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1 Introduction

Let K be a number field and consider a collection of equations

filze,.oo o xn) = folan, o) =00 = folo, oo y2,) =0
where the f; are polynomials with coefficients in K. What are the solutions
to these equations over K7 Sometimes, every solution (ay,...,a,) € K"

necessarily satisfies further equations which are not algebraic consequences
of our original collection. For instance, every solution over Q to a7 + a3 =1
satisfies the additional equation x,x5 = 0. Of course, solutions over ex-
tensions L/K may fail to satisfy these further equations, e.g., the solution
(—1,+/2) to the Fermat equation.

This paper is dedicated to studying collections of equations with the
following desideratum: All the equations satisfied by the solutions over K
are algebraic consequences of the equations we start with. For instance, the
solutions to 2 + 22 = 1 over Q satisfy no equations that are not multiples
of the original equation.

Our approach is geometric. The desired property may be restated in
the language of algebraic geometry: We seek classes of algebraic varieties
whose K-rational points are dense in the Zariski topology. Here ‘classes’ of
algebraic varieties are distinguished by invariants, like the geometric genus
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or plurigenera, or by geometric properties, like the existence of fibrations
by rational or elliptic curves. One of the most profound questions of higher
dimensional geometry is the logical relationship between the values of the
invariants and the presence of fibrations.

However, there is a price to be paid for working geometrically: It is
exceedingly rare for all the varieties with common geometric properties to
have dense rational points. Even varieties which are geometrically P” may or
may not have rational points over a given number field, so we allow ourselves
finite extensions of the given field. Then more uniform statements on rational
points, depending only on the underlying geometry, are possible.

The paper is organized as follows. Basic definitions and notation are laid
out in §2. General properties of density are discussed systematically in §3.
The remainder of the paper is devoted to classes of examples. Abelian va-
rieties and fibrations are addressed in §4. Fano varieties, especially those
of small dimension, are discussed in §5. K3 surfaces, the simplest class of
varieties where density of rational points remains a matter of controversy,
are studied in §6. Several sections are devoted to the twisting method of
Bogomolov and Tschinkel, as applied to elliptic K3 surfaces (Theorem 6.4.)
Basic properties of the Tate-Shafarevich group are reviewed in §7. The sim-
plest application of the method, to nonisotrivial elliptic K3 surfaces, is given
in §8. This approach yields an infinite number of irreducible, nodal, rational
curves in the K3 surface (see Corollaries 8.12 and 8.13). A more refined ap-
proach covering the isotrivial cases, and closer in spirit to the original paper
[BT3] of Bogomolov and Tschinkel, can be found in §9. A third, independent
approach, originating from a letter of J. Kollar, is given in §10. Finally, §11
contains the strongest results now known for general K3 surfaces, as well as
some statements for higher dimensional varieties. The Appendix is a short
resumé of Galois cohomology and principal homogeneous spaces.
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2 The notion of potential density

We fix some notation. Throughout this paper, we work over a number field
K. A variety X/K is a geometrically integral scheme of finite type over K.
Its K-rational points are denoted X (K).

Definition 2.1 Let X be a variety over K. The K-rational points of X are
dense if X (K) is not contained in any Zariski closed subset of X. Rational
points of X are potentially dense if there exists a finite field extension L/K
over which rational points are dense.

In the sequel, when we say that ‘potential density holds for X’ we mean that
rational points are potentially dense on X.

Our motivation for considering potential density is to isolate properties of
rational points that follow from the geometric properties of X, rather than
those that depend on the ground field.

Example 2.2 Rational points of P" are dense over Q.
Example 2.3 Consider the curve
X={a+y"=-2"} CP),.

This has no rational points whatsoever, but rational points are potentially
dense. Indeed, over Q(i) we have an isomorphism

X = {2 +y2=2%
(x,y,2) —  (z,y,i2).
However, the curve {z? + y* = 2%} is isomorphic to P!
Pt = {2 +y? =27}
(5,8) — (2st,5% — %, 5% +17),

which has dense rational points.



Example 2.4 The example above admits generalizations to higher dimen-
sions. A Brauer-Severi variety X/K is a variety such that Xg. ~ PY,, i.e.,
a variety geometrically isomorphic to P". Of course, such an isomorphism
may be realized over some finite extension L/K, and L-rational points of
X are dense. The conic curve of Example 2.3 is the simplest example of a
Brauer-Severi variety.

From an arithmetic standpoint, the precise nature of the field extensions
L/K over which rational points become dense is an extremely interesting
topic. Indeed, Brauer-Severi varieties first arose in the study of ‘generic
splitting fields’ for central simple algebras [Am|[Ro]. However, our primary
interest lies in the interaction between density of rational points and geomet-
ric properties of algebraic varieties. Consequently, we will not keep track of
the field extension over which points become dense. Indeed, in the sequel we
will take finite extensions of the ground field without explicit comment, and
even suppress the notation for the ground field.

3 Basic properties of potential density

3.1 Behavior under morphisms

Proposition 3.1 Let g: X —-» Y be a dominant rational map of projective
varieties over a number field. Assume that rational points of X are potentially
dense. Then rational points of Y are potentially dense.

In particular, potential density is a birational property.

Proof: Choose a number field L over which X, Y, and g are defined, and X (L)
is Zariski dense. Let U C X be an open subset over which g is a morphism.
We have g(U(L)) C Y(L), and the image of a dense set under a dominant
rational map remains dense. []

Definition 3.2 A variety Y defined over a number field is unirational if,

over some finite field extension, there exists a dominant rational map g :
PN 5 Y.

Combining Proposition 3.1 with Example 2.2, we obtain

Corollary 3.3 Let Y be a variety over a number field and assume that Y
is unirational. Then rational points of Y are potentially dense.



Proposition 3.4 (Chevalley-Weil Theorem [We]) Let ¢ : X — Y be
an étale morphism of proper varieties over a number field. Assume ratio-
nal points of Y are potentially dense. Then rational points of X are also
potentially dense.

Sketch Proof: A good modern account can be found in [Se2]. Let L be a
number field over which X,Y, and ¢ are defined, and over which rational
points of Y are dense. Choose a ring of integers O = O ¢ (with S a finite
set of places, including the infinite ones) over which we have the following:

1. X and Y have models X and Y over O, ie., X — Spec(O) and
Y — Spec(O) are flat and projective, with generic fibers X and Y7,
respectively;

2. g extends to an étale morphism g : X — ).

We choose S to exclude primes over which g has ramification or indetermi-
nacy. Since ) is proper, the valuative criterion implies each L-rational point
of V extends to a O-integral point. The O-integral points of ) yield points
of X defined over extensions of L of degree < deg(¢), with discriminant
contained in S. It is a classical theorem of Hermite that there are a finite
number of such extensions M, ..., M,. Over one of them rational points of
X are Zariski dense. [J

Question 3.5 What classes of morphisms X — Y share the lifting property
of Proposition 3.47

One other class of such morphisms is étale projective bundles (cf. [HT2]).

3.2 Negative results

Any dense subset of a curve is infinite, so we have the following restatement
of the Mordell Conjecture:

Proposition 3.6 (Faltings Theorem [Fal]) Let X be a curve of genus
> 2 over a number field. Then rational points are not potentially dense.

Example 3.7 Colliot-Thélene, Skorobogatov, and Swinnerton-Dyer [CSS]
give an example of a variety for which rational points are not potentially
dense, and the proof of nondensity requires Propositions 3.1, 3.4, and 3.6.



They describe a smooth projective surface Y, which itself does not dominate
any curve of genus > 2 (or, indeed, any variety of general type), but admits
an étale double cover X that does dominate a curve of genus two:

X —» C
étale double cover |

Y

If rational points were potentially dense on Y they would be potentially
dense on X by Proposition 3.4, and thus potentially dense on C' as well,
contradicting Proposition 3.6.

Let X be smooth and projective with canonical bundle wy. We say X is
of general type if wx is big, i.e.,

RO (w§") ~ CntimX) ¢ > 0,

for sufficiently large n. The following conjecture would preclude potential
density of rational points for such varieties:

Conjecture 3.8 (Lang-Bombieri Conjecture) Let X be a projective va-
riety of general type defined over a number field. Then rational points on X
are not potentially dense.

This is known for subvarieties of abelian varieties which are of general type
[Fa2].

Remark 3.9 What is the largest class of projective varieties for which po-
tential density might hold? In light of Conjecture 3.8 and Propositions 3.1
and 3.4, a variety with dense rational points should admit no étale covers
that dominate varieties of general type. It is not known whether there are
any further constraints. We refer the reader to [HT2] and [Ca2] for further
discussion of this question.

4 Abelian fibrations

4.1 Abelian varieties

We start with some definitions:



Definition 4.1 Let (A,0) be an abelian variety defined over a field F' of
characteristic zero. A point p € A(F') is nontorsion if the set

Zp={np:n €}
is infinite and nondegenerate if this set is dense.

Proposition 4.2 Let A be an abelian variety over a number field K. After
passage to a finite extension L/K, A(L) contains a nondegenerate point and
L-rational points are dense.

Sketch Proof: (cf. Proposition 3.1 of [HT|, where a second argument can be
found) The Mordell-Weil Theorem (see [Se2]) says that A(K) is a finitely
generated abelian group for any number field K; the rank of A(K) is just the
rank of this group. The main ingredient in the proof is a result of Jarden and
Frey [FJ], Theorem 10.1: After passage to a suitable finite extension L/K

we have
rank A(L) > rank A(K).

The argument of [FJ] uses p-adic techniques: Consider primes p totally ram-
ified over a fixed prime of K. One creates a point, over a suitable extension
of K, with prescribed reduction mod p”. The condition on the reduction
mod p” is used to show that this point is not in the span of A(K).

This result proves the proposition when A is geometrically simple: For
any nontorsion point p € A(L), the Zariski closure of Zp C A(L) contains a
positive-dimensional abelian subvariety, and hence is equal to A. In general,
the argument proceeds by induction on the number of simple components.
We assume A = A; x Ay where A, is simple and p; € A;(K),py € Ay(K)
are nondegenerate. If (pi,ps) € Ay X Ay is degenerate then it is contained
in a proper abelian subvariety B C A; X Ay, which corresponds to a rational
homomorphism € Hom(A;, Ay) ® Q. Tt follows that df(p;) = dpsy for some
positive d. However, the group Hom(A;, As) is finitely generated. Again
applying the result of [FJ], we obtain a finite extension L/K and a point
q € Ay(L) so that ¢ € ((py) for any 5 € Hom(A;, A;) @ Q. O

4.2 Abelian fibrations over a field and principal homo-
geneous spaces

Throughout this section, F' is a field of characteristic zero with algebraic
closure F'“.



Definition 4.3 A variety Xp over F' is an abelian fibration if it is geomet-
rically an abelian variety, i.e., Xpa := Xp Xp F'* is isomorphic to an abelian
variety over F'*.

Remark 4.4 (Warning) We do not assume that Xz has a point over F. In
particular, there may not be a group law on X defined over F' (cf. Definition
4.12.)

There are a number of auxiliary abelian fibrations associated to Xp. Let
J°(Xr) denote the Albanese of Xp, an abelian variety over F' satisfying the
following ([La] II §3):

1. The formation of the Albanese commutes with field extensions E/F,

i.e., JO(XF)) = JO(XF‘) X g E.
2. There is a morphism over F'
s: Xp Xp Xp — JO(XF)

If F/F is an extension over which there is a point z € Xy (F) then
s|(Xr x {z}) induces an isomorphism i, : Xp ~ J°(Xg) so that
$(x1, 9) = ig(m1) — ip(12).

3. Suppose we have another morphism to an abelian variety
SIZXF XFXF—>A,

such that s'(x1,29) = i(x1) —i(xs), for some i : Xz — Ap defined over
an extension F/F. Then factors s’ through s.

Of course, X always has a point over its function field F(X) (the generic
point z), and we may consider the composition

JU(Xp) xp F(X) = J"(Xpx) = Xpx) = Xp xp F(X) 75 Xp

as a rational map J°(Xp) Xp Xp --» Xp. Any such rational map extends
uniquely to a morphism a : J°(Xp) xp Xp — Xp [La] IT §1. Over any field
extension over which Xy # () we can write a(j, ) = j+xz. Thus we conclude:

X has the structure of a principal homogeneous space for J°(Xr),
classified by a cocycle [Xr] € H'(T, J°(XF)) (see the Appendix).
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For each m € Z, let J™(XF) denote the principal homogeneous space
corresponding to m[Xg], which by descent is also an abelian fibration over
F [LT]§2, Prop. 4. Descent also gives the following morphisms over F:

1. the cycle-class morphism

:Xp Xp ... XFXF; — Jm(Xp)

-~

m times

(T1, oy T) = T F Ty

2. the addition morphism
Jn(XF) Xp Jm(XF) — Jm+n(XF),
compatible with the cycle class morphism;

3. the multiplication by N morphism

py I (X ) = TN (Xp).

Any zero-cycle on X of degree m, defined over F', yields an F-rational point
of J™(Xp); each point of X defined over an extension E/F of degree m
gives such a point. The existence of such a cycle implies [Xp] = [J'(Xp)] €
H'(T', J°(XF)) has order dividing m [LT], §2, Prop. 5.

Definition 4.5 A multisection of an abelian fibration X is a point defined
over a finite extension of F'. The degree of the multisection is the smallest
degree of an extension E/F over which the point can be defined. We shall
identify multisections of degree d with collections of d conjugate points of
X(F®)

M ={my,...,mg}.

The zero-cycle m; + ...+ my is defined over F' and thus yields an F-rational
point of J(X). If E/F is a degree-d extension over which some m; is
defined then we may consider the point

Ty = (m1 + Mo +...+md) —dm; € JO(XF)(E)-

This may be zero even when d > 1.



Definition 4.6 A multisection M of an abelian fibration Xz is torsion (resp.
degenerate) if T)s is torsion (resp. degenerate.) The order of a multisection
is the smallest positive integer N such that N(m; — m;) = 0 for each 7,j =
1,...,d. The order is infinite when no such integer exists.

Proposition 4.7 A multisection is torsion if and only if it has finite order.

Proof: Let L/ F be a Galois extension containing F, and let 7p;; € J°(X#)(L)
be associated to the various conjugate points m;,7 = 1,...,d. If one 7y, is
torsion then all are, and we have

d(m; —myj) = Targ — T,

so each m; —m; must also be torsion. Conversely, if each m; —m,; is torsion

then
d

is also torsion. [

Proposition 4.8 Let M C Xy be a torsion multisection of order N. Then
M is contained in a principal homogeneous space for J°(Xg)[N], the N-
torsion subgroup scheme.

Proof: Suppose that the multisection M has order N, so that Nm; = Nm,
for each 7, 7. Then multiplication by N

py X = JYXp) — IV (Xp)

takes M to a single point ¥ € JV(Xp), defined over F. It follows that
M C py' (%), which is a principal homogeneous space for J*(Xz)[N]. O

Remark 4.9 A torsion multisection M in an abelian variety A need not be
contained in the torsion of A, only in a principal homogeneous space for the
torsion!

Remark 4.10 Given a multisection M’ = {m,,..., my} of an abelian fibra-
tion Xp, it may happen that m; —m;, i # j, is torsion for certain pairs (3, j)
but not all such pairs. Let N denote the smallest positive integer so that
N(m; —m;) = 0 for each difference that is torsion. Then pn maps M’ onto
multisection M C JV(X5), which is nontorsion if and only if M’ is nontor-
sion. Furthermore, M’ is contained in a J°(Xg)[N]-principal homogeneous
space over M, where F is the field of definition of M.
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4.3 Potential density argument

Let B be a variety over a field of characteristic zero.

Definition 4.11 An abelian fibration n : A — B is a projective morphism
of varieties with generic fiber an abelian fibration over the function field of
B. An abelian fibration of relative dimension one is an elliptic fibration.

A multisection is an irreducible closed subvariety M < A so that the
induced M — B is generically finite, i.e., the closure of a multisection of
the generic fiber. A multisection of 7 is nontorsion or nondegenerate if the
induced multisection of the generic fiber is.

Additional assumptions are necessary if one wants a good group law:

Definition 4.12 An abelian fibration n : A — B is Jacobian if it satisfies
the following conditions

1. nis a flat morphism;

2. the locus A C A where 7 is smooth admits a group law

AxgA— A

with identity 0 : B — A.

For any abelian fibration admitting a rational section 0 : B ——» A, there is
a nonempty open subset B’ C B so that Ag := A xz B' — B’ is Jacobian,
e.g., the open subset over which 7 is smooth. Given an arbitrary fibration
A — B with multisection M, after basechange to M there exists a rational
section: the image of the diagonal in M x5 M C A x5 M.

Proposition 4.13 Let n: A — B be an abelian fibration with multisection
M, defined over a number field K. Assume that

1. M is nondegenerate;
2. K-rational points of M are dense.

Then K -rational points of A are also dense.

11



In the case of an elliptic fibration, nondegeneracy and nontorsion are equiv-
alent conditions.

Proof: After basechange to an open subset of M, we obtain a Jacobian
abelian fibration A,; with a nondegenerate section 7,,. Thus Z7,, is dense in
Ajr and each multiple n7y; has dense rational points. It follows that rational

points in Ay, are dense. Since A,; dominates A, rational points in A are also
dense. []

5 Fano varieties

In the remainder of this paper, we identify classes of algebraic varieties for
which rational points are potentially dense.

Definition 5.1 A smooth projective variety X is Fano if wy' is ample.

Fano varieties admit no nontrivial étale covers [Ca] [De| and cannot dominate
varieties of general type.

Here are the Fano varieties known to have potentially dense rational
points:

Example 5.2 (Del Pezzo surfaces) Fano varieties of dimension two are
called Del Pezzo surfaces. Classically, it was known that any Del Pezzo
surface X is birational to P2, and thus has potentially dense rational points.

Example 5.3 (Cubic hypersurfaces) Nonsingular cubic hypersurfaces of
dimension > 2 are unirational and therefore have potentially dense rational
points (Cor. 3.3).

Example 5.4 (Fano threefolds) Smooth Fano threefolds are known to be
unirational, except in three cases [IP] (see also [HarT)):

1. quartic hypersurfaces in P*;
2. weighted hypersurfaces of degree six in P(1,1,1,2, 3);
3. double covers of P totally branched over a sextic.

The first two cases admit elliptic fibrations over P?. Arguments similar to
those in the second half of this survey prove potential density (see [HarT]
and [BT2]). The third case remains completely open.
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Example 5.5 (Q-Fano threefolds) There are many examples remaining
where potential density has not yet been studied. For example, there are al-
together 95 different families of Q-Fano hypersurfaces in weighted projective
spaces. See [CPR] for a concrete account of their geometry.

6 K3 surfaces

Definition 6.1 A smooth projective surface X is a K3 surface if
1. h%(QY) = 0;
2. wx ~ Ox, i.e., the canonical bundle is trivial.

Such surfaces have been classified in great detail (see, for example, [BPV]
VIIT and [LP]). In particular, the underlying complex manifolds X (C) are
all deformation equivalent and simply connected. K3 surfaces do not domi-
nate varieties of general type, so they could very well have potentially dense
rational points.

A polarization f of X is a primitive, ample class in the Néron-Severi
group NS(X). The degree of (X, f) is the self-intersection f.f, a positive
even integer. The K3 surfaces of degree d admit common realizations as
projective varieties.

Example 6.2

d = 2 a surface X admitting a degree-two cover X — P? branched over a
smooth plane sextic curve.

d = 4 a nonsingular quartic hypersurface X C P?, e.g., 7§ + 21 = 73 + 73.

d = 6 a complete intersection of quadric and cubic hypersurfaces in P*,

We summarize the known results for K3 surfaces:
Theorem 6.3 (Infinite automorphism group) [BT3] Let X be a K3 sur-
face defined over a number field. Assume that the complex manifold X (C)

admits an infinite automorphism group. Then rational points on X are po-
tentially dense.

A proof is sketched in §6.1.

Theorem 6.4 (Elliptic K3 surfaces) [BT3] Let X be a K3 surface de-
fined over a number field. Suppose that X admits an elliptic fibration n :
X — P'. Then rational points on X are potentially dense.
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More precise results on quartic surfaces containing a line (see Theorem 6.19)
can be found in [HarT].

We give several approaches to Theorem 6.4; in each the key technical
tool is the Tate-Shafarevich group, discussed in §7. The basic insight that
twisting an elliptic fibrations should make it easier to find rational points is
due to Bogomolov and Tschinkel. The first approach in §8 works primar-
ily in the nonisotrivial case. It relies on the irreducibility of the p-torsion
points for large p (see Theorem 8.3). One interesting by-product is the ex-
istence of rational multisections of unbounded degree (see Theorem 8.7 and
its corollaries.) The second approach in §9 is perhaps the most natural, al-
though logically it depends on the first. Essentially, one shows that torsion
multisections have large genera so that rational multisections must be non-
torsion. Our genus estimates for the p-torsion and the associated principal
homogeneous spaces closely follow [BT3]. However, the presentation of the
intermediate technical results and the analysis of the isotrivial cases differ
to some extent. (Lemma 3.25 of [BT3] is not quite correct as stated: The
Kummer surface associated to a product of general elliptic curves is a coun-
terexample. This necessitates further ad hoc analysis in the isotrivial case.)
The third approach in §10 is based on a letter of J. Kolldr. Most of the
detailed computation of the previous approaches is replaced by deformation-
theoretic properties of rational and elliptic curves in K3 surfaces. The only
classification results needed are the multiplicities of the components of de-
generate fibers (see Figure 2 of §10).

Remark 6.5 (Conditional potential density for elliptic surfaces) Let
¢ :J — B be a nonisotrivial Jacobian elliptic fibration over a curve of genus
zero or one. In particular, .J is smooth and projective and ¢ admits a section
(cf. §7.2). If J is defined over a number field we expect its rational points
to be potentially dense. Indeed, Grant and Manduchi [GM1] [GM2] prove
this conditionally, assuming a strong version of the Birch/Swinnerton-Dyer
Conjecture formulated by Deligne and Gross. However, there are isotrivial
elliptic fibrations X — P' for which rational points are known not to be
potentially dense [CSS] (see example 3.7).

Remark 6.6 (Enriques surfaces) Potential density results for K3 surfaces
have application to other classes of surfaces dominated by them. By defini-
tion, an Enriques surface Y is a quotient of a K3 surface X by a fixed-point
free involution. Propositions 3.1 and 3.4 imply that potential density of ra-
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tional points for X and Y are equivalent. For results on Enriques surfaces
and their K3 double covers, we refer the reader to [BT1].

6.1 K3 surfaces with automorphisms

We sketch the proof of Theorem 6.3, following [BT3].

Lemma 6.7 Let X be a K3 surface. Then the automorphism group of X
acts faithfully on the cohomology H?(X,Z). In particular, an automorphism
a : X — X is uniquely determined by the homology class of its graph in
X x X.

This follows from the strong version of the Torelli Theorem for K3 surfaces
(see [LP] for one account.)

Lemma 6.8 Let X be a K3 surface defined over a number field K. There
exists a finite extension L/K so that each automorphism of the complex
manifold X (C) is realized as an algebraic morphism defined over L.

Proof: The automorphism group of X is finitely generated [St], so it suffices
to show that any automorphism a : X — X can be defined over a finite
extension of K. Choose a realization of X x X as a projective variety over K.
The graph I'(a) C X x X is a projective subvariety by the GAGA principle.
Consider the connected component H of the Hilbert scheme of subschemes
of X x X containing I'(a), which is defined over a finite extension L/K. The
locus in H corresponding to graphs of automorphisms of X is clearly open,
but T'(a) is the only graph of an automorphism of X in its homology class.
It follows that H = [['(a)], so I'(a) and a are defined over L.[J

Lemma 6.9 Let X be a K3 surface with infinite automorphism group. Then
there exists an indecomposible effective divisor class D so that the orbit of
D is infinite.

We refer the reader to §2 of [LP] for a good description of the indecomposible
elements in the monoid of effective divisors on a K3 surface.

Proof: The indecomposible effective divisors D with fixed (even) d := D.D >
—2 divide into a finite number of orbits under the action of the automorphism
group [St]. Suppose that there exists such a divisor with d > 0. This is always
the case when the effective cone admit an irrational extremal ray; just take
indecomposible divisors near this ray. The automorphisms fixing such a D
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admit a faithful representation in D+ C NS(X), a negative definite lattice
by the Hodge index theorem. Thus each such stabilizer is finite.

Suppose X has no indecomposible effective divisors with d > 0. It follows
that the effective cone of X is generated by divisors with d = 0, —2, permuted
by the automorphism group. If the Néron-Severi group NS(X) had rank
two, then the automorphism group would admit a subgroup of finite index
fixing the generators of the effective cone, but all such automorphisms are
trivial. If the Néron-Severi group has rank greater than two then we apply
the ‘alternative theorem’ of Kovécs [Ko|. Either X contains no (—2)-curves
or the effective cone of X is generated by (—2)-curves. In the first case, the
effective cone is ‘circular’ and admits an irrational extremal ray; hence the
argument of the previous paragraph applies. In the second case, there must
be an infinite number of (—2)-curves. If not, a finite index subgroup of the
automorphism acts trivially on the effective cone, a contradiction. []

Lemma 6.10 Let X be a K3 surface and D an indecomposible effective
divisor class. Then D contains a (possibly singular) rational curve.

Proof: In the case where D.D = —2 this is clear. When D.D = 0, D is
the class of an elliptic fibration, which admits degenerate fibers. In the case
where D.D > 0, we use the results of [MM]: A generic polarized K3 surface
contains a singular rational curve in the polarization class f. However, since
D is indecomposible with D.D > 0, (X, D) arises as the specialization of
a polarized K3 surface. The rational curves of the polarized K3 surface
specialize to rational curves on X in the class D. [

We complete the proof of Theorem 6.3. Let X be a K3 surface with
infinite automorphism group, defined over a number field K. Let D be a
indecomposible effective divisor class with infinite orbit under the automor-
phism group. Then after passage to a finite extension L/K, we may assume
that

1. the automorphisms of X are defined over L;

2. there is a rational curve R with class [R] = D, defined over L, with
dense rational points R(L) C R.

The orbit Useaur(xya(R) is dense in X and L-rational points are dense in the
orbit, so L-rational points are dense in X. []
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Example 6.11 [Si| Consider K3 surfaces X, defined over a number field,
which are realized as a complete intersection

X ={F, =0}n{Fy =0} C P? x P?

of bihomogeneous forms of bidegree (1, 1) and (2, 2) respectively. The Néron-

fi fo

Severi lattice is

where f; and f, are the pull-backs of the polarizations from the P?-factors.
The projections X — P? are degree-two covers, and the corresponding pair
of involutions generate an infinite group of automorphism on X. These K3
surfaces have potentially dense rational points.

More generally, we may consider K3 surfaces with Néron-Severi lattice

fi fo

with n > 4. These also admit pairs of noncommuting involutions.

6.2 Examples of elliptic K3 surfaces

Example 6.12 Harris and Tschinkel [HarT] consider the following special
class of elliptic K3 surfaces. Let X C P? be a quartic surface containing a
line £. Choose coordinates so that ¢ = {(w, z,y,z) : w = z = 0} and consider
the morphism

n: X = P
(w,z,y,2) = (w, ).

This is an elliptic fibration: Each hyperplane containing ¢ intersects X in the
union of / and a cubic plane curve

{w+axr=0}NX =(UE, E, aplane cubic curve.

We have 7 '(a) = E, and E, is a smooth genus one curve for generic «,
hence 7 is an elliptic fibration.

A particularly simple example is the Fermat surface 2§ + z] = 23 + x4,
which contains the line zqg — 29 = 1 — 23 = 0.
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Of course, there are numerous other examples of elliptic K3 surfaces. We
give characterizations of elliptic K3 surfaces in Proposition 11.1.

6.3 Salient ramification and torsion multisections

In this section, we sketch some particularly elegant geometric methods for
finding nontorsion multisections. We work in characteristic zero.

Definition 6.13 [BT1] Consider an elliptic fibration n : X — P! and a
multisection M. We say that M is saliently ramified if M — P' ramifies over
a point in a smooth fiber of 7.

Proposition 6.14 Let n: X — P! be an elliptic fibration and M a saliently
ramified multisection. Then M is nontorsion.

Proof: Consider the fibration
X xpo M — M

obtained after base change. This has a section (see §4.3). If the morphism
M — P' ramifies at m then the morphism M xp: M — M ramifies at
(m,m). Indeed, for a finite flat morphism, ramification occurs precisely
where the cardinality of fibers drops; this cardinality is unchanged under
base extension. (Also, being ramified is a local property in the faithfully flat
topology [EGAIV] 17.7.4.) Observe that we do not normalize M xp1 M, as
this would destroy some of the ramification.

However, the torsion of any group scheme in characteristic zero is étale
over the base, and we have a contradiction. [J

Combining this with Proposition 4.13, we obtain:

Corollary 6.15 Let n : X — P' be an elliptic fibration, defined over a
number field. Assume that 1 admits a saliently ramified multisection of
genus zero or one. Then rational points of X are potentially dense.

Remark 6.16 This approach has advantages and disadvantages. The main
disadvantage is the difficulty in producing saliently ramified multisections for
large classes of varieties: In general, there is no easy way to produce them
out of ‘thin air’.

The main advantage is that, once we are given a multisection, it is rel-
atively easy to check whether it is saliently ramified. Furthermore, if X, n,
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and M are defined over K and M (K) is dense, then X (K) is also dense.
This gives a good tool for checking density over a given field.

6.4 Reprieve: Quartic surfaces containing a line

We return to Example 6.12, again following [HarT]. Assume that the quar-
tic surface X and the line ¢ are defined over a number field K. The line ¢
itself intersects fibers of 1 in three points and defines a degree-three multisec-
tion. This multisection is saliently ramified provided the following geometric
condition is satisfied:

Tangency condition Some smooth fiber of 7 intersects the line
¢ tangentially.

Rational points of ¢ ~ P! are clearly dense over K, so the Tangency condition
suffices to guarantee density of X (K).

The geometric condition is satisfied for the generic quartic surface con-
taining a line—but not every such surface. It fails for the Fermat surface
g + o} = 25 + x5 with £ = {zy — 2y = 7, — 23 = 0}. The morphism
n: X — P! is given by the rational function

2 2
To— Ty )+ aiws + 25 + a3

T3 — 11 Xy + 32xe + w3 +

Taking z and x; as coordinates on £, the rational function restricts to a3 /3,
which ramifies (to order three) at the points (1,0,1,0) and (0,1,0,1). Here
the fibers of n are three coincident lines.

Combining the analysis of the salient ramification with a case-by-case
study of the possible torsion multisections, Harris and Tschinkel obtain the
following:

Theorem 6.17 ([HarT] Theorem 4.1) Let X be a smooth quartic surface
containing a line ¢ and n : X — P! the elliptic fibration obtained by projecting
from €. Assume there do not exist siz lines contained in X and meeting £.
Then 0 is a nontorsion multisection of £.

Corollary 6.18 ([HarT| Theorem 1.5.a) Retain the assumptions above,
and assume that X and ¢ are defined over a number field K. Then the
rational points X (K) are dense.
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After further analysis of degenerate cases, Harris and Tschinkel prove the
following general result, which is a special case of Theorem 6.4:

Theorem 6.19 Let X be a smooth quartic surface defined over a number
field. If X contains a line ¢ then rational points of X are potentially dense.

7 Twisting elliptic fibrations

7.1 The Tate-Shafarevich group

We refer the reader to [Kod], [Shafl], and [Ogg] for full details.

Let F = C(P') be the function field of P!, with absolute Galois group T.
Let (Jr,0) be an elliptic curve over F. The Tate-Shafarevich group Sh(Jr)
is defined as the Jp-principal homogeneous spaces which are locally trivial
at each place, i.e., the kernel

H](FJJF) — H H](fba Jﬁ‘;,)
beP!
where Fj is the completion /henselization of F at b and T its absolute Galois
group.
We recall some properties of Sh(Jg).

Proposition 7.1 1) Let Xz be a Jr-principal homogeneous space. Then
[Xr] € HY(T, Jr) has order m if and only if there is a point of Xy defined
over a field extension of degree m.

2) There are exact sequences

0 — Jp(By)/mJg (Fy) — HY Dy, Jg[m]) — H'Y(Dy, Jg)m] — 0
{ {

0 — Jp(F)/mJp(F) — HYT,Jpm]) — HYT,Jg)[m] — 0.

3) Sh(Jr) is infinitely divisible.

Proof: We have already seen that J™(Xp)(F) # () whenever Xy has a point
over a degree m extension of F. Conversely, suppose we have an F-rational
point of J™(Xpg). Such a point need not come from a line bundle L on
X defined over F; the obstruction lies in the Brauer group of F' (by the
Hochschild-Serre spectral sequence

0— H'(O%,) » H(I,H'(0%,,)) » H'(T,H(0%,,)) = H*(T, F*").)
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The Brauer group of F = C(P!) is trivial because it is a C' field. The
Riemann-Roch formula applied to L gives a degree-m cycle on Xp.

The second assertion is quite standard (see §1, 2.1 of [Shaf1]). The third
statement may be found in [Shafl] §2.5. Tt uses the fact that there are no
nontrivial families of elliptic curves over P! without degenerate fibers. [

In light of the exact seqences above, the reduction homomorphism

HY(T, Jp[m])) = H'(Ly, J7, [m])
can often shed light on Tate-Shafarevich group:

Proposition 7.2 (Corollary of [Shafl], §1.2.) Let F = C((t) with ab-
solute Galois group I', and Jz an elliptic curve over F'. Then for each m

[HY(D, T m))| = | T [m].

7.2 Models of elliptic surfaces

Recall that an elliptic fibration n : X — P! is relatively minimal if its fibers
contain no (—1)-curves, i.e., Kx is numerically effective relative to n. Given
an elliptic curve Xy over F' = C(PP!), there is a unique (smooth, projective)
relatively minimal model n : X — P'. In particular, for each elliptic fibration
n : X — P! there is an associated Jacobian fibration ¢ : .J — P!, which
admits a zero-section. It is obtained by taking the relative minimal model
of the Jacobian Jr := J°(Xr). We also have J™(X), associated to J™(Xr).
Multiplication by NV,

UN - Jm(XF) — JmN(XF),
induces a dominant rational map over P!
py s J™(X) — JN(X).

Definition 7.3 Let n : X — P! be a relatively minimal elliptic fibration.
A fiber n7'(b),b € P', is multiple if each of its irreducible components has
multiplicity > 1.

A Jacobian fibration always has a zero section, and thus has no multiple
fibers. A fiber may have some nonreduced irreducible components without
being multiple.

21



Proposition 7.4 Let X — P! be a relatively minimal elliptic fibration.
Then X has no multiple fibers if and only if X is an element of Sh(J(Xr)).

Proof: The fiber n='(b) is not multiple if and only if n has a section in an
analytic/étale neighborhood of b. This is equivalent to Xp, # 0. O

Proposition 7.5 Let n : X — P! be an elliptic surface without multiple
fibers, with Jacobian Jp. Then m[Xp| = 0 in Sh(Jp) if and only if there is
a multisection M C X of relative degree m over P'.

Proof: The first part of Proposition 7.1 gives this; M is obtained by taking
the closure of the cycle in Xz of relative degree m. [

Proposition 7.6 Let n : X — P! be a relatively minimal elliptic fibration
without multiple fibers, with Jacobian fibration ¢ : J — P'. For each b € P*,
X and J are isomorphic over an analytic/étale neighborhood of b.

Proof: Since X and .J are relatively minimal, they remain relatively minimal
after completion /henselization, and minimal models of surfaces (and Néron
models of elliptic curves) are unique. [

We remarked in Proposition 7.1 that Sh(.Jx) is infinitely divisible for an
elliptic curve Jp over F' = C(P'). The precise structure of this group admits
an elegant interpretation in terms of the transcendental cohomology of the
compact Kihler manifold .J:

Proposition 7.7 ([Shaf2] § VIL.8, Theorems 11 and 12,[Shi]) Let J — P' be
a nontrivial Jacobian elliptic surface with generic fiber Jg. Then

Sh(Jp) = H?*(J, Z)iran ® Q/Z,
where
H*(J, L)ywan = H*(J, 2)/(H*(J,Z) " H'(J, Q%)) = H*(J,Z)/NS(J),
the integral classes modulo the Néron-Severi group.
Remark 7.8 For elliptic K3 surfaces, the formula
Sh(Jr) ~ (Q/Z)¢, e =rank H*(J,Z)ian

may also be deduced from the Ogg-Shafarevich formula ([Shafl] §2.3, Theo-
rem 3, [Ogg] Theorem 2) and the formula for the rank of the transcendental
classes quoted in §7.4 [SI]. This allows us to deduce e from the rank of Jg
and the degenerate fibers of J — P'.
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7.3 Twisting elliptic K3 surfaces

Proposition 7.9 An elliptic K3 surface n : X — P' is relatively minimal
and never has multiple fibers.

Proof: The relative minimality follows because Kx = 0. We may then use
the classification of singular fibers for minimal elliptic surfaces [BPV] pp.
151. The possible multiple fibers take the form mD, where D is one of
the degenerate fibers enumerated in Kodaira’s classification. Now D C X
is effective and numerically effective, with self-intersection D.DD = 0. The
classification theory of linear series on K3 surfaces [SD| implies |D| induces
an elliptic fibration (cf. Proposition 11.1). O

Proposition 7.10 Let X be a smooth projective variety, n : X — P! a
relatively minimal elliptic fibration, and 1 : J — P its Jacobian fibration. If
X is a K3 surface then J is a K3 surface. If J is a K3 surface and X has
no multiple fibers then X is a K3 surface.

Proof: Proposition 7.9 and our assumptions imply that X and J are both
relatively minimal elliptic surfaces without multiple fibers. In particular, they
have isomorphic fibers (cf. Prop. 7.6.) The topological Euler characteristics
x(X) and x(J) are therefore equal. Both J and X are elliptic surfaces,
so K2 = K% = 0 and Noether’s formula implies x(Ox) = x(03) = 2.
The canonical bundle formula for elliptic surfaces [BPV] V.12.1,12.2 implies
Kx = 0if and only if K5 = 0. Any surface with K = 0 and x(O) =2 is a
K3 surface. [

Remark 7.11 Let B be a smooth projective curve, X — B an abelian
fibration, and J — B the Néron model of its Albanese. Then (X, wx) =
h'(J,wy) for each i (by [Kol2], Theorem 2.6 and Corollary 3.2).

One distinguishing property of elliptic K3 surfaces is that they admit
rational multisections.

Proposition 7.12 Let X — P! be an elliptic K3 surface with Jacobian Jp,
so that [Xp] € Sh(Jg) has order m. Then there exists a rational multisection
M C X of relative degree m.

Proof: Proposition 7.5 gives a multisection M of relative degree m. There
exists an indecomposible effective divisor class D so that M — D is effective
and D has positive degree over the base. It must have degree exactly m
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because the order of [Xp] equals m. Lemma 6.10 implies D contains an
irreducible rational curve M. [

Combining Propositions 7.10, 7.5, and 7.7 with the multiplication map
introduced in §7.2, we obtain

Corollary 7.13 Let X — P! be an elliptic K3 surface, with Jacobian .J
and generic fiber Ji. For each integer N, there exists an elliptic K3 surface
X' — P! with Jacobian .J so that

N[Xy] = [Xp] and order [X] = N - order [Xp]

in Sh(Jr). There is a dominant rational map X’ --» X over P!

7.4 Results of Shioda-Inose

To compute transcendental cohomology and the Tate-Shafarevich group in
particular examples, we use the following (see [SI]):

Proposition 7.14 Let n: X — P! be a elliptic K3 surface with Jacobian
v:J — P'. Then the Néron Severi group has rank

rank NS(X) =2+ r(Jp) + Z(mb - 1)
b
and the topological Fuler characteristic is
X(X)=24=) e,
b

where r(Jg) is the rank of the group of sections and my, and €, are given by
the following table:

Kodaira type | I,,a >0 | 1T | IIT |1V | IX,a>0| 11" | 111" | IV*
my a 1 2 3 a—+95 9 8 7
€p a 2 3 4 a+6 10 9 8

Subtracting the two formulas of Proposition 7.14 we obtain find

Corollary 7.15 Let n : X — P! be an elliptic K3 surface. Let N; denote
the number of degenerate fibers of type I,,a > 0, and Ny the number of
degenerate fibers of other types. Then we have

rank NS(X) + N1 + 2N2 = 26 + T(']F)-
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7.5 A remark on Fourier-Mukai transforms

Perhaps the simplest way to construct isogenies of K3 surfaces is by taking
twists of elliptic fibrations. This is not widely known, so we give a brief
account here.

By definition, two K3 surfaces X and Y are isogenous if the Hodge struc-
tures H?(X) and H?(Y) are isomorphic over Q. A natural problem, first
studied systematically by Mukai [Mu], is how such isogenies are induced by
correspondences between X and Y. Indeed the Hodge conjecture, applied to
X x Y, predicts that each isogeny between X and Y should be induced by
an algebraic cycle, which ideally should admit a geometric description. Typ-
ically, Y arises as a moduli space of simple sheaves on X, with the isogeny
induced by Chern classes of the universal bundle on X x Y.

Assume that ¢ : .JJ — P! is a Jacobian elliptic K3 suface and n : X — P!
represents an element [Xy] € Sh(Jg) of order m > 1. We interpret J as
J"™(X), the degree-m component of the Picard group relative to n. The
generic point of J parametrizes a line bundle £ of degree m supported on
some fiber of . We extract a simple sheaf £ from the kernel of the global
section map

0—=E&— HY(X,L)®Ox — L —0,

with rank m and Chern classes ¢;1(£) = —D and ¢2(€) = m, where D is the
class of a fiber of 7. The moduli space of such sheaves is the K3 surface .J.

We recall Mukai’s procedure for computing the isogeny between X and
.J. Consider

A:={a€ H*X,Z):a.D=0 (modm)}C H*(X,Z),

a sublattice of index m. We assumed that [X]| € Sh(.Jx) has order m, so
the algebraic classes

H*(X,Z)ag = H*(X,Z) N H' (X, Q%) C A.
Set D' = D/m and take A’ to be the lattice obtained from A by adjoining
D', so that A’/A is cyclic of order m. Observe also that

1. The intersection form on H?(X,Z) induces quadratic forms on A and
A’; the form on A’ is integral and unimodular.

2. A® C and A’ ® C inherit Hodge structures from H?*(X), so we may
define A,jg (resp. A};,) as the integral (1, 1)-classes and Agan = A/Aayg
(resp. Af,,, = A'/AL).

tran alg
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3. D" € A}y, with D"- D" = 0, and there exists a class ¥ € A}, with

D'-3 =1 (see Proposition 7.5).

4. Atran = A{

tran A Agran € H%(X, Z)iran so that the quotient is cyclic of
order m.

Indeed, Mukai proves that A’ is the Hodge structure for the moduli space
of sheaves of type &£, which coincides with the Jacobian elliptic fibration J.
Finally, H*(X, Z)tvan/H%(J, Z)tran is cyclic of order m and thus determines an
element of H?(.J,Z)zan ® (Q/Z) of order m. This coincides with the element
alluded to in Proposition 7.7.

8 Approach I: Irreducibility of torsion in the
nonisotrivial case

8.1 Group-theoretic results

We use the notation of the Appendix, in particular, the exact sequence
1 — (Z/pZ)®* — AHSLy(Z/pZ) 2 SLo(Z/pZ) — 1, (1)
with splitting o : SLy(Z/pZ) — A1SLy(Z/pZ).

Proposition 8.1 Let p # 2,3 be prime. Let H' C AffSLy(Z/pZ) be a sub-
group with q(H'") = SLy(Z/pZ). Then one of the following is true:

1. there is a point in (Z/pZ)®?* fized by each element in H', so this group
is conjugate to SLy(Z/p7Z);

2. H' = AfiSLy(Z/pZ).

Proof: First, assume that ¢ : H' — SLy(Z/pZ) has nontrivial kernel. Each
element of the kernel is in (Z/pZ)®* C AffSLy(Z/pZ) and acts via trans-
lation by a nonzero element v € (Z/pZ)*%. Any other nonzero element
w € (Z/pZ)®?* can be obtained by applying an element of SLy(Z/pZ), which
acts by conjugation on (Z/pZ)®* C AfiSLy(Z/pZ). The surjectivity assump-
tion implies w can also be obtained conjugating with an element of H'. Hence
every translation is contained in H' and the second alternative holds.
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Now we assume ¢ : H' — SLy(Z/pZ) is an isomorphism. Consider the
action of H' ~ SLy(Z/pZ) on polynomials over (Z/pZ)®? of degree < 1

co + 171 + Coa,  Cy,C1, 09 € L.

We claim the resulting representation is completely reducible

(1)@ (r1 —vi1,m9 —v9),

where (v1,v9) is the fixed point of the action. We know that ¢(—1), where
I is the identity, is semisimple and the +1-eigenvalue decomposition of the
linear polynomials takes the form . It suffices to show that every other
element of H' respects this decomposition. Consider

0 -1 0 —1
B I ey
which generate SLy(Z); [Sel] §7.1 contains a proof they generate SLo(Z)/ £ 1
and they obviously yield +7. These matrices therefore generate SLy(Z/pZ)

as well, so it suffices to show they respect decomposition {. These matrices
are semisimple over Z/pZ and satisfy the relations

S?=1%=—1I,
i.e., they have eigenspace decompositions respecting our decomposition. [J

Proposition 8.2 For any proper subgroup H C SLo(Z/pZ), the index of H
18 at least p.

Proof: We have SLy(Z/2Z) the symmetric group &3 and SLy(Z/3Z) a central
extension of the alternating group A, by a group of order two. The result
holds in these special cases, so we may restrict attention to cases where
p # 2,3. Let r = index(H) = |SLy(Z/pZ)/H| and consider the associated
coset representation

SL,(Z/pZ) — G,.

The kernel K C SLy(Z/pZ) is a normal subgroup, as is its image K' C
SLo(Z/pZ)/ (£1). For p > 3 the group SLo(Z/pZ)/ (1) is simple, so either
K’ is trivial or the entire group, which is impossible. If K’ is trivial then
ISLy(Z/pZ)/ (£I) | = p(p* — 1)/2 divides 7!, so the index r > p. [J
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8.2 Irreducibility of torsion

Throughout this section, F' denotes the function field of P'. We consider the
irreducibility of certain schemes over F':

Theorem 8.3 Let J — P' be a nonisotrivial Jacobian elliptic fibration, with
generic fiber Jp. Let p be a sufficiently large prime number.

1. The nonzero p-torsion Jg|p| — {0} is irreducible.

2. Any nontrivial Jg|p|-prinicipal homogeneous space Pr is irreducible.

Proof: Let U C P' be the open subset over which the fibration is smooth.
Consider the monodromy representation

0. T (U) — SLQ(Z),
with image I".
Lemma 8.4 I C SLy(Z) has finite index.

Proof: Let V. — U be the covering space with covering group I, so that
U =T"\ V. The pull-back of .J to V has trivial monodromy, so we have

V - H
ool
U L A ~SL,(Z)\ H

where H is the upper half plane and A! is the j-line. Both vertical maps are
["-equivariant, so we have a factorization

'\ H
SN
U REAN SLy(Z) \ H.

Since j has finite degree, I has finite index.[]

In the sequel, we take I' to be the absolute Galois group of the function
field F = C(P'). The profinite completion of the fundamental group m; (U)
is a quotient of I', corresponding to the maximal extension of F' unramified
over U. The (mod p) reduction of the monodromy

p:m((U) = SLy(Z/pZ)
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factors through the profinite completion and induces a representation
[' = SLy(Z/pZ).

We use the notation of the Appendix. The p-torsion Jp[p] is a T-twist
of (Z/pZ)®?* and is classified by a representation « : I' — SLy(Z/pZ), which
coincides with the representation p(mod p).

Lemma 8.5 For sufficiently large primes p, « is surjective.

This proves the first assertion of the Theorem.
Proof of lemma: The index of «(T") in SLy(Z/pZ) divides the index of I in
SLy(Z). By Proposition 8.2, any proper subgroup of SLy(Z/pZ) has index
at least p. It follows that «(I') = SLy(Z/pZ) for p greater than the index.
The irreducible components of Jp[p] — {0} correspond to the orbits of a/(T")
on (Z/pZ)®*—{0}. O

To each Jp[p|-principal homogenenous space Pp, Proposition A.2 assigns
a representation ¢ : I' — AffSLy(Z/pZ) with qo ¢ = a.

Lemma 8.6 For sufficiently large primes p, ¢ is surjective provided Pp is
nontrivial.

Then ¢(T') acts transitively on (Z/pZ)®? and Py is irreducible, and the second
assertion of the Theorem is proved.

Proof of lemma: We may assume « is surjective. If ¢(I') were contained in
some conjugate of SLy(Z/pZ) C AffSLy(Z/pZ), then it would fix an element
of (Z/pZ)¥?, contradicting the nontriviality of Pp. Then Proposition 8.1
implies ¢(I") = AffSLy(Z/pZ). O

8.3 Production of rational multisections

To prove potential density for an elliptic K3 surface n : X — P!, we pro-
duce a plethora of rational multisections, with the hope that some might be
nontorsion. The next result gives an infinite sequence of such multisections,
with unbounded degree.

Theorem 8.7 Let X — P! be a nonisotrivial elliptic K3 surface, with Jaco-
bian fibration J — P and generic fiber Jp. Suppose that [Xr] € Sh(Jx) has
order m and let p > m be prime. Then there exists a rational, nontorsion,
multisection M C X of degree mp.
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Combining this with Proposition 4.13, we easily deduce the following special
case of Theorem 6.4:

Theorem 8.8 Let n: X — P! be a nonisotrivial elliptic K3 surface over a
number field K. Then rational points of X are potentially dense.

Proof of Theorem 8.7: Corollary 7.13 yields an elliptic K3 surface X’ — P!
with Jacobian .J so that

order [X7.] = p-order [Xr| and p[X}] = [XF]
as well as a dominant rational map
py: X' - JP(X') = X.

Proposition 7.12 gives a rational curve M’ C X' of relative degree mp. Let
M be the image pu,(M"), which is also a rational curve, and consider the
induced finite morphism

pp s M — M.

Lemma 8.9 p, maps M' birationally onto M, which thus has degree mp
over P

Proof of lemma: Suppose not, so that M has degree strictly smaller than mp.
Since [Xp] € Sh(Jp) has order m, Proposition 7.5 guarantees M has relative
degree equal to m. Furthermore, the induced M’ — M has degree p.

Let {m,...,my,} denote the geometric points of M7, lying over the
generic point of the base P'. Since p,(m} ) = p,(m})) for some i; # i,
we deduce that some of the m;j — mj, are p-torsion, e.g., the points lying
over a given m; € Mp. We basechange to M to obtain a elliptic fibration
X'xp1t M — M. Using the inclusion and the map p,, imbed M" — X' xpi M
so the image is a p-torsion multisection of degree p over M. Let E denote
the function field of M, a degree m extension of F', and Jg the basechange
of Jr to E. Then My, is contained in a principal homogeneous space P for
Ji(p] (see Remark 4.10).

We analyze the structure of Jg[p]. First, if p is chosen sufficiently large,
we may assume the monodromy representation

a: T — SLy(Z/pZ)
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is surjective (see Lemma 8.5). By Proposition 8.2, the degree-m extension
E/F is linearly disjoint from the SLy(Z/pZ) extension of F' associated with
Jr[p]. Indeed, the associated Galois extension of F" has no subextensions with
degree dividing m. Hence, even after base extension to E, the monodromy
representation still surjects onto SLy(Z/pZ).

We return to the principal homogeneous space Pg. If it is trivial then
Theorem 8.3 shows it has just two components, the identity and the non-
identity, neither of which has degree p. If it is nontrivial then an application
of Proposition 8.1, as in the argument for Lemma 8.6, shows it is irreducible
with just one component of degree p?. In either case we deduce a contradic-
tion, so M must be a multisection of degree mp in X. OJ

It remains to show that M is nontorsion, which is the case if M’ is non-
torsion:

Lemma 8.10 M’ C X' is nontorsion.

Proof of lemma: Suppose that M' is torsion of order N, so that uy(M') C
JN(X') is a section. Proposition 7.5 implies that mp = order[X}| divides N.
Write N = np and consider the image

M = (M) € J(X),

a multisection of order p and degree d > 1, where d|mp. By Proposition 4.8,
M" is contained in a principal homogeneous space Pr for the p-torsion Jg[p].
We apply Theorem 8.3: If P is nontrivial then it is irreducible of degree p?
and p|m, a contradiction. If Pp is trivial then d = p? — 1, whence (p* —1)|m,
a contradiction. []

Remark 8.11 For the application to Theorem 8.8, we only really need M’
to be nontorsion. Then we may apply Proposition 4.13 to X' and potential
density for X follows from Proposition 3.1. (If X is defined over a number
field then X’ and M’ are as well.)

The precise description of the multisection M does give interesting con-
sequences:

Corollary 8.12 Every nonisotrivial elliptic K3 surface contains an infinite
number of irreducible rational curves.
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Corollary 8.13 For each nonisotrivial Jacobian elliptic K3 surface with
Néron-Severi group of rank two, there exists an infinite sequence of irre-
ducible rational curves with decomposible divisor classes.

These cannot be (—2)-curves [LP] §2.

Proof of corollary: A Jacobian elliptic K3 surface with Néron-Severi rank two
has effective cone generated by the classes of a fiber E and the zero section
¥ [SD]

E{0 1.
Y11 -2

Thus any multisection of relative degree > 1 is decomposible. [J

9 Approach II: genus estimates

Before diving into technical details, we indicate the main idea of this ap-
proach. Consider the modular curve

Xi(n) = {(E, P): E an elliptic curve , P € E of order n}/ ~ .

Any family of elliptic curves £ — B with n-torsion section gives a morphism
B — Xi(n). For large primes X;(p) has positive genus [Miy] §4.2, so there
are no nonisotrivial families of elliptic curves with p-torsion section over P'.
We shall prove similar results for torsion multisections: If they have large
torsion order they must have positive genus.

9.1 The Riemann-Hurwitz formula

Let F' be the function field of a smooth projective curve B, My a finite
reduced scheme over F', M the normalization of B in the fraction ring of
Mp, and f: M — B the induced finite morphism. We do not assume M is
irreducible. The genus g(Mp) is defined as the arithmetic genus of M, and
is computed by the Riemann-Hurwitz formula

29(M) —2 = deg(f)(29(B) = 2) + Y €m,

meM

where e, is the local ramification order at m.
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Let I" be the absolute Galois group of F' (or the fundamental group of the
open subset U C B over which f is unbranched). For each b € B, write

ff] (b) = {m], ce mr(b)}.

Let v, € T represent the conjugacy class of a generator for the Galois group
of the completion Fy, of F' at b (or the class of a small loop around b.) The
cover f yields a representation into the symmetric group

gO:F—)Gdegf

where ¢(7;) gives the local monodromy at b. If we represent this as a product
of disjoint cycles

QO(’}/b) = 01...0¢(b),
then the cycles are in one-to-one correspondence with the points {m,, ..., mye}

and
length(o;) = ey, + 1.

This allows us to rewrite the Riemann-Hurwitz formula

2g(M) — 2 = deg f(29(B) — 2) + ) _(deg(f) — (b)),

beB

where 7(b) is the number of orbits of p(7) € Gyeg 5.

9.2 Genera of principal homogeneous spaces

Theorem 9.1 Let F' be the function field of a smooth projective curve B;
for each b € B, let E, denote the completion of F atb. Let Hr be a finite
group scheme over F and Pr a Hg-principal homogeneous space over F.
Then g(Hr) < g(Pr), with equality only when P, is a trivial Hz, -principal
homogeneous space for each b € B.

Proof of theorem: We use the notation of the Appendix and §9.1, and use
H and P to denote the normalizations of B in Hr and Pr respectively. Let
[' denote the absolute Galois group of F, G = Hpga the group of points
of Hy over the algebraic closure, and G’ the associated twisted form, with
classifying cocycle

a € H'(T, Aut(G)) = Hom(T, Aut(G)).
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By Proposition A.2, Pr is classified by a representation
¢: I — Aff(G)

so that g o ¢ = «, where ¢ : Aff(G) — Aut(G) is the quotient map.

For each b € B let v, € I' correspond to the generator of the absolute
Galois group of F, (or the class of a loop around b in the fundamental group.)
As we saw in §9.1, the ramification of H — B (resp. P — B) over b
is determined by the number of orbits of «(7) (resp. ¢(75)) on G. By
Proposition A.2, the Hp, -principal homogeneous space Py, is trivial only if
®(7) is conjugate to «(vy,) by some 7, € G.

To apply the Riemann-Hurwitz formula, it suffices to establish the fol-
lowing:

Proposition 9.2 Let G be a finite group, a € o(Aut(G)), and ¢ € Aff(G)
so that q(¢) = q(a). Then we have

# orbits(v) < # orbits(a),
with equality only if ¢ = TgaT_(;] for some g € GG.

Proof of proposition: Let Aut(G) and Aff(G) act on G from the left. Since
Aff(G) is a semidirect product of G by Aut(G) and ¢(¢) = ¢(a), we may
represent ¢ = 1,a for some 7, with h € G acting on G by left translation.

For each 5 € Aff(G) and N € N, define

Fix(8,N) ={g € G : 8"(9) = g},

the elements fixed by the Nth power of 8; Fix(3,1) is the set of [-fixed
points. We write O(S, N) = |Fix(8, N)|. Observe the following properties:

1. Fix(8, N1) C Fix(8, Ny) whenever N;|Ns.

2. Fix(8, N) is the elements contained in a S-orbit with cardinality divid-
ing N.

3. When a € o(Aut(G)) C Aff(G), Fix(a, N) is a subgroup of G.

4. When ¢ = 1a for a € o(Aut(G)), Fix(¢, N) is either empty or is
a principal homogeneous space for Fix(a, N). In particular, either

O(¢Y,N)=0or O, N) = O(a, N).
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We verify the last assertion: Take g, go € Fix(¢, N) and ¢ € Fix(a, N), so
that g = ag and g; = ¥V (g;),7 = 1,2. Since ™ = (1,a)"Y = 7ra® for some
W e G, we have g = ma™(g1), Twa™(g19) = Twa™(g1)aV(9) = gig, and
g19 € Fix(¢, N). Furthermore,

N( -1 _N

a™ (g, g2) = a™(q1) '™ (g2) = (1, 91) 7 92 = 91 Lo

so that g, 'go € Fix(a, N).
Let o(3, d) denote the number of 5-orbits of G with cardinality d, so that

OB, N) = Y o(B,dyd

d|N

o(f.d) = 1/dY_O(B,d/)u(j)

jld
where p is the Mobius function. Then the total number of S-orbits is

#orbits(8) = Y o(Bd) =Y 1/d>_O(B,d/j)uj)

d| order(3) d jld

= D 0BG D wk)/k

j| order(B) k| order(B)/j

= > o6 I w-yue

7| order(B) £ prime | order(3)/j

This is a positive linear combination of the O(f,j). We have seen that
O(1),7) < O(a, j) for each j, hence

# orbits(¢y)) < # orbits(a).

If equality holds then O(t,j) = Of(a,j) for each j so, in particular,
O(¢,1) # 0. If ¢ fixes an element g € G then 79’11/179 fixes the identity.
However, any element of Aff(G) fixing the identity is in o(Aut(G)) and

q(r, "1g) = q(¥) = q(a),

_ -1
hence ¢ = rpar, . U
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9.3 Genus of the p-torsion

We organize our computation by the Kodaira type of the degenerate fiber
(see [Kod] §9, Table 1 or [BPV] pp. 159).

Theorem 9.3 Let J — B be a relatively minimal Jacobian elliptic fibration
with generic fiber Jg. Suppose there are ny degenerate fibers of type I, n)
degenerate fibers of type I,,a > 0, n{ degenerate fibers of type I}, a > 0, ny
fibers of type I1 or I1*, ns fibers of type I11 or I11*, and ny fibers of type
IV or IV*.

If p is a sufficiently large prime number then

29(Jrlp)) =2 = p*(29(B) —2) +ni(p —1)* + n{(p* - p)
+(p* — 1)(1/2n9 + 5/6n5 + 3/4n3 + 2/3n4)
29(Jrlp] — {0}) —2 = ni(p - 1) +ni(” —p)+ (" 1)(29(B) 2
+1/2ng + 5/6n2 + 3/4n3 + 2/3n4).

Remark 9.4 Jp[p| does not generally extend to a group scheme finite and
flat over B. Any such group scheme would be smooth over B, but the proof
of the theorem shows the existence of ramification at singular fibers.

Corollary 9.5 Retain the notation and assumptions of Theorem 9.3. Sup-
pose B = P! and assume

c(J) :=1/2ng +n' +n) +5/6ny + 3/4nz + 2/3ns — 2 > 0.

Then for p > 0 both Jp[p| and Jx[p] — {0} have positive genus, as does any
Jr[p]-principal homogeneous space.

The last assertion follows from Theorem 9.1.
Proof of theorem: To compute the full torsion we take Mp = Jr[p], so the
resulting morphism f : M — B has degree p*.

In order to apply the Riemann Hurwitz formula as in §9.1, we record the
local monodromy p(v,) € SLy(Z), the number of orbits of (Z/pZ)®? under
p(7), and the contribution to the total ramification. In the table below we
assume that p # 2, 3, so that for fibers of types I§, /1, 11*, 111, 11T* 1V IV*
the mod p reduction of p(;) is semisimple and fixes only the origin. If there
are fibers of type I, (resp. I¥) we also assume (p,a) = 1, so the mod p
reduction is conjugate to

(1) (e (1)
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Table 1: Ramification contributions at degenerate fibers

Kodaira type | monodromy matrix | # orbits mod p | ramification
P(7) r(b) Zmeffl(b) Em
10 )
* Lo 2 2
1 a 2
. 1 a 9
I - (0 1) p p—p
1 1 9 9
II 10 1/6(p* +5) 5/6(p* — 1)
Ir (? _11> 1/6(p> +5) | 5/6(p* 1)
11 (01 é) 42 +3) | 3/ —1)
IIT* (? _01> 1/4(p? + 3) 3/4(p* — 1)
v <01 11> 1307 +2) | 2/3( 1)
v+ <_1 _01> 1/3(p* +2) 2/3(p* — 1)

To compute the nonzero torsion we take Mp = Jp[p|]—{0}, so the resulting
morphism f : M — B has degree p?> — 1. On the other hand, removing the
origin involves eliminating an orbit of size one, which does not change the
ramification contribution. [

We classify the K3 surfaces where Corollary 9.5 fails to apply:

Proposition 9.6 Let X — ]P”_ be an elliptic K3 surface, with Jacobian J —
P' and generic fiber Jp. If ¢(J) <0 (cf. Corollary 9.5) then X is isotrivial
and takes one of the following forms
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1. four degenerate fibers of type I, and rank NS(X) = 18,19, 20,
2. three degenerate fibers of types I5, I11*, IV*, and rank NS(X) = 20;
3. one degenerate fiber of type I, two of type I1T*, and rank NS(X) = 20;
4. three degenerate fibers of type IV*, and rank NS(X) = 20.
Proof: Retain the notation of Theorem 9.3 and §7.4. If ¢(J) < 0 then
2ng + 4ny + 4ny +10/3ny + 3nz + 8/3n4 < 8
and subtracting from the formula of Corollary 7.15
rank NS(X) + n} + 2(ng +ny + na + n3 + ny) = 26 + r(Jp)
gives
rank NS(X) > 18 + r(Jr) + 3n} + 2n} + 4/3ny + n3 + 2/3n,.

Since rank NS(X) < 20, it follows that n} = 0.
The expressions above admit the following solutions:

~
N

ny ny ng rank NS(X) r
0 0 18,1920 2.1
20 0
20 0
20 0
20 0
20 0
0
0
0
0
0

(/)

,0

S
o
»—;\
=

20
20
20
20
20

— O O 00~ O U W N
O = o= = NN NN W
[ en il an il ae i an B ool o Bl an B an B o Bl o]
(=il llelleBol R ol
SO OO OH OO OO O
SO =, NO O —=OOoOo

W NH=RO =~ OOoOCoOo

—_ =

Several of these can be excluded. Solutions 2,4,5,6,9, and 10 are incon-
sistent with the Euler characteristic computation of Proposition 7.14. As
for solution 3, suppose X — P! is an elliptic surface with one fiber of type
I for a > 0 and two fibers of type [;. Such a fiber has one rational curve
with multiplicity two, intersected transversally by four rational curves with
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Figure 1: Degenerate fiber of type I

multiplicity two (see Figure 1). Let B’ — P! be a double cover branched at
the two points by, by € P! with fibers of type I;. The fiber product X xp: B’
is non-normal along the preimages of the rational curves with multiplicty
two. Let Y be the normalization and ¢ : Y — B’ the induced elliptic fibra-
tion. The fibers ¢~ '(b;) consist of a smooth elliptic curve, along with four
(—1)-curves intersecting it transversally, i.e., the preimages of the rational
curves of multiplicity one. Thus % is not relatively minimal over the points
b1, by, so we blown down the eight (—1)-curves. Let ¢’ : Y’ — B’ be the
resulting fibration, which has only two degenerate fibers, both with poten-
tially multiplicative reduction, i.e., j-invariant infinity (see [Kod], Part II, pp.
604). We obtain a nonisotrivial elliptic fibration with abelian monodromy,
an impossibility (see Lemma 8.5.)

The remaining solutions are consistent with Proposition 7.14 and are
enumerated above. These correspond to isotrivial elliptic fibrations because
there are no fibers of potentially multiplicative reduction.[]

Remark 9.7 Ad hoc arguments give potential density for the degenerate
cases enumerated in Proposition 9.6. The first case is a Kummer surface:
Suppose that X — P' is an elliptic K3 surface with type I; degenerate
fibers at the points by, by, bs, by € PL. The local and global monodromy is
multiplication by —1. Let £ — P! be the ramified double cover branched
over by, by, bs, by, an elliptic curve. Let ¢’ : Y’ — FE be the minimal elliptic
fibration obtained from X Xxpi1 EF — E. which is now smooth and has trivial
monodromy. Such fibrations are classified (see [BPV] §V.5): ¢’ is isotrivial
with constant fiber C| is classified by the induced representation m (E) into
the torsion subgroup of C', and Y’ is an abelian surface. By Proposition 4.2,
Y has potentially dense rational points. Since Y’ dominates X, it also has
potentially dense rational points.
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The remaining cases have rank twenty, and thus have infinite automor-
phism group [SI] Theorem 5. Potential density follows from Theorem 6.3.

9.4 Second proof of Theorem 8.8
In light of Remark 8.11, it suffices to establish:

Proposition 9.8 Let X — P! be a nonisotrivial elliptic K3 surface, with
Jacobian J and generic fiber Jp. Then there exists an elliptic K3 surface
X' = P' with Jacobian J, a dominant rational map X' --» X over P', and
a nontorsion rational multisection M' C X'.

Proof: We retain the notation of the proof of Theorem 8.7, so that X' is
an order-p twist of X. If M’ has order N then the image of M' under the

multiplication map
py s X IV (X))

is a section of JV(X’) — P! Since X' has order divisible by p, Proposition
7.5 implies p|N. Write N = pn and let Y = J"(X'), an elliptic K3 surface
with Jacobian Jp, so that [Y] = n[X']. We have a factorization of uy

Xy S N XY = ().
The image M := p,(M') is a rational multisection in Y of order exactly p
and ¥ := p,(M) is a section in JP(Y), with M C p,'(¥). Furthermore,
Pp = ' (¥)r is a principal homogeneous space for Jp[p].

If Pr ~ Jg[p] then Mp ~ Jp[p] — {0} because Theorem 8.3 implies
Jr|p]—{0} is irreducible when p > 0. It has positive genus by Proposition 9.6
and Corollary 9.5. As our family is nonisotrivial, this can also be extracted
from standard computations of the genera of modular curves (e.g., [Miy]
§4.2).

If P is nontrivial then Theorem 8.3 guarantees it is irreducible for p > 0.
Then M = ,uzjl(Z) and Corollary 9.5 implies M has positive genus when
p > 0, a contradiction. []

9.5 Completing Theorem 6.4: the isotrivial case

After Theorem 8.8 and Remark 9.7, the only case where potential density

remains open is isotrivial elliptic K3 surfaces with ¢(J) > 0. Can the ar-
gument of §9.4 be applied in this situation? The main complication is that
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Jr[p] — {0}, and even nontrivial Jg[p|-principal homogeneous spaces, may
fail to be irreducible. Indeed, the monodromy group is a subgroup of the au-
tomorphism group of the geometric generic fiber; the irreducible components
of Jg[p] correspond to orbits of p-torsion points under these automorphisms.
Unfortunately, Theorems 9.3 and 9.1 shed little light on the genus of an
wrreducible component of a principal homogeneous space.

With some extra bookkeeping, one can still prove the following:

Theorem 9.9 Let J — P' be an isotrivial Jacobian elliptic surface, with
generic fiber Jr. Suppose that c(J) > 0. For prime numbers p > 0, each
irreducible component of Jp[p] —{0} has positive genus. If Pr is a nontrivial
Jr[p]-principal homogeneous space then each irreducible component of Pr has

positive genus.

Repeating the argument for Proposition 9.8, we obtain

Proposition 9.10 Let X — P! be an isotrivial elliptic K3 surface, with
Jacobian J — P! and generic fiber Jr, so that ¢(J) > 0. Then there exists
an elliptic K3 surface X' — P! with Jacobian J, a dominant rational map
X' —» X over P', and a nontorsion rational multisection M' C X'.

Given this, the argument of §9.4 gives potential density for isotrivial elliptic
K3 surfaces with ¢(J) > 0.

Before establishing Theorem 9.9, we generalize Proposition 8.1 to classify
the irreducible components of principal homogeneous spaces for the p-torsion
of an isotrivial elliptic fibration. We use the notation of the Appendix, in

particular, the exact sequence
1 — (Z/pZ)®* — AH1SLy(Z/pZ) 2 SLo(Z/pZ) — 1, (2)
with canonical splitting o.

Proposition 9.11 Let T € SLy(Z) be an element of finite order n generating
a subgroup H, p # 2,3 a prime, and H' C AffSLy(Z/pZ) so that q(H') = H.
Then there is a split exact sequence

1—-V —-H —-H—1, V:i=Hn(Z/pZ)™ (3)

For each splitting o', o'(H) is conjugate to a subgroup of o(SLs(Z/pZ)),
where o is the canonical splitting of exact sequence 2.

The orbit decomposition of (Z/pZ)®* under the action of H' is one of the
following:
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elements.

2. If dimy, (V) = 1, H' has one orbit with p elements (the subspace V')
and (p — 1)/n orbits with pn elements.

8. If dimy,,7(V) = 2, H' has one orbit with p* elements.

Proof: 1f T € SLy(7Z) has finite order n, it is semisimple and its eigenval-
ues are primitive nth roots of unity. The characteristic polynomial of T is
quadratic, so n = 2,3,4, or 6. As p # 2,3, the reduction of T'(mod p) still
has eigenvalues which are nth roots of unity, and 7'(mod p) has order n.

The exact sequence 3 is clearly induced from exact sequence 2; it is split
because |V is prime to n = |H|. Now o'(H) is conjugate to a subgroup of
0(SLy(Z/pZ)), provided o'(T) fixes some point v € (Z/pZ)®?* Consider the
action of ¢'(T) on polynomials over (Z/pZ)®? of degree < 1

co + 171 + €, Co,C1,09 € L.

We know o'(T) fixes the constants ¢y and has order prime to p, so its action
decomposes as a direct sum of irreducibles

(1) ® (r1 — v1,m9 — va),

and the induced action on the second factor is semisimple. The fixed point
is v = (v1, v9); the orbit analysis in the next paragraph will show that v € V.
It remains to analyze the orbit decomposition. In each case, we first
conjugate so that o'(H) C SLy(Z/pZ). f V =0, H' C SLy(Z/pZ), generated
by a semisimple matrix o'(T") of order n > 1. The fixed point is the origin
and every other orbit has n elements. If V = (Z/pZ)®* then H' contains
the full translation group, so the action is transitive. Now assume V' is one
dimensional. Of course, V is an eigenspace for o/(T"). The group H' is
generated by translations by elements of V' and the action of ¢/(7). Again,
the only fixed point under the action of ¢'(7T') is the origin, so any orbit not
containing the origin has order divisible by n. No element of (Z/pZ)®? is
fixed under translation by V', so each orbit has order divisible by p. The
description of the orbits follows. [
Proof of Theorem 9.9: L.et M denote a component of the normalization of
P! in Jp[p] — {0} or Pr, corresponding to an orbit of H' on (Z/pZ)®?. In the
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first case of Proposition 9.11, M corresponds to an H'-orbit with n elements
and Riemann-Hurwitz takes the form

29(M) — 2 = c(J)n > 0.
In the last case of Proposition 9.11 P is irreducible, so Theorems 9.3 and
9.1 apply as in the nonisotrivial case.
For the remaining cases, we analyze more closely the behavior at fibers
of additive reduction:

Lemma 9.12 Let F = C((t)) with absolute Galois group T, and J; an
elliptic curve over F. Assume that the closed fiber is not of type I,. For
primes p > 3, H'(T', Jz[p]) = 0.

Proof of lemma: Take the associated Néron /relatively minimal model .J over
C[[t]]. The locus where the fibers of .J are smooth and reduced is called the
‘group-like’” part. In the case of additive reduction, the identity component
of the group-like part is the additive group, which has no torsion. Hence, the
order of the torsion group is equal to the number of connected components of
the group-like part. The Kodaira classification ([Kod] §9, Table 1 or Figure
2 of §10) gives

Kodaira type | I; 11 II* III III* IV IV*
torsionorder [4 0 0 2 2 3 3

By Proposition 7.2, in these cases any local Jz[p]-principal homogeneous
space (with p > 3) is trivial. OJ

We complete the proof of Theorem 9.9. Only the second case of Propo-
sition 9.11 remains. Lemma 9.12 says that at each point b € P' of additive
reduction, the local monodromy ¢(v,) € H' has a fixed point (see Proposi-
tion A.2.) If M corresponds to an H’-orbit with p elements then one of the
elements is fixed at each point of additive reduction, and Riemann-Hurwitz
takes the form

29(M)—2 > —2p+(1/2ny+5/6ny+3/4nz3+2/3n4)(p—1) = (p—1)e(J) — 2.

We have inequality because f : M — P! may ramify at smooth fibers. If M
corresponds to an orbit with pn elements then none of the elements is fixed
and

29(M) — 2 > —2pn + (1/2n¢ + 5/6ny + 3/4n3 + 2/3n4)(np) = npc(J).
This completes the proof.[]
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10 Approach III: elliptic multisections
(based on correspondence with J. Kollar)

10.1 Cubical curves

Definition 10.1 A cubical curve C' is a reduced curve which may be imbed-
ded as a plane cubic C' C P?, with at most two irreducible components.

Example 10.2 1. an elliptic curve is cubical;

2. an irreducible rational curve with a single node is cubical with equation
Y’z = 2?2 + 2%, and is called the ‘nodal cubic’;

3. an irreducible rational curve with a single cusp is cubical with equation
y?z = 23, and is called the ‘cuspidal cubic’;

4. a curve with two smooth rational components intersecting in two nodes
is cubical with equation z(2? —yz) = 0, and is called the ‘secant cubic’;

5. a curve with two smooth rational components intersecting in one point
tangentially is cubical with equation z(z* — yz) = 0, and is called the
‘tangential cubic’.

Proposition 10.3 1. Cubical curves are connected of arithmetic genus
one and admit flat deformations to smooth curves.

2. Any isomorphism C{ — C¥ between the normalizations of cubical curves
that respects their conductors descends to an isomorphism Cy — Cy of
the cubical curves.

3. Let R be a projective integral singular rational curve. Then there exists
a cubical curve C' and birational morphism f: C — R.

4. Let R be a projective connected curve with two rational irreducible com-
ponents, at least one of which is smooth. Assume that the smooth com-
ponent intersects the second component in at least two distinct points,
or intersects a smooth branch of the second component with multiplicity
greater than one. Then there exists a cubical curve C' and birational
morphism f : C' — R.
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Proof: We leave the proof of the first part to the reader. One way to establish
the isomorphism assertion is to observe that Example 10.2 gives a complete
classification of cubical curves.

For the remaining claims, consider the seminormalization o : R — R
[Kol2] 1.7.2. This is a finite, birational, bijective morphism, and is maximal
with these properties; it is obtained from the normalization R” by identifying
points which are identified by v : R — R.

For the third assertion, B ~ P! and either R¥ — R’ or R’ — R fails
to be an isomorphism, because R is singular. If R — R’ fails to be an
isomorphism then there exist distinct 1, 7y € R” that are identified in R. Let
Cy be the nodal cubic obtained from R” by identifying r; and 9. The induced
Cy — R is the desired morphism from a cubical curve. Otherwise, R° ~ P!
and we choose r € R’ at which o is not an isomorphism. Consider the
local rings Og 5(;) C Ogo ., a finite extension of Og. ,-modules. If t € mpgo ,
is a local uniformizer then t" € mpg,() for n > 0 but not n = 1. The
intermediate ring

OR,a(r) C ORyg(r)[tQ, t3, t4, . ] C ORn,r

corresponds to a factorization R — C' — R through a cuspidal curve C.

For the last assertion, we have RY = RY U Ry ~ P! UP! with RY mapped
isomorphically onto its image in R. Suppose we have distinct ry, 7} € RY
and r9, 7y, € RY so that v(r1) = v(ry) and v(r}) = v(r}). Let C be the curve
obtained by gluing the RY so that r; and 7y (resp. 7} and ) are identified.
This is a ‘secant cubic’ and we obtain a factorization RV — C — R. Now
suppose we have r; € RY so that v(r1) = v(ry) = r, and v maps an open
neighborhood of 75 isomorphically onto its image, which intersects v(RY) with
multiplicity at least two at r. Algebraically, O, is contained in the subring
of elements (f1, fo) € Oryr, X Ogyy, with fi(r1) = fa(r2) and f; € m%r@,q,m
if and only if fy € mﬁgh. This is the ring of functions of a curve C of
arithmetic genus one consisting of two smooth rational components meeting
tangentially at a single point, i.e., a tangential cubic. Thus we get the desired
factorization ¥ — C' — R. [J

10.2 Production of cubical curves

Proposition 10.4 Let n: X — P' be an elliptic K3 surface with Jacobian
fibration J — P and generic fiber Jp. There exist the following
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1. an elliptic K3 surface n' : X' — P with Jacobian J — P';
2. a dominant rational map X' --+ X;

3. a morphism fo : Co — X' from a cubical curve that is birational onto
its image; this image is not contained in any fiber of n'.

Proof: Corollary 7.13 yields an elliptic K3 surface X’ — P! with Jacobian .J
so that
order [X};| = p-order [Xp| and p[X ] = [XF]

as well as a dominant rational map
py: X' - JP(X') = X.

Let M'" C X' be the rational multisection of degree p-order [X | guaran-
teed by Proposition 7.12. If M’ is singular then we obtain the desired map
directly from the third part of Proposition 10.3. If M’ is nonsingular, we
apply the fourth part of Proposition 10.3 to the union of M’ and a suitable
irreducible component of a degenerate fiber. It remains to show there exists
a component satisfying the hypotheses of Proposition 10.3 provided M’ has
sufficiently large degree:

Lemma 10.5 Let 1 : X’ — P! be an elliptic K3 surface and M’ a nonsingu-
lar multisection of degree d > 35. Then M’ intersects some irreducible com-
ponent of a degenerate fiber in at least two points, or intersects one smooth
reduced branch of the degenerate fiber with multiplicity greater than one.

Proof of Lemma: Recall the multiplicities of irreducible components of de-
generate fibers in the Kodaira classification [BPV], pp. 150, displayed in
Figure 2.

First consider the fibers where all the reduced irreducible components
are nonsingular. We choose d so that it is greater than the sum of the
multiplicities over all the components:

type ‘]a,a>1 Irr 1vo I I~ Irr- 1v:
sum of multiplicities‘ a 2 3 2a4+6 30 18 12

Then M’ intersects some component twice, or perhaps at one point with
multiplicity greater than one. Proposition 7.14 implies that an elliptic K3
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Figure 2: Multiplicities of degenerate fibers
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can only have fibers of type I, (resp. I}) for a <19 (resp. a < 14). Thus it
suffices to take d > 35.

Now consider the remaining fibers. For fibers of type Iy, any smooth
curve intersecting the nodal point with multiplicity > 3 intersects one of the
branches with multiplicity > 2. It suffices that d > 3. In case I1, any smooth

curve intersects the cuspidal point in at most multiplicity three, so it suffices
that d > 4. [

10.3 Production of elliptic curves

Proposition 10.6 Let X be a K3 surface, Cy a cubical curve, and fy: Cy —
X a morphism birational onto its image. Then {fo: Co — X} deforms to a
morphism {f : C — X}, where C is a smooth elliptic curve. The resulting
family of elliptic curves dominates X .

Proof: Let v : C — S be a versal deformation of Cy, with Cy the fiber over
the distinguished point s, € S. This can be realized as a linear series of
plane cubic curves containing Cy (cf. the first part of Proposition 10.3). The
generic fiber is a smooth elliptic curve and dim(S) = dim Aut(Cj) [Kol2]
II.1.11.

Consider the functor of morphisms of flat S-schemes

Hom(C, X x S)(T) = {T — morphisms g:C xgT — (X x S) x5 T},

where T is an S-scheme. Assigning to each morphism its graph, we may
represent, this functor by an S-scheme Hom(C, X x S), an open subset of the
relative Hilbert scheme of C xg (X x S). The morphism f; yields a point of
Hom(C, X x S) over the basepoint s.

Our next task is to bound the dimension of Hom(C, X x S) at f, from
below. General theory [Kol2] 1.2.17, I1.1.13 guarantees that

dims,) Hom(C, X x S) > dimHom(f;QY,Oc,)
—dim Ext' (fQY, O¢,) + dim,, S
= —Kx-Co+ (dim(X) — 3)x(O¢,) + dim Aut(Cy)
= dim Aut(Cy).

In our particular situation this can be improved (cf. [Kol2] II.1.13.1 and
[Ra]): We claim that

dimz; Hom(C, X x S) > dim Aut(Cp) + 1.
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Let X — A be a one-parameter complex-analytic deformation of X, so that
the generic fiber contains no algebraic curves. This can be achieved using the
Local Torelli Theorem [LP], by choosing a deformation for which none of the
classes in H%*(X,Z) remains of type (1,1). Now consider the new mapping
functor over S x A

Hom(C x A, X x S)

at the point
go - CO g X = X.

The general theory now gives

dimpg Hom(C x A, X x §) > dim Hom(gi Y, Oc,)
— dim Ext' (g;Q%., Oc,) + dims, 0)(S x A)
= dim Aut(Cy) + 1.

The generic fiber of X' contains no algebraic curves, so the family Hom(C x
A, X x S) must parametrize curves contained in X.

Consequently, there are deformations {f : C — X} of {fy : Co — X}
that are not obtained by composing f, with an automorphism of C,. We
claim that f(C) ¢ fo(Cy). Indeed, suppose that f(C) = fo(Cy). Since fy
and f are birational onto their images and normalizations are unique, the
composed morphisms

C"—C— f(C) C§— Cy— fo(Cy)

agree up to an isomorphism C¥ — C§ which preserves conductors. By part
two of Proposition 10.3, this descends to an isomorphism C' — Cj, a con-
tradiction. Thus the images f(C') dominate X, and since X is not ruled we
conclude that the generic domain curve C' is elliptic. [J

10.4 Proof of Theorem 6.4

As in our previous approaches to Theorem 6.4, the key point is that each
elliptic K3 surface X — P! is dominated by an elliptic K3 surface X' —
P' admitting a nontorsion multisection with dense rational points, so that
Proposition 4.13 applies. What is new here is that the multisection is an
elliptic rather than a rational curve:
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Theorem 10.7 Let n : X — P! be an elliptic K3 surface with Jacobian
fibration J — P and generic fiber Jp. There exist the following

1. an elliptic K3 surface ' : X' — P' with Jacobian J — P';
2. a dominant rational map X' --+ X;

3. a nontorsion elliptic multisection M C X',

Furthermore, if X is defined over a number field then X' and M can be
chosen so they are defined over a finite extension of that field.

This is an immediate consequence of Proposition 10.4 and the following:

Proposition 10.8 Let ' : X' — P' be an elliptic K3 surface. Assume there
exists a cubical curve Cy and a morphism fy : Cy — X' birational onto its
image, so that fo(Cy) is not contained in any fiber of n' Then n' admits an
elliptic multisection of infinite order. If X' is defined over a number field
then the multisection can be defined over a finite extension of that field.

In particular, any elliptic multisection deforms to a nontorsion elliptic mul-
tisection.

Proof of Proposition 10.8: Proposition 10.6 implies there exists a smooth
projective elliptic surface S — B, and a surjective morphism ¢g : S — X'
so that the generic fiber is mapped birationally onto its image. Under our
assumptions, this image is not contained in a fiber of n’. Moreover, since X'
is a K3 surface the images of any two fibers are linearly equivalent

[C] = ¢.[S] for each b € B.

We distinguish some special fibers of S — B. We have the singular fibers
and the fibers that fail to be mapped birationally onto their image. The
image of these fibers maps to a closed subset 7 C X'.

Choose a smooth fiber X = 7'~ (p) not lying in Z, defined over a number
field if X' is. After passage to a larger number field L, we can find a point
z € X, (L), x ¢ Z, so that t, = —deg(C. X))z + [C]|x; € J(X) has infinite
order in the Jacobian (by the arithmetic result, Proposition 4.2). Let S, be
a fiber of S — B so that x € ¢(Sp), which by assumption is smooth and
maps birationally onto its image M := g(Sy). As S, maps birationally onto
M, [M] = [9.S,] = [C]. Now t, has infinite order in J(X') and coincides

p
with the restriction of 7, to X,’). Hence 7, itself has infinite order and the

multisection M is nontorsion. [
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Corollary 10.9 Every elliptic K3 surface admits a nontorsion elliptic mul-
tisection.

Proof: Retain the notation of Theorem 10.7. The proof above yields an
elliptic multisection M for n' through the generic point of X'. Its image
M C X is a multisection for n through the generic point of X; M has
positive genus because X is not ruled and thus is elliptic. Proposition 10.8
shows M deforms to a nontorsion elliptic multisection. [J

11 Symmetric products of K3 surfaces

11.1 Do generic K3 surfaces have potentially dense ra-
tional points?

In the previous sections, we have seen many special examples of K3 surfaces
with potentially dense rational points. However, we know very little about
the density of rational points on generic K3 surfaces. Indeed, all the K3
surfaces considered up to this point are very special in moduli:

Proposition 11.1 A K3 surface X admits an elliptic fibration if and only
if there exists a class D € NS(X) with D.D = 0. If a K3 surface admits an
elliptic fibration or an infinite automorphism group, then rank NS(X) > 2.

Proof: 1If X admits an elliptic fibration n : X — P, then the generic fiber
[n71(b)] € NS(X) has self-intersection zero. The class of the fiber is indepen-
dent from the polarization of X, so rank NS(X) > 2. Conversely, suppose
X admits a class [D] € NS(X) with D.D = 0. By Riemann Roch, either D
or —D is effective. Since the effective cone is the union of images of the nef
cone under reflections by (—2)-curves ([LP] §2), we may asssume D is nef.
Basic results on linear series on K3 surfaces [SD] imply that |D| is basepoint
free and defines an elliptic fibration on X.

If X has Néron-Severi rank one, then the polarization generates the
Néron-Severi group and every automorphism fixes the polarization, so the
automorphism group is finite (cf. the proof of Lemma 6.9). O

Question 11.2 Does there exist any K3 surface X over a number field with
rank NS(X) = 1 and dense rational points?
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11.2 Symmetric powers of surfaces

To obtain potential density theorems for generic K3 surfaces, we consider
auxilliary varieties, the symmetric powers. We refer the reader to [HT] for
further details. The n-fold symmetric power of a surface X is the quotient

XW=XxXx..xX/&,

n times

This variety admits a natural desingularization by the Hilbert scheme of
length-n, zero-dimensional subschemes of X

o XM 5 x™,

For a curve (', the behavior of rational points on the symmetric products
C™ bears little resemblance to the behavior of rational points on C. Indeed,
for n > 2¢(C) — 2, C™ is a projective bundle over J"(C), and thus always
has potentially dense rational points. For a surface X, the rational points
on X might very well behave similarly to rational points on X. There is a
simple formula relating the Kodaira dimension of a surface and its symmetric
product

k(X)) = nr(X).
Moreover, the quotient morphism ¢ : X" — X is almost étale; it is un-
ramified away from a codimension-two subset, the diagonal. If ¢ were étale
then the Chevalley-Weil Theorem (Proposition 3.4) would apply: potential

density of rational points on X implies potential density of rational points
on X", and thus on X.

11.3 Main Theorem

Theorem 11.3 Let X be a K3 surface defined over a number field. Assume
that X admits a polarization f of degree 2N — 2. Then rational points on
X ™) are potentially dense for some n < N.

The proof of Theorem 11.3 divides into cases, depending on the geometry
of the elliptic curves contained in X. We first need a geometric result:

Proposition 11.4 Let X be a K3 surface and f a divisor with h°(X, f) > 1.
Then there exists an irreducible, possibly singular, curve of genus one C C X
so that f — [C] is effective.
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This is proved in detail in §4 of [HT]. The main ingredient is [MM], where
it is shown that for a generic polarized K3 surface there is a one-parameter
family of singular curves of genus one in the polarizing class. As in Lemma
6.10, these specialize to the desired curves.

We apply Proposition 11.4 to the polarization class f. The resulting
genus-one curve C' has self-intersection

C.C < f.f.
If C.C > 0 then [C] is big by Riemann-Roch and Theorem 11.3 follows from:

Proposition 11.5 Let X be a K3 surface defined over a number field, and g
the class of a big line bundle of degree 2(n—1). Assume there is an irreducible,
possibly singular, curve of genus one C C X with [C| = g. Then rational
points on X" are potentially dense.

Sketch Proof: Again, we only give the main ideas of the argument; see [HT|
for more details. The linear series |g| contains an irreducible curve and so is
basepoint free. Indeed, linear series on a K3 surface have no isolated fixed
points, only fixed components [SD]§2. It follows that ¢ is numerically effective
and has no higher cohomology, and thus defines a morphism j : X — P".
Consider the incidence correspondence

H:={(x,H):j(x) e H} C X xP"

% S
X P

where P" is the dual projective space. Over an open subset V' C P, the
fibers of my are smooth curves of genus n.
Consider the degree n component of the relative Albanese

n:J"(H)y = V.

The Jacobi inversion formula says that the degree n component of the Al-
banese of a smooth projective curve C' of genus n is birational to the sym-
metric product C™. Globalizing, we find that J"(H)y is birational to the
symmetric product X ™. Indeed, for any generic z; + ...+ z, € X™, there
is a unique hyperplane H O {j(z1),...,j(z,)}, and we obtain an element
Oj”(H)(xl + ...+ .Z‘n) € ,]n(jf](H))
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By Proposition 4.13, it suffices to find a nondegenerate multisection M of
n, defined over a number field, with dense rational points. Suppose we have
n distinct irreducible curves C1, ..., C, in |g|. Then we can map the product

CyxCyx...xCp—» XM

and let C; x...xC, C X™ denote the closed image. The induced morphism
M = Cy*...xC, — V is generically finite: There are a finite number of
points in the product supported in a generic hyperplane section of X.

The remainder of the argument follows Proposition 10.8. As before, there
exists an elliptic fibration S — B and a surjective morphism S — X so that
the generic fiber is mapped birationally onto a genus-one curve with class g.
Pick a smooth fiber A = p~!'(H) of J"(H)y — V and a point a € A(K),
where K is some number field, so that — deg(M /V)a+[M]| 4 is nondegenerate
(see Proposition 4.2.) Using Jacobi inversion, we can express

o=z +...+ 2y, T1,...,2, € X, J(x;) € H.

After perhaps choosing a more general o, we may assume that each z; € Sy,,
where the S, are distinct, irreducible fibers of S — B, mapped birationally
onto their image in X, and defined over a number field. It follows that « lies
in the multisection Sy, * ... xS} , which is necessarily nondegenerate. [J

It remains to deal with the case C.C' < 0. Since C is irreducible, ad-
junction implies C' is smooth and C.C' = 0. In particular, the linear series
|C| yields an elliptic fibration  : X — P!. Then rational points on X are
potentially dense by Theorem 6.4. []

A Appendix: Galois cohomology and princi-
pal homogeneous spaces

Let G and I be groups and let Aut(G) denote the automorphism group of G.
When G and I' admit topological structures, all the maps described below
are tacitly assumed to be continuous with respect to the relevant topologies.

Let G' be a twisted form of G with respect to I'. This means we have an
action

I'xGd — G
(v,9) — 7(9),
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respecting the group structure, i.e., a homomorphism
a: T — Aut(G).

Remark A.1 In applications, I" is often the Galois group Gal(F“/F) of the
algebraic closure of a field of characteristic zero, G the group of F“-points
of a group scheme over F, and G’ the associated Galois module. In this
context, we will use the same notation for G’ and the group scheme. We
are mainly interested in the case where G' is an abelian variety or its N-
torsion subgroup. The relation between (alois cohomology and principal
homogeneous spaces in this context is developed in [LT].

The zeroth cohomology group of GG’ is the subgroup of invariant elements
HY(T',G") = {g € G' : y(g) = g for each v € T'}.
A cocycle with values in G’ is a map
& - G
v = &)
satisfying the cocycle condition
§(r) =& (EM).
Two cocycles £ and # are cohomologous if there exists a ¢ € G' so that

90(7v) = &(7)v(g), for each v €T

The first cohomology set H*(T", G') is the set of equivalence classes of cocycles
under the cohomology relation. If G’ is abelian then H' (I, G') is an abelian

group.
If the I'-action on G’ is trivial, we have

HY(I',G") = Hom(T', G),

the group homomorphisms from I' to GG. In particular, a twisted form of GG
is governed by an element o € H' (T, Aut(QG)).
A G'-principal homogeneous space is a set P with two actions
'xP — P
(v.p) — (»)
PxG — P
(.9) — p-yg

satisfying
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1. the action of G’ is compatible with the I'-action
Y(p-g9) =) -(9);

2. for each py,ps € P, there is a unique g € G' with p; - g = ps.

G' acts on itself by multiplication: This is called the trivial principal homo-
geneous space.
Choose p € P. For each v € T there exists a unique £(y) € G’ so that

v(p) = p-£(v). We have
(' (p) = p-E() =) -7ER) =p-EV)vER))
()p = p-E()

so £(vy') = &(7)v(&(')) and € is a cocycle for G'. Changing the basepoint
p, We may write

Y(p-g)=(p-9)0(7)

where gf() = £(7)7(g), so 6 is cohomologous to £&. Thus every G’-principal
homogeneous space determines an element of H'(T',G’) and conversely.

Now let G be a group and Aff(G) the semidirect product of G by Aut(G),
so we have an exact sequence

1= G = AfF(G) 5 Aut(G) — 1 (4)

admitting a splitting o : Aut(G) — Aff(G). We interpret Aff(G) as the
permutations of G generated by left translations

Tg:x—gr ge€G

and automorphisms a € Aut(G). Given g1, 92 € G and a1, ay € Aut(G), we
have
1
Tg (1 Tgy 0 = Ty, (A1Tg@y ) A102 = Ty, Ty, (g5) 01 G2

Proposition A.2 Let G' be a ['-twisted form of a group G, with classifying
cocycle o € HY (T, Aut(G)) = Hom(T', Aut(G)). Then H (T, G') corresponds
to G-conjugacy classes of homomorphisms

¢: T — Aff(G), with qo¢ = a.

The trivial element corresponds to o o .
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Proof: Given a cocycle £(7y), we define ¢(v) = 7¢(,)a(7) so that

o(vy) = ("/"/’)a(’V’V)

= T Taeerpe(v)ey)
= T (V) Tery()
= ¢(7)¢(7).

Conversely, each homomorphism ¢ : I' — Aff(G) with ¢ o ¢ = « yields a
cocycle £(7). Now suppose that # and £ are cohomologous, so that () =
g '&(7)7(g) for some g € G, and let ¢y and ¢¢ be the corresponding homo-
morphisms. Then we have

~

)
)

do(y) = Tg”f(w)v(g)a(’y) = 7'_;17'6(7)7—7(9)&(’7)

7;17-5(7)@(7)7-9 = 7;1‘756(7)7'9;

and the homomorphisms are conjugate. [J

Remark A.3 For each normal subgroup H C Aut(G), the split exact se-
quence (4) restricts to a split exact sequence

1 G- AfHG) S H 1.
Assume that G’ is governed by a coycle with values in H,

o€ H'(T',H) ~ Hom(T, H).
Then HY(T',G’) corresponds to homomorphisms

¢: T — AffH(G), with go¢=a.
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