a morphism over Fs : XF �F XF ! J0(XF ):If E=F is an extension over whih there is a point x 2 XF (E) thensj(XF � fxg) indues an isomorphism ix : XE ' J0(XE) so thats(x1; x2) = ix(x1)� ix(x2).3. Suppose we have another morphism to an abelian varietys0 : XF �F XF ! A;suh that s0(x1; x2) = i(x1)� i(x2), for some i : XE ! AE de�ned overan extension E=F . Then fators s0 through s.Of ourse, XF always has a point over its funtion �eld F (X) (the generipoint x), and we may onsider the ompositionJ0(XF )�F F (X) = J0(XF (X)) i�1x�! XF (X) = XF �F F (X) �1�! XFas a rational map J0(XF ) �F XF 9 9 KXF : Any suh rational map extendsuniquely to a morphism a : J0(XF )�F XF ! XF [La℄ II x1. Over any �eldextension over whih XE 6= ; we an write a(j; x) = j+x. Thus we onlude:XF has the struture of a prinipal homogeneous spae for J0(XF ),lassi�ed by a oyle [XF ℄ 2 H1(�; J0(XF )) (see the Appendix).8



For eah m 2 Z, let Jm(XF ) denote the prinipal homogeneous spaeorresponding to m[XF ℄, whih by desent is also an abelian �bration overF [LT℄x2, Prop. 4. Desent also gives the following morphisms over F :1. the yle-lass morphismXF �F : : :�F XF| {z }m times ! Jm(XF )(x1; : : : ; xm) ! x1 + : : :+ xm;2. the addition morphismJn(XF )�F Jm(XF )! Jm+n(XF );ompatible with the yle lass morphism;3. the multipliation by N morphism�N : Jm(XF )! JmN (XF ):Any zero-yle on XF of degree m, de�ned over F , yields an F -rational pointof Jm(XF ); eah point of XF de�ned over an extension E=F of degree mgives suh a point. The existene of suh a yle implies [XF ℄ = [J1(XF )℄ 2H1(�; J0(XF )) has order dividing m [LT℄, x2, Prop. 5.De�nition 4.5 A multisetion of an abelian �bration XF is a point de�nedover a �nite extension of F . The degree of the multisetion is the smallestdegree of an extension E=F over whih the point an be de�ned. We shallidentify multisetions of degree d with olletions of d onjugate points ofX(F a) M = fm1; : : : ; mdg:The zero-yle m1+ : : :+md is de�ned over F and thus yields an F -rationalpoint of Jd(XF ). If E=F is a degree-d extension over whih some mi isde�ned then we may onsider the point�M = (m1 +m2 + : : :+md)� dmi 2 J0(XF )(E):This may be zero even when d > 1. 9



De�nition 4.6 AmultisetionM of an abelian �brationXF is torsion (resp.degenerate) if �M is torsion (resp. degenerate.) The order of a multisetionis the smallest positive integer N suh that N(mi �mj) = 0 for eah i; j =1; : : : ; d. The order is in�nite when no suh integer exists.Proposition 4.7 A multisetion is torsion if and only if it has �nite order.Proof: Let L=F be a Galois extension ontaining E, and let �M;i 2 J0(XF )(L)be assoiated to the various onjugate points mi; i = 1; : : : ; d. If one �M;i istorsion then all are, and we haved(mi �mj) = �M;j � �M;i;so eah mi �mj must also be torsion. Conversely, if eah mi �mj is torsionthen �M;i = dXj=1(mj �mi)is also torsion. �Proposition 4.8 Let M � XF be a torsion multisetion of order N . ThenM is ontained in a prinipal homogeneous spae for J0(XF )[N ℄, the N-torsion subgroup sheme.Proof: Suppose that the multisetion M has order N , so that Nmi = Nmjfor eah i; j. Then multipliation by N�N : X = J1(XF )! JN (XF )takes M to a single point � 2 JN (XF ), de�ned over F . It follows thatM � ��1N (�), whih is a prinipal homogeneous spae for J0(XF )[N ℄. �Remark 4.9 A torsion multisetion M in an abelian variety A need not beontained in the torsion of A, only in a prinipal homogeneous spae for thetorsion!Remark 4.10 Given a multisetionM 0 = fm1; : : : ; mdg of an abelian �bra-tion XF , it may happen that mi�mj; i 6= j; is torsion for ertain pairs (i; j)but not all suh pairs. Let N denote the smallest positive integer so thatN(mi �mj) = 0 for eah di�erene that is torsion. Then �N maps M 0 ontomultisetion M � JN (XF ), whih is nontorsion if and only if M 0 is nontor-sion. Furthermore, M 0 is ontained in a J0(XE)[N ℄-prinipal homogeneousspae over M , where E is the �eld of de�nition of M .10



4.3 Potential density argumentLet B be a variety over a �eld of harateristi zero.De�nition 4.11 An abelian �bration � : A ! B is a projetive morphismof varieties with generi �ber an abelian �bration over the funtion �eld ofB. An abelian �bration of relative dimension one is an ellipti �bration.A multisetion is an irreduible losed subvariety M ,! A so that theindued M ! B is generially �nite, i.e., the losure of a multisetion ofthe generi �ber. A multisetion of � is nontorsion or nondegenerate if theindued multisetion of the generi �ber is.Additional assumptions are neessary if one wants a good group law:De�nition 4.12 An abelian �bration � : A ! B is Jaobian if it satis�esthe following onditions1. � is a at morphism;2. the lous A � A where � is smooth admits a group lawA�B A! Awith identity 0 : B ! A.For any abelian �bration admitting a rational setion 0 : B 9 9 KA, there isa nonempty open subset B0 � B so that AB0 := A�B B0 ! B0 is Jaobian,e.g., the open subset over whih � is smooth. Given an arbitrary �brationA ! B with multisetion M , after basehange to M there exists a rationalsetion: the image of the diagonal in M �B M � A�B M .Proposition 4.13 Let � : A ! B be an abelian �bration with multisetionM , de�ned over a number �eld K. Assume that1. M is nondegenerate;2. K-rational points of M are dense.Then K-rational points of A are also dense.
11



In the ase of an ellipti �bration, nondegeneray and nontorsion are equiv-alent onditions.Proof: After basehange to an open subset of M , we obtain a Jaobianabelian �bration AM with a nondegenerate setion �M . Thus Z�M is dense inAM and eah multiple n�M has dense rational points. It follows that rationalpoints in AM are dense. Sine AM dominates A, rational points in A are alsodense. �5 Fano varietiesIn the remainder of this paper, we identify lasses of algebrai varieties forwhih rational points are potentially dense.De�nition 5.1 A smooth projetive variety X is Fano if !�1X is ample.Fano varieties admit no nontrivial �etale overs [Ca℄ [De℄ and annot dominatevarieties of general type.Here are the Fano varieties known to have potentially dense rationalpoints:Example 5.2 (Del Pezzo surfaes) Fano varieties of dimension two arealled Del Pezzo surfaes. Classially, it was known that any Del Pezzosurfae X is birational to P2, and thus has potentially dense rational points.Example 5.3 (Cubi hypersurfaes) Nonsingular ubi hypersurfaes ofdimension � 2 are unirational and therefore have potentially dense rationalpoints (Cor. 3.3).Example 5.4 (Fano threefolds) Smooth Fano threefolds are known to beunirational, exept in three ases [IP℄ (see also [HarT℄):1. quarti hypersurfaes in P4;2. weighted hypersurfaes of degree six in P(1; 1; 1; 2; 3);3. double overs of P3 totally branhed over a sexti.The �rst two ases admit ellipti �brations over P2. Arguments similar tothose in the seond half of this survey prove potential density (see [HarT℄and [BT2℄). The third ase remains ompletely open.12



Example 5.5 (Q-Fano threefolds) There are many examples remainingwhere potential density has not yet been studied. For example, there are al-together 95 di�erent families of Q -Fano hypersurfaes in weighted projetivespaes. See [CPR℄ for a onrete aount of their geometry.6 K3 surfaesDe�nition 6.1 A smooth projetive surfae X is a K3 surfae if1. h0(
1X) = 0;2. !X ' OX , i.e., the anonial bundle is trivial.Suh surfaes have been lassi�ed in great detail (see, for example, [BPV℄VIII and [LP℄). In partiular, the underlying omplex manifolds X(C ) areall deformation equivalent and simply onneted. K3 surfaes do not domi-nate varieties of general type, so they ould very well have potentially denserational points.A polarization f of X is a primitive, ample lass in the N�eron-Severigroup NS(X). The degree of (X; f) is the self-intersetion f:f , a positiveeven integer. The K3 surfaes of degree d admit ommon realizations asprojetive varieties.Example 6.2d = 2 a surfae X admitting a degree-two over X ! P2 branhed over asmooth plane sexti urve.d = 4 a nonsingular quarti hypersurfae X � P3, e.g., x40 + x41 = x42 + x43.d = 6 a omplete intersetion of quadri and ubi hypersurfaes in P4.We summarize the known results for K3 surfaes:Theorem 6.3 (In�nite automorphism group) [BT3℄ Let X be a K3 sur-fae de�ned over a number �eld. Assume that the omplex manifold X(C )admits an in�nite automorphism group. Then rational points on X are po-tentially dense.A proof is skethed in x6.1.Theorem 6.4 (Ellipti K3 surfaes) [BT3℄ Let X be a K3 surfae de-�ned over a number �eld. Suppose that X admits an ellipti �bration � :X ! P1. Then rational points on X are potentially dense.13



More preise results on quarti surfaes ontaining a line (see Theorem 6.19)an be found in [HarT℄.We give several approahes to Theorem 6.4; in eah the key tehnialtool is the Tate-Shafarevih group, disussed in x7. The basi insight{thattwisting an ellipti �brations should make it easier to �nd rational points{isdue to Bogomolov and Tshinkel. The �rst approah in x8 works primar-ily in the nonisotrivial ase. It relies on the irreduibility of the p-torsionpoints for large p (see Theorem 8.3). One interesting by-produt is the ex-istene of rational multisetions of unbounded degree (see Theorem 8.7 andits orollaries.) The seond approah in x9 is perhaps the most natural, al-though logially it depends on the �rst. Essentially, one shows that torsionmultisetions have large genera so that rational multisetions must be non-torsion. Our genus estimates for the p-torsion and the assoiated prinipalhomogeneous spaes losely follow [BT3℄. However, the presentation of theintermediate tehnial results and the analysis of the isotrivial ases di�erto some extent. (Lemma 3.25 of [BT3℄ is not quite orret as stated: TheKummer surfae assoiated to a produt of general ellipti urves is a oun-terexample. This neessitates further ad ho analysis in the isotrivial ase.)The third approah in x10 is based on a letter of J. Koll�ar. Most of thedetailed omputation of the previous approahes is replaed by deformation-theoreti properties of rational and ellipti urves in K3 surfaes. The onlylassi�ation results needed are the multipliities of the omponents of de-generate �bers (see Figure 2 of x10).Remark 6.5 (Conditional potential density for ellipti surfaes) Let� : J ! B be a nonisotrivial Jaobian ellipti �bration over a urve of genuszero or one. In partiular, J is smooth and projetive and � admits a setion(f. x7.2). If J is de�ned over a number �eld we expet its rational pointsto be potentially dense. Indeed, Grant and Manduhi [GM1℄ [GM2℄ provethis onditionally, assuming a strong version of the Birh/Swinnerton-DyerConjeture formulated by Deligne and Gross. However, there are isotrivialellipti �brations X ! P1 for whih rational points are known not to bepotentially dense [CSS℄ (see example 3.7).Remark 6.6 (Enriques surfaes) Potential density results for K3 surfaeshave appliation to other lasses of surfaes dominated by them. By de�ni-tion, an Enriques surfae Y is a quotient of a K3 surfae X by a �xed-pointfree involution. Propositions 3.1 and 3.4 imply that potential density of ra-14



tional points for X and Y are equivalent. For results on Enriques surfaesand their K3 double overs, we refer the reader to [BT1℄.6.1 K3 surfaes with automorphismsWe sketh the proof of Theorem 6.3, following [BT3℄.Lemma 6.7 Let X be a K3 surfae. Then the automorphism group of Xats faithfully on the ohomology H2(X;Z). In partiular, an automorphisma : X ! X is uniquely determined by the homology lass of its graph inX �X.This follows from the strong version of the Torelli Theorem for K3 surfaes(see [LP℄ for one aount.)Lemma 6.8 Let X be a K3 surfae de�ned over a number �eld K. Thereexists a �nite extension L=K so that eah automorphism of the omplexmanifold X(C ) is realized as an algebrai morphism de�ned over L.Proof: The automorphism group of X is �nitely generated [St℄, so it suÆesto show that any automorphism a : X ! X an be de�ned over a �niteextension of K. Choose a realization of X�X as a projetive variety over K.The graph �(a) � X �X is a projetive subvariety by the GAGA priniple.Consider the onneted omponent H of the Hilbert sheme of subshemesof X�X ontaining �(a), whih is de�ned over a �nite extension L=K. Thelous in H orresponding to graphs of automorphisms of X is learly open,but �(a) is the only graph of an automorphism of X in its homology lass.It follows that H = [�(a)℄, so �(a) and a are de�ned over L.�Lemma 6.9 LetX be a K3 surfae with in�nite automorphism group. Thenthere exists an indeomposible e�etive divisor lass D so that the orbit ofD is in�nite.We refer the reader to x2 of [LP℄ for a good desription of the indeomposibleelements in the monoid of e�etive divisors on a K3 surfae.Proof: The indeomposible e�etive divisors D with �xed (even) d := D:D ��2 divide into a �nite number of orbits under the ation of the automorphismgroup [St℄. Suppose that there exists suh a divisor with d > 0. This is alwaysthe ase when the e�etive one admit an irrational extremal ray; just takeindeomposible divisors near this ray. The automorphisms �xing suh a D15



admit a faithful representation in D? � NS(X), a negative de�nite lattieby the Hodge index theorem. Thus eah suh stabilizer is �nite.Suppose X has no indeomposible e�etive divisors with d > 0. It followsthat the e�etive one ofX is generated by divisors with d = 0;�2, permutedby the automorphism group. If the N�eron-Severi group NS(X) had ranktwo, then the automorphism group would admit a subgroup of �nite index�xing the generators of the e�etive one, but all suh automorphisms aretrivial. If the N�eron-Severi group has rank greater than two then we applythe `alternative theorem' of Kov�as [Ko℄. Either X ontains no (�2)-urvesor the e�etive one of X is generated by (�2)-urves. In the �rst ase, thee�etive one is `irular' and admits an irrational extremal ray; hene theargument of the previous paragraph applies. In the seond ase, there mustbe an in�nite number of (�2)-urves. If not, a �nite index subgroup of theautomorphism ats trivially on the e�etive one, a ontradition. �Lemma 6.10 Let X be a K3 surfae and D an indeomposible e�etivedivisor lass. Then D ontains a (possibly singular) rational urve.Proof: In the ase where D:D = �2 this is lear. When D:D = 0, D isthe lass of an ellipti �bration, whih admits degenerate �bers. In the asewhere D:D > 0, we use the results of [MM℄: A generi polarized K3 surfaeontains a singular rational urve in the polarization lass f . However, sineD is indeomposible with D:D > 0, (X;D) arises as the speialization ofa polarized K3 surfae. The rational urves of the polarized K3 surfaespeialize to rational urves on X in the lass D. �We omplete the proof of Theorem 6.3. Let X be a K3 surfae within�nite automorphism group, de�ned over a number �eld K. Let D be aindeomposible e�etive divisor lass with in�nite orbit under the automor-phism group. Then after passage to a �nite extension L=K, we may assumethat1. the automorphisms of X are de�ned over L;2. there is a rational urve R with lass [R℄ = D, de�ned over L, withdense rational points R(L) � R.The orbit [a2Aut(X)a(R) is dense in X and L-rational points are dense in theorbit, so L-rational points are dense in X. �16



Example 6.11 [Si℄ Consider K3 surfaes X, de�ned over a number �eld,whih are realized as a omplete intersetionX = fF11 = 0g \ fF22 = 0g � P2 � P2of bihomogeneous forms of bidegree (1; 1) and (2; 2) respetively. The N�eron-Severi lattie is f1 f2f1 2 4f2 4 2where f1 and f2 are the pull-baks of the polarizations from the P2-fators.The projetions X ! P2 are degree-two overs, and the orresponding pairof involutions generate an in�nite group of automorphism on X. These K3surfaes have potentially dense rational points.More generally, we may onsider K3 surfaes with N�eron-Severi lattief1 f2f1 2 nf2 n 2with n � 4. These also admit pairs of nonommuting involutions.6.2 Examples of ellipti K3 surfaesExample 6.12 Harris and Tshinkel [HarT℄ onsider the following speiallass of ellipti K3 surfaes. Let X � P3 be a quarti surfae ontaining aline `. Choose oordinates so that ` = f(w; x; y; z) : w = x = 0g and onsiderthe morphism � : X ! P1(w; x; y; z)! (w; x):This is an ellipti �bration: Eah hyperplane ontaining ` intersets X in theunion of ` and a ubi plane urvefw + �x = 0g \X = ` [ E� E� a plane ubi urve:We have ��1(�) = E� and E� is a smooth genus one urve for generi �,hene � is an ellipti �bration.A partiularly simple example is the Fermat surfae x40 + x41 = x42 + x43,whih ontains the line x0 � x2 = x1 � x3 = 0.17



Of ourse, there are numerous other examples of ellipti K3 surfaes. Wegive haraterizations of ellipti K3 surfaes in Proposition 11.1.6.3 Salient rami�ation and torsion multisetionsIn this setion, we sketh some partiularly elegant geometri methods for�nding nontorsion multisetions. We work in harateristi zero.De�nition 6.13 [BT1℄ Consider an ellipti �bration � : X ! P1 and amultisetionM . We say thatM is saliently rami�ed ifM ! P1 rami�es overa point in a smooth �ber of �.Proposition 6.14 Let � : X ! P1 be an ellipti �bration and M a salientlyrami�ed multisetion. Then M is nontorsion.Proof: Consider the �bration X �P1 M !Mobtained after base hange. This has a setion (see x4.3). If the morphismM ! P1 rami�es at m then the morphism M �P1 M ! M rami�es at(m;m). Indeed, for a �nite at morphism, rami�ation ours preiselywhere the ardinality of �bers drops; this ardinality is unhanged underbase extension. (Also, being rami�ed is a loal property in the faithfully attopology [EGAIV℄ 17.7.4.) Observe that we do not normalize M �P1 M , asthis would destroy some of the rami�ation.However, the torsion of any group sheme in harateristi zero is �etaleover the base, and we have a ontradition. �Combining this with Proposition 4.13, we obtain:Corollary 6.15 Let � : X ! P1 be an ellipti �bration, de�ned over anumber �eld. Assume that � admits a saliently rami�ed multisetion ofgenus zero or one. Then rational points of X are potentially dense.Remark 6.16 This approah has advantages and disadvantages. The maindisadvantage is the diÆulty in produing saliently rami�ed multisetions forlarge lasses of varieties: In general, there is no easy way to produe themout of `thin air'.The main advantage is that, one we are given a multisetion, it is rel-atively easy to hek whether it is saliently rami�ed. Furthermore, if X; �;18



and M are de�ned over K and M(K) is dense, then X(K) is also dense.This gives a good tool for heking density over a given �eld.6.4 Reprieve: Quarti surfaes ontaining a lineWe return to Example 6.12, again following [HarT℄. Assume that the quar-ti surfae X and the line ` are de�ned over a number �eld K. The line `itself intersets �bers of � in three points and de�nes a degree-three multise-tion. This multisetion is saliently rami�ed provided the following geometriondition is satis�ed:Tangeny ondition Some smooth �ber of � intersets the line` tangentially.Rational points of ` ' P1 are learly dense over K, so the Tangeny onditionsuÆes to guarantee density of X(K).The geometri ondition is satis�ed for the generi quarti surfae on-taining a line{but not every suh surfae. It fails for the Fermat surfaex40 + x41 = x42 + x43 with ` = fx0 � x2 = x1 � x3 = 0g. The morphism� : X ! P1 is given by the rational funtionx0 � x2x3 � x1 = x31 + x21x3 + x1x23 + x33x30 + x20x2 + x0x22 + x32 :Taking x0 and x1 as oordinates on `, the rational funtion restrits to x31=x30,whih rami�es (to order three) at the points (1; 0; 1; 0) and (0; 1; 0; 1). Herethe �bers of � are three oinident lines.Combining the analysis of the salient rami�ation with a ase-by-asestudy of the possible torsion multisetions, Harris and Tshinkel obtain thefollowing:Theorem 6.17 ([HarT℄ Theorem 4.1) Let X be a smooth quarti surfaeontaining a line ` and � : X ! P1 the ellipti �bration obtained by projetingfrom `. Assume there do not exist six lines ontained in X and meeting `.Then ` is a nontorsion multisetion of `.Corollary 6.18 ([HarT℄ Theorem 1.5.a) Retain the assumptions above,and assume that X and ` are de�ned over a number �eld K. Then therational points X(K) are dense. 19



After further analysis of degenerate ases, Harris and Tshinkel prove thefollowing general result, whih is a speial ase of Theorem 6.4:Theorem 6.19 Let X be a smooth quarti surfae de�ned over a number�eld. If X ontains a line ` then rational points of X are potentially dense.7 Twisting ellipti �brations7.1 The Tate-Shafarevih groupWe refer the reader to [Kod℄, [Shaf1℄, and [Ogg℄ for full details.Let F = C (P1) be the funtion �eld of P1, with absolute Galois group �.Let (JF ; 0) be an ellipti urve over F . The Tate-Shafarevih group Sh(JF )is de�ned as the JF -prinipal homogeneous spaes whih are loally trivialat eah plae, i.e., the kernelH1(�; JF )! Yb2P1H1(�̂b; JF̂b)where F̂b is the ompletion/henselization of F at b and �̂b its absolute Galoisgroup.We reall some properties of Sh(JF ).Proposition 7.1 1) Let XF be a JF -prinipal homogeneous spae. Then[XF ℄ 2 H1(�; JF ) has order m if and only if there is a point of XF de�nedover a �eld extension of degree m.2) There are exat sequenes0 ! JF̂b(F̂b)=mJF̂b(F̂b) ! H1(�̂b; JF̂b[m℄) ! H1(�̂b; JF̂b)[m℄ ! 0# # #0 ! JF (F )=mJF (F ) ! H1(�; JF [m℄) ! H1(�; JF )[m℄ ! 0:3) Sh(JF ) is in�nitely divisible.Proof: We have already seen that Jm(XF )(F ) 6= ; whenever XF has a pointover a degree m extension of F . Conversely, suppose we have an F -rationalpoint of Jm(XF ). Suh a point need not ome from a line bundle L onXF de�ned over F ; the obstrution lies in the Brauer group of F (by theHohshild-Serre spetral sequene0! H1(O�XF )! H0(�; H1(O�XFa ))! H2(�; H0(O�XFa )) = H2(�; F a�):)20



The Brauer group of F = C (P1) is trivial beause it is a C1 �eld. TheRiemann-Roh formula applied to L gives a degree-m yle on XF .The seond assertion is quite standard (see x1, 2.1 of [Shaf1℄). The thirdstatement may be found in [Shaf1℄ x2.5. It uses the fat that there are nonontrivial families of ellipti urves over P1 without degenerate �bers. �In light of the exat seqenes above, the redution homomorphismH1(�; JF [m℄)! H1(�̂b; JF̂b[m℄)an often shed light on Tate-Shafarevih group:Proposition 7.2 (Corollary of [Shaf1℄, x1.2.) Let F̂ = C ((t)) with ab-solute Galois group �̂, and JF̂ an ellipti urve over F̂ . Then for eah mjH1(�̂; JF̂ [m℄)j = jJF̂ [m℄j:7.2 Models of ellipti surfaesReall that an ellipti �bration � : X ! P1 is relatively minimal if its �bersontain no (�1)-urves, i.e., KX is numerially e�etive relative to �. Givenan ellipti urve XF over F = C (P1), there is a unique (smooth, projetive)relatively minimal model � : X ! P1. In partiular, for eah ellipti �bration� : X ! P1 there is an assoiated Jaobian �bration � : J ! P1, whihadmits a zero-setion. It is obtained by taking the relative minimal modelof the Jaobian JF := J0(XF ). We also have Jm(X), assoiated to Jm(XF ).Multipliation by N , �N : Jm(XF )! JmN (XF );indues a dominant rational map over P1�N : Jm(X) 9 9 KJmN (X):De�nition 7.3 Let � : X ! P1 be a relatively minimal ellipti �bration.A �ber ��1(b); b 2 P1, is multiple if eah of its irreduible omponents hasmultipliity > 1.A Jaobian �bration always has a zero setion, and thus has no multiple�bers. A �ber may have some nonredued irreduible omponents withoutbeing multiple. 21



Proposition 7.4 Let X ! P1 be a relatively minimal ellipti �bration.Then X has no multiple �bers if and only if XF is an element of Sh(J(XF )).Proof: The �ber ��1(b) is not multiple if and only if � has a setion in ananalyti/�etale neighborhood of b. This is equivalent to XF̂b 6= ;. �Proposition 7.5 Let � : X ! P1 be an ellipti surfae without multiple�bers, with Jaobian JF . Then m[XF ℄ = 0 in Sh(JF ) if and only if there isa multisetion M � X of relative degree m over P1.Proof: The �rst part of Proposition 7.1 gives this; M is obtained by takingthe losure of the yle in XF of relative degree m. �Proposition 7.6 Let � : X ! P1 be a relatively minimal ellipti �brationwithout multiple �bers, with Jaobian �bration � : J ! P1. For eah b 2 P1,X and J are isomorphi over an analyti/�etale neighborhood of b.Proof: Sine X and J are relatively minimal, they remain relatively minimalafter ompletion/henselization, and minimal models of surfaes (and N�eronmodels of ellipti urves) are unique. �We remarked in Proposition 7.1 that Sh(JF ) is in�nitely divisible for anellipti urve JF over F = C (P1). The preise struture of this group admitsan elegant interpretation in terms of the transendental ohomology of theompat K�ahler manifold J :Proposition 7.7 ([Shaf2℄ xVII.8, Theorems 11 and 12,[Shi℄) Let J ! P1 bea nontrivial Jaobian ellipti surfae with generi �ber JF . ThenSh(JF ) = H2(J;Z)tran
 Q=Z;whereH2(J;Z)tran = H2(J;Z)=(H2(J;Z) \H1(J;
1J)) = H2(J;Z)=NS(J);the integral lasses modulo the N�eron-Severi group.Remark 7.8 For ellipti K3 surfaes, the formulaSh(JF ) ' (Q=Z)e; e = rank H2(J;Z)tranmay also be dedued from the Ogg-Shafarevih formula ([Shaf1℄ x2.3, Theo-rem 3, [Ogg℄ Theorem 2) and the formula for the rank of the transendentallasses quoted in x7.4 [SI℄. This allows us to dedue e from the rank of JFand the degenerate �bers of J ! P1.22



7.3 Twisting ellipti K3 surfaesProposition 7.9 An ellipti K3 surfae � : X ! P1 is relatively minimaland never has multiple �bers.Proof: The relative minimality follows beause KX = 0. We may then usethe lassi�ation of singular �bers for minimal ellipti surfaes [BPV℄ pp.151. The possible multiple �bers take the form mD, where D is one ofthe degenerate �bers enumerated in Kodaira's lassi�ation. Now D � Xis e�etive and numerially e�etive, with self-intersetion D:D = 0. Thelassi�ation theory of linear series on K3 surfaes [SD℄ implies jDj induesan ellipti �bration (f. Proposition 11.1). �Proposition 7.10 Let X be a smooth projetive variety, � : X ! P1 arelatively minimal ellipti �bration, and � : J ! P1 its Jaobian �bration. IfX is a K3 surfae then J is a K3 surfae. If J is a K3 surfae and X hasno multiple �bers then X is a K3 surfae.Proof: Proposition 7.9 and our assumptions imply that X and J are bothrelatively minimal ellipti surfaes without multiple �bers. In partiular, theyhave isomorphi �bers (f. Prop. 7.6.) The topologial Euler harateristis�(X) and �(J) are therefore equal. Both J and X are ellipti surfaes,so K2J = K2X = 0 and Noether's formula implies �(OX) = �(OJ) = 2.The anonial bundle formula for ellipti surfaes [BPV℄ V.12.1,12.2 impliesKX = 0 if and only if KJ = 0. Any surfae with K = 0 and �(O) = 2 is aK3 surfae. �Remark 7.11 Let B be a smooth projetive urve, X ! B an abelian�bration, and J ! B the N�eron model of its Albanese. Then hi(X;!X) =hi(J; !J) for eah i (by [Kol2℄, Theorem 2.6 and Corollary 3.2).One distinguishing property of ellipti K3 surfaes is that they admitrational multisetions.Proposition 7.12 Let X ! P1 be an ellipti K3 surfae with Jaobian JF ,so that [XF ℄ 2 Sh(JF ) has order m. Then there exists a rational multisetionM � X of relative degree m.Proof: Proposition 7.5 gives a multisetion M̂ of relative degree m. Thereexists an indeomposible e�etive divisor lass D so that M̂ �D is e�etiveand D has positive degree over the base. It must have degree exatly m23



beause the order of [XF ℄ equals m. Lemma 6.10 implies D ontains anirreduible rational urve M . �Combining Propositions 7.10, 7.5, and 7.7 with the multipliation mapintrodued in x7.2, we obtainCorollary 7.13 Let X ! P1 be an ellipti K3 surfae, with Jaobian Jand generi �ber JF . For eah integer N , there exists an ellipti K3 surfaeX 0 ! P1 with Jaobian J so thatN [X 0F ℄ = [XF ℄ and order [X 0F ℄ = N � order [XF ℄in Sh(JF ). There is a dominant rational map X 0 9 9 KX over P1.7.4 Results of Shioda-InoseTo ompute transendental ohomology and the Tate-Shafarevih group inpartiular examples, we use the following (see [SI℄):Proposition 7.14 Let � : X ! P1 be a ellipti K3 surfae with Jaobian� : J ! P1. Then the N�eron Severi group has rankrank NS(X) = 2 + r(JF ) +Xb (mb � 1)and the topologial Euler harateristi is�(X) = 24 =Xb �b;where r(JF ) is the rank of the group of setions and mb and �b are given bythe following table:Kodaira type Ia; a > 0 II III IV I�a ; a � 0 II� III� IV �mb a 1 2 3 a+ 5 9 8 7�b a 2 3 4 a+ 6 10 9 8Subtrating the two formulas of Proposition 7.14 we obtain �ndCorollary 7.15 Let � : X ! P1 be an ellipti K3 surfae. Let N1 denotethe number of degenerate �bers of type Ia; a > 0, and N2 the number ofdegenerate �bers of other types. Then we haverank NS(X) +N1 + 2N2 = 26 + r(JF ):24



7.5 A remark on Fourier-Mukai transformsPerhaps the simplest way to onstrut isogenies of K3 surfaes is by takingtwists of ellipti �brations. This is not widely known, so we give a briefaount here.By de�nition, two K3 surfaes X and Y are isogenous if the Hodge stru-tures H2(X) and H2(Y ) are isomorphi over Q . A natural problem, �rststudied systematially by Mukai [Mu℄, is how suh isogenies are indued byorrespondenes between X and Y . Indeed the Hodge onjeture, applied toX � Y , predits that eah isogeny between X and Y should be indued byan algebrai yle, whih ideally should admit a geometri desription. Typ-ially, Y arises as a moduli spae of simple sheaves on X, with the isogenyindued by Chern lasses of the universal bundle on X � Y .Assume that � : J ! P1 is a Jaobian ellipti K3 sufae and � : X ! P1represents an element [XF ℄ 2 Sh(JF ) of order m > 1. We interpret J asJm(X), the degree-m omponent of the Piard group relative to �. Thegeneri point of J parametrizes a line bundle L of degree m supported onsome �ber of �. We extrat a simple sheaf E from the kernel of the globalsetion map 0! E ! H0(X;L)
OX ! L! 0;with rank m and Chern lasses 1(E) = �D and 2(E) = m, where D is thelass of a �ber of �. The moduli spae of suh sheaves is the K3 surfae J .We reall Mukai's proedure for omputing the isogeny between X andJ . Consider� := fa 2 H2(X;Z) : a:D � 0 (mod m)g � H2(X;Z);a sublattie of index m. We assumed that [XF ℄ 2 Sh(JF ) has order m, sothe algebrai lassesH2(X;Z)alg := H2(X;Z)\H1(X;
1X) � �:Set D0 = D=m and take �0 to be the lattie obtained from � by adjoiningD0, so that �0=� is yli of order m. Observe also that1. The intersetion form on H2(X;Z) indues quadrati forms on � and�0; the form on �0 is integral and unimodular.2. � 
 C and �0 
 C inherit Hodge strutures from H2(X), so we mayde�ne �alg (resp. �0alg) as the integral (1; 1)-lasses and �tran = �=�alg(resp. �0tran = �0=�0alg). 25



3. D0 2 �0alg with D0 � D0 = 0, and there exists a lass � 2 �0alg withD0 � � = 1 (see Proposition 7.5).4. �tran = �0tran and �tran � H2(X;Z)tran so that the quotient is yli oforder m.Indeed, Mukai proves that �0 is the Hodge struture for the moduli spaeof sheaves of type E , whih oinides with the Jaobian ellipti �bration J .Finally,H2(X;Z)tran=H2(J;Z)tran is yli of orderm and thus determines anelement of H2(J;Z)tran
 (Q=Z) of order m. This oinides with the elementalluded to in Proposition 7.7.8 Approah I: Irreduibility of torsion in thenonisotrivial ase8.1 Group-theoreti resultsWe use the notation of the Appendix, in partiular, the exat sequene1! (Z=pZ)�2 ! A�SL2(Z=pZ) q! SL2(Z=pZ)! 1; (1)with splitting � : SL2(Z=pZ) ,! A�SL2(Z=pZ).Proposition 8.1 Let p 6= 2; 3 be prime. Let H 0 � A�SL2(Z=pZ) be a sub-group with q(H 0) = SL2(Z=pZ). Then one of the following is true:1. there is a point in (Z=pZ)�2 �xed by eah element in H 0, so this groupis onjugate to SL2(Z=pZ);2. H 0 = A�SL2(Z=pZ).Proof: First, assume that q : H 0 ! SL2(Z=pZ) has nontrivial kernel. Eahelement of the kernel is in (Z=pZ)�2 � A�SL2(Z=pZ) and ats via trans-lation by a nonzero element v 2 (Z=pZ)�2. Any other nonzero elementw 2 (Z=pZ)�2 an be obtained by applying an element of SL2(Z=pZ), whihats by onjugation on (Z=pZ)�2 � A�SL2(Z=pZ). The surjetivity assump-tion implies w an also be obtained onjugating with an element ofH 0. Heneevery translation is ontained in H 0 and the seond alternative holds.26



Now we assume q : H 0 ! SL2(Z=pZ) is an isomorphism. Consider theation of H 0 ' SL2(Z=pZ) on polynomials over (Z=pZ)�2 of degree � 10 + 1x1 + 2x2; 0; 1; 2 2 Z=pZ:We laim the resulting representation is ompletely reduibleh1i � hx1 � v1; x2 � v2i ; ywhere (v1; v2) is the �xed point of the ation. We know that �(�I), whereI is the identity, is semisimple and the �1-eigenvalue deomposition of thelinear polynomials takes the form y. It suÆes to show that every otherelement of H 0 respets this deomposition. ConsiderS = �0 �11 0 � T = �0 �11 1 � 2 SL2(Z);whih generate SL2(Z); [Se1℄ x7.1 ontains a proof they generate SL2(Z)=� Iand they obviously yield �I. These matries therefore generate SL2(Z=pZ)as well, so it suÆes to show they respet deomposition y. These matriesare semisimple over Z=pZ and satisfy the relationsS2 = T 3 = �I;i.e., they have eigenspae deompositions respeting our deomposition. �Proposition 8.2 For any proper subgroup H ( SL2(Z=pZ), the index of His at least p.Proof: We have SL2(Z=2Z) the symmetri group S3 and SL2(Z=3Z) a entralextension of the alternating group A4 by a group of order two. The resultholds in these speial ases, so we may restrit attention to ases wherep 6= 2; 3. Let r = index(H) = jSL2(Z=pZ)=Hj and onsider the assoiatedoset representation SL2(Z=pZ)! Sr:The kernel K � SL2(Z=pZ) is a normal subgroup, as is its image K 0 �SL2(Z=pZ)= h�Ii. For p > 3 the group SL2(Z=pZ)= h�Ii is simple, so eitherK 0 is trivial or the entire group, whih is impossible. If K 0 is trivial thenjSL2(Z=pZ)= h�Ii j = p(p2 � 1)=2 divides r!, so the index r � p. �27



8.2 Irreduibility of torsionThroughout this setion, F denotes the funtion �eld of P1. We onsider theirreduibility of ertain shemes over F :Theorem 8.3 Let J ! P1 be a nonisotrivial Jaobian ellipti �bration, withgeneri �ber JF . Let p be a suÆiently large prime number.1. The nonzero p-torsion JF [p℄� f0g is irreduible.2. Any nontrivial JF [p℄-priniipal homogeneous spae PF is irreduible.Proof: Let U � P1 be the open subset over whih the �bration is smooth.Consider the monodromy representation% : �1(U)! SL2(Z);with image �0.Lemma 8.4 �0 � SL2(Z) has �nite index.Proof: Let V ! U be the overing spae with overing group �0, so thatU = �0 n V . The pull-bak of J to V has trivial monodromy, so we haveV ! H# #U j! A 1 ' SL2(Z) nHwhere H is the upper half plane and A 1 is the j-line. Both vertial maps are�0-equivariant, so we have a fatorization�0 nH% &U j�! SL2(Z) nH:Sine j has �nite degree, �0 has �nite index.�In the sequel, we take � to be the absolute Galois group of the funtion�eld F = C (P1). The pro�nite ompletion of the fundamental group �1(U)is a quotient of �, orresponding to the maximal extension of F unrami�edover U . The (mod p) redution of the monodromy� : �1(U)! SL2(Z=pZ)28



fators through the pro�nite ompletion and indues a representation�! SL2(Z=pZ):We use the notation of the Appendix. The p-torsion JF [p℄ is a �-twistof (Z=pZ)�2 and is lassi�ed by a representation � : �! SL2(Z=pZ), whihoinides with the representation �(mod p).Lemma 8.5 For suÆiently large primes p, � is surjetive.This proves the �rst assertion of the Theorem.Proof of lemma: The index of �(�) in SL2(Z=pZ) divides the index of �0 inSL2(Z). By Proposition 8.2, any proper subgroup of SL2(Z=pZ) has indexat least p. It follows that �(�) = SL2(Z=pZ) for p greater than the index.The irreduible omponents of JF [p℄ � f0g orrespond to the orbits of �(�)on (Z=pZ)�2� f0g. �To eah JF [p℄-prinipal homogenenous spae PF , Proposition A.2 assignsa representation � : �! A�SL2(Z=pZ) with q Æ � = �.Lemma 8.6 For suÆiently large primes p, � is surjetive provided PF isnontrivial.Then �(�) ats transitively on (Z=pZ)�2 and PF is irreduible, and the seondassertion of the Theorem is proved.Proof of lemma: We may assume � is surjetive. If �(�) were ontained insome onjugate of SL2(Z=pZ)� A�SL2(Z=pZ), then it would �x an elementof (Z=pZ)�2, ontraditing the nontriviality of PF . Then Proposition 8.1implies �(�) = A�SL2(Z=pZ). �8.3 Prodution of rational multisetionsTo prove potential density for an ellipti K3 surfae � : X ! P1, we pro-due a plethora of rational multisetions, with the hope that some might benontorsion. The next result gives an in�nite sequene of suh multisetions,with unbounded degree.Theorem 8.7 Let X ! P1 be a nonisotrivial ellipti K3 surfae, with Jao-bian �bration J ! P1 and generi �ber JF . Suppose that [XF ℄ 2 Sh(JF ) hasorder m and let p � m be prime. Then there exists a rational, nontorsion,multisetion M � X of degree mp. 29



Combining this with Proposition 4.13, we easily dedue the following speialase of Theorem 6.4:Theorem 8.8 Let � : X ! P1 be a nonisotrivial ellipti K3 surfae over anumber �eld K. Then rational points of X are potentially dense.Proof of Theorem 8.7: Corollary 7.13 yields an ellipti K3 surfae X 0 ! P1with Jaobian J so thatorder [X 0F ℄ = p � order [XF ℄ and p[X 0F ℄ = [XF ℄as well as a dominant rational map�p : X 0 9 9 KJp(X 0) = X:Proposition 7.12 gives a rational urve M 0 � X 0 of relative degree mp. LetM be the image �p(M 0), whih is also a rational urve, and onsider theindued �nite morphism �p :M 0 !M:Lemma 8.9 �p maps M 0 birationally onto M , whih thus has degree mpover P1.Proof of lemma: Suppose not, so thatM has degree stritly smaller than mp.Sine [XF ℄ 2 Sh(JF ) has order m, Proposition 7.5 guarantees M has relativedegree equal to m. Furthermore, the indued M 0 !M has degree p.Let fm01; : : : ; m0mpg denote the geometri points of M 0F , lying over thegeneri point of the base P1. Sine �p(m0i1) = �p(m0i2) for some i1 6= i2,we dedue that some of the m0i1 � m0i2 are p-torsion, e.g., the points lyingover a given mi 2 MF . We basehange to M to obtain a ellipti �brationX 0�P1M !M . Using the inlusion and the map �p, imbedM 0 ,! X 0�P1Mso the image is a p-torsion multisetion of degree p over M . Let E denotethe funtion �eld of M , a degree m extension of F , and JE the basehangeof JF to E. Then M 0E is ontained in a prinipal homogeneous spae PE forJE[p℄ (see Remark 4.10).We analyze the struture of JE[p℄. First, if p is hosen suÆiently large,we may assume the monodromy representation� : �! SL2(Z=pZ)30



is surjetive (see Lemma 8.5). By Proposition 8.2, the degree-m extensionE=F is linearly disjoint from the SL2(Z=pZ) extension of F assoiated withJF [p℄. Indeed, the assoiated Galois extension of F has no subextensions withdegree dividing m. Hene, even after base extension to E, the monodromyrepresentation still surjets onto SL2(Z=pZ).We return to the prinipal homogeneous spae PE. If it is trivial thenTheorem 8.3 shows it has just two omponents, the identity and the non-identity, neither of whih has degree p. If it is nontrivial then an appliationof Proposition 8.1, as in the argument for Lemma 8.6, shows it is irreduiblewith just one omponent of degree p2. In either ase we dedue a ontradi-tion, so M must be a multisetion of degree mp in X. �It remains to show that M is nontorsion, whih is the ase if M 0 is non-torsion:Lemma 8.10 M 0 � X 0 is nontorsion.Proof of lemma: Suppose that M 0 is torsion of order N , so that �N(M 0) �JN(X 0) is a setion. Proposition 7.5 implies that mp = order[X 0F ℄ divides N .Write N = np and onsider the imageM 00 = �n(M 0) � Jn(X 0);a multisetion of order p and degree d > 1, where djmp. By Proposition 4.8,M 00 is ontained in a prinipal homogeneous spae PF for the p-torsion JF [p℄.We apply Theorem 8.3: If PF is nontrivial then it is irreduible of degree p2and pjm, a ontradition. If PF is trivial then d = p2� 1, whene (p2� 1)jm,a ontradition. �Remark 8.11 For the appliation to Theorem 8.8, we only really need M 0to be nontorsion. Then we may apply Proposition 4.13 to X 0 and potentialdensity for X follows from Proposition 3.1. (If X is de�ned over a number�eld then X 0 and M 0 are as well.)The preise desription of the multisetion M does give interesting on-sequenes:Corollary 8.12 Every nonisotrivial ellipti K3 surfae ontains an in�nitenumber of irreduible rational urves.31



Corollary 8.13 For eah nonisotrivial Jaobian ellipti K3 surfae withN�eron-Severi group of rank two, there exists an in�nite sequene of irre-duible rational urves with deomposible divisor lasses.These annot be (�2)-urves [LP℄ x2.Proof of orollary: A Jaobian ellipti K3 surfae with N�eron-Severi rank twohas e�etive one generated by the lasses of a �ber E and the zero setion� [SD℄ E �E 0 1� 1 �2 :Thus any multisetion of relative degree > 1 is deomposible. �9 Approah II: genus estimatesBefore diving into tehnial details, we indiate the main idea of this ap-proah. Consider the modular urveX1(n) = f(E; P ) : E an ellipti urve ; P 2 E of order ng= ' :Any family of ellipti urves E ! B with n-torsion setion gives a morphismB ! X1(n). For large primes X1(p) has positive genus [Miy℄ x4.2, so thereare no nonisotrivial families of ellipti urves with p-torsion setion over P1.We shall prove similar results for torsion multisetions: If they have largetorsion order they must have positive genus.9.1 The Riemann-Hurwitz formulaLet F be the funtion �eld of a smooth projetive urve B, MF a �niteredued sheme over F , M the normalization of B in the fration ring ofMF , and f : M ! B the indued �nite morphism. We do not assume M isirreduible. The genus g(MF ) is de�ned as the arithmeti genus of M , andis omputed by the Riemann-Hurwitz formula2g(M)� 2 = deg(f)(2g(B)� 2) + Xm2M em;where em is the loal rami�ation order at m.32



Let � be the absolute Galois group of F (or the fundamental group of theopen subset U � B over whih f is unbranhed). For eah b 2 B, writef�1(b) = fm1; : : : ; mr(b)g:Let b 2 � represent the onjugay lass of a generator for the Galois groupof the ompletion F̂b of F at b (or the lass of a small loop around b.) Theover f yields a representation into the symmetri group' : �! Sdeg fwhere '(b) gives the loal monodromy at b. If we represent this as a produtof disjoint yles '(b) = �1 : : : �r(b);then the yles are in one-to-one orrespondene with the points fm1; : : : ; mr(b)gand length(�i) = emi + 1:This allows us to rewrite the Riemann-Hurwitz formula2g(M)� 2 = deg f(2g(B)� 2) +Xb2B(deg(f)� r(b));where r(b) is the number of orbits of '(b) 2 Sdeg f .9.2 Genera of prinipal homogeneous spaesTheorem 9.1 Let F be the funtion �eld of a smooth projetive urve B;for eah b 2 B, let F̂b denote the ompletion of F at b. Let HF be a �nitegroup sheme over F and PF a HF -prinipal homogeneous spae over F .Then g(HF ) � g(PF ), with equality only when PF̂b is a trivial HF̂b-prinipalhomogeneous spae for eah b 2 B.Proof of theorem: We use the notation of the Appendix and x9.1, and useH and P to denote the normalizations of B in HF and PF respetively. Let� denote the absolute Galois group of F , G = HFa the group of pointsof HF over the algebrai losure, and G0 the assoiated twisted form, withlassifying oyle� 2 H1(�;Aut(G)) = Hom(�;Aut(G)):33



By Proposition A.2, PF is lassi�ed by a representation� : �! A�(G)so that q Æ � = �, where q : A�(G)! Aut(G) is the quotient map.For eah b 2 B let b 2 � orrespond to the generator of the absoluteGalois group of F̂b (or the lass of a loop around b in the fundamental group.)As we saw in x9.1, the rami�ation of H ! B (resp. P ! B) over bis determined by the number of orbits of �(b) (resp. �(b)) on G. ByProposition A.2, the HF̂b-prinipal homogeneous spae PF̂b is trivial only if�(b) is onjugate to �(b) by some �g 2 G.To apply the Riemann-Hurwitz formula, it suÆes to establish the fol-lowing:Proposition 9.2 Let G be a �nite group, a 2 �(Aut(G)), and  2 A�(G)so that q( ) = q(a). Then we have# orbits( ) � # orbits(a);with equality only if  = �ga��1g for some g 2 G.Proof of proposition: Let Aut(G) and A�(G) at on G from the left. SineA�(G) is a semidiret produt of G by Aut(G) and q( ) = q(a), we mayrepresent  = �ha for some �h, with h 2 G ating on G by left translation.For eah � 2 A�(G) and N 2 N , de�neFix(�;N) = fg 2 G : �N(g) = gg;the elements �xed by the Nth power of �; Fix(�; 1) is the set of �-�xedpoints. We write O(�;N) = jFix(�;N)j. Observe the following properties:1. Fix(�;N1) � Fix(�;N2) whenever N1jN2.2. Fix(�;N) is the elements ontained in a �-orbit with ardinality divid-ing N .3. When a 2 �(Aut(G)) � A�(G), Fix(a;N) is a subgroup of G.4. When  = �ha for a 2 �(Aut(G)), Fix( ;N) is either empty or isa prinipal homogeneous spae for Fix(a;N). In partiular, eitherO( ;N) = 0 or O( ;N) = O(a;N).34



We verify the last assertion: Take g1; g2 2 Fix( ;N) and g 2 Fix(a;N), sothat g = aNg and gi =  N (gi); i = 1; 2. Sine  N = (�ha)N = �h0aN for someh0 2 G, we have g1 = �h0aN (g1), �h0aN (g1g) = �h0aN (g1)aN(g) = g1g, andg1g 2 Fix( ;N). Furthermore,aN (g�11 g2) = aN(g1)�1aN (g2) = (��1h0 g1)�1��1h0 g2 = g�11 g2so that g�11 g2 2 Fix(a;N).Let o(�; d) denote the number of �-orbits of G with ardinality d, so thatO(�;N) = XdjN o(�; d)do(�; d) = 1=dXjjd O(�; d=j)�(j)where � is the Mobius funtion. Then the total number of �-orbits is# orbits(�) = Xdj order(�) o(�; d) =Xd 1=dXjjd O(�; d=j)�(j)= Xjj order(�)O(�; j)=j Xkj order(�)=j �(k)=k= Xjj order(�)O(�; j)=j Y` prime j order(�)=j(`� 1)=`:This is a positive linear ombination of the O(�; j). We have seen thatO( ; j) � O(a; j) for eah j, hene# orbits( ) � # orbits(a):If equality holds then O( ; j) = O(a; j) for eah j so, in partiular,O( ; 1) 6= 0. If  �xes an element g 2 G then ��1g  �g �xes the identity.However, any element of A�(G) �xing the identity is in �(Aut(G)) andq(��1g  �g) = q( ) = q(a);hene  = �ga��1g . �
35



9.3 Genus of the p-torsionWe organize our omputation by the Kodaira type of the degenerate �ber(see [Kod℄ x9, Table 1 or [BPV℄ pp. 159).Theorem 9.3 Let J ! B be a relatively minimal Jaobian ellipti �brationwith generi �ber JF . Suppose there are n0 degenerate �bers of type I�0 , n01degenerate �bers of type Ia; a > 0, n001 degenerate �bers of type I�a ; a > 0, n2�bers of type II or II�, n3 �bers of type III or III�, and n4 �bers of typeIV or IV �.If p is a suÆiently large prime number then2g(JF [p℄)� 2 = p2(2g(B)� 2) + n01(p� 1)2 + n001(p2 � p)+(p2 � 1)(1=2n0 + 5=6n2 + 3=4n3 + 2=3n4)2g(JF [p℄� f0g)� 2 = n01(p� 1)2 + n001(p2 � p) + (p2 � 1)(2g(B)� 2+1=2n0 + 5=6n2 + 3=4n3 + 2=3n4):Remark 9.4 JF [p℄ does not generally extend to a group sheme �nite andat over B. Any suh group sheme would be smooth over B, but the proofof the theorem shows the existene of rami�ation at singular �bers.Corollary 9.5 Retain the notation and assumptions of Theorem 9.3. Sup-pose B = P1 and assume(J) := 1=2n0 + n01 + n001 + 5=6n2 + 3=4n3 + 2=3n4 � 2 > 0:Then for p� 0 both JF [p℄ and JF [p℄� f0g have positive genus, as does anyJF [p℄-prinipal homogeneous spae.The last assertion follows from Theorem 9.1.Proof of theorem: To ompute the full torsion we take MF = JF [p℄, so theresulting morphism f :M ! B has degree p2.In order to apply the Riemann Hurwitz formula as in x9.1, we reord theloal monodromy �(b) 2 SL2(Z), the number of orbits of (Z=pZ)�2 under�(b), and the ontribution to the total rami�ation. In the table below weassume that p 6= 2; 3, so that for �bers of types I�0 ,II,II�, III,III�,IV ,IV �the mod p redution of �(b) is semisimple and �xes only the origin. If thereare �bers of type Ia (resp. I�a) we also assume (p; a) = 1, so the mod predution is onjugate to�1 10 1�� resp. � �1 10 1�� :36



Table 1: Rami�ation ontributions at degenerate �bersKodaira type monodromy matrix # orbits mod p rami�ation�(b) r(b) Pm2f�1(b) emI0 �1 00 1� p2 0I�0 ��1 00 1� 1=2(p2 + 1) 1=2(p2 � 1)Ia �1 a0 1� 2p� 1 (p� 1)2I�a ��1 a0 1� p p2 � pII � 1 1�1 0� 1=6(p2 + 5) 5=6(p2 � 1)II� �0 �11 1 � 1=6(p2 + 5) 5=6(p2 � 1)III � 0 1�1 0� 1=4(p2 + 3) 3=4(p2 � 1)III� �0 �11 0 � 1=4(p2 + 3) 3=4(p2 � 1)IV � 0 1�1 �1� 1=3(p2 + 2) 2=3(p2 � 1)IV � ��1 �11 0 � 1=3(p2 + 2) 2=3(p2 � 1)To ompute the nonzero torsion we takeMF = JF [p℄�f0g, so the resultingmorphism f : M ! B has degree p2 � 1. On the other hand, removing theorigin involves eliminating an orbit of size one, whih does not hange therami�ation ontribution. �We lassify the K3 surfaes where Corollary 9.5 fails to apply:Proposition 9.6 Let X ! P1 be an ellipti K3 surfae, with Jaobian J !P1 and generi �ber JF . If (J) � 0 (f. Corollary 9.5) then X is isotrivialand takes one of the following forms 37



1. four degenerate �bers of type I�0 , and rank NS(X) = 18; 19; 20;2. three degenerate �bers of types I�0 ; II�; IV �, and rank NS(X) = 20;3. one degenerate �ber of type I�0 , two of type III�, and rank NS(X) = 20;4. three degenerate �bers of type IV �, and rank NS(X) = 20.Proof: Retain the notation of Theorem 9.3 and x7.4. If (J) � 0 then2n0 + 4n01 + 4n001 + 10=3n2 + 3n3 + 8=3n4 � 8and subtrating from the formula of Corollary 7.15rank NS(X) + n01 + 2(n0 + n001 + n2 + n3 + n4) = 26 + r(JF )gives rank NS(X) � 18 + r(JF ) + 3n01 + 2n001 + 4=3n2 + n3 + 2=3n4:Sine rank NS(X) � 20, it follows that n01 = 0.The expressions above admit the following solutions:n0 n01 n001 n2 n3 n4 rank NS(X) r(J)1 4 0 0 0 0 0 18; 19; 20 2; 1; 02 3 0 0 0 0 0 20 03 2 0 1 0 0 0 20 04 2 0 0 1 0 0 20 05 2 0 0 0 1 0 20 06 2 0 0 0 0 1 20 07 1 0 0 1 0 1 20 08 1 0 0 0 2 0 20 09 1 0 0 0 1 1 20 010 1 0 0 0 0 2 20 011 0 0 0 0 0 3 20 0Several of these an be exluded. Solutions 2,4,5,6,9, and 10 are inon-sistent with the Euler harateristi omputation of Proposition 7.14. Asfor solution 3, suppose X ! P1 is an ellipti surfae with one �ber of typeI�a for a > 0 and two �bers of type I�0 . Suh a �ber has one rational urvewith multipliity two, interseted transversally by four rational urves with38



1 1 1 1

2Figure 1: Degenerate �ber of type I�0multipliity two (see Figure 1). Let B0 ! P1 be a double over branhed atthe two points b1; b2 2 P1 with �bers of type I�0 . The �ber produt X �P1B0is non-normal along the preimages of the rational urves with multiplitytwo. Let Y be the normalization and  : Y ! B0 the indued ellipti �bra-tion. The �bers  �1(bi) onsist of a smooth ellipti urve, along with four(�1)-urves interseting it transversally, i.e., the preimages of the rationalurves of multipliity one. Thus  is not relatively minimal over the pointsb1; b2, so we blown down the eight (�1)-urves. Let  0 : Y 0 ! B0 be theresulting �bration, whih has only two degenerate �bers, both with poten-tially multipliative redution, i.e., j-invariant in�nity (see [Kod℄, Part II, pp.604). We obtain a nonisotrivial ellipti �bration with abelian monodromy,an impossibility (see Lemma 8.5.)The remaining solutions are onsistent with Proposition 7.14 and areenumerated above. These orrespond to isotrivial ellipti �brations beausethere are no �bers of potentially multipliative redution.�Remark 9.7 Ad ho arguments give potential density for the degenerateases enumerated in Proposition 9.6. The �rst ase is a Kummer surfae:Suppose that X ! P1 is an ellipti K3 surfae with type I�0 degenerate�bers at the points b1; b2; b3; b4 2 P1. The loal and global monodromy ismultipliation by �1. Let E ! P1 be the rami�ed double over branhedover b1; b2; b3; b4, an ellipti urve. Let  0 : Y 0 ! E be the minimal ellipti�bration obtained from X �P1 E ! E, whih is now smooth and has trivialmonodromy. Suh �brations are lassi�ed (see [BPV℄ xV.5):  0 is isotrivialwith onstant �ber C, is lassi�ed by the indued representation �1(E) intothe torsion subgroup of C, and Y 0 is an abelian surfae. By Proposition 4.2,Y 0 has potentially dense rational points. Sine Y 0 dominates X, it also haspotentially dense rational points. 39



The remaining ases have rank twenty, and thus have in�nite automor-phism group [SI℄ Theorem 5. Potential density follows from Theorem 6.3.9.4 Seond proof of Theorem 8.8In light of Remark 8.11, it suÆes to establish:Proposition 9.8 Let X ! P1 be a nonisotrivial ellipti K3 surfae, withJaobian J and generi �ber JF . Then there exists an ellipti K3 surfaeX 0 ! P1 with Jaobian J, a dominant rational map X 0 9 9 KX over P1, anda nontorsion rational multisetion M 0 � X 0.Proof: We retain the notation of the proof of Theorem 8.7, so that X 0 isan order-p twist of X. If M 0 has order N then the image of M 0 under themultipliation map �N : X 0 9 9 KJN (X 0)is a setion of JN(X 0) ! P1. Sine X 0 has order divisible by p, Proposition7.5 implies pjN . Write N = pn and let Y = Jn(X 0), an ellipti K3 surfaewith Jaobian JF , so that [Y ℄ = n[X 0℄. We have a fatorization of �NX 0 �n9 9 KY �p9 9 KJN(X 0) = Jp(Y ):The image M := �n(M 0) is a rational multisetion in Y of order exatly pand � := �p(M) is a setion in Jp(Y ), with M � ��1p (�). Furthermore,PF := ��1p (�)F is a prinipal homogeneous spae for JF [p℄.If PF ' JF [p℄ then MF ' JF [p℄ � f0g beause Theorem 8.3 impliesJF [p℄�f0g is irreduible when p� 0. It has positive genus by Proposition 9.6and Corollary 9.5. As our family is nonisotrivial, this an also be extratedfrom standard omputations of the genera of modular urves (e.g., [Miy℄x4.2).If PF is nontrivial then Theorem 8.3 guarantees it is irreduible for p� 0.Then M = ��1p (�) and Corollary 9.5 implies M has positive genus whenp� 0, a ontradition. �9.5 Completing Theorem 6.4: the isotrivial aseAfter Theorem 8.8 and Remark 9.7, the only ase where potential densityremains open is isotrivial ellipti K3 surfaes with (J) > 0. Can the ar-gument of x9.4 be applied in this situation? The main ompliation is that40



JF [p℄ � f0g, and even nontrivial JF [p℄-prinipal homogeneous spaes, mayfail to be irreduible. Indeed, the monodromy group is a subgroup of the au-tomorphism group of the geometri generi �ber; the irreduible omponentsof JF [p℄ orrespond to orbits of p-torsion points under these automorphisms.Unfortunately, Theorems 9.3 and 9.1 shed little light on the genus of anirreduible omponent of a prinipal homogeneous spae.With some extra bookkeeping, one an still prove the following:Theorem 9.9 Let J ! P1 be an isotrivial Jaobian ellipti surfae, withgeneri �ber JF . Suppose that (J) > 0. For prime numbers p � 0, eahirreduible omponent of JF [p℄�f0g has positive genus. If PF is a nontrivialJF [p℄-prinipal homogeneous spae then eah irreduible omponent of PF haspositive genus.Repeating the argument for Proposition 9.8, we obtainProposition 9.10 Let X ! P1 be an isotrivial ellipti K3 surfae, withJaobian J ! P1 and generi �ber JF , so that (J) > 0. Then there existsan ellipti K3 surfae X 0 ! P1 with Jaobian J, a dominant rational mapX 0 9 9 KX over P1, and a nontorsion rational multisetion M 0 � X 0.Given this, the argument of x9.4 gives potential density for isotrivial elliptiK3 surfaes with (J) > 0.Before establishing Theorem 9.9, we generalize Proposition 8.1 to lassifythe irreduible omponents of prinipal homogeneous spaes for the p-torsionof an isotrivial ellipti �bration. We use the notation of the Appendix, inpartiular, the exat sequene1! (Z=pZ)�2 ! A�SL2(Z=pZ) q! SL2(Z=pZ)! 1; (2)with anonial splitting �.Proposition 9.11 Let T 2 SL2(Z) be an element of �nite order n generatinga subgroup H, p 6= 2; 3 a prime, and H 0 � A�SL2(Z=pZ) so that q(H 0) = H.Then there is a split exat sequene1! V ! H 0 ! H ! 1; V := H 0 \ (Z=pZ)�2: (3)For eah splitting �0, �0(H) is onjugate to a subgroup of �(SL2(Z=pZ)),where � is the anonial splitting of exat sequene 2.The orbit deomposition of (Z=pZ)�2 under the ation of H 0 is one of thefollowing: 41



1. If dimZ=pZ(V ) = 0, H 0 has one �xed point and (p2 � 1)=n orbits with nelements.2. If dimZ=pZ(V ) = 1, H 0 has one orbit with p elements (the subspae V )and (p� 1)=n orbits with pn elements.3. If dimZ=pZ(V ) = 2, H 0 has one orbit with p2 elements.Proof: If T 2 SL2(Z) has �nite order n, it is semisimple and its eigenval-ues are primitive nth roots of unity. The harateristi polynomial of T isquadrati, so n = 2; 3; 4; or 6. As p 6= 2; 3, the redution of T (mod p) stillhas eigenvalues whih are nth roots of unity, and T (mod p) has order n.The exat sequene 3 is learly indued from exat sequene 2; it is splitbeause jV j is prime to n = jHj. Now �0(H) is onjugate to a subgroup of�(SL2(Z=pZ)), provided �0(T ) �xes some point v 2 (Z=pZ)�2: Consider theation of �0(T ) on polynomials over (Z=pZ)�2 of degree � 10 + 1x1 + 2x2; 0; 1; 2 2 Z=pZ:We know �0(T ) �xes the onstants 0 and has order prime to p, so its ationdeomposes as a diret sum of irreduiblesh1i � hx1 � v1; x2 � v2i ;and the indued ation on the seond fator is semisimple. The �xed pointis v = (v1; v2); the orbit analysis in the next paragraph will show that v 2 V .It remains to analyze the orbit deomposition. In eah ase, we �rstonjugate so that �0(H) � SL2(Z=pZ). If V = 0, H 0 � SL2(Z=pZ), generatedby a semisimple matrix �0(T ) of order n > 1. The �xed point is the originand every other orbit has n elements. If V = (Z=pZ)�2 then H 0 ontainsthe full translation group, so the ation is transitive. Now assume V is onedimensional. Of ourse, V is an eigenspae for �0(T ). The group H 0 isgenerated by translations by elements of V and the ation of �0(T ). Again,the only �xed point under the ation of �0(T ) is the origin, so any orbit notontaining the origin has order divisible by n. No element of (Z=pZ)�2 is�xed under translation by V , so eah orbit has order divisible by p. Thedesription of the orbits follows. �Proof of Theorem 9.9: Let M denote a omponent of the normalization ofP1 in JF [p℄�f0g or PF , orresponding to an orbit of H 0 on (Z=pZ)�2. In the42



�rst ase of Proposition 9.11, M orresponds to an H 0-orbit with n elementsand Riemann-Hurwitz takes the form2g(M)� 2 = (J)n > 0:In the last ase of Proposition 9.11 PF is irreduible, so Theorems 9.3 and9.1 apply as in the nonisotrivial ase.For the remaining ases, we analyze more losely the behavior at �bersof additive redution:Lemma 9.12 Let F̂ = C ((t)) with absolute Galois group �̂, and JF̂ anellipti urve over F̂ . Assume that the losed �ber is not of type Ia. Forprimes p > 3, H1(�̂; JF̂ [p℄) = 0:Proof of lemma: Take the assoiated N�eron/relatively minimal model J overC [[t℄℄. The lous where the �bers of J are smooth and redued is alled the`group-like' part. In the ase of additive redution, the identity omponentof the group-like part is the additive group, whih has no torsion. Hene, theorder of the torsion group is equal to the number of onneted omponents ofthe group-like part. The Kodaira lassi�ation ([Kod℄ x9, Table 1 or Figure2 of x10) givesKodaira type I�a II II� III III� IV IV �torsion order 4 0 0 2 2 3 3 :By Proposition 7.2, in these ases any loal JF̂ [p℄-prinipal homogeneousspae (with p > 3) is trivial. �We omplete the proof of Theorem 9.9. Only the seond ase of Propo-sition 9.11 remains. Lemma 9.12 says that at eah point b 2 P1 of additiveredution, the loal monodromy �(b) 2 H 0 has a �xed point (see Proposi-tion A.2.) If M orresponds to an H 0-orbit with p elements then one of theelements is �xed at eah point of additive redution, and Riemann-Hurwitztakes the form2g(M)�2 � �2p+(1=2n0+5=6n2+3=4n3+2=3n4)(p�1) = (p�1)(J)�2:We have inequality beause f : M ! P1 may ramify at smooth �bers. If Morresponds to an orbit with pn elements then none of the elements is �xedand2g(M)� 2 � �2pn+ (1=2n0 + 5=6n2 + 3=4n3 + 2=3n4)(np) = np(J):This ompletes the proof.� 43



10 Approah III: ellipti multisetions(based on orrespondene with J. Koll�ar)10.1 Cubial urvesDe�nition 10.1 A ubial urve C is a redued urve whih may be imbed-ded as a plane ubi C � P2, with at most two irreduible omponents.Example 10.2 1. an ellipti urve is ubial;2. an irreduible rational urve with a single node is ubial with equationy2z = x2z + x3, and is alled the `nodal ubi';3. an irreduible rational urve with a single usp is ubial with equationy2z = x3, and is alled the `uspidal ubi';4. a urve with two smooth rational omponents interseting in two nodesis ubial with equation x(x2�yz) = 0, and is alled the `seant ubi';5. a urve with two smooth rational omponents interseting in one pointtangentially is ubial with equation z(x2 � yz) = 0, and is alled the`tangential ubi'.Proposition 10.3 1. Cubial urves are onneted of arithmeti genusone and admit at deformations to smooth urves.2. Any isomorphism C�1 ! C�2 between the normalizations of ubial urvesthat respets their ondutors desends to an isomorphism C1 ! C2 ofthe ubial urves.3. Let R be a projetive integral singular rational urve. Then there existsa ubial urve C and birational morphism f : C ! R.4. Let R be a projetive onneted urve with two rational irreduible om-ponents, at least one of whih is smooth. Assume that the smooth om-ponent intersets the seond omponent in at least two distint points,or intersets a smooth branh of the seond omponent with multipliitygreater than one. Then there exists a ubial urve C and birationalmorphism f : C ! R. 44



Proof: We leave the proof of the �rst part to the reader. One way to establishthe isomorphism assertion is to observe that Example 10.2 gives a ompletelassi�ation of ubial urves.For the remaining laims, onsider the seminormalization � : R� ! R[Kol2℄ I.7.2. This is a �nite, birational, bijetive morphism, and is maximalwith these properties; it is obtained from the normalizationR� by identifyingpoints whih are identi�ed by � : R� ! R.For the third assertion, R� ' P1 and either R� ! R� or R� ! R failsto be an isomorphism, beause R is singular. If R� ! R� fails to be anisomorphism then there exist distint r1; r2 2 R� that are identi�ed in R. LetC0 be the nodal ubi obtained fromR� by identifying r1 and r2. The induedC0 ! R is the desired morphism from a ubial urve. Otherwise, R� ' P1and we hoose r 2 R� at whih � is not an isomorphism. Consider theloal rings OR;�(r) � OR� ;r, a �nite extension of OR� ;r-modules. If t 2 mR�;ris a loal uniformizer then tn 2 mR;�(r) for n � 0 but not n = 1. Theintermediate ring OR;�(r) � OR;�(r)[t2; t3; t4; : : :℄ � OR� ;rorresponds to a fatorization R� ! C ! R through a uspidal urve C.For the last assertion, we have R� = R�1 [R�2 ' P1 [ P1 with R�1 mappedisomorphially onto its image in R. Suppose we have distint r1; r01 2 R�1and r2; r02 2 R�2 so that �(r1) = �(r2) and �(r01) = �(r02). Let C be the urveobtained by gluing the R�i so that r1 and r2 (resp. r01 and r02) are identi�ed.This is a `seant ubi' and we obtain a fatorization R� ! C ! R: Nowsuppose we have ri 2 R�i so that �(r1) = �(r2) = r, and � maps an openneighborhood of r2 isomorphially onto its image, whih intersets �(R�1) withmultipliity at least two at r. Algebraially, OR;r is ontained in the subringof elements (f1; f2) 2 OR�1 ;r1 � OR�2 ;r2 with f1(r1) = f2(r2) and f1 2 m2R�1 ;r1if and only if f2 2 m2R�2 ;r2. This is the ring of funtions of a urve C ofarithmeti genus one onsisting of two smooth rational omponents meetingtangentially at a single point, i.e., a tangential ubi. Thus we get the desiredfatorization R� ! C ! R: �10.2 Prodution of ubial urvesProposition 10.4 Let � : X ! P1 be an ellipti K3 surfae with Jaobian�bration J ! P1 and generi �ber JF . There exist the following45



1. an ellipti K3 surfae �0 : X 0 ! P1 with Jaobian J ! P1;2. a dominant rational map X 0 9 9 KX;3. a morphism f0 : C0 ! X 0 from a ubial urve that is birational ontoits image; this image is not ontained in any �ber of �0.Proof: Corollary 7.13 yields an ellipti K3 surfae X 0 ! P1 with Jaobian Jso that order [X 0F ℄ = p � order [XF ℄ and p[X 0F ℄ = [XF ℄as well as a dominant rational map�p : X 0 9 9 KJp(X 0) = X:Let M 0 � X 0 be the rational multisetion of degree p � order [XF ℄ guaran-teed by Proposition 7.12. If M 0 is singular then we obtain the desired mapdiretly from the third part of Proposition 10.3. If M 0 is nonsingular, weapply the fourth part of Proposition 10.3 to the union of M 0 and a suitableirreduible omponent of a degenerate �ber. It remains to show there existsa omponent satisfying the hypotheses of Proposition 10.3 provided M 0 hassuÆiently large degree:Lemma 10.5 Let �0 : X 0 ! P1 be an ellipti K3 surfae andM 0 a nonsingu-lar multisetion of degree d � 35. Then M 0 intersets some irreduible om-ponent of a degenerate �ber in at least two points, or intersets one smoothredued branh of the degenerate �ber with multipliity greater than one.Proof of Lemma: Reall the multipliities of irreduible omponents of de-generate �bers in the Kodaira lassi�ation [BPV℄, pp. 150, displayed inFigure 2.First onsider the �bers where all the redued irreduible omponentsare nonsingular. We hoose d so that it is greater than the sum of themultipliities over all the omponents:type Ia; a > 1 III IV I�a II� III� IV �sum of multipliities a 2 3 2a+ 6 30 18 12Then M 0 intersets some omponent twie, or perhaps at one point withmultipliity greater than one. Proposition 7.14 implies that an ellipti K346
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an only have �bers of type Ia (resp. I�a) for a � 19 (resp. a � 14). Thus itsuÆes to take d � 35.Now onsider the remaining �bers. For �bers of type I1, any smoothurve interseting the nodal point with multipliity � 3 intersets one of thebranhes with multipliity� 2. It suÆes that d � 3. In ase II, any smoothurve intersets the uspidal point in at most multipliity three, so it suÆesthat d � 4. �10.3 Prodution of ellipti urvesProposition 10.6 Let X be a K3 surfae, C0 a ubial urve, and f0 : C0 !X a morphism birational onto its image. Then ff0 : C0 ! Xg deforms to amorphism ff : C ! Xg, where C is a smooth ellipti urve. The resultingfamily of ellipti urves dominates X.Proof: Let v : C ! S be a versal deformation of C0, with C0 the �ber overthe distinguished point s0 2 S. This an be realized as a linear series ofplane ubi urves ontaining C0 (f. the �rst part of Proposition 10.3). Thegeneri �ber is a smooth ellipti urve and dim(S) = dimAut(C0) [Kol2℄II.1.11.Consider the funtor of morphisms of at S-shemesHom(C; X � S)(T ) = fT � morphisms g : C �S T ! (X � S)�S Tg;where T is an S-sheme. Assigning to eah morphism its graph, we mayrepresent this funtor by an S-sheme Hom(C; X�S), an open subset of therelative Hilbert sheme of C �S (X � S). The morphism f0 yields a point ofHom(C; X � S) over the basepoint s0.Our next task is to bound the dimension of Hom(C; X � S) at f0 frombelow. General theory [Kol2℄ I.2.17, II.1.13 guarantees thatdim[f0℄Hom(C; X � S) � dimHom(f �0
1X ;OC0)� dimExt1(f �0
1X ;OC0) + dims0 S= �KX � C0 + (dim(X)� 3)�(OC0) + dimAut(C0)= dimAut(C0):In our partiular situation this an be improved (f. [Kol2℄ II.1.13.1 and[Ra℄): We laim thatdim[f0℄Hom(C; X � S) � dimAut(C0) + 1:48



Let X ! � be a one-parameter omplex-analyti deformation of X, so thatthe generi �ber ontains no algebrai urves. This an be ahieved using theLoal Torelli Theorem [LP℄, by hoosing a deformation for whih none of thelasses in H2(X;Z) remains of type (1; 1). Now onsider the new mappingfuntor over S �� Hom(C ��;X � S)at the point g0 : C0 f0! X ,! X :The general theory now givesdim[g0℄Hom(C ��;X � S) � dimHom(g�0
1X ;OC0)� dimExt1(g�0
1X ;OC0) + dim(s0;0)(S ��)= dimAut(C0) + 1:The generi �ber of X ontains no algebrai urves, so the family Hom(C ��;X � S) must parametrize urves ontained in X.Consequently, there are deformations ff : C ! Xg of ff0 : C0 ! Xgthat are not obtained by omposing f0 with an automorphism of C0. Welaim that f(C) 6� f0(C0). Indeed, suppose that f(C) = f0(C0). Sine f0and f are birational onto their images and normalizations are unique, theomposed morphismsC� ! C ! f(C) C�0 ! C0 ! f0(C0)agree up to an isomorphism C� ! C�0 whih preserves ondutors. By parttwo of Proposition 10.3, this desends to an isomorphism C ! C0, a on-tradition. Thus the images f(C) dominate X, and sine X is not ruled weonlude that the generi domain urve C is ellipti. �10.4 Proof of Theorem 6.4As in our previous approahes to Theorem 6.4, the key point is that eahellipti K3 surfae X ! P1 is dominated by an ellipti K3 surfae X 0 !P1 admitting a nontorsion multisetion with dense rational points, so thatProposition 4.13 applies. What is new here is that the multisetion is anellipti rather than a rational urve: 49



Theorem 10.7 Let � : X ! P1 be an ellipti K3 surfae with Jaobian�bration J ! P1 and generi �ber JF . There exist the following1. an ellipti K3 surfae �0 : X 0 ! P1 with Jaobian J ! P1;2. a dominant rational map X 0 9 9 KX;3. a nontorsion ellipti multisetion M̂ � X 0.Furthermore, if X is de�ned over a number �eld then X 0 and M̂ an behosen so they are de�ned over a �nite extension of that �eld.This is an immediate onsequene of Proposition 10.4 and the following:Proposition 10.8 Let �0 : X 0 ! P1 be an ellipti K3 surfae. Assume thereexists a ubial urve C0 and a morphism f0 : C0 ! X 0 birational onto itsimage, so that f0(C0) is not ontained in any �ber of �0 Then �0 admits anellipti multisetion of in�nite order. If X 0 is de�ned over a number �eldthen the multisetion an be de�ned over a �nite extension of that �eld.In partiular, any ellipti multisetion deforms to a nontorsion ellipti mul-tisetion.Proof of Proposition 10.8: Proposition 10.6 implies there exists a smoothprojetive ellipti surfae S ! B, and a surjetive morphism g : S ! X 0so that the generi �ber is mapped birationally onto its image. Under ourassumptions, this image is not ontained in a �ber of �0. Moreover, sine X 0is a K3 surfae the images of any two �bers are linearly equivalent[C℄ � g�[Sb℄ for eah b 2 B:We distinguish some speial �bers of S ! B. We have the singular �bersand the �bers that fail to be mapped birationally onto their image. Theimage of these �bers maps to a losed subset Z � X 0.Choose a smooth �ber X 0p = �0�1(p) not lying in Z, de�ned over a number�eld if X 0 is. After passage to a larger number �eld L, we an �nd a pointx 2 X 0p(L), x 62 Z, so that tx = � deg(C:X 0p)x + [C℄jX0p 2 J(X 0p) has in�niteorder in the Jaobian (by the arithmeti result, Proposition 4.2). Let Sb bea �ber of S ! B so that x 2 g(Sb), whih by assumption is smooth andmaps birationally onto its image M̂ := g(Sb). As Sb maps birationally ontoM̂ , [M̂ ℄ = [g�Sb℄ = [C℄. Now tx has in�nite order in J(X 0p) and oinideswith the restrition of �M̂ to X 0p. Hene �M̂ itself has in�nite order and themultisetion M̂ is nontorsion. � 50



Corollary 10.9 Every ellipti K3 surfae admits a nontorsion ellipti mul-tisetion.Proof: Retain the notation of Theorem 10.7. The proof above yields anellipti multisetion M̂ for �0 through the generi point of X 0. Its imageM � X is a multisetion for � through the generi point of X; M haspositive genus beause X is not ruled and thus is ellipti. Proposition 10.8shows M deforms to a nontorsion ellipti multisetion. �11 Symmetri produts of K3 surfaes11.1 Do generi K3 surfaes have potentially dense ra-tional points?In the previous setions, we have seen many speial examples of K3 surfaeswith potentially dense rational points. However, we know very little aboutthe density of rational points on generi K3 surfaes. Indeed, all the K3surfaes onsidered up to this point are very speial in moduli:Proposition 11.1 A K3 surfae X admits an ellipti �bration if and onlyif there exists a lass D 2 NS(X) with D:D = 0. If a K3 surfae admits anellipti �bration or an in�nite automorphism group, then rank NS(X) � 2:Proof: If X admits an ellipti �bration � : X ! P, then the generi �ber[��1(b)℄ 2 NS(X) has self-intersetion zero. The lass of the �ber is indepen-dent from the polarization of X, so rank NS(X) � 2. Conversely, supposeX admits a lass [D℄ 2 NS(X) with D:D = 0: By Riemann Roh, either Dor �D is e�etive. Sine the e�etive one is the union of images of the nefone under reetions by (�2)-urves ([LP℄ x2), we may asssume D is nef.Basi results on linear series on K3 surfaes [SD℄ imply that jDj is basepointfree and de�nes an ellipti �bration on X.If X has N�eron-Severi rank one, then the polarization generates theN�eron-Severi group and every automorphism �xes the polarization, so theautomorphism group is �nite (f. the proof of Lemma 6.9). �Question 11.2 Does there exist any K3 surfae X over a number �eld withrank NS(X) = 1 and dense rational points?51



11.2 Symmetri powers of surfaesTo obtain potential density theorems for generi K3 surfaes, we onsiderauxilliary varieties, the symmetri powers. We refer the reader to [HT℄ forfurther details. The n-fold symmetri power of a surfae X is the quotientX(n) = X �X � : : :�X| {z }n times =Sn:This variety admits a natural desingularization by the Hilbert sheme oflength-n, zero-dimensional subshemes of X� : X [n℄ ! X(n):For a urve C, the behavior of rational points on the symmetri produtsC(n) bears little resemblane to the behavior of rational points on C. Indeed,for n > 2g(C)� 2, C(n) is a projetive bundle over Jn(C), and thus alwayshas potentially dense rational points. For a surfae X, the rational pointson X(n) might very well behave similarly to rational points on X. There is asimple formula relating the Kodaira dimension of a surfae and its symmetriprodut �(X(n)) = n�(X):Moreover, the quotient morphism q : Xn ! X(n) is almost �etale; it is un-rami�ed away from a odimension-two subset, the diagonal. If q were �etalethen the Chevalley-Weil Theorem (Proposition 3.4) would apply: potentialdensity of rational points on X(n) implies potential density of rational pointson Xn, and thus on X.11.3 Main TheoremTheorem 11.3 Let X be a K3 surfae de�ned over a number �eld. Assumethat X admits a polarization f of degree 2N � 2. Then rational points onX(n) are potentially dense for some n � N .The proof of Theorem 11.3 divides into ases, depending on the geometryof the ellipti urves ontained in X. We �rst need a geometri result:Proposition 11.4 Let X be a K3 surfae and f a divisor with h0(X; f) > 1.Then there exists an irreduible, possibly singular, urve of genus one C � Xso that f � [C℄ is e�etive. 52



This is proved in detail in x4 of [HT℄. The main ingredient is [MM℄, whereit is shown that for a generi polarized K3 surfae there is a one-parameterfamily of singular urves of genus one in the polarizing lass. As in Lemma6.10, these speialize to the desired urves.We apply Proposition 11.4 to the polarization lass f . The resultinggenus-one urve C has self-intersetionC:C � f:f:If C:C > 0 then [C℄ is big by Riemann-Roh and Theorem 11.3 follows from:Proposition 11.5 Let X be a K3 surfae de�ned over a number �eld, and gthe lass of a big line bundle of degree 2(n�1). Assume there is an irreduible,possibly singular, urve of genus one C � X with [C℄ = g. Then rationalpoints on X(n) are potentially dense.Sketh Proof: Again, we only give the main ideas of the argument; see [HT℄for more details. The linear series jgj ontains an irreduible urve and so isbasepoint free. Indeed, linear series on a K3 surfae have no isolated �xedpoints, only �xed omponents [SD℄x2. It follows that g is numerially e�etiveand has no higher ohomology, and thus de�nes a morphism j : X ! Pn.Consider the inidene orrespondeneH := f(x;H) : j(x) 2 Hg � X � �Pn�1. �2&X �Pnwhere �Pn is the dual projetive spae. Over an open subset V � �Pn, the�bers of �2 are smooth urves of genus n.Consider the degree n omponent of the relative Albanese� : Jn(H)V ! V:The Jaobi inversion formula says that the degree n omponent of the Al-banese of a smooth projetive urve C of genus n is birational to the sym-metri produt C(n). Globalizing, we �nd that Jn(H)V is birational to thesymmetri produt X(n). Indeed, for any generi x1 + : : :+ xn 2 X(n), thereis a unique hyperplane H � fj(x1); : : : ; j(xn)g, and we obtain an elementOj�1(H)(x1 + : : :+ xn) 2 Jn(j�1(H)):53



By Proposition 4.13, it suÆes to �nd a nondegenerate multisetionM of�, de�ned over a number �eld, with dense rational points. Suppose we haven distint irreduible urves C1; : : : ; Cn in jgj. Then we an map the produtC1 � C2 � : : :� Cn 9 9 KX(n)and let C1 � : : : �Cn � X(n) denote the losed image. The indued morphismM = C1 � : : : � Cn ! V is generially �nite: There are a �nite number ofpoints in the produt supported in a generi hyperplane setion of X.The remainder of the argument follows Proposition 10.8. As before, thereexists an ellipti �bration S ! B and a surjetive morphism S ! X so thatthe generi �ber is mapped birationally onto a genus-one urve with lass g.Pik a smooth �ber A = ��1(H) of Jn(H)V ! V and a point � 2 A(K),whereK is some number �eld, so that� deg(M=V )�+[M ℄jA is nondegenerate(see Proposition 4.2.) Using Jaobi inversion, we an express� = x1 + : : :+ xn; x1; : : : ; xn 2 X; j(xi) 2 H:After perhaps hoosing a more general �, we may assume that eah xi 2 Sbi ,where the Sbi are distint, irreduible �bers of S ! B, mapped birationallyonto their image in X, and de�ned over a number �eld. It follows that � liesin the multisetion Sb1 � : : : � Sbn , whih is neessarily nondegenerate. �It remains to deal with the ase C:C � 0. Sine C is irreduible, ad-juntion implies C is smooth and C:C = 0. In partiular, the linear seriesjCj yields an ellipti �bration � : X ! P1. Then rational points on X arepotentially dense by Theorem 6.4. �A Appendix: Galois ohomology and prini-pal homogeneous spaesLet G and � be groups and let Aut(G) denote the automorphism group of G.When G and � admit topologial strutures, all the maps desribed beloware taitly assumed to be ontinuous with respet to the relevant topologies.Let G0 be a twisted form of G with respet to �. This means we have anation ��G ! G(; g) ! (g);54



respeting the group struture, i.e., a homomorphism� : �! Aut(G):Remark A.1 In appliations, � is often the Galois group Gal(F a=F ) of thealgebrai losure of a �eld of harateristi zero, G the group of F a-pointsof a group sheme over F , and G0 the assoiated Galois module. In thisontext, we will use the same notation for G0 and the group sheme. Weare mainly interested in the ase where G0 is an abelian variety or its N -torsion subgroup. The relation between Galois ohomology and prinipalhomogeneous spaes in this ontext is developed in [LT℄.The zeroth ohomology group of G0 is the subgroup of invariant elementsH0(�; G0) = fg 2 G0 : (g) = g for eah  2 �g:A oyle with values in G0 is a map� : � ! G0 ! �()satisfying the oyle ondition�(0) = �()(�(0)):Two oyles � and � are ohomologous if there exists a g 2 G0 so thatg�() = �()(g); for eah  2 �:The �rst ohomology set H1(�; G0) is the set of equivalene lasses of oylesunder the ohomology relation. If G0 is abelian then H1(�; G0) is an abeliangroup.If the �-ation on G0 is trivial, we haveH1(�; G0) = Hom(�; G);the group homomorphisms from � to G. In partiular, a twisted form of Gis governed by an element � 2 H1(�;Aut(G)).A G0-prinipal homogeneous spae is a set P with two ations�� P ! P(; p) ! (p)P �G0 ! P(p; g) ! p � gsatisfying 55



1. the ation of G0 is ompatible with the �-ation(p � g) = (p) � (g);2. for eah p1; p2 2 P , there is a unique g 2 G0 with p1 � g = p2.G0 ats on itself by multipliation: This is alled the trivial prinipal homo-geneous spae.Choose p 2 P . For eah  2 � there exists a unique �() 2 G0 so that(p) = p � �(). We have(0(p)) = (p � �(0)) = (p) � (�(0)) = p � �()(�(0))(0)p = p � �(0)so �(0) = �()(�(0)) and � is a oyle for G0. Changing the basepointp, we may write (p � g) = (p � g)�()where g�() = �()(g), so � is ohomologous to �. Thus every G0-prinipalhomogeneous spae determines an element of H1(�; G0) and onversely.Now let G be a group and A�(G) the semidiret produt of G by Aut(G),so we have an exat sequene1! G! A�(G) q! Aut(G)! 1 (4)admitting a splitting � : Aut(G) ,! A�(G). We interpret A�(G) as thepermutations of G generated by left translations�g : x! gx g 2 Gand automorphisms a 2 Aut(G). Given g1; g2 2 G and a1; a2 2 Aut(G), wehave �g1a1�g2a2 = �g1(a1�g2a�11 )a1a2 = �g1�a1(g2)a1a2:Proposition A.2 Let G0 be a �-twisted form of a group G, with lassifyingoyle � 2 H1(�;Aut(G)) = Hom(�;Aut(G)): Then H1(�; G0) orrespondsto G-onjugay lasses of homomorphisms� : �! A�(G); with q Æ � = �:The trivial element orresponds to � Æ �.56



Proof: Given a oyle �(), we de�ne �() = ��()�() so that�(0) = ��(0)�(0)= ��()�(�(0))�()�(0)= ��()�()��(0)�(0)= �()�(0):Conversely, eah homomorphism � : � ! A�(G) with q Æ � = � yields aoyle �(). Now suppose that � and � are ohomologous, so that �() =g�1�()(g) for some g 2 G0, and let �� and �� be the orresponding homo-morphisms. Then we have��() = �g�1�()(g)�() = ��1g ��()�(g)�()= ��1g ��()�()�g = ��1g ��()�g;and the homomorphisms are onjugate. �Remark A.3 For eah normal subgroup H � Aut(G), the split exat se-quene (4) restrits to a split exat sequene1! G! A�H(G) q! H ! 1:Assume that G0 is governed by a oyle with values in H,� 2 H1(�; H) ' Hom(�; H):Then H1(�; G0) orresponds to homomorphisms� : �! A�H(G); with q Æ � = �:Referenes[Am℄ S. A. Amitsur, Generi splitting �elds of entral simple algebras, Ann.of Math. (2) 62 (1955), 8{43.[BPV℄ W. Barth, C. Peters, A. Van de Ven, Compat omplex surfaes,Springer-Verlag, Berlin, 1984.[BT1℄ F. Bogomolov and Y. Tshinkel, Density of rational points on Enriquessurfaes, Math. Res. Letters 5 (1998), 623{628.57
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