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1 Introdu
tionLet K be a number �eld and 
onsider a 
olle
tion of equationsf1(x1; : : : ; xn) = f2(x1; : : : ; xn) = : : : = fr(x1; : : : ; xn) = 0where the fj are polynomials with 
oeÆ
ients in K. What are the solutionsto these equations over K? Sometimes, every solution (a1; : : : ; an) 2 Knne
essarily satis�es further equations whi
h are not algebrai
 
onsequen
esof our original 
olle
tion. For instan
e, every solution over Q to x31 + x32 = 1satis�es the additional equation x1x2 = 0. Of 
ourse, solutions over ex-tensions L=K may fail to satisfy these further equations, e.g., the solution(�1; 3p2) to the Fermat equation.This paper is dedi
ated to studying 
olle
tions of equations with thefollowing desideratum: All the equations satis�ed by the solutions over Kare algebrai
 
onsequen
es of the equations we start with. For instan
e, thesolutions to x21 + x22 = 1 over Q satisfy no equations that are not multiplesof the original equation.Our approa
h is geometri
. The desired property may be restated inthe language of algebrai
 geometry: We seek 
lasses of algebrai
 varietieswhose K-rational points are dense in the Zariski topology. Here `
lasses' ofalgebrai
 varieties are distinguished by invariants, like the geometri
 genus�The author was partially supported by National S
ien
e Foundation Grant 0196187.1



or plurigenera, or by geometri
 properties, like the existen
e of �brationsby rational or ellipti
 
urves. One of the most profound questions of higherdimensional geometry is the logi
al relationship between the values of theinvariants and the presen
e of �brations.However, there is a pri
e to be paid for working geometri
ally: It isex
eedingly rare for all the varieties with 
ommon geometri
 properties tohave dense rational points. Even varieties whi
h are geometri
ally Pn may ormay not have rational points over a given number �eld, so we allow ourselves�nite extensions of the given �eld. Then more uniform statements on rationalpoints, depending only on the underlying geometry, are possible.The paper is organized as follows. Basi
 de�nitions and notation are laidout in x2. General properties of density are dis
ussed systemati
ally in x3.The remainder of the paper is devoted to 
lasses of examples. Abelian va-rieties and �brations are addressed in x4. Fano varieties, espe
ially thoseof small dimension, are dis
ussed in x5. K3 surfa
es, the simplest 
lass ofvarieties where density of rational points remains a matter of 
ontroversy,are studied in x6. Several se
tions are devoted to the twisting method ofBogomolov and Ts
hinkel, as applied to ellipti
 K3 surfa
es (Theorem 6.4.)Basi
 properties of the Tate-Shafarevi
h group are reviewed in x7. The sim-plest appli
ation of the method, to nonisotrivial ellipti
 K3 surfa
es, is givenin x8. This approa
h yields an in�nite number of irredu
ible, nodal, rational
urves in the K3 surfa
e (see Corollaries 8.12 and 8.13). A more re�ned ap-proa
h 
overing the isotrivial 
ases, and 
loser in spirit to the original paper[BT3℄ of Bogomolov and Ts
hinkel, 
an be found in x9. A third, independentapproa
h, originating from a letter of J. Koll�ar, is given in x10. Finally, x11
ontains the strongest results now known for general K3 surfa
es, as well assome statements for higher dimensional varieties. The Appendix is a shortresum�e of Galois 
ohomology and prin
ipal homogeneous spa
es.A
knowledgments: The author is very grateful to F. Bogomolov and Y.Ts
hinkel for their generosity in explaining the ideas in their work, boththrough 
onversations and 
orresponden
e. He would also like to thank J.L.Colliot-Th�el�ene for his en
ouragement and for sharing unpublished exposi-tory a

ounts of some of the results 
overed here. The argument of x10 is dueto J. Koll�ar, who provided numerous other 
onstru
tive suggestions. The au-thor also bene�tted from 
onversations with D. Abramovi
h and A. Kres
h,who proposed Remark 6.5 and Proposition 8.2 respe
tively. The manus
ript2



was greatly improved by insightful 
omments from T. Szamuely.This paper is based on le
tures given at the European Summer S
hoolHigher Dimensional Varieties and Rational Points, held at the Alfr�ed R�enyiInstitute of Mathemati
s of the Hungarian A
ademy of S
ien
es.2 The notion of potential densityWe �x some notation. Throughout this paper, we work over a number �eldK. A variety X=K is a geometri
ally integral s
heme of �nite type over K.Its K-rational points are denoted X(K).De�nition 2.1 Let X be a variety over K. The K-rational points of X aredense if X(K) is not 
ontained in any Zariski 
losed subset of X. Rationalpoints of X are potentially dense if there exists a �nite �eld extension L=Kover whi
h rational points are dense.In the sequel, when we say that `potential density holds for X' we mean thatrational points are potentially dense on X.Our motivation for 
onsidering potential density is to isolate properties ofrational points that follow from the geometri
 properties of X, rather thanthose that depend on the ground �eld.Example 2.2 Rational points of Pn are dense over Q .Example 2.3 Consider the 
urveX = fx2 + y2 = �z2g � P2Q :This has no rational points whatsoever, but rational points are potentiallydense. Indeed, over Q(i) we have an isomorphismX '�! fx2 + y2 = z2g(x; y; z) ! (x; y; iz):However, the 
urve fx2 + y2 = z2g is isomorphi
 to P1P1 '�! fx2 + y2 = z2g(s; t) ! (2st; s2 � t2; s2 + t2);whi
h has dense rational points. 3



Example 2.4 The example above admits generalizations to higher dimen-sions. A Brauer-Severi variety X=K is a variety su
h that XKa ' PNKa , i.e.,a variety geometri
ally isomorphi
 to Pn. Of 
ourse, su
h an isomorphismmay be realized over some �nite extension L=K, and L-rational points ofX are dense. The 
oni
 
urve of Example 2.3 is the simplest example of aBrauer-Severi variety.From an arithmeti
 standpoint, the pre
ise nature of the �eld extensionsL=K over whi
h rational points be
ome dense is an extremely interestingtopi
. Indeed, Brauer-Severi varieties �rst arose in the study of `generi
splitting �elds' for 
entral simple algebras [Am℄[Ro℄. However, our primaryinterest lies in the intera
tion between density of rational points and geomet-ri
 properties of algebrai
 varieties. Consequently, we will not keep tra
k ofthe �eld extension over whi
h points be
ome dense. Indeed, in the sequel wewill take �nite extensions of the ground �eld without expli
it 
omment, andeven suppress the notation for the ground �eld.3 Basi
 properties of potential density3.1 Behavior under morphismsProposition 3.1 Let g : X 9 9 KY be a dominant rational map of proje
tivevarieties over a number �eld. Assume that rational points of X are potentiallydense. Then rational points of Y are potentially dense.In parti
ular, potential density is a birational property.Proof: Choose a number �eld L over whi
h X; Y; and g are de�ned, and X(L)is Zariski dense. Let U � X be an open subset over whi
h g is a morphism.We have g(U(L)) � Y (L), and the image of a dense set under a dominantrational map remains dense. �De�nition 3.2 A variety Y de�ned over a number �eld is unirational if,over some �nite �eld extension, there exists a dominant rational map g :PN 9 9 KY .Combining Proposition 3.1 with Example 2.2, we obtainCorollary 3.3 Let Y be a variety over a number �eld and assume that Yis unirational. Then rational points of Y are potentially dense.4



Proposition 3.4 (Chevalley-Weil Theorem [We℄) Let � : X ! Y bean �etale morphism of proper varieties over a number �eld. Assume ratio-nal points of Y are potentially dense. Then rational points of X are alsopotentially dense.Sket
h Proof: A good modern a

ount 
an be found in [Se2℄. Let L be anumber �eld over whi
h X; Y; and g are de�ned, and over whi
h rationalpoints of Y are dense. Choose a ring of integers O = OL;S (with S a �niteset of pla
es, in
luding the in�nite ones) over whi
h we have the following:1. X and Y have models X and Y over O, i.e., X ! Spe
(O) andY ! Spe
(O) are 
at and proje
tive, with generi
 �bers XL and YLrespe
tively;2. g extends to an �etale morphism g : X ! Y.We 
hoose S to ex
lude primes over whi
h g has rami�
ation or indetermi-na
y. Sin
e Y is proper, the valuative 
riterion implies ea
h L-rational pointof Y extends to a O-integral point. The O-integral points of Y yield pointsof X de�ned over extensions of L of degree � deg(�), with dis
riminant
ontained in S. It is a 
lassi
al theorem of Hermite that there are a �nitenumber of su
h extensions M1; : : : ;Mr. Over one of them rational points ofX are Zariski dense. �Question 3.5 What 
lasses of morphisms X ! Y share the lifting propertyof Proposition 3.4?One other 
lass of su
h morphisms is �etale proje
tive bundles (
f. [HT2℄).3.2 Negative resultsAny dense subset of a 
urve is in�nite, so we have the following restatementof the Mordell Conje
ture:Proposition 3.6 (Faltings Theorem [Fa1℄) Let X be a 
urve of genus� 2 over a number �eld. Then rational points are not potentially dense.Example 3.7 Colliot-Th�el�ene, Skorobogatov, and Swinnerton-Dyer [CSS℄give an example of a variety for whi
h rational points are not potentiallydense, and the proof of nondensity requires Propositions 3.1, 3.4, and 3.6.5



They des
ribe a smooth proje
tive surfa
e Y , whi
h itself does not dominateany 
urve of genus � 2 (or, indeed, any variety of general type), but admitsan �etale double 
over X that does dominate a 
urve of genus two:X ! C�etale double 
over #Y :If rational points were potentially dense on Y they would be potentiallydense on X by Proposition 3.4, and thus potentially dense on C as well,
ontradi
ting Proposition 3.6.Let X be smooth and proje
tive with 
anoni
al bundle !X . We say X isof general type if !X is big, i.e.,h0(!
nX ) � Cndim(X); C > 0;for suÆ
iently large n. The following 
onje
ture would pre
lude potentialdensity of rational points for su
h varieties:Conje
ture 3.8 (Lang-Bombieri Conje
ture) Let X be a proje
tive va-riety of general type de�ned over a number �eld. Then rational points on Xare not potentially dense.This is known for subvarieties of abelian varieties whi
h are of general type[Fa2℄.Remark 3.9 What is the largest 
lass of proje
tive varieties for whi
h po-tential density might hold? In light of Conje
ture 3.8 and Propositions 3.1and 3.4, a variety with dense rational points should admit no �etale 
oversthat dominate varieties of general type. It is not known whether there areany further 
onstraints. We refer the reader to [HT2℄ and [Ca2℄ for furtherdis
ussion of this question.4 Abelian �brations4.1 Abelian varietiesWe start with some de�nitions: 6



De�nition 4.1 Let (A; 0) be an abelian variety de�ned over a �eld F of
hara
teristi
 zero. A point p 2 A(F ) is nontorsion if the setZp = fnp : n 2 Zgis in�nite and nondegenerate if this set is dense.Proposition 4.2 Let A be an abelian variety over a number �eld K. Afterpassage to a �nite extension L=K, A(L) 
ontains a nondegenerate point andL-rational points are dense.Sket
h Proof: (
f. Proposition 3.1 of [HT℄, where a se
ond argument 
an befound) The Mordell-Weil Theorem (see [Se2℄) says that A(K) is a �nitelygenerated abelian group for any number �eld K; the rank of A(K) is just therank of this group. The main ingredient in the proof is a result of Jarden andFrey [FJ℄, Theorem 10.1: After passage to a suitable �nite extension L=Kwe have rank A(L) > rank A(K):The argument of [FJ℄ uses p-adi
 te
hniques: Consider primes p totally ram-i�ed over a �xed prime of K. One 
reates a point, over a suitable extensionof K, with pres
ribed redu
tion mod pn. The 
ondition on the redu
tionmod pn is used to show that this point is not in the span of A(K).This result proves the proposition when A is geometri
ally simple: Forany nontorsion point p 2 A(L), the Zariski 
losure of Zp � A(L) 
ontains apositive-dimensional abelian subvariety, and hen
e is equal to A. In general,the argument pro
eeds by indu
tion on the number of simple 
omponents.We assume A = A1 � A2 where A2 is simple and p1 2 A1(K); p2 2 A2(K)are nondegenerate. If (p1; p2) 2 A1 � A2 is degenerate then it is 
ontainedin a proper abelian subvariety B � A1�A2, whi
h 
orresponds to a rationalhomomorphism � 2 Hom(A1; A2)
 Q : It follows that d�(p1) = dp2 for somepositive d. However, the group Hom(A1; A2) is �nitely generated. Againapplying the result of [FJ℄, we obtain a �nite extension L=K and a pointq 2 A2(L) so that q 62 �(p1) for any � 2 Hom(A1; A2)
 Q : �4.2 Abelian �brations over a �eld and prin
ipal homo-geneous spa
esThroughout this se
tion, F is a �eld of 
hara
teristi
 zero with algebrai

losure F a. 7



De�nition 4.3 A variety XF over F is an abelian �bration if it is geomet-ri
ally an abelian variety, i.e., XFa := XF �F F a is isomorphi
 to an abelianvariety over F a.Remark 4.4 (Warning) We do not assume that XF has a point over F . Inparti
ular, there may not be a group law onXF de�ned over F (
f. De�nition4.12.)There are a number of auxiliary abelian �brations asso
iated to XF . LetJ0(XF ) denote the Albanese of XF , an abelian variety over F satisfying thefollowing ([La℄ II x3):1. The formation of the Albanese 
ommutes with �eld extensions E=F ,i.e., J0(XE) = J0(XF )�F E.2. There is a morphism over Fs : XF �F XF ! J0(XF ):If E=F is an extension over whi
h there is a point x 2 XF (E) thensj(XF � fxg) indu
es an isomorphism ix : XE ' J0(XE) so thats(x1; x2) = ix(x1)� ix(x2).3. Suppose we have another morphism to an abelian varietys0 : XF �F XF ! A;su
h that s0(x1; x2) = i(x1)� i(x2), for some i : XE ! AE de�ned overan extension E=F . Then fa
tors s0 through s.Of 
ourse, XF always has a point over its fun
tion �eld F (X) (the generi
point x), and we may 
onsider the 
ompositionJ0(XF )�F F (X) = J0(XF (X)) i�1x�! XF (X) = XF �F F (X) �1�! XFas a rational map J0(XF ) �F XF 9 9 KXF : Any su
h rational map extendsuniquely to a morphism a : J0(XF )�F XF ! XF [La℄ II x1. Over any �eldextension over whi
h XE 6= ; we 
an write a(j; x) = j+x. Thus we 
on
lude:XF has the stru
ture of a prin
ipal homogeneous spa
e for J0(XF ),
lassi�ed by a 
o
y
le [XF ℄ 2 H1(�; J0(XF )) (see the Appendix).8



For ea
h m 2 Z, let Jm(XF ) denote the prin
ipal homogeneous spa
e
orresponding to m[XF ℄, whi
h by des
ent is also an abelian �bration overF [LT℄x2, Prop. 4. Des
ent also gives the following morphisms over F :1. the 
y
le-
lass morphismXF �F : : :�F XF| {z }m times ! Jm(XF )(x1; : : : ; xm) ! x1 + : : :+ xm;2. the addition morphismJn(XF )�F Jm(XF )! Jm+n(XF );
ompatible with the 
y
le 
lass morphism;3. the multipli
ation by N morphism�N : Jm(XF )! JmN (XF ):Any zero-
y
le on XF of degree m, de�ned over F , yields an F -rational pointof Jm(XF ); ea
h point of XF de�ned over an extension E=F of degree mgives su
h a point. The existen
e of su
h a 
y
le implies [XF ℄ = [J1(XF )℄ 2H1(�; J0(XF )) has order dividing m [LT℄, x2, Prop. 5.De�nition 4.5 A multise
tion of an abelian �bration XF is a point de�nedover a �nite extension of F . The degree of the multise
tion is the smallestdegree of an extension E=F over whi
h the point 
an be de�ned. We shallidentify multise
tions of degree d with 
olle
tions of d 
onjugate points ofX(F a) M = fm1; : : : ; mdg:The zero-
y
le m1+ : : :+md is de�ned over F and thus yields an F -rationalpoint of Jd(XF ). If E=F is a degree-d extension over whi
h some mi isde�ned then we may 
onsider the point�M = (m1 +m2 + : : :+md)� dmi 2 J0(XF )(E):This may be zero even when d > 1. 9



De�nition 4.6 Amultise
tionM of an abelian �brationXF is torsion (resp.degenerate) if �M is torsion (resp. degenerate.) The order of a multise
tionis the smallest positive integer N su
h that N(mi �mj) = 0 for ea
h i; j =1; : : : ; d. The order is in�nite when no su
h integer exists.Proposition 4.7 A multise
tion is torsion if and only if it has �nite order.Proof: Let L=F be a Galois extension 
ontaining E, and let �M;i 2 J0(XF )(L)be asso
iated to the various 
onjugate points mi; i = 1; : : : ; d. If one �M;i istorsion then all are, and we haved(mi �mj) = �M;j � �M;i;so ea
h mi �mj must also be torsion. Conversely, if ea
h mi �mj is torsionthen �M;i = dXj=1(mj �mi)is also torsion. �Proposition 4.8 Let M � XF be a torsion multise
tion of order N . ThenM is 
ontained in a prin
ipal homogeneous spa
e for J0(XF )[N ℄, the N-torsion subgroup s
heme.Proof: Suppose that the multise
tion M has order N , so that Nmi = Nmjfor ea
h i; j. Then multipli
ation by N�N : X = J1(XF )! JN (XF )takes M to a single point � 2 JN (XF ), de�ned over F . It follows thatM � ��1N (�), whi
h is a prin
ipal homogeneous spa
e for J0(XF )[N ℄. �Remark 4.9 A torsion multise
tion M in an abelian variety A need not be
ontained in the torsion of A, only in a prin
ipal homogeneous spa
e for thetorsion!Remark 4.10 Given a multise
tionM 0 = fm1; : : : ; mdg of an abelian �bra-tion XF , it may happen that mi�mj; i 6= j; is torsion for 
ertain pairs (i; j)but not all su
h pairs. Let N denote the smallest positive integer so thatN(mi �mj) = 0 for ea
h di�eren
e that is torsion. Then �N maps M 0 ontomultise
tion M � JN (XF ), whi
h is nontorsion if and only if M 0 is nontor-sion. Furthermore, M 0 is 
ontained in a J0(XE)[N ℄-prin
ipal homogeneousspa
e over M , where E is the �eld of de�nition of M .10



4.3 Potential density argumentLet B be a variety over a �eld of 
hara
teristi
 zero.De�nition 4.11 An abelian �bration � : A ! B is a proje
tive morphismof varieties with generi
 �ber an abelian �bration over the fun
tion �eld ofB. An abelian �bration of relative dimension one is an ellipti
 �bration.A multise
tion is an irredu
ible 
losed subvariety M ,! A so that theindu
ed M ! B is generi
ally �nite, i.e., the 
losure of a multise
tion ofthe generi
 �ber. A multise
tion of � is nontorsion or nondegenerate if theindu
ed multise
tion of the generi
 �ber is.Additional assumptions are ne
essary if one wants a good group law:De�nition 4.12 An abelian �bration � : A ! B is Ja
obian if it satis�esthe following 
onditions1. � is a 
at morphism;2. the lo
us A � A where � is smooth admits a group lawA�B A! Awith identity 0 : B ! A.For any abelian �bration admitting a rational se
tion 0 : B 9 9 KA, there isa nonempty open subset B0 � B so that AB0 := A�B B0 ! B0 is Ja
obian,e.g., the open subset over whi
h � is smooth. Given an arbitrary �brationA ! B with multise
tion M , after base
hange to M there exists a rationalse
tion: the image of the diagonal in M �B M � A�B M .Proposition 4.13 Let � : A ! B be an abelian �bration with multise
tionM , de�ned over a number �eld K. Assume that1. M is nondegenerate;2. K-rational points of M are dense.Then K-rational points of A are also dense.
11



In the 
ase of an ellipti
 �bration, nondegenera
y and nontorsion are equiv-alent 
onditions.Proof: After base
hange to an open subset of M , we obtain a Ja
obianabelian �bration AM with a nondegenerate se
tion �M . Thus Z�M is dense inAM and ea
h multiple n�M has dense rational points. It follows that rationalpoints in AM are dense. Sin
e AM dominates A, rational points in A are alsodense. �5 Fano varietiesIn the remainder of this paper, we identify 
lasses of algebrai
 varieties forwhi
h rational points are potentially dense.De�nition 5.1 A smooth proje
tive variety X is Fano if !�1X is ample.Fano varieties admit no nontrivial �etale 
overs [Ca℄ [De℄ and 
annot dominatevarieties of general type.Here are the Fano varieties known to have potentially dense rationalpoints:Example 5.2 (Del Pezzo surfa
es) Fano varieties of dimension two are
alled Del Pezzo surfa
es. Classi
ally, it was known that any Del Pezzosurfa
e X is birational to P2, and thus has potentially dense rational points.Example 5.3 (Cubi
 hypersurfa
es) Nonsingular 
ubi
 hypersurfa
es ofdimension � 2 are unirational and therefore have potentially dense rationalpoints (Cor. 3.3).Example 5.4 (Fano threefolds) Smooth Fano threefolds are known to beunirational, ex
ept in three 
ases [IP℄ (see also [HarT℄):1. quarti
 hypersurfa
es in P4;2. weighted hypersurfa
es of degree six in P(1; 1; 1; 2; 3);3. double 
overs of P3 totally bran
hed over a sexti
.The �rst two 
ases admit ellipti
 �brations over P2. Arguments similar tothose in the se
ond half of this survey prove potential density (see [HarT℄and [BT2℄). The third 
ase remains 
ompletely open.12



Example 5.5 (Q-Fano threefolds) There are many examples remainingwhere potential density has not yet been studied. For example, there are al-together 95 di�erent families of Q -Fano hypersurfa
es in weighted proje
tivespa
es. See [CPR℄ for a 
on
rete a

ount of their geometry.6 K3 surfa
esDe�nition 6.1 A smooth proje
tive surfa
e X is a K3 surfa
e if1. h0(
1X) = 0;2. !X ' OX , i.e., the 
anoni
al bundle is trivial.Su
h surfa
es have been 
lassi�ed in great detail (see, for example, [BPV℄VIII and [LP℄). In parti
ular, the underlying 
omplex manifolds X(C ) areall deformation equivalent and simply 
onne
ted. K3 surfa
es do not domi-nate varieties of general type, so they 
ould very well have potentially denserational points.A polarization f of X is a primitive, ample 
lass in the N�eron-Severigroup NS(X). The degree of (X; f) is the self-interse
tion f:f , a positiveeven integer. The K3 surfa
es of degree d admit 
ommon realizations asproje
tive varieties.Example 6.2d = 2 a surfa
e X admitting a degree-two 
over X ! P2 bran
hed over asmooth plane sexti
 
urve.d = 4 a nonsingular quarti
 hypersurfa
e X � P3, e.g., x40 + x41 = x42 + x43.d = 6 a 
omplete interse
tion of quadri
 and 
ubi
 hypersurfa
es in P4.We summarize the known results for K3 surfa
es:Theorem 6.3 (In�nite automorphism group) [BT3℄ Let X be a K3 sur-fa
e de�ned over a number �eld. Assume that the 
omplex manifold X(C )admits an in�nite automorphism group. Then rational points on X are po-tentially dense.A proof is sket
hed in x6.1.Theorem 6.4 (Ellipti
 K3 surfa
es) [BT3℄ Let X be a K3 surfa
e de-�ned over a number �eld. Suppose that X admits an ellipti
 �bration � :X ! P1. Then rational points on X are potentially dense.13



More pre
ise results on quarti
 surfa
es 
ontaining a line (see Theorem 6.19)
an be found in [HarT℄.We give several approa
hes to Theorem 6.4; in ea
h the key te
hni
altool is the Tate-Shafarevi
h group, dis
ussed in x7. The basi
 insight{thattwisting an ellipti
 �brations should make it easier to �nd rational points{isdue to Bogomolov and Ts
hinkel. The �rst approa
h in x8 works primar-ily in the nonisotrivial 
ase. It relies on the irredu
ibility of the p-torsionpoints for large p (see Theorem 8.3). One interesting by-produ
t is the ex-isten
e of rational multise
tions of unbounded degree (see Theorem 8.7 andits 
orollaries.) The se
ond approa
h in x9 is perhaps the most natural, al-though logi
ally it depends on the �rst. Essentially, one shows that torsionmultise
tions have large genera so that rational multise
tions must be non-torsion. Our genus estimates for the p-torsion and the asso
iated prin
ipalhomogeneous spa
es 
losely follow [BT3℄. However, the presentation of theintermediate te
hni
al results and the analysis of the isotrivial 
ases di�erto some extent. (Lemma 3.25 of [BT3℄ is not quite 
orre
t as stated: TheKummer surfa
e asso
iated to a produ
t of general ellipti
 
urves is a 
oun-terexample. This ne
essitates further ad ho
 analysis in the isotrivial 
ase.)The third approa
h in x10 is based on a letter of J. Koll�ar. Most of thedetailed 
omputation of the previous approa
hes is repla
ed by deformation-theoreti
 properties of rational and ellipti
 
urves in K3 surfa
es. The only
lassi�
ation results needed are the multipli
ities of the 
omponents of de-generate �bers (see Figure 2 of x10).Remark 6.5 (Conditional potential density for ellipti
 surfa
es) Let� : J ! B be a nonisotrivial Ja
obian ellipti
 �bration over a 
urve of genuszero or one. In parti
ular, J is smooth and proje
tive and � admits a se
tion(
f. x7.2). If J is de�ned over a number �eld we expe
t its rational pointsto be potentially dense. Indeed, Grant and Mandu
hi [GM1℄ [GM2℄ provethis 
onditionally, assuming a strong version of the Bir
h/Swinnerton-DyerConje
ture formulated by Deligne and Gross. However, there are isotrivialellipti
 �brations X ! P1 for whi
h rational points are known not to bepotentially dense [CSS℄ (see example 3.7).Remark 6.6 (Enriques surfa
es) Potential density results for K3 surfa
eshave appli
ation to other 
lasses of surfa
es dominated by them. By de�ni-tion, an Enriques surfa
e Y is a quotient of a K3 surfa
e X by a �xed-pointfree involution. Propositions 3.1 and 3.4 imply that potential density of ra-14



tional points for X and Y are equivalent. For results on Enriques surfa
esand their K3 double 
overs, we refer the reader to [BT1℄.6.1 K3 surfa
es with automorphismsWe sket
h the proof of Theorem 6.3, following [BT3℄.Lemma 6.7 Let X be a K3 surfa
e. Then the automorphism group of Xa
ts faithfully on the 
ohomology H2(X;Z). In parti
ular, an automorphisma : X ! X is uniquely determined by the homology 
lass of its graph inX �X.This follows from the strong version of the Torelli Theorem for K3 surfa
es(see [LP℄ for one a

ount.)Lemma 6.8 Let X be a K3 surfa
e de�ned over a number �eld K. Thereexists a �nite extension L=K so that ea
h automorphism of the 
omplexmanifold X(C ) is realized as an algebrai
 morphism de�ned over L.Proof: The automorphism group of X is �nitely generated [St℄, so it suÆ
esto show that any automorphism a : X ! X 
an be de�ned over a �niteextension of K. Choose a realization of X�X as a proje
tive variety over K.The graph �(a) � X �X is a proje
tive subvariety by the GAGA prin
iple.Consider the 
onne
ted 
omponent H of the Hilbert s
heme of subs
hemesof X�X 
ontaining �(a), whi
h is de�ned over a �nite extension L=K. Thelo
us in H 
orresponding to graphs of automorphisms of X is 
learly open,but �(a) is the only graph of an automorphism of X in its homology 
lass.It follows that H = [�(a)℄, so �(a) and a are de�ned over L.�Lemma 6.9 LetX be a K3 surfa
e with in�nite automorphism group. Thenthere exists an inde
omposible e�e
tive divisor 
lass D so that the orbit ofD is in�nite.We refer the reader to x2 of [LP℄ for a good des
ription of the inde
omposibleelements in the monoid of e�e
tive divisors on a K3 surfa
e.Proof: The inde
omposible e�e
tive divisors D with �xed (even) d := D:D ��2 divide into a �nite number of orbits under the a
tion of the automorphismgroup [St℄. Suppose that there exists su
h a divisor with d > 0. This is alwaysthe 
ase when the e�e
tive 
one admit an irrational extremal ray; just takeinde
omposible divisors near this ray. The automorphisms �xing su
h a D15



admit a faithful representation in D? � NS(X), a negative de�nite latti
eby the Hodge index theorem. Thus ea
h su
h stabilizer is �nite.Suppose X has no inde
omposible e�e
tive divisors with d > 0. It followsthat the e�e
tive 
one ofX is generated by divisors with d = 0;�2, permutedby the automorphism group. If the N�eron-Severi group NS(X) had ranktwo, then the automorphism group would admit a subgroup of �nite index�xing the generators of the e�e
tive 
one, but all su
h automorphisms aretrivial. If the N�eron-Severi group has rank greater than two then we applythe `alternative theorem' of Kov�a
s [Ko℄. Either X 
ontains no (�2)-
urvesor the e�e
tive 
one of X is generated by (�2)-
urves. In the �rst 
ase, thee�e
tive 
one is `
ir
ular' and admits an irrational extremal ray; hen
e theargument of the previous paragraph applies. In the se
ond 
ase, there mustbe an in�nite number of (�2)-
urves. If not, a �nite index subgroup of theautomorphism a
ts trivially on the e�e
tive 
one, a 
ontradi
tion. �Lemma 6.10 Let X be a K3 surfa
e and D an inde
omposible e�e
tivedivisor 
lass. Then D 
ontains a (possibly singular) rational 
urve.Proof: In the 
ase where D:D = �2 this is 
lear. When D:D = 0, D isthe 
lass of an ellipti
 �bration, whi
h admits degenerate �bers. In the 
asewhere D:D > 0, we use the results of [MM℄: A generi
 polarized K3 surfa
e
ontains a singular rational 
urve in the polarization 
lass f . However, sin
eD is inde
omposible with D:D > 0, (X;D) arises as the spe
ialization ofa polarized K3 surfa
e. The rational 
urves of the polarized K3 surfa
espe
ialize to rational 
urves on X in the 
lass D. �We 
omplete the proof of Theorem 6.3. Let X be a K3 surfa
e within�nite automorphism group, de�ned over a number �eld K. Let D be ainde
omposible e�e
tive divisor 
lass with in�nite orbit under the automor-phism group. Then after passage to a �nite extension L=K, we may assumethat1. the automorphisms of X are de�ned over L;2. there is a rational 
urve R with 
lass [R℄ = D, de�ned over L, withdense rational points R(L) � R.The orbit [a2Aut(X)a(R) is dense in X and L-rational points are dense in theorbit, so L-rational points are dense in X. �16



Example 6.11 [Si℄ Consider K3 surfa
es X, de�ned over a number �eld,whi
h are realized as a 
omplete interse
tionX = fF11 = 0g \ fF22 = 0g � P2 � P2of bihomogeneous forms of bidegree (1; 1) and (2; 2) respe
tively. The N�eron-Severi latti
e is f1 f2f1 2 4f2 4 2where f1 and f2 are the pull-ba
ks of the polarizations from the P2-fa
tors.The proje
tions X ! P2 are degree-two 
overs, and the 
orresponding pairof involutions generate an in�nite group of automorphism on X. These K3surfa
es have potentially dense rational points.More generally, we may 
onsider K3 surfa
es with N�eron-Severi latti
ef1 f2f1 2 nf2 n 2with n � 4. These also admit pairs of non
ommuting involutions.6.2 Examples of ellipti
 K3 surfa
esExample 6.12 Harris and Ts
hinkel [HarT℄ 
onsider the following spe
ial
lass of ellipti
 K3 surfa
es. Let X � P3 be a quarti
 surfa
e 
ontaining aline `. Choose 
oordinates so that ` = f(w; x; y; z) : w = x = 0g and 
onsiderthe morphism � : X ! P1(w; x; y; z)! (w; x):This is an ellipti
 �bration: Ea
h hyperplane 
ontaining ` interse
ts X in theunion of ` and a 
ubi
 plane 
urvefw + �x = 0g \X = ` [ E� E� a plane 
ubi
 
urve:We have ��1(�) = E� and E� is a smooth genus one 
urve for generi
 �,hen
e � is an ellipti
 �bration.A parti
ularly simple example is the Fermat surfa
e x40 + x41 = x42 + x43,whi
h 
ontains the line x0 � x2 = x1 � x3 = 0.17



Of 
ourse, there are numerous other examples of ellipti
 K3 surfa
es. Wegive 
hara
terizations of ellipti
 K3 surfa
es in Proposition 11.1.6.3 Salient rami�
ation and torsion multise
tionsIn this se
tion, we sket
h some parti
ularly elegant geometri
 methods for�nding nontorsion multise
tions. We work in 
hara
teristi
 zero.De�nition 6.13 [BT1℄ Consider an ellipti
 �bration � : X ! P1 and amultise
tionM . We say thatM is saliently rami�ed ifM ! P1 rami�es overa point in a smooth �ber of �.Proposition 6.14 Let � : X ! P1 be an ellipti
 �bration and M a salientlyrami�ed multise
tion. Then M is nontorsion.Proof: Consider the �bration X �P1 M !Mobtained after base 
hange. This has a se
tion (see x4.3). If the morphismM ! P1 rami�es at m then the morphism M �P1 M ! M rami�es at(m;m). Indeed, for a �nite 
at morphism, rami�
ation o

urs pre
iselywhere the 
ardinality of �bers drops; this 
ardinality is un
hanged underbase extension. (Also, being rami�ed is a lo
al property in the faithfully 
attopology [EGAIV℄ 17.7.4.) Observe that we do not normalize M �P1 M , asthis would destroy some of the rami�
ation.However, the torsion of any group s
heme in 
hara
teristi
 zero is �etaleover the base, and we have a 
ontradi
tion. �Combining this with Proposition 4.13, we obtain:Corollary 6.15 Let � : X ! P1 be an ellipti
 �bration, de�ned over anumber �eld. Assume that � admits a saliently rami�ed multise
tion ofgenus zero or one. Then rational points of X are potentially dense.Remark 6.16 This approa
h has advantages and disadvantages. The maindisadvantage is the diÆ
ulty in produ
ing saliently rami�ed multise
tions forlarge 
lasses of varieties: In general, there is no easy way to produ
e themout of `thin air'.The main advantage is that, on
e we are given a multise
tion, it is rel-atively easy to 
he
k whether it is saliently rami�ed. Furthermore, if X; �;18



and M are de�ned over K and M(K) is dense, then X(K) is also dense.This gives a good tool for 
he
king density over a given �eld.6.4 Reprieve: Quarti
 surfa
es 
ontaining a lineWe return to Example 6.12, again following [HarT℄. Assume that the quar-ti
 surfa
e X and the line ` are de�ned over a number �eld K. The line `itself interse
ts �bers of � in three points and de�nes a degree-three multise
-tion. This multise
tion is saliently rami�ed provided the following geometri

ondition is satis�ed:Tangen
y 
ondition Some smooth �ber of � interse
ts the line` tangentially.Rational points of ` ' P1 are 
learly dense over K, so the Tangen
y 
onditionsuÆ
es to guarantee density of X(K).The geometri
 
ondition is satis�ed for the generi
 quarti
 surfa
e 
on-taining a line{but not every su
h surfa
e. It fails for the Fermat surfa
ex40 + x41 = x42 + x43 with ` = fx0 � x2 = x1 � x3 = 0g. The morphism� : X ! P1 is given by the rational fun
tionx0 � x2x3 � x1 = x31 + x21x3 + x1x23 + x33x30 + x20x2 + x0x22 + x32 :Taking x0 and x1 as 
oordinates on `, the rational fun
tion restri
ts to x31=x30,whi
h rami�es (to order three) at the points (1; 0; 1; 0) and (0; 1; 0; 1). Herethe �bers of � are three 
oin
ident lines.Combining the analysis of the salient rami�
ation with a 
ase-by-
asestudy of the possible torsion multise
tions, Harris and Ts
hinkel obtain thefollowing:Theorem 6.17 ([HarT℄ Theorem 4.1) Let X be a smooth quarti
 surfa
e
ontaining a line ` and � : X ! P1 the ellipti
 �bration obtained by proje
tingfrom `. Assume there do not exist six lines 
ontained in X and meeting `.Then ` is a nontorsion multise
tion of `.Corollary 6.18 ([HarT℄ Theorem 1.5.a) Retain the assumptions above,and assume that X and ` are de�ned over a number �eld K. Then therational points X(K) are dense. 19



After further analysis of degenerate 
ases, Harris and Ts
hinkel prove thefollowing general result, whi
h is a spe
ial 
ase of Theorem 6.4:Theorem 6.19 Let X be a smooth quarti
 surfa
e de�ned over a number�eld. If X 
ontains a line ` then rational points of X are potentially dense.7 Twisting ellipti
 �brations7.1 The Tate-Shafarevi
h groupWe refer the reader to [Kod℄, [Shaf1℄, and [Ogg℄ for full details.Let F = C (P1) be the fun
tion �eld of P1, with absolute Galois group �.Let (JF ; 0) be an ellipti
 
urve over F . The Tate-Shafarevi
h group Sh(JF )is de�ned as the JF -prin
ipal homogeneous spa
es whi
h are lo
ally trivialat ea
h pla
e, i.e., the kernelH1(�; JF )! Yb2P1H1(�̂b; JF̂b)where F̂b is the 
ompletion/henselization of F at b and �̂b its absolute Galoisgroup.We re
all some properties of Sh(JF ).Proposition 7.1 1) Let XF be a JF -prin
ipal homogeneous spa
e. Then[XF ℄ 2 H1(�; JF ) has order m if and only if there is a point of XF de�nedover a �eld extension of degree m.2) There are exa
t sequen
es0 ! JF̂b(F̂b)=mJF̂b(F̂b) ! H1(�̂b; JF̂b[m℄) ! H1(�̂b; JF̂b)[m℄ ! 0# # #0 ! JF (F )=mJF (F ) ! H1(�; JF [m℄) ! H1(�; JF )[m℄ ! 0:3) Sh(JF ) is in�nitely divisible.Proof: We have already seen that Jm(XF )(F ) 6= ; whenever XF has a pointover a degree m extension of F . Conversely, suppose we have an F -rationalpoint of Jm(XF ). Su
h a point need not 
ome from a line bundle L onXF de�ned over F ; the obstru
tion lies in the Brauer group of F (by theHo
hs
hild-Serre spe
tral sequen
e0! H1(O�XF )! H0(�; H1(O�XFa ))! H2(�; H0(O�XFa )) = H2(�; F a�):)20



The Brauer group of F = C (P1) is trivial be
ause it is a C1 �eld. TheRiemann-Ro
h formula applied to L gives a degree-m 
y
le on XF .The se
ond assertion is quite standard (see x1, 2.1 of [Shaf1℄). The thirdstatement may be found in [Shaf1℄ x2.5. It uses the fa
t that there are nonontrivial families of ellipti
 
urves over P1 without degenerate �bers. �In light of the exa
t seqen
es above, the redu
tion homomorphismH1(�; JF [m℄)! H1(�̂b; JF̂b[m℄)
an often shed light on Tate-Shafarevi
h group:Proposition 7.2 (Corollary of [Shaf1℄, x1.2.) Let F̂ = C ((t)) with ab-solute Galois group �̂, and JF̂ an ellipti
 
urve over F̂ . Then for ea
h mjH1(�̂; JF̂ [m℄)j = jJF̂ [m℄j:7.2 Models of ellipti
 surfa
esRe
all that an ellipti
 �bration � : X ! P1 is relatively minimal if its �bers
ontain no (�1)-
urves, i.e., KX is numeri
ally e�e
tive relative to �. Givenan ellipti
 
urve XF over F = C (P1), there is a unique (smooth, proje
tive)relatively minimal model � : X ! P1. In parti
ular, for ea
h ellipti
 �bration� : X ! P1 there is an asso
iated Ja
obian �bration � : J ! P1, whi
hadmits a zero-se
tion. It is obtained by taking the relative minimal modelof the Ja
obian JF := J0(XF ). We also have Jm(X), asso
iated to Jm(XF ).Multipli
ation by N , �N : Jm(XF )! JmN (XF );indu
es a dominant rational map over P1�N : Jm(X) 9 9 KJmN (X):De�nition 7.3 Let � : X ! P1 be a relatively minimal ellipti
 �bration.A �ber ��1(b); b 2 P1, is multiple if ea
h of its irredu
ible 
omponents hasmultipli
ity > 1.A Ja
obian �bration always has a zero se
tion, and thus has no multiple�bers. A �ber may have some nonredu
ed irredu
ible 
omponents withoutbeing multiple. 21



Proposition 7.4 Let X ! P1 be a relatively minimal ellipti
 �bration.Then X has no multiple �bers if and only if XF is an element of Sh(J(XF )).Proof: The �ber ��1(b) is not multiple if and only if � has a se
tion in ananalyti
/�etale neighborhood of b. This is equivalent to XF̂b 6= ;. �Proposition 7.5 Let � : X ! P1 be an ellipti
 surfa
e without multiple�bers, with Ja
obian JF . Then m[XF ℄ = 0 in Sh(JF ) if and only if there isa multise
tion M � X of relative degree m over P1.Proof: The �rst part of Proposition 7.1 gives this; M is obtained by takingthe 
losure of the 
y
le in XF of relative degree m. �Proposition 7.6 Let � : X ! P1 be a relatively minimal ellipti
 �brationwithout multiple �bers, with Ja
obian �bration � : J ! P1. For ea
h b 2 P1,X and J are isomorphi
 over an analyti
/�etale neighborhood of b.Proof: Sin
e X and J are relatively minimal, they remain relatively minimalafter 
ompletion/henselization, and minimal models of surfa
es (and N�eronmodels of ellipti
 
urves) are unique. �We remarked in Proposition 7.1 that Sh(JF ) is in�nitely divisible for anellipti
 
urve JF over F = C (P1). The pre
ise stru
ture of this group admitsan elegant interpretation in terms of the trans
endental 
ohomology of the
ompa
t K�ahler manifold J :Proposition 7.7 ([Shaf2℄ xVII.8, Theorems 11 and 12,[Shi℄) Let J ! P1 bea nontrivial Ja
obian ellipti
 surfa
e with generi
 �ber JF . ThenSh(JF ) = H2(J;Z)tran
 Q=Z;whereH2(J;Z)tran = H2(J;Z)=(H2(J;Z) \H1(J;
1J)) = H2(J;Z)=NS(J);the integral 
lasses modulo the N�eron-Severi group.Remark 7.8 For ellipti
 K3 surfa
es, the formulaSh(JF ) ' (Q=Z)e; e = rank H2(J;Z)tranmay also be dedu
ed from the Ogg-Shafarevi
h formula ([Shaf1℄ x2.3, Theo-rem 3, [Ogg℄ Theorem 2) and the formula for the rank of the trans
endental
lasses quoted in x7.4 [SI℄. This allows us to dedu
e e from the rank of JFand the degenerate �bers of J ! P1.22



7.3 Twisting ellipti
 K3 surfa
esProposition 7.9 An ellipti
 K3 surfa
e � : X ! P1 is relatively minimaland never has multiple �bers.Proof: The relative minimality follows be
ause KX = 0. We may then usethe 
lassi�
ation of singular �bers for minimal ellipti
 surfa
es [BPV℄ pp.151. The possible multiple �bers take the form mD, where D is one ofthe degenerate �bers enumerated in Kodaira's 
lassi�
ation. Now D � Xis e�e
tive and numeri
ally e�e
tive, with self-interse
tion D:D = 0. The
lassi�
ation theory of linear series on K3 surfa
es [SD℄ implies jDj indu
esan ellipti
 �bration (
f. Proposition 11.1). �Proposition 7.10 Let X be a smooth proje
tive variety, � : X ! P1 arelatively minimal ellipti
 �bration, and � : J ! P1 its Ja
obian �bration. IfX is a K3 surfa
e then J is a K3 surfa
e. If J is a K3 surfa
e and X hasno multiple �bers then X is a K3 surfa
e.Proof: Proposition 7.9 and our assumptions imply that X and J are bothrelatively minimal ellipti
 surfa
es without multiple �bers. In parti
ular, theyhave isomorphi
 �bers (
f. Prop. 7.6.) The topologi
al Euler 
hara
teristi
s�(X) and �(J) are therefore equal. Both J and X are ellipti
 surfa
es,so K2J = K2X = 0 and Noether's formula implies �(OX) = �(OJ) = 2.The 
anoni
al bundle formula for ellipti
 surfa
es [BPV℄ V.12.1,12.2 impliesKX = 0 if and only if KJ = 0. Any surfa
e with K = 0 and �(O) = 2 is aK3 surfa
e. �Remark 7.11 Let B be a smooth proje
tive 
urve, X ! B an abelian�bration, and J ! B the N�eron model of its Albanese. Then hi(X;!X) =hi(J; !J) for ea
h i (by [Kol2℄, Theorem 2.6 and Corollary 3.2).One distinguishing property of ellipti
 K3 surfa
es is that they admitrational multise
tions.Proposition 7.12 Let X ! P1 be an ellipti
 K3 surfa
e with Ja
obian JF ,so that [XF ℄ 2 Sh(JF ) has order m. Then there exists a rational multise
tionM � X of relative degree m.Proof: Proposition 7.5 gives a multise
tion M̂ of relative degree m. Thereexists an inde
omposible e�e
tive divisor 
lass D so that M̂ �D is e�e
tiveand D has positive degree over the base. It must have degree exa
tly m23



be
ause the order of [XF ℄ equals m. Lemma 6.10 implies D 
ontains anirredu
ible rational 
urve M . �Combining Propositions 7.10, 7.5, and 7.7 with the multipli
ation mapintrodu
ed in x7.2, we obtainCorollary 7.13 Let X ! P1 be an ellipti
 K3 surfa
e, with Ja
obian Jand generi
 �ber JF . For ea
h integer N , there exists an ellipti
 K3 surfa
eX 0 ! P1 with Ja
obian J so thatN [X 0F ℄ = [XF ℄ and order [X 0F ℄ = N � order [XF ℄in Sh(JF ). There is a dominant rational map X 0 9 9 KX over P1.7.4 Results of Shioda-InoseTo 
ompute trans
endental 
ohomology and the Tate-Shafarevi
h group inparti
ular examples, we use the following (see [SI℄):Proposition 7.14 Let � : X ! P1 be a ellipti
 K3 surfa
e with Ja
obian� : J ! P1. Then the N�eron Severi group has rankrank NS(X) = 2 + r(JF ) +Xb (mb � 1)and the topologi
al Euler 
hara
teristi
 is�(X) = 24 =Xb �b;where r(JF ) is the rank of the group of se
tions and mb and �b are given bythe following table:Kodaira type Ia; a > 0 II III IV I�a ; a � 0 II� III� IV �mb a 1 2 3 a+ 5 9 8 7�b a 2 3 4 a+ 6 10 9 8Subtra
ting the two formulas of Proposition 7.14 we obtain �ndCorollary 7.15 Let � : X ! P1 be an ellipti
 K3 surfa
e. Let N1 denotethe number of degenerate �bers of type Ia; a > 0, and N2 the number ofdegenerate �bers of other types. Then we haverank NS(X) +N1 + 2N2 = 26 + r(JF ):24



7.5 A remark on Fourier-Mukai transformsPerhaps the simplest way to 
onstru
t isogenies of K3 surfa
es is by takingtwists of ellipti
 �brations. This is not widely known, so we give a briefa

ount here.By de�nition, two K3 surfa
es X and Y are isogenous if the Hodge stru
-tures H2(X) and H2(Y ) are isomorphi
 over Q . A natural problem, �rststudied systemati
ally by Mukai [Mu℄, is how su
h isogenies are indu
ed by
orresponden
es between X and Y . Indeed the Hodge 
onje
ture, applied toX � Y , predi
ts that ea
h isogeny between X and Y should be indu
ed byan algebrai
 
y
le, whi
h ideally should admit a geometri
 des
ription. Typ-i
ally, Y arises as a moduli spa
e of simple sheaves on X, with the isogenyindu
ed by Chern 
lasses of the universal bundle on X � Y .Assume that � : J ! P1 is a Ja
obian ellipti
 K3 sufa
e and � : X ! P1represents an element [XF ℄ 2 Sh(JF ) of order m > 1. We interpret J asJm(X), the degree-m 
omponent of the Pi
ard group relative to �. Thegeneri
 point of J parametrizes a line bundle L of degree m supported onsome �ber of �. We extra
t a simple sheaf E from the kernel of the globalse
tion map 0! E ! H0(X;L)
OX ! L! 0;with rank m and Chern 
lasses 
1(E) = �D and 
2(E) = m, where D is the
lass of a �ber of �. The moduli spa
e of su
h sheaves is the K3 surfa
e J .We re
all Mukai's pro
edure for 
omputing the isogeny between X andJ . Consider� := fa 2 H2(X;Z) : a:D � 0 (mod m)g � H2(X;Z);a sublatti
e of index m. We assumed that [XF ℄ 2 Sh(JF ) has order m, sothe algebrai
 
lassesH2(X;Z)alg := H2(X;Z)\H1(X;
1X) � �:Set D0 = D=m and take �0 to be the latti
e obtained from � by adjoiningD0, so that �0=� is 
y
li
 of order m. Observe also that1. The interse
tion form on H2(X;Z) indu
es quadrati
 forms on � and�0; the form on �0 is integral and unimodular.2. � 
 C and �0 
 C inherit Hodge stru
tures from H2(X), so we mayde�ne �alg (resp. �0alg) as the integral (1; 1)-
lasses and �tran = �=�alg(resp. �0tran = �0=�0alg). 25



3. D0 2 �0alg with D0 � D0 = 0, and there exists a 
lass � 2 �0alg withD0 � � = 1 (see Proposition 7.5).4. �tran = �0tran and �tran � H2(X;Z)tran so that the quotient is 
y
li
 oforder m.Indeed, Mukai proves that �0 is the Hodge stru
ture for the moduli spa
eof sheaves of type E , whi
h 
oin
ides with the Ja
obian ellipti
 �bration J .Finally,H2(X;Z)tran=H2(J;Z)tran is 
y
li
 of orderm and thus determines anelement of H2(J;Z)tran
 (Q=Z) of order m. This 
oin
ides with the elementalluded to in Proposition 7.7.8 Approa
h I: Irredu
ibility of torsion in thenonisotrivial 
ase8.1 Group-theoreti
 resultsWe use the notation of the Appendix, in parti
ular, the exa
t sequen
e1! (Z=pZ)�2 ! A�SL2(Z=pZ) q! SL2(Z=pZ)! 1; (1)with splitting � : SL2(Z=pZ) ,! A�SL2(Z=pZ).Proposition 8.1 Let p 6= 2; 3 be prime. Let H 0 � A�SL2(Z=pZ) be a sub-group with q(H 0) = SL2(Z=pZ). Then one of the following is true:1. there is a point in (Z=pZ)�2 �xed by ea
h element in H 0, so this groupis 
onjugate to SL2(Z=pZ);2. H 0 = A�SL2(Z=pZ).Proof: First, assume that q : H 0 ! SL2(Z=pZ) has nontrivial kernel. Ea
helement of the kernel is in (Z=pZ)�2 � A�SL2(Z=pZ) and a
ts via trans-lation by a nonzero element v 2 (Z=pZ)�2. Any other nonzero elementw 2 (Z=pZ)�2 
an be obtained by applying an element of SL2(Z=pZ), whi
ha
ts by 
onjugation on (Z=pZ)�2 � A�SL2(Z=pZ). The surje
tivity assump-tion implies w 
an also be obtained 
onjugating with an element ofH 0. Hen
eevery translation is 
ontained in H 0 and the se
ond alternative holds.26



Now we assume q : H 0 ! SL2(Z=pZ) is an isomorphism. Consider thea
tion of H 0 ' SL2(Z=pZ) on polynomials over (Z=pZ)�2 of degree � 1
0 + 
1x1 + 
2x2; 
0; 
1; 
2 2 Z=pZ:We 
laim the resulting representation is 
ompletely redu
ibleh1i � hx1 � v1; x2 � v2i ; ywhere (v1; v2) is the �xed point of the a
tion. We know that �(�I), whereI is the identity, is semisimple and the �1-eigenvalue de
omposition of thelinear polynomials takes the form y. It suÆ
es to show that every otherelement of H 0 respe
ts this de
omposition. ConsiderS = �0 �11 0 � T = �0 �11 1 � 2 SL2(Z);whi
h generate SL2(Z); [Se1℄ x7.1 
ontains a proof they generate SL2(Z)=� Iand they obviously yield �I. These matri
es therefore generate SL2(Z=pZ)as well, so it suÆ
es to show they respe
t de
omposition y. These matri
esare semisimple over Z=pZ and satisfy the relationsS2 = T 3 = �I;i.e., they have eigenspa
e de
ompositions respe
ting our de
omposition. �Proposition 8.2 For any proper subgroup H ( SL2(Z=pZ), the index of His at least p.Proof: We have SL2(Z=2Z) the symmetri
 group S3 and SL2(Z=3Z) a 
entralextension of the alternating group A4 by a group of order two. The resultholds in these spe
ial 
ases, so we may restri
t attention to 
ases wherep 6= 2; 3. Let r = index(H) = jSL2(Z=pZ)=Hj and 
onsider the asso
iated
oset representation SL2(Z=pZ)! Sr:The kernel K � SL2(Z=pZ) is a normal subgroup, as is its image K 0 �SL2(Z=pZ)= h�Ii. For p > 3 the group SL2(Z=pZ)= h�Ii is simple, so eitherK 0 is trivial or the entire group, whi
h is impossible. If K 0 is trivial thenjSL2(Z=pZ)= h�Ii j = p(p2 � 1)=2 divides r!, so the index r � p. �27



8.2 Irredu
ibility of torsionThroughout this se
tion, F denotes the fun
tion �eld of P1. We 
onsider theirredu
ibility of 
ertain s
hemes over F :Theorem 8.3 Let J ! P1 be a nonisotrivial Ja
obian ellipti
 �bration, withgeneri
 �ber JF . Let p be a suÆ
iently large prime number.1. The nonzero p-torsion JF [p℄� f0g is irredu
ible.2. Any nontrivial JF [p℄-prini
ipal homogeneous spa
e PF is irredu
ible.Proof: Let U � P1 be the open subset over whi
h the �bration is smooth.Consider the monodromy representation% : �1(U)! SL2(Z);with image �0.Lemma 8.4 �0 � SL2(Z) has �nite index.Proof: Let V ! U be the 
overing spa
e with 
overing group �0, so thatU = �0 n V . The pull-ba
k of J to V has trivial monodromy, so we haveV ! H# #U j! A 1 ' SL2(Z) nHwhere H is the upper half plane and A 1 is the j-line. Both verti
al maps are�0-equivariant, so we have a fa
torization�0 nH% &U j�! SL2(Z) nH:Sin
e j has �nite degree, �0 has �nite index.�In the sequel, we take � to be the absolute Galois group of the fun
tion�eld F = C (P1). The pro�nite 
ompletion of the fundamental group �1(U)is a quotient of �, 
orresponding to the maximal extension of F unrami�edover U . The (mod p) redu
tion of the monodromy� : �1(U)! SL2(Z=pZ)28



fa
tors through the pro�nite 
ompletion and indu
es a representation�! SL2(Z=pZ):We use the notation of the Appendix. The p-torsion JF [p℄ is a �-twistof (Z=pZ)�2 and is 
lassi�ed by a representation � : �! SL2(Z=pZ), whi
h
oin
ides with the representation �(mod p).Lemma 8.5 For suÆ
iently large primes p, � is surje
tive.This proves the �rst assertion of the Theorem.Proof of lemma: The index of �(�) in SL2(Z=pZ) divides the index of �0 inSL2(Z). By Proposition 8.2, any proper subgroup of SL2(Z=pZ) has indexat least p. It follows that �(�) = SL2(Z=pZ) for p greater than the index.The irredu
ible 
omponents of JF [p℄ � f0g 
orrespond to the orbits of �(�)on (Z=pZ)�2� f0g. �To ea
h JF [p℄-prin
ipal homogenenous spa
e PF , Proposition A.2 assignsa representation � : �! A�SL2(Z=pZ) with q Æ � = �.Lemma 8.6 For suÆ
iently large primes p, � is surje
tive provided PF isnontrivial.Then �(�) a
ts transitively on (Z=pZ)�2 and PF is irredu
ible, and the se
ondassertion of the Theorem is proved.Proof of lemma: We may assume � is surje
tive. If �(�) were 
ontained insome 
onjugate of SL2(Z=pZ)� A�SL2(Z=pZ), then it would �x an elementof (Z=pZ)�2, 
ontradi
ting the nontriviality of PF . Then Proposition 8.1implies �(�) = A�SL2(Z=pZ). �8.3 Produ
tion of rational multise
tionsTo prove potential density for an ellipti
 K3 surfa
e � : X ! P1, we pro-du
e a plethora of rational multise
tions, with the hope that some might benontorsion. The next result gives an in�nite sequen
e of su
h multise
tions,with unbounded degree.Theorem 8.7 Let X ! P1 be a nonisotrivial ellipti
 K3 surfa
e, with Ja
o-bian �bration J ! P1 and generi
 �ber JF . Suppose that [XF ℄ 2 Sh(JF ) hasorder m and let p � m be prime. Then there exists a rational, nontorsion,multise
tion M � X of degree mp. 29



Combining this with Proposition 4.13, we easily dedu
e the following spe
ial
ase of Theorem 6.4:Theorem 8.8 Let � : X ! P1 be a nonisotrivial ellipti
 K3 surfa
e over anumber �eld K. Then rational points of X are potentially dense.Proof of Theorem 8.7: Corollary 7.13 yields an ellipti
 K3 surfa
e X 0 ! P1with Ja
obian J so thatorder [X 0F ℄ = p � order [XF ℄ and p[X 0F ℄ = [XF ℄as well as a dominant rational map�p : X 0 9 9 KJp(X 0) = X:Proposition 7.12 gives a rational 
urve M 0 � X 0 of relative degree mp. LetM be the image �p(M 0), whi
h is also a rational 
urve, and 
onsider theindu
ed �nite morphism �p :M 0 !M:Lemma 8.9 �p maps M 0 birationally onto M , whi
h thus has degree mpover P1.Proof of lemma: Suppose not, so thatM has degree stri
tly smaller than mp.Sin
e [XF ℄ 2 Sh(JF ) has order m, Proposition 7.5 guarantees M has relativedegree equal to m. Furthermore, the indu
ed M 0 !M has degree p.Let fm01; : : : ; m0mpg denote the geometri
 points of M 0F , lying over thegeneri
 point of the base P1. Sin
e �p(m0i1) = �p(m0i2) for some i1 6= i2,we dedu
e that some of the m0i1 � m0i2 are p-torsion, e.g., the points lyingover a given mi 2 MF . We base
hange to M to obtain a ellipti
 �brationX 0�P1M !M . Using the in
lusion and the map �p, imbedM 0 ,! X 0�P1Mso the image is a p-torsion multise
tion of degree p over M . Let E denotethe fun
tion �eld of M , a degree m extension of F , and JE the base
hangeof JF to E. Then M 0E is 
ontained in a prin
ipal homogeneous spa
e PE forJE[p℄ (see Remark 4.10).We analyze the stru
ture of JE[p℄. First, if p is 
hosen suÆ
iently large,we may assume the monodromy representation� : �! SL2(Z=pZ)30



is surje
tive (see Lemma 8.5). By Proposition 8.2, the degree-m extensionE=F is linearly disjoint from the SL2(Z=pZ) extension of F asso
iated withJF [p℄. Indeed, the asso
iated Galois extension of F has no subextensions withdegree dividing m. Hen
e, even after base extension to E, the monodromyrepresentation still surje
ts onto SL2(Z=pZ).We return to the prin
ipal homogeneous spa
e PE. If it is trivial thenTheorem 8.3 shows it has just two 
omponents, the identity and the non-identity, neither of whi
h has degree p. If it is nontrivial then an appli
ationof Proposition 8.1, as in the argument for Lemma 8.6, shows it is irredu
iblewith just one 
omponent of degree p2. In either 
ase we dedu
e a 
ontradi
-tion, so M must be a multise
tion of degree mp in X. �It remains to show that M is nontorsion, whi
h is the 
ase if M 0 is non-torsion:Lemma 8.10 M 0 � X 0 is nontorsion.Proof of lemma: Suppose that M 0 is torsion of order N , so that �N(M 0) �JN(X 0) is a se
tion. Proposition 7.5 implies that mp = order[X 0F ℄ divides N .Write N = np and 
onsider the imageM 00 = �n(M 0) � Jn(X 0);a multise
tion of order p and degree d > 1, where djmp. By Proposition 4.8,M 00 is 
ontained in a prin
ipal homogeneous spa
e PF for the p-torsion JF [p℄.We apply Theorem 8.3: If PF is nontrivial then it is irredu
ible of degree p2and pjm, a 
ontradi
tion. If PF is trivial then d = p2� 1, when
e (p2� 1)jm,a 
ontradi
tion. �Remark 8.11 For the appli
ation to Theorem 8.8, we only really need M 0to be nontorsion. Then we may apply Proposition 4.13 to X 0 and potentialdensity for X follows from Proposition 3.1. (If X is de�ned over a number�eld then X 0 and M 0 are as well.)The pre
ise des
ription of the multise
tion M does give interesting 
on-sequen
es:Corollary 8.12 Every nonisotrivial ellipti
 K3 surfa
e 
ontains an in�nitenumber of irredu
ible rational 
urves.31



Corollary 8.13 For ea
h nonisotrivial Ja
obian ellipti
 K3 surfa
e withN�eron-Severi group of rank two, there exists an in�nite sequen
e of irre-du
ible rational 
urves with de
omposible divisor 
lasses.These 
annot be (�2)-
urves [LP℄ x2.Proof of 
orollary: A Ja
obian ellipti
 K3 surfa
e with N�eron-Severi rank twohas e�e
tive 
one generated by the 
lasses of a �ber E and the zero se
tion� [SD℄ E �E 0 1� 1 �2 :Thus any multise
tion of relative degree > 1 is de
omposible. �9 Approa
h II: genus estimatesBefore diving into te
hni
al details, we indi
ate the main idea of this ap-proa
h. Consider the modular 
urveX1(n) = f(E; P ) : E an ellipti
 
urve ; P 2 E of order ng= ' :Any family of ellipti
 
urves E ! B with n-torsion se
tion gives a morphismB ! X1(n). For large primes X1(p) has positive genus [Miy℄ x4.2, so thereare no nonisotrivial families of ellipti
 
urves with p-torsion se
tion over P1.We shall prove similar results for torsion multise
tions: If they have largetorsion order they must have positive genus.9.1 The Riemann-Hurwitz formulaLet F be the fun
tion �eld of a smooth proje
tive 
urve B, MF a �niteredu
ed s
heme over F , M the normalization of B in the fra
tion ring ofMF , and f : M ! B the indu
ed �nite morphism. We do not assume M isirredu
ible. The genus g(MF ) is de�ned as the arithmeti
 genus of M , andis 
omputed by the Riemann-Hurwitz formula2g(M)� 2 = deg(f)(2g(B)� 2) + Xm2M em;where em is the lo
al rami�
ation order at m.32



Let � be the absolute Galois group of F (or the fundamental group of theopen subset U � B over whi
h f is unbran
hed). For ea
h b 2 B, writef�1(b) = fm1; : : : ; mr(b)g:Let 
b 2 � represent the 
onjuga
y 
lass of a generator for the Galois groupof the 
ompletion F̂b of F at b (or the 
lass of a small loop around b.) The
over f yields a representation into the symmetri
 group' : �! Sdeg fwhere '(
b) gives the lo
al monodromy at b. If we represent this as a produ
tof disjoint 
y
les '(
b) = �1 : : : �r(b);then the 
y
les are in one-to-one 
orresponden
e with the points fm1; : : : ; mr(b)gand length(�i) = emi + 1:This allows us to rewrite the Riemann-Hurwitz formula2g(M)� 2 = deg f(2g(B)� 2) +Xb2B(deg(f)� r(b));where r(b) is the number of orbits of '(
b) 2 Sdeg f .9.2 Genera of prin
ipal homogeneous spa
esTheorem 9.1 Let F be the fun
tion �eld of a smooth proje
tive 
urve B;for ea
h b 2 B, let F̂b denote the 
ompletion of F at b. Let HF be a �nitegroup s
heme over F and PF a HF -prin
ipal homogeneous spa
e over F .Then g(HF ) � g(PF ), with equality only when PF̂b is a trivial HF̂b-prin
ipalhomogeneous spa
e for ea
h b 2 B.Proof of theorem: We use the notation of the Appendix and x9.1, and useH and P to denote the normalizations of B in HF and PF respe
tively. Let� denote the absolute Galois group of F , G = HFa the group of pointsof HF over the algebrai
 
losure, and G0 the asso
iated twisted form, with
lassifying 
o
y
le� 2 H1(�;Aut(G)) = Hom(�;Aut(G)):33



By Proposition A.2, PF is 
lassi�ed by a representation� : �! A�(G)so that q Æ � = �, where q : A�(G)! Aut(G) is the quotient map.For ea
h b 2 B let 
b 2 � 
orrespond to the generator of the absoluteGalois group of F̂b (or the 
lass of a loop around b in the fundamental group.)As we saw in x9.1, the rami�
ation of H ! B (resp. P ! B) over bis determined by the number of orbits of �(
b) (resp. �(
b)) on G. ByProposition A.2, the HF̂b-prin
ipal homogeneous spa
e PF̂b is trivial only if�(
b) is 
onjugate to �(
b) by some �g 2 G.To apply the Riemann-Hurwitz formula, it suÆ
es to establish the fol-lowing:Proposition 9.2 Let G be a �nite group, a 2 �(Aut(G)), and  2 A�(G)so that q( ) = q(a). Then we have# orbits( ) � # orbits(a);with equality only if  = �ga��1g for some g 2 G.Proof of proposition: Let Aut(G) and A�(G) a
t on G from the left. Sin
eA�(G) is a semidire
t produ
t of G by Aut(G) and q( ) = q(a), we mayrepresent  = �ha for some �h, with h 2 G a
ting on G by left translation.For ea
h � 2 A�(G) and N 2 N , de�neFix(�;N) = fg 2 G : �N(g) = gg;the elements �xed by the Nth power of �; Fix(�; 1) is the set of �-�xedpoints. We write O(�;N) = jFix(�;N)j. Observe the following properties:1. Fix(�;N1) � Fix(�;N2) whenever N1jN2.2. Fix(�;N) is the elements 
ontained in a �-orbit with 
ardinality divid-ing N .3. When a 2 �(Aut(G)) � A�(G), Fix(a;N) is a subgroup of G.4. When  = �ha for a 2 �(Aut(G)), Fix( ;N) is either empty or isa prin
ipal homogeneous spa
e for Fix(a;N). In parti
ular, eitherO( ;N) = 0 or O( ;N) = O(a;N).34



We verify the last assertion: Take g1; g2 2 Fix( ;N) and g 2 Fix(a;N), sothat g = aNg and gi =  N (gi); i = 1; 2. Sin
e  N = (�ha)N = �h0aN for someh0 2 G, we have g1 = �h0aN (g1), �h0aN (g1g) = �h0aN (g1)aN(g) = g1g, andg1g 2 Fix( ;N). Furthermore,aN (g�11 g2) = aN(g1)�1aN (g2) = (��1h0 g1)�1��1h0 g2 = g�11 g2so that g�11 g2 2 Fix(a;N).Let o(�; d) denote the number of �-orbits of G with 
ardinality d, so thatO(�;N) = XdjN o(�; d)do(�; d) = 1=dXjjd O(�; d=j)�(j)where � is the Mobius fun
tion. Then the total number of �-orbits is# orbits(�) = Xdj order(�) o(�; d) =Xd 1=dXjjd O(�; d=j)�(j)= Xjj order(�)O(�; j)=j Xkj order(�)=j �(k)=k= Xjj order(�)O(�; j)=j Y` prime j order(�)=j(`� 1)=`:This is a positive linear 
ombination of the O(�; j). We have seen thatO( ; j) � O(a; j) for ea
h j, hen
e# orbits( ) � # orbits(a):If equality holds then O( ; j) = O(a; j) for ea
h j so, in parti
ular,O( ; 1) 6= 0. If  �xes an element g 2 G then ��1g  �g �xes the identity.However, any element of A�(G) �xing the identity is in �(Aut(G)) andq(��1g  �g) = q( ) = q(a);hen
e  = �ga��1g . �
35



9.3 Genus of the p-torsionWe organize our 
omputation by the Kodaira type of the degenerate �ber(see [Kod℄ x9, Table 1 or [BPV℄ pp. 159).Theorem 9.3 Let J ! B be a relatively minimal Ja
obian ellipti
 �brationwith generi
 �ber JF . Suppose there are n0 degenerate �bers of type I�0 , n01degenerate �bers of type Ia; a > 0, n001 degenerate �bers of type I�a ; a > 0, n2�bers of type II or II�, n3 �bers of type III or III�, and n4 �bers of typeIV or IV �.If p is a suÆ
iently large prime number then2g(JF [p℄)� 2 = p2(2g(B)� 2) + n01(p� 1)2 + n001(p2 � p)+(p2 � 1)(1=2n0 + 5=6n2 + 3=4n3 + 2=3n4)2g(JF [p℄� f0g)� 2 = n01(p� 1)2 + n001(p2 � p) + (p2 � 1)(2g(B)� 2+1=2n0 + 5=6n2 + 3=4n3 + 2=3n4):Remark 9.4 JF [p℄ does not generally extend to a group s
heme �nite and
at over B. Any su
h group s
heme would be smooth over B, but the proofof the theorem shows the existen
e of rami�
ation at singular �bers.Corollary 9.5 Retain the notation and assumptions of Theorem 9.3. Sup-pose B = P1 and assume
(J) := 1=2n0 + n01 + n001 + 5=6n2 + 3=4n3 + 2=3n4 � 2 > 0:Then for p� 0 both JF [p℄ and JF [p℄� f0g have positive genus, as does anyJF [p℄-prin
ipal homogeneous spa
e.The last assertion follows from Theorem 9.1.Proof of theorem: To 
ompute the full torsion we take MF = JF [p℄, so theresulting morphism f :M ! B has degree p2.In order to apply the Riemann Hurwitz formula as in x9.1, we re
ord thelo
al monodromy �(
b) 2 SL2(Z), the number of orbits of (Z=pZ)�2 under�(
b), and the 
ontribution to the total rami�
ation. In the table below weassume that p 6= 2; 3, so that for �bers of types I�0 ,II,II�, III,III�,IV ,IV �the mod p redu
tion of �(
b) is semisimple and �xes only the origin. If thereare �bers of type Ia (resp. I�a) we also assume (p; a) = 1, so the mod predu
tion is 
onjugate to�1 10 1�� resp. � �1 10 1�� :36



Table 1: Rami�
ation 
ontributions at degenerate �bersKodaira type monodromy matrix # orbits mod p rami�
ation�(
b) r(b) Pm2f�1(b) emI0 �1 00 1� p2 0I�0 ��1 00 1� 1=2(p2 + 1) 1=2(p2 � 1)Ia �1 a0 1� 2p� 1 (p� 1)2I�a ��1 a0 1� p p2 � pII � 1 1�1 0� 1=6(p2 + 5) 5=6(p2 � 1)II� �0 �11 1 � 1=6(p2 + 5) 5=6(p2 � 1)III � 0 1�1 0� 1=4(p2 + 3) 3=4(p2 � 1)III� �0 �11 0 � 1=4(p2 + 3) 3=4(p2 � 1)IV � 0 1�1 �1� 1=3(p2 + 2) 2=3(p2 � 1)IV � ��1 �11 0 � 1=3(p2 + 2) 2=3(p2 � 1)To 
ompute the nonzero torsion we takeMF = JF [p℄�f0g, so the resultingmorphism f : M ! B has degree p2 � 1. On the other hand, removing theorigin involves eliminating an orbit of size one, whi
h does not 
hange therami�
ation 
ontribution. �We 
lassify the K3 surfa
es where Corollary 9.5 fails to apply:Proposition 9.6 Let X ! P1 be an ellipti
 K3 surfa
e, with Ja
obian J !P1 and generi
 �ber JF . If 
(J) � 0 (
f. Corollary 9.5) then X is isotrivialand takes one of the following forms 37



1. four degenerate �bers of type I�0 , and rank NS(X) = 18; 19; 20;2. three degenerate �bers of types I�0 ; II�; IV �, and rank NS(X) = 20;3. one degenerate �ber of type I�0 , two of type III�, and rank NS(X) = 20;4. three degenerate �bers of type IV �, and rank NS(X) = 20.Proof: Retain the notation of Theorem 9.3 and x7.4. If 
(J) � 0 then2n0 + 4n01 + 4n001 + 10=3n2 + 3n3 + 8=3n4 � 8and subtra
ting from the formula of Corollary 7.15rank NS(X) + n01 + 2(n0 + n001 + n2 + n3 + n4) = 26 + r(JF )gives rank NS(X) � 18 + r(JF ) + 3n01 + 2n001 + 4=3n2 + n3 + 2=3n4:Sin
e rank NS(X) � 20, it follows that n01 = 0.The expressions above admit the following solutions:n0 n01 n001 n2 n3 n4 rank NS(X) r(J)1 4 0 0 0 0 0 18; 19; 20 2; 1; 02 3 0 0 0 0 0 20 03 2 0 1 0 0 0 20 04 2 0 0 1 0 0 20 05 2 0 0 0 1 0 20 06 2 0 0 0 0 1 20 07 1 0 0 1 0 1 20 08 1 0 0 0 2 0 20 09 1 0 0 0 1 1 20 010 1 0 0 0 0 2 20 011 0 0 0 0 0 3 20 0Several of these 
an be ex
luded. Solutions 2,4,5,6,9, and 10 are in
on-sistent with the Euler 
hara
teristi
 
omputation of Proposition 7.14. Asfor solution 3, suppose X ! P1 is an ellipti
 surfa
e with one �ber of typeI�a for a > 0 and two �bers of type I�0 . Su
h a �ber has one rational 
urvewith multipli
ity two, interse
ted transversally by four rational 
urves with38



1 1 1 1

2Figure 1: Degenerate �ber of type I�0multipli
ity two (see Figure 1). Let B0 ! P1 be a double 
over bran
hed atthe two points b1; b2 2 P1 with �bers of type I�0 . The �ber produ
t X �P1B0is non-normal along the preimages of the rational 
urves with multipli
tytwo. Let Y be the normalization and  : Y ! B0 the indu
ed ellipti
 �bra-tion. The �bers  �1(bi) 
onsist of a smooth ellipti
 
urve, along with four(�1)-
urves interse
ting it transversally, i.e., the preimages of the rational
urves of multipli
ity one. Thus  is not relatively minimal over the pointsb1; b2, so we blown down the eight (�1)-
urves. Let  0 : Y 0 ! B0 be theresulting �bration, whi
h has only two degenerate �bers, both with poten-tially multipli
ative redu
tion, i.e., j-invariant in�nity (see [Kod℄, Part II, pp.604). We obtain a nonisotrivial ellipti
 �bration with abelian monodromy,an impossibility (see Lemma 8.5.)The remaining solutions are 
onsistent with Proposition 7.14 and areenumerated above. These 
orrespond to isotrivial ellipti
 �brations be
ausethere are no �bers of potentially multipli
ative redu
tion.�Remark 9.7 Ad ho
 arguments give potential density for the degenerate
ases enumerated in Proposition 9.6. The �rst 
ase is a Kummer surfa
e:Suppose that X ! P1 is an ellipti
 K3 surfa
e with type I�0 degenerate�bers at the points b1; b2; b3; b4 2 P1. The lo
al and global monodromy ismultipli
ation by �1. Let E ! P1 be the rami�ed double 
over bran
hedover b1; b2; b3; b4, an ellipti
 
urve. Let  0 : Y 0 ! E be the minimal ellipti
�bration obtained from X �P1 E ! E, whi
h is now smooth and has trivialmonodromy. Su
h �brations are 
lassi�ed (see [BPV℄ xV.5):  0 is isotrivialwith 
onstant �ber C, is 
lassi�ed by the indu
ed representation �1(E) intothe torsion subgroup of C, and Y 0 is an abelian surfa
e. By Proposition 4.2,Y 0 has potentially dense rational points. Sin
e Y 0 dominates X, it also haspotentially dense rational points. 39



The remaining 
ases have rank twenty, and thus have in�nite automor-phism group [SI℄ Theorem 5. Potential density follows from Theorem 6.3.9.4 Se
ond proof of Theorem 8.8In light of Remark 8.11, it suÆ
es to establish:Proposition 9.8 Let X ! P1 be a nonisotrivial ellipti
 K3 surfa
e, withJa
obian J and generi
 �ber JF . Then there exists an ellipti
 K3 surfa
eX 0 ! P1 with Ja
obian J, a dominant rational map X 0 9 9 KX over P1, anda nontorsion rational multise
tion M 0 � X 0.Proof: We retain the notation of the proof of Theorem 8.7, so that X 0 isan order-p twist of X. If M 0 has order N then the image of M 0 under themultipli
ation map �N : X 0 9 9 KJN (X 0)is a se
tion of JN(X 0) ! P1. Sin
e X 0 has order divisible by p, Proposition7.5 implies pjN . Write N = pn and let Y = Jn(X 0), an ellipti
 K3 surfa
ewith Ja
obian JF , so that [Y ℄ = n[X 0℄. We have a fa
torization of �NX 0 �n9 9 KY �p9 9 KJN(X 0) = Jp(Y ):The image M := �n(M 0) is a rational multise
tion in Y of order exa
tly pand � := �p(M) is a se
tion in Jp(Y ), with M � ��1p (�). Furthermore,PF := ��1p (�)F is a prin
ipal homogeneous spa
e for JF [p℄.If PF ' JF [p℄ then MF ' JF [p℄ � f0g be
ause Theorem 8.3 impliesJF [p℄�f0g is irredu
ible when p� 0. It has positive genus by Proposition 9.6and Corollary 9.5. As our family is nonisotrivial, this 
an also be extra
tedfrom standard 
omputations of the genera of modular 
urves (e.g., [Miy℄x4.2).If PF is nontrivial then Theorem 8.3 guarantees it is irredu
ible for p� 0.Then M = ��1p (�) and Corollary 9.5 implies M has positive genus whenp� 0, a 
ontradi
tion. �9.5 Completing Theorem 6.4: the isotrivial 
aseAfter Theorem 8.8 and Remark 9.7, the only 
ase where potential densityremains open is isotrivial ellipti
 K3 surfa
es with 
(J) > 0. Can the ar-gument of x9.4 be applied in this situation? The main 
ompli
ation is that40



JF [p℄ � f0g, and even nontrivial JF [p℄-prin
ipal homogeneous spa
es, mayfail to be irredu
ible. Indeed, the monodromy group is a subgroup of the au-tomorphism group of the geometri
 generi
 �ber; the irredu
ible 
omponentsof JF [p℄ 
orrespond to orbits of p-torsion points under these automorphisms.Unfortunately, Theorems 9.3 and 9.1 shed little light on the genus of anirredu
ible 
omponent of a prin
ipal homogeneous spa
e.With some extra bookkeeping, one 
an still prove the following:Theorem 9.9 Let J ! P1 be an isotrivial Ja
obian ellipti
 surfa
e, withgeneri
 �ber JF . Suppose that 
(J) > 0. For prime numbers p � 0, ea
hirredu
ible 
omponent of JF [p℄�f0g has positive genus. If PF is a nontrivialJF [p℄-prin
ipal homogeneous spa
e then ea
h irredu
ible 
omponent of PF haspositive genus.Repeating the argument for Proposition 9.8, we obtainProposition 9.10 Let X ! P1 be an isotrivial ellipti
 K3 surfa
e, withJa
obian J ! P1 and generi
 �ber JF , so that 
(J) > 0. Then there existsan ellipti
 K3 surfa
e X 0 ! P1 with Ja
obian J, a dominant rational mapX 0 9 9 KX over P1, and a nontorsion rational multise
tion M 0 � X 0.Given this, the argument of x9.4 gives potential density for isotrivial ellipti
K3 surfa
es with 
(J) > 0.Before establishing Theorem 9.9, we generalize Proposition 8.1 to 
lassifythe irredu
ible 
omponents of prin
ipal homogeneous spa
es for the p-torsionof an isotrivial ellipti
 �bration. We use the notation of the Appendix, inparti
ular, the exa
t sequen
e1! (Z=pZ)�2 ! A�SL2(Z=pZ) q! SL2(Z=pZ)! 1; (2)with 
anoni
al splitting �.Proposition 9.11 Let T 2 SL2(Z) be an element of �nite order n generatinga subgroup H, p 6= 2; 3 a prime, and H 0 � A�SL2(Z=pZ) so that q(H 0) = H.Then there is a split exa
t sequen
e1! V ! H 0 ! H ! 1; V := H 0 \ (Z=pZ)�2: (3)For ea
h splitting �0, �0(H) is 
onjugate to a subgroup of �(SL2(Z=pZ)),where � is the 
anoni
al splitting of exa
t sequen
e 2.The orbit de
omposition of (Z=pZ)�2 under the a
tion of H 0 is one of thefollowing: 41



1. If dimZ=pZ(V ) = 0, H 0 has one �xed point and (p2 � 1)=n orbits with nelements.2. If dimZ=pZ(V ) = 1, H 0 has one orbit with p elements (the subspa
e V )and (p� 1)=n orbits with pn elements.3. If dimZ=pZ(V ) = 2, H 0 has one orbit with p2 elements.Proof: If T 2 SL2(Z) has �nite order n, it is semisimple and its eigenval-ues are primitive nth roots of unity. The 
hara
teristi
 polynomial of T isquadrati
, so n = 2; 3; 4; or 6. As p 6= 2; 3, the redu
tion of T (mod p) stillhas eigenvalues whi
h are nth roots of unity, and T (mod p) has order n.The exa
t sequen
e 3 is 
learly indu
ed from exa
t sequen
e 2; it is splitbe
ause jV j is prime to n = jHj. Now �0(H) is 
onjugate to a subgroup of�(SL2(Z=pZ)), provided �0(T ) �xes some point v 2 (Z=pZ)�2: Consider thea
tion of �0(T ) on polynomials over (Z=pZ)�2 of degree � 1
0 + 
1x1 + 
2x2; 
0; 
1; 
2 2 Z=pZ:We know �0(T ) �xes the 
onstants 
0 and has order prime to p, so its a
tionde
omposes as a dire
t sum of irredu
iblesh1i � hx1 � v1; x2 � v2i ;and the indu
ed a
tion on the se
ond fa
tor is semisimple. The �xed pointis v = (v1; v2); the orbit analysis in the next paragraph will show that v 2 V .It remains to analyze the orbit de
omposition. In ea
h 
ase, we �rst
onjugate so that �0(H) � SL2(Z=pZ). If V = 0, H 0 � SL2(Z=pZ), generatedby a semisimple matrix �0(T ) of order n > 1. The �xed point is the originand every other orbit has n elements. If V = (Z=pZ)�2 then H 0 
ontainsthe full translation group, so the a
tion is transitive. Now assume V is onedimensional. Of 
ourse, V is an eigenspa
e for �0(T ). The group H 0 isgenerated by translations by elements of V and the a
tion of �0(T ). Again,the only �xed point under the a
tion of �0(T ) is the origin, so any orbit not
ontaining the origin has order divisible by n. No element of (Z=pZ)�2 is�xed under translation by V , so ea
h orbit has order divisible by p. Thedes
ription of the orbits follows. �Proof of Theorem 9.9: Let M denote a 
omponent of the normalization ofP1 in JF [p℄�f0g or PF , 
orresponding to an orbit of H 0 on (Z=pZ)�2. In the42



�rst 
ase of Proposition 9.11, M 
orresponds to an H 0-orbit with n elementsand Riemann-Hurwitz takes the form2g(M)� 2 = 
(J)n > 0:In the last 
ase of Proposition 9.11 PF is irredu
ible, so Theorems 9.3 and9.1 apply as in the nonisotrivial 
ase.For the remaining 
ases, we analyze more 
losely the behavior at �bersof additive redu
tion:Lemma 9.12 Let F̂ = C ((t)) with absolute Galois group �̂, and JF̂ anellipti
 
urve over F̂ . Assume that the 
losed �ber is not of type Ia. Forprimes p > 3, H1(�̂; JF̂ [p℄) = 0:Proof of lemma: Take the asso
iated N�eron/relatively minimal model J overC [[t℄℄. The lo
us where the �bers of J are smooth and redu
ed is 
alled the`group-like' part. In the 
ase of additive redu
tion, the identity 
omponentof the group-like part is the additive group, whi
h has no torsion. Hen
e, theorder of the torsion group is equal to the number of 
onne
ted 
omponents ofthe group-like part. The Kodaira 
lassi�
ation ([Kod℄ x9, Table 1 or Figure2 of x10) givesKodaira type I�a II II� III III� IV IV �torsion order 4 0 0 2 2 3 3 :By Proposition 7.2, in these 
ases any lo
al JF̂ [p℄-prin
ipal homogeneousspa
e (with p > 3) is trivial. �We 
omplete the proof of Theorem 9.9. Only the se
ond 
ase of Propo-sition 9.11 remains. Lemma 9.12 says that at ea
h point b 2 P1 of additiveredu
tion, the lo
al monodromy �(
b) 2 H 0 has a �xed point (see Proposi-tion A.2.) If M 
orresponds to an H 0-orbit with p elements then one of theelements is �xed at ea
h point of additive redu
tion, and Riemann-Hurwitztakes the form2g(M)�2 � �2p+(1=2n0+5=6n2+3=4n3+2=3n4)(p�1) = (p�1)
(J)�2:We have inequality be
ause f : M ! P1 may ramify at smooth �bers. If M
orresponds to an orbit with pn elements then none of the elements is �xedand2g(M)� 2 � �2pn+ (1=2n0 + 5=6n2 + 3=4n3 + 2=3n4)(np) = np
(J):This 
ompletes the proof.� 43



10 Approa
h III: ellipti
 multise
tions(based on 
orresponden
e with J. Koll�ar)10.1 Cubi
al 
urvesDe�nition 10.1 A 
ubi
al 
urve C is a redu
ed 
urve whi
h may be imbed-ded as a plane 
ubi
 C � P2, with at most two irredu
ible 
omponents.Example 10.2 1. an ellipti
 
urve is 
ubi
al;2. an irredu
ible rational 
urve with a single node is 
ubi
al with equationy2z = x2z + x3, and is 
alled the `nodal 
ubi
';3. an irredu
ible rational 
urve with a single 
usp is 
ubi
al with equationy2z = x3, and is 
alled the `
uspidal 
ubi
';4. a 
urve with two smooth rational 
omponents interse
ting in two nodesis 
ubi
al with equation x(x2�yz) = 0, and is 
alled the `se
ant 
ubi
';5. a 
urve with two smooth rational 
omponents interse
ting in one pointtangentially is 
ubi
al with equation z(x2 � yz) = 0, and is 
alled the`tangential 
ubi
'.Proposition 10.3 1. Cubi
al 
urves are 
onne
ted of arithmeti
 genusone and admit 
at deformations to smooth 
urves.2. Any isomorphism C�1 ! C�2 between the normalizations of 
ubi
al 
urvesthat respe
ts their 
ondu
tors des
ends to an isomorphism C1 ! C2 ofthe 
ubi
al 
urves.3. Let R be a proje
tive integral singular rational 
urve. Then there existsa 
ubi
al 
urve C and birational morphism f : C ! R.4. Let R be a proje
tive 
onne
ted 
urve with two rational irredu
ible 
om-ponents, at least one of whi
h is smooth. Assume that the smooth 
om-ponent interse
ts the se
ond 
omponent in at least two distin
t points,or interse
ts a smooth bran
h of the se
ond 
omponent with multipli
itygreater than one. Then there exists a 
ubi
al 
urve C and birationalmorphism f : C ! R. 44



Proof: We leave the proof of the �rst part to the reader. One way to establishthe isomorphism assertion is to observe that Example 10.2 gives a 
omplete
lassi�
ation of 
ubi
al 
urves.For the remaining 
laims, 
onsider the seminormalization � : R� ! R[Kol2℄ I.7.2. This is a �nite, birational, bije
tive morphism, and is maximalwith these properties; it is obtained from the normalizationR� by identifyingpoints whi
h are identi�ed by � : R� ! R.For the third assertion, R� ' P1 and either R� ! R� or R� ! R failsto be an isomorphism, be
ause R is singular. If R� ! R� fails to be anisomorphism then there exist distin
t r1; r2 2 R� that are identi�ed in R. LetC0 be the nodal 
ubi
 obtained fromR� by identifying r1 and r2. The indu
edC0 ! R is the desired morphism from a 
ubi
al 
urve. Otherwise, R� ' P1and we 
hoose r 2 R� at whi
h � is not an isomorphism. Consider thelo
al rings OR;�(r) � OR� ;r, a �nite extension of OR� ;r-modules. If t 2 mR�;ris a lo
al uniformizer then tn 2 mR;�(r) for n � 0 but not n = 1. Theintermediate ring OR;�(r) � OR;�(r)[t2; t3; t4; : : :℄ � OR� ;r
orresponds to a fa
torization R� ! C ! R through a 
uspidal 
urve C.For the last assertion, we have R� = R�1 [R�2 ' P1 [ P1 with R�1 mappedisomorphi
ally onto its image in R. Suppose we have distin
t r1; r01 2 R�1and r2; r02 2 R�2 so that �(r1) = �(r2) and �(r01) = �(r02). Let C be the 
urveobtained by gluing the R�i so that r1 and r2 (resp. r01 and r02) are identi�ed.This is a `se
ant 
ubi
' and we obtain a fa
torization R� ! C ! R: Nowsuppose we have ri 2 R�i so that �(r1) = �(r2) = r, and � maps an openneighborhood of r2 isomorphi
ally onto its image, whi
h interse
ts �(R�1) withmultipli
ity at least two at r. Algebrai
ally, OR;r is 
ontained in the subringof elements (f1; f2) 2 OR�1 ;r1 � OR�2 ;r2 with f1(r1) = f2(r2) and f1 2 m2R�1 ;r1if and only if f2 2 m2R�2 ;r2. This is the ring of fun
tions of a 
urve C ofarithmeti
 genus one 
onsisting of two smooth rational 
omponents meetingtangentially at a single point, i.e., a tangential 
ubi
. Thus we get the desiredfa
torization R� ! C ! R: �10.2 Produ
tion of 
ubi
al 
urvesProposition 10.4 Let � : X ! P1 be an ellipti
 K3 surfa
e with Ja
obian�bration J ! P1 and generi
 �ber JF . There exist the following45



1. an ellipti
 K3 surfa
e �0 : X 0 ! P1 with Ja
obian J ! P1;2. a dominant rational map X 0 9 9 KX;3. a morphism f0 : C0 ! X 0 from a 
ubi
al 
urve that is birational ontoits image; this image is not 
ontained in any �ber of �0.Proof: Corollary 7.13 yields an ellipti
 K3 surfa
e X 0 ! P1 with Ja
obian Jso that order [X 0F ℄ = p � order [XF ℄ and p[X 0F ℄ = [XF ℄as well as a dominant rational map�p : X 0 9 9 KJp(X 0) = X:Let M 0 � X 0 be the rational multise
tion of degree p � order [XF ℄ guaran-teed by Proposition 7.12. If M 0 is singular then we obtain the desired mapdire
tly from the third part of Proposition 10.3. If M 0 is nonsingular, weapply the fourth part of Proposition 10.3 to the union of M 0 and a suitableirredu
ible 
omponent of a degenerate �ber. It remains to show there existsa 
omponent satisfying the hypotheses of Proposition 10.3 provided M 0 hassuÆ
iently large degree:Lemma 10.5 Let �0 : X 0 ! P1 be an ellipti
 K3 surfa
e andM 0 a nonsingu-lar multise
tion of degree d � 35. Then M 0 interse
ts some irredu
ible 
om-ponent of a degenerate �ber in at least two points, or interse
ts one smoothredu
ed bran
h of the degenerate �ber with multipli
ity greater than one.Proof of Lemma: Re
all the multipli
ities of irredu
ible 
omponents of de-generate �bers in the Kodaira 
lassi�
ation [BPV℄, pp. 150, displayed inFigure 2.First 
onsider the �bers where all the redu
ed irredu
ible 
omponentsare nonsingular. We 
hoose d so that it is greater than the sum of themultipli
ities over all the 
omponents:type Ia; a > 1 III IV I�a II� III� IV �sum of multipli
ities a 2 3 2a+ 6 30 18 12Then M 0 interse
ts some 
omponent twi
e, or perhaps at one point withmultipli
ity greater than one. Proposition 7.14 implies that an ellipti
 K346
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an only have �bers of type Ia (resp. I�a) for a � 19 (resp. a � 14). Thus itsuÆ
es to take d � 35.Now 
onsider the remaining �bers. For �bers of type I1, any smooth
urve interse
ting the nodal point with multipli
ity � 3 interse
ts one of thebran
hes with multipli
ity� 2. It suÆ
es that d � 3. In 
ase II, any smooth
urve interse
ts the 
uspidal point in at most multipli
ity three, so it suÆ
esthat d � 4. �10.3 Produ
tion of ellipti
 
urvesProposition 10.6 Let X be a K3 surfa
e, C0 a 
ubi
al 
urve, and f0 : C0 !X a morphism birational onto its image. Then ff0 : C0 ! Xg deforms to amorphism ff : C ! Xg, where C is a smooth ellipti
 
urve. The resultingfamily of ellipti
 
urves dominates X.Proof: Let v : C ! S be a versal deformation of C0, with C0 the �ber overthe distinguished point s0 2 S. This 
an be realized as a linear series ofplane 
ubi
 
urves 
ontaining C0 (
f. the �rst part of Proposition 10.3). Thegeneri
 �ber is a smooth ellipti
 
urve and dim(S) = dimAut(C0) [Kol2℄II.1.11.Consider the fun
tor of morphisms of 
at S-s
hemesHom(C; X � S)(T ) = fT � morphisms g : C �S T ! (X � S)�S Tg;where T is an S-s
heme. Assigning to ea
h morphism its graph, we mayrepresent this fun
tor by an S-s
heme Hom(C; X�S), an open subset of therelative Hilbert s
heme of C �S (X � S). The morphism f0 yields a point ofHom(C; X � S) over the basepoint s0.Our next task is to bound the dimension of Hom(C; X � S) at f0 frombelow. General theory [Kol2℄ I.2.17, II.1.13 guarantees thatdim[f0℄Hom(C; X � S) � dimHom(f �0
1X ;OC0)� dimExt1(f �0
1X ;OC0) + dims0 S= �KX � C0 + (dim(X)� 3)�(OC0) + dimAut(C0)= dimAut(C0):In our parti
ular situation this 
an be improved (
f. [Kol2℄ II.1.13.1 and[Ra℄): We 
laim thatdim[f0℄Hom(C; X � S) � dimAut(C0) + 1:48



Let X ! � be a one-parameter 
omplex-analyti
 deformation of X, so thatthe generi
 �ber 
ontains no algebrai
 
urves. This 
an be a
hieved using theLo
al Torelli Theorem [LP℄, by 
hoosing a deformation for whi
h none of the
lasses in H2(X;Z) remains of type (1; 1). Now 
onsider the new mappingfun
tor over S �� Hom(C ��;X � S)at the point g0 : C0 f0! X ,! X :The general theory now givesdim[g0℄Hom(C ��;X � S) � dimHom(g�0
1X ;OC0)� dimExt1(g�0
1X ;OC0) + dim(s0;0)(S ��)= dimAut(C0) + 1:The generi
 �ber of X 
ontains no algebrai
 
urves, so the family Hom(C ��;X � S) must parametrize 
urves 
ontained in X.Consequently, there are deformations ff : C ! Xg of ff0 : C0 ! Xgthat are not obtained by 
omposing f0 with an automorphism of C0. We
laim that f(C) 6� f0(C0). Indeed, suppose that f(C) = f0(C0). Sin
e f0and f are birational onto their images and normalizations are unique, the
omposed morphismsC� ! C ! f(C) C�0 ! C0 ! f0(C0)agree up to an isomorphism C� ! C�0 whi
h preserves 
ondu
tors. By parttwo of Proposition 10.3, this des
ends to an isomorphism C ! C0, a 
on-tradi
tion. Thus the images f(C) dominate X, and sin
e X is not ruled we
on
lude that the generi
 domain 
urve C is ellipti
. �10.4 Proof of Theorem 6.4As in our previous approa
hes to Theorem 6.4, the key point is that ea
hellipti
 K3 surfa
e X ! P1 is dominated by an ellipti
 K3 surfa
e X 0 !P1 admitting a nontorsion multise
tion with dense rational points, so thatProposition 4.13 applies. What is new here is that the multise
tion is anellipti
 rather than a rational 
urve: 49



Theorem 10.7 Let � : X ! P1 be an ellipti
 K3 surfa
e with Ja
obian�bration J ! P1 and generi
 �ber JF . There exist the following1. an ellipti
 K3 surfa
e �0 : X 0 ! P1 with Ja
obian J ! P1;2. a dominant rational map X 0 9 9 KX;3. a nontorsion ellipti
 multise
tion M̂ � X 0.Furthermore, if X is de�ned over a number �eld then X 0 and M̂ 
an be
hosen so they are de�ned over a �nite extension of that �eld.This is an immediate 
onsequen
e of Proposition 10.4 and the following:Proposition 10.8 Let �0 : X 0 ! P1 be an ellipti
 K3 surfa
e. Assume thereexists a 
ubi
al 
urve C0 and a morphism f0 : C0 ! X 0 birational onto itsimage, so that f0(C0) is not 
ontained in any �ber of �0 Then �0 admits anellipti
 multise
tion of in�nite order. If X 0 is de�ned over a number �eldthen the multise
tion 
an be de�ned over a �nite extension of that �eld.In parti
ular, any ellipti
 multise
tion deforms to a nontorsion ellipti
 mul-tise
tion.Proof of Proposition 10.8: Proposition 10.6 implies there exists a smoothproje
tive ellipti
 surfa
e S ! B, and a surje
tive morphism g : S ! X 0so that the generi
 �ber is mapped birationally onto its image. Under ourassumptions, this image is not 
ontained in a �ber of �0. Moreover, sin
e X 0is a K3 surfa
e the images of any two �bers are linearly equivalent[C℄ � g�[Sb℄ for ea
h b 2 B:We distinguish some spe
ial �bers of S ! B. We have the singular �bersand the �bers that fail to be mapped birationally onto their image. Theimage of these �bers maps to a 
losed subset Z � X 0.Choose a smooth �ber X 0p = �0�1(p) not lying in Z, de�ned over a number�eld if X 0 is. After passage to a larger number �eld L, we 
an �nd a pointx 2 X 0p(L), x 62 Z, so that tx = � deg(C:X 0p)x + [C℄jX0p 2 J(X 0p) has in�niteorder in the Ja
obian (by the arithmeti
 result, Proposition 4.2). Let Sb bea �ber of S ! B so that x 2 g(Sb), whi
h by assumption is smooth andmaps birationally onto its image M̂ := g(Sb). As Sb maps birationally ontoM̂ , [M̂ ℄ = [g�Sb℄ = [C℄. Now tx has in�nite order in J(X 0p) and 
oin
ideswith the restri
tion of �M̂ to X 0p. Hen
e �M̂ itself has in�nite order and themultise
tion M̂ is nontorsion. � 50



Corollary 10.9 Every ellipti
 K3 surfa
e admits a nontorsion ellipti
 mul-tise
tion.Proof: Retain the notation of Theorem 10.7. The proof above yields anellipti
 multise
tion M̂ for �0 through the generi
 point of X 0. Its imageM � X is a multise
tion for � through the generi
 point of X; M haspositive genus be
ause X is not ruled and thus is ellipti
. Proposition 10.8shows M deforms to a nontorsion ellipti
 multise
tion. �11 Symmetri
 produ
ts of K3 surfa
es11.1 Do generi
 K3 surfa
es have potentially dense ra-tional points?In the previous se
tions, we have seen many spe
ial examples of K3 surfa
eswith potentially dense rational points. However, we know very little aboutthe density of rational points on generi
 K3 surfa
es. Indeed, all the K3surfa
es 
onsidered up to this point are very spe
ial in moduli:Proposition 11.1 A K3 surfa
e X admits an ellipti
 �bration if and onlyif there exists a 
lass D 2 NS(X) with D:D = 0. If a K3 surfa
e admits anellipti
 �bration or an in�nite automorphism group, then rank NS(X) � 2:Proof: If X admits an ellipti
 �bration � : X ! P, then the generi
 �ber[��1(b)℄ 2 NS(X) has self-interse
tion zero. The 
lass of the �ber is indepen-dent from the polarization of X, so rank NS(X) � 2. Conversely, supposeX admits a 
lass [D℄ 2 NS(X) with D:D = 0: By Riemann Ro
h, either Dor �D is e�e
tive. Sin
e the e�e
tive 
one is the union of images of the nef
one under re
e
tions by (�2)-
urves ([LP℄ x2), we may asssume D is nef.Basi
 results on linear series on K3 surfa
es [SD℄ imply that jDj is basepointfree and de�nes an ellipti
 �bration on X.If X has N�eron-Severi rank one, then the polarization generates theN�eron-Severi group and every automorphism �xes the polarization, so theautomorphism group is �nite (
f. the proof of Lemma 6.9). �Question 11.2 Does there exist any K3 surfa
e X over a number �eld withrank NS(X) = 1 and dense rational points?51



11.2 Symmetri
 powers of surfa
esTo obtain potential density theorems for generi
 K3 surfa
es, we 
onsiderauxilliary varieties, the symmetri
 powers. We refer the reader to [HT℄ forfurther details. The n-fold symmetri
 power of a surfa
e X is the quotientX(n) = X �X � : : :�X| {z }n times =Sn:This variety admits a natural desingularization by the Hilbert s
heme oflength-n, zero-dimensional subs
hemes of X� : X [n℄ ! X(n):For a 
urve C, the behavior of rational points on the symmetri
 produ
tsC(n) bears little resemblan
e to the behavior of rational points on C. Indeed,for n > 2g(C)� 2, C(n) is a proje
tive bundle over Jn(C), and thus alwayshas potentially dense rational points. For a surfa
e X, the rational pointson X(n) might very well behave similarly to rational points on X. There is asimple formula relating the Kodaira dimension of a surfa
e and its symmetri
produ
t �(X(n)) = n�(X):Moreover, the quotient morphism q : Xn ! X(n) is almost �etale; it is un-rami�ed away from a 
odimension-two subset, the diagonal. If q were �etalethen the Chevalley-Weil Theorem (Proposition 3.4) would apply: potentialdensity of rational points on X(n) implies potential density of rational pointson Xn, and thus on X.11.3 Main TheoremTheorem 11.3 Let X be a K3 surfa
e de�ned over a number �eld. Assumethat X admits a polarization f of degree 2N � 2. Then rational points onX(n) are potentially dense for some n � N .The proof of Theorem 11.3 divides into 
ases, depending on the geometryof the ellipti
 
urves 
ontained in X. We �rst need a geometri
 result:Proposition 11.4 Let X be a K3 surfa
e and f a divisor with h0(X; f) > 1.Then there exists an irredu
ible, possibly singular, 
urve of genus one C � Xso that f � [C℄ is e�e
tive. 52



This is proved in detail in x4 of [HT℄. The main ingredient is [MM℄, whereit is shown that for a generi
 polarized K3 surfa
e there is a one-parameterfamily of singular 
urves of genus one in the polarizing 
lass. As in Lemma6.10, these spe
ialize to the desired 
urves.We apply Proposition 11.4 to the polarization 
lass f . The resultinggenus-one 
urve C has self-interse
tionC:C � f:f:If C:C > 0 then [C℄ is big by Riemann-Ro
h and Theorem 11.3 follows from:Proposition 11.5 Let X be a K3 surfa
e de�ned over a number �eld, and gthe 
lass of a big line bundle of degree 2(n�1). Assume there is an irredu
ible,possibly singular, 
urve of genus one C � X with [C℄ = g. Then rationalpoints on X(n) are potentially dense.Sket
h Proof: Again, we only give the main ideas of the argument; see [HT℄for more details. The linear series jgj 
ontains an irredu
ible 
urve and so isbasepoint free. Indeed, linear series on a K3 surfa
e have no isolated �xedpoints, only �xed 
omponents [SD℄x2. It follows that g is numeri
ally e�e
tiveand has no higher 
ohomology, and thus de�nes a morphism j : X ! Pn.Consider the in
iden
e 
orresponden
eH := f(x;H) : j(x) 2 Hg � X � �Pn�1. �2&X �Pnwhere �Pn is the dual proje
tive spa
e. Over an open subset V � �Pn, the�bers of �2 are smooth 
urves of genus n.Consider the degree n 
omponent of the relative Albanese� : Jn(H)V ! V:The Ja
obi inversion formula says that the degree n 
omponent of the Al-banese of a smooth proje
tive 
urve C of genus n is birational to the sym-metri
 produ
t C(n). Globalizing, we �nd that Jn(H)V is birational to thesymmetri
 produ
t X(n). Indeed, for any generi
 x1 + : : :+ xn 2 X(n), thereis a unique hyperplane H � fj(x1); : : : ; j(xn)g, and we obtain an elementOj�1(H)(x1 + : : :+ xn) 2 Jn(j�1(H)):53



By Proposition 4.13, it suÆ
es to �nd a nondegenerate multise
tionM of�, de�ned over a number �eld, with dense rational points. Suppose we haven distin
t irredu
ible 
urves C1; : : : ; Cn in jgj. Then we 
an map the produ
tC1 � C2 � : : :� Cn 9 9 KX(n)and let C1 � : : : �Cn � X(n) denote the 
losed image. The indu
ed morphismM = C1 � : : : � Cn ! V is generi
ally �nite: There are a �nite number ofpoints in the produ
t supported in a generi
 hyperplane se
tion of X.The remainder of the argument follows Proposition 10.8. As before, thereexists an ellipti
 �bration S ! B and a surje
tive morphism S ! X so thatthe generi
 �ber is mapped birationally onto a genus-one 
urve with 
lass g.Pi
k a smooth �ber A = ��1(H) of Jn(H)V ! V and a point � 2 A(K),whereK is some number �eld, so that� deg(M=V )�+[M ℄jA is nondegenerate(see Proposition 4.2.) Using Ja
obi inversion, we 
an express� = x1 + : : :+ xn; x1; : : : ; xn 2 X; j(xi) 2 H:After perhaps 
hoosing a more general �, we may assume that ea
h xi 2 Sbi ,where the Sbi are distin
t, irredu
ible �bers of S ! B, mapped birationallyonto their image in X, and de�ned over a number �eld. It follows that � liesin the multise
tion Sb1 � : : : � Sbn , whi
h is ne
essarily nondegenerate. �It remains to deal with the 
ase C:C � 0. Sin
e C is irredu
ible, ad-jun
tion implies C is smooth and C:C = 0. In parti
ular, the linear seriesjCj yields an ellipti
 �bration � : X ! P1. Then rational points on X arepotentially dense by Theorem 6.4. �A Appendix: Galois 
ohomology and prin
i-pal homogeneous spa
esLet G and � be groups and let Aut(G) denote the automorphism group of G.When G and � admit topologi
al stru
tures, all the maps des
ribed beloware ta
itly assumed to be 
ontinuous with respe
t to the relevant topologies.Let G0 be a twisted form of G with respe
t to �. This means we have ana
tion ��G ! G(
; g) ! 
(g);54



respe
ting the group stru
ture, i.e., a homomorphism� : �! Aut(G):Remark A.1 In appli
ations, � is often the Galois group Gal(F a=F ) of thealgebrai
 
losure of a �eld of 
hara
teristi
 zero, G the group of F a-pointsof a group s
heme over F , and G0 the asso
iated Galois module. In this
ontext, we will use the same notation for G0 and the group s
heme. Weare mainly interested in the 
ase where G0 is an abelian variety or its N -torsion subgroup. The relation between Galois 
ohomology and prin
ipalhomogeneous spa
es in this 
ontext is developed in [LT℄.The zeroth 
ohomology group of G0 is the subgroup of invariant elementsH0(�; G0) = fg 2 G0 : 
(g) = g for ea
h 
 2 �g:A 
o
y
le with values in G0 is a map� : � ! G0
 ! �(
)satisfying the 
o
y
le 
ondition�(

0) = �(
)
(�(
0)):Two 
o
y
les � and � are 
ohomologous if there exists a g 2 G0 so thatg�(
) = �(
)
(g); for ea
h 
 2 �:The �rst 
ohomology set H1(�; G0) is the set of equivalen
e 
lasses of 
o
y
lesunder the 
ohomology relation. If G0 is abelian then H1(�; G0) is an abeliangroup.If the �-a
tion on G0 is trivial, we haveH1(�; G0) = Hom(�; G);the group homomorphisms from � to G. In parti
ular, a twisted form of Gis governed by an element � 2 H1(�;Aut(G)).A G0-prin
ipal homogeneous spa
e is a set P with two a
tions�� P ! P(
; p) ! 
(p)P �G0 ! P(p; g) ! p � gsatisfying 55



1. the a
tion of G0 is 
ompatible with the �-a
tion
(p � g) = 
(p) � 
(g);2. for ea
h p1; p2 2 P , there is a unique g 2 G0 with p1 � g = p2.G0 a
ts on itself by multipli
ation: This is 
alled the trivial prin
ipal homo-geneous spa
e.Choose p 2 P . For ea
h 
 2 � there exists a unique �(
) 2 G0 so that
(p) = p � �(
). We have
(
0(p)) = 
(p � �(
0)) = 
(p) � 
(�(
0)) = p � �(
)
(�(
0))(

0)p = p � �(

0)so �(

0) = �(
)
(�(
0)) and � is a 
o
y
le for G0. Changing the basepointp, we may write 
(p � g) = (p � g)�(
)where g�(
) = �(
)
(g), so � is 
ohomologous to �. Thus every G0-prin
ipalhomogeneous spa
e determines an element of H1(�; G0) and 
onversely.Now let G be a group and A�(G) the semidire
t produ
t of G by Aut(G),so we have an exa
t sequen
e1! G! A�(G) q! Aut(G)! 1 (4)admitting a splitting � : Aut(G) ,! A�(G). We interpret A�(G) as thepermutations of G generated by left translations�g : x! gx g 2 Gand automorphisms a 2 Aut(G). Given g1; g2 2 G and a1; a2 2 Aut(G), wehave �g1a1�g2a2 = �g1(a1�g2a�11 )a1a2 = �g1�a1(g2)a1a2:Proposition A.2 Let G0 be a �-twisted form of a group G, with 
lassifying
o
y
le � 2 H1(�;Aut(G)) = Hom(�;Aut(G)): Then H1(�; G0) 
orrespondsto G-
onjuga
y 
lasses of homomorphisms� : �! A�(G); with q Æ � = �:The trivial element 
orresponds to � Æ �.56



Proof: Given a 
o
y
le �(
), we de�ne �(
) = ��(
)�(
) so that�(

0) = ��(

0)�(

0)= ��(
)�
(�(
0))�(
)�(
0)= ��(
)�(
)��(
0)�(
0)= �(
)�(
0):Conversely, ea
h homomorphism � : � ! A�(G) with q Æ � = � yields a
o
y
le �(
). Now suppose that � and � are 
ohomologous, so that �(
) =g�1�(
)
(g) for some g 2 G0, and let �� and �� be the 
orresponding homo-morphisms. Then we have��(
) = �g�1�(
)
(g)�(
) = ��1g ��(
)�
(g)�(
)= ��1g ��(
)�(
)�g = ��1g ��(
)�g;and the homomorphisms are 
onjugate. �Remark A.3 For ea
h normal subgroup H � Aut(G), the split exa
t se-quen
e (4) restri
ts to a split exa
t sequen
e1! G! A�H(G) q! H ! 1:Assume that G0 is governed by a 
oy
le with values in H,� 2 H1(�; H) ' Hom(�; H):Then H1(�; G0) 
orresponds to homomorphisms� : �! A�H(G); with q Æ � = �:Referen
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