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1 Introdu
tionThe purpose of this paper is to prove the following theorem:Theorem 1.1 (Correlation Theorem for Surfa
es) Let f : X �! Bbe a proper morphism of integral varieties, whose general �ber is an integralsurfa
e of general type. Then for n suÆ
iently large, XnB admits a dominantrational map h to a variety W of general type su
h that the restri
tion of hto a general �ber of fn is generi
ally �nite.This theorem has a number of geometri
 and number theoreti
 
onsequen
eswhi
h will be dis
ussed in the �nal se
tion of this paper. In parti
ular,assuming Lang's 
onje
ture on rational points of varieties of general type,we prove a uniform bound on the number of rational points on a surfa
e ofgeneral type that are not 
ontained in rational or ellipti
 
urves.The inspiration for this paper is the work of Caporaso, Harris, and Mazur[CHM℄, where the Correlation Theorem is proved for families of 
urves ofgenus g � 2. The same result is 
onje
tured for families of varieties ofgeneral type of any dimension. The paper [CHM℄ 
ontains many of the ideasneeded for a proof of the general 
onje
ture. However, at one point theargument hinges on the fa
t that the �bers of the map are 
urves: it invokesthe existen
e of a `ni
e' 
lass of singular 
urves, the stable 
urves. For thepurposes of this dis
ussion, `ni
e' means two things:�This work was partially supported by a National S
ien
e Foundation GraduateFellowship 1



1. Given any proper morphism f : X �! B whose generi
 �ber is asmooth 
urve of genus g � 2, there exists a generi
ally �nite base
hange B0 �! B so that the dominating 
omponent X 0 � X �B B0 isbirational to a family of stable 
urves over B0.2. Let X ! B be a family of stable 
urves, smooth over the generi
 point.Then the �ber produ
ts XnB have 
anoni
al singularities.For the purpose of generalizing to higher dimensions, we make the followingde�nitions:Let C be a 
lass of singular varieties.C is in
lusive if for any proper morphism f : X ! B whosegeneri
 �ber is a variety of general type, there is a generi
ally�nite base 
hange B0 ! B so that the dominating 
omponentX 0 � X �B B0 is birational to a family Y 0 ! B0 with �bers in C.C is negligible if for any family of varieties of general type f : X ! Bwith singular �bers belonging to C, the �ber produ
ts XnB have
anoni
al singularities.In a nutshell, the main obstru
tion to extending the results of [CHM℄ is to�nd a 
lass of higher dimensional singular varieties that is both negligibleand in
lusive. In this paper, we identify su
h a 
lass, the `stable surfa
es' atthe boundary of a 
ompa
ti�
ation of the moduli spa
e of surfa
es of generaltype.In the se
ond se
tion of this paper, we des
ribe these stable surfa
es andmotivate their de�nition. In the third se
tion, we prove that these stablesurfa
es a
tually form an in
lusive 
lass of singularities. In the fourth se
tion,we prove that stable surfa
es are negligible. In the �fth se
tion, we 
ompletethe proof of the Correlation Theorem for surfa
es of general type outlinedin [CHM℄. Finally, we state some 
onsequen
es of the Correlation Theorem,assuming various forms of the Lang 
onje
tures. Throughout this paper, thebase �eld will have 
hara
teristi
 zero.I would like to thank Joe Harris for suggesting this problem and J�anosKoll�ar for his helpful advi
e, espe
ially 
on
erning the results in se
tion four.Dan Abramovi
h has also provided many useful 
omments and 
orre
tions.2



2 Stable Surfa
esHere we des
ribe the 
lass of stable surfa
es and their singularities, following[K-SB℄ and [K℄. Stable surfa
es are de�ned so that there is stable redu
tiontheorem for surfa
es, analogous to stable redu
tion for 
urves. Let X ! �be a family of varieties of general type over a dis
 �, and 
hoose a semistableredu
tion Y ! ~� of this family [KKMS℄. The �bers of Y ! ~� have very sim-ple singularities (redu
ed normal 
rossings singularities), but Y is not unique.The stable redu
tion Y ! ~� should be a modi�
ation of the semistable fam-ily with two salient properties: it is unique and the singularities of its �bers
an be des
ribed expli
itly. The natural 
andidate for Y is the 
anoni
almodel of Y , and the existen
e of 
anoni
al models for semistable families ofsurfa
es is proved in [Ka℄. The �bers of the 
anoni
al model are 
alled stablesurfa
es.Now we introdu
e the formal de�nitions. A variety X is said to be Q -Gorenstein if X is Cohen-Ma
aulay and ![k℄X is lo
ally free for some k, where![k℄X denotes the re
exive hull (i.e. the double dual) of the kth power ofthe dualizing sheaf. For a Q -Gorenstein singularity, the smallest su
h k is
alled the index of the singularity. A surfa
e T is semi-smooth if the onlysingularities of T are 2-fold normal-
rossings singularities (x2 = y2) and pin
hpoints (x2 = zy2). A good semi-resolution of a surfa
e S is a proper mapg : T �! S satisfying the following properties:1. T is semi-smooth2. g is an isomorphism in the 
omplement of a 
odimension two subs
hemeof S3. No 
omponent of the double 
urve of T is ex
eptional for g4. The 
omponents of the double 
urve of T and the ex
eptional lo
us ofg are smooth and meet transversallyA surfa
e S is said to have semi-log-
anoni
al singularities if1. S is Cohen-Ma
aulay and Q -Gorenstein with index k2. S is semi-smooth in 
odimension one3



3. The dis
repan
ies of a good semi-resolution of S are all greater than orequal to �1 (i.e. !kT = g�![k℄S (ka1E1 + � � �+ kaNEN ) where ai � �1)In [K-SB℄ a 
omplete 
lassi�
ation of semi-log-
anoni
al singularities is given.The following theorem explains why semi-log-
anoni
al singularities areuseful:Theorem 2.1 Let f : X ! � be a family of surfa
es over the dis
 su
h thatX is Q -Gorenstein. Then the following are equivalent:1. The general �ber has rational double points, and the 
entral �ber hassemi-log-
anoni
al singularities.2. For any base 
hange ~�! �, the base-
hanged family~f : ~X �! ~�has 
anoni
al singularities.In fa
t, if X ! � has a semistable resolution of singularities, then X has
anoni
al singularities if and only if the general �ber has rational doublepoints and the 
entral �ber has semi-log-
anoni
al singularities.In parti
ular, this means that the `bad' �bers in a stable redu
tion of surfa
eshave semi-log-
anoni
al singularities. For the sake of this dis
ussion, surfa
eswith only rational double point singularities are `good' �bers, be
ause the
anoni
al model of a surfa
e of general type should be `good'.A surfa
e S is stable if S has semi-log-
anoni
al singularities and ![k℄S islo
ally free and ample for some k. Note that a smooth surfa
e of general typeis not stable if it 
ontains �1 or �2 
urves, but its 
anoni
al model will bestable. A family of stable surfa
es is a proper 
at morphism S ! B whose�bers are stable surfa
es, with the property that taking re
exive powers ofthe relative dualizing sheaf 
ommutes with restri
ting to a �ber:![k℄S=BjSb = ![k℄SbIn parti
ular, the re
exive powers of the relative dualizing sheaf are 
at. Thisadditional 
ondition is ne
essary to guarantee that the moduli spa
e in thenext se
tion is separated. 4



Note that we 
an de�neK2S = 1k2#(![k℄S ; ![k℄S )for any stable surfa
e S, and that this number is 
onstant in families. Theinvariant �S = �(OS) is also 
onstant in families. Finally, stable surfa
es areanalogous to stable 
urves in one more important sense:Theorem 2.2 A stable surfa
e has a �nite automorphism group.The essen
e of the proof is easy to grasp. Let S be stable, and let ~S be itsnormalization. Let D be the double 
urve on ~S. The pair ( ~S;D), is log-
anoni
al (see [K-SB℄). Therefore, ea
h 
omponent of ( ~S;D) is of log-generaltype, and has a �nite automorphism group by [I℄.3 Stable Surfa
e Singularities are In
lusiveTo prove that stable surfa
es are in
lusive, we use the moduli spa
e of stablesurfa
es:Theorem 3.1 There exists a proje
tive 
oarse moduli spa
eM�;K2 for smooth-able stable surfa
es with invariants � and K2. There is a �nite 
over of themoduli spa
e � : 
!M�;K2 that admits a universal family S ! 
:S#
 �! M�;K2By de�nition, a stable surfa
e is smoothable if it is 
ontained in a familyof stable surfa
es whose general member has only rational double points.The proof of Theorem 3.1 is s
attered throughout the literature. The proofthat the moduli spa
e exists as a separated algebrai
 spa
e is 
ontained in[K-SB℄ x5. This relies on the properties of semi-log-
anoni
al singularitiesand the �nite automorphism theorem. The proof that the moduli spa
ehas a fun
torial semipositive polarization is 
ontained in [K℄ x5. This paperalso 
ontains a general argument for the existen
e of a �nite 
overing of themoduli spa
e possessing a universal family (see Proposition 2.7). The proof5



that the moduli spa
e is of �nite type for a given pair of invariants (and thusproper and proje
tive by [K℄) is 
ontained in [A℄.Using this moduli spa
e, we prove that the 
lass of stable surfa
e singu-larities is in
lusive. The pre
ise statement we need is the following:Proposition 3.1 Let f : X ! B be a proper morphism of integral vari-eties. Assume that the general �ber of f is a surfa
e of general type, and let� denote the image of B in the moduli spa
e M�;K2. Then there exists ageneri
ally �nite Galois base extension B0 ! B with Galois group G, a �nite
over �0 ! �, and a family of stable surfa
es T ! �0 with the followingproperties:1. G a
ts on �0 and T , and there are G-equivariant maps � : B0 ! �0and X 0 9 9 KT so that diagramX 0 9 9 K T# #B0 ! �0
ommutes, where X 0 is a dominating 
omponent of X �B B0.2. The pull ba
k family Y 0 = T ��0 B0 is birational to X 0, and Y 0=G isbirational to X.We sket
h the proof; see [CHM℄ and [K℄ for more details. This is an appli
a-tion of the properties of the moduli spa
e des
ribed in Theorem 3.1. Let B1be the graph of the map B 9 9 K�, so there is a morphism B1 ! �. Write�2 = ��1(�), T2 = S �
�2, B2 = B1���2, Y2 = T2��2 B2, and let X2 be adominating 
omponent of X�BB2. If we denote the proje
tion � : B2 ! �2,then for general b 2 B2 we have(X2)b �bir (T2)�(b) = (Y2)bWe might expe
t the families X2 and Y2 to be birational to ea
h other, astheir generi
 �bers are birational. This is not ne
essarily the 
ase. However,sin
e the automorphism group of any stable surfa
e is �nite, after anothergeneri
ally �nite base 
hange B3 ! B2 we �nd that X3 and Y3 are birational.The variety B0 is the Galois normalization of B3 over B, G the 
orrespondingGalois group, �0 the Stein fa
torization of B0 ! �, and T the pull ba
k of Sto �0. In parti
ular, X 0 is birational to the family of stable surfa
es Y 0 ! B0.� 6



4 Stable Surfa
e Singularities are NegligibleIn this se
tion, we restri
t our attention to families of stable surfa
es f :X ! B, where B is of �nite type over the base �eld. The lo
us S � B
orresponding to �bers with singularities worse than 
anoni
al singularities(i.e. rational double points) is Zariski 
losed. Here we assume that S is aproper subvariety of B. We will prove the following result on �ber produ
tsof these families:Theorem 4.1 Let f : X ! B be a family of stable surfa
es, and assumeB has only 
anoni
al singularities. If the generi
 �ber has only 
anoni
alsingularities, then the �ber produ
ts of this familyfn : XnB �! Balso have 
anoni
al singularities.We give the strategy of the proof. First, we fa
tor fn as a sequen
e of mapsXnB ! Xn�1B ! � � � ! X ! BThe theorem follows by applying the following proposition to ea
h term ofthis sequen
e:Proposition 4.1 Let f : X ! B be a family of stable surfa
es, and assumeB has only 
anoni
al singularities. If the generi
 �ber has only 
anoni
alsingularities, then X also has 
anoni
al singularities.We shall prove this result by indu
tion. The base 
ase for the indu
tion isessentially the fundamental property of stable surfa
e singularities stated inTheorem 2.1. The indu
tive step uses a result of Stevens [St℄, whi
h gives
onditions for a �bration to have 
anoni
al singularities.We will use the following preliminary lemma.Lemma 4.1 Let f : X ! B a family of stable surfa
es, su
h that the general�ber is normal. Then X is Cohen-Ma
aulay, normal, and Q -Gorenstein. Therelative 
anoni
al 
lass KX=B is Q -Cartier.7



By de�nition, stable surfa
es are Cohen-Ma
aulay. Canoni
al singularitiesare rational [E℄, whi
h implies they are also Cohen-Ma
aulay. In parti
u-lar, the base and the �bers of the morphism f : X ! B are both Cohen-Ma
aulay, so X itself is Cohen-Ma
aulay. Moreover, the singularities of Xare in 
odimension � 2, be
ause the singularities of the base and the general�ber are in 
odimension two, and all the �bers are generi
ally nonsingular(i.e. redu
ed). We 
on
lude that X is normal by Serre's 
riterion.The dualizing sheaves !X and !B are re
exive and determine Weil divisor
lasses KX and KB (see [H℄ for general properties of re
exive sheaves). Therelative 
anoni
al 
lass KX=B is de�ned by the formulaKX=B = KX � f �KBKX is Q -Cartier if and only if KX=B is, be
ause KB is Q -Cartier by hypoth-esis. We show that KX=B is Q -Cartier. Sin
e X ! B is a family of stablesurfa
es, we have O(kKX=B)jXb = ![k℄Xbfor all k. Stable surfa
es are themselves Q -Gorenstein, so for some suÆ
ientlydivisible k the right hand side is lo
ally free for all b 2 B. Consequently,O(kKX=B) is lo
ally free and kKX=B is Cartier. �Now we prove the base 
ase of our indu
tion, where the base B is onedimensional. A 
urve with only 
anoni
al singularities is a
tually smooth.Sin
e our result is lo
al on the base, we may assume B = �. In this 
ase,Proposition 4.1 is just the impli
ation 1 ) 2 of Theorem 2.1. Canoni
alsurfa
e singularities are just rational double points, and the stable surfa
e inthe 
entral �ber has semi-log-
anoni
al singularities.Now that we have established the base 
ase for the indu
tive proof ofProposition 4.1, we turn to the indu
tive step. This indu
tive argumentholds more generally than the 
ontext of stable surfa
es, so we summarize itin the following proposition:Proposition 4.2 Let f : X ! B be a 
at family of varieties, where B has
anoni
al singularities, and KX=B is Q -Cartier. Assume thatFor any map � : � ! B of the dis
 into the base for whi
hX�(t) is 
anoni
al for t 6= 0, the total spa
e X�B� has 
anoni
alsingularities. 8



Then X has 
anoni
al singularities.Note that this 
ompletes the proof of Proposition 4.1. By Lemma 4.1, thefamily f : X ! B satis�es the hypotheses of Proposition 4.2. The assump-tion in the statement is the base 
ase proved in the last paragraph.Now we prove Proposition 4.2. First we redu
e to the 
ase where B issmooth. Let � : ~B ! B be a resolution of singularities, ~X = X �B ~B,and  : ~X ! X the indu
ed map. The family ~X ! ~B still satis�es thehypotheses of the proposition. The base B has 
anoni
al singularities, so forsome k we have!k~B = ��![k℄B (ka1E1 + � � �+ kaNEN) where ai � 0and ![k℄~X =  �![k℄X (ka1E 01 � � �+ kaNE 0N )where the Ei are ex
eptional for � and the E 0i are the 
orresponding divisorsin ~X. In parti
ular,  imposes no adjoint 
onditions on di�erentials and Xhas 
anoni
al singularities if ~X does.To 
omplete the proof, we use the following result:Theorem 4.2 (Stevens' Theorem [St℄) Let h : X ! � be a 
at familyof varieties. Assume:1. X is a Q -Gorenstein integral variety, and the �bers of h are integralvarieties.2. The general �bers h�1(s) have only 
anoni
al singularities.3. The spe
ial �ber h�1(0) has log terminal singularities.Then X has 
anoni
al singularities.We apply this theorem indu
tively to redu
e the dimension of the base. As-sume the proposition is proved if the dimension is less than b = dim(B).Choose a lo
al analyti
 
oordinate y on B, and 
onsider the level surfa
esBs = fb 2 B : y(b) = sgfor s 2 �. Assume that the Bs are smooth and are not 
ontained in the
losed set S where the singularities of the �bers are not 
anoni
al. Let9



Xs = f�1(Bs) and let h : X ! � be the indu
ed �bration of X. Thevarieties Xs satisfy the hypotheses of Proposition 4.2, and so are 
anoni
alby the indu
tion hypothesis. Sin
e all the �bers of h are 
anoni
al and thetotal spa
e X is Q -Gorenstein, we may apply Stevens' theorem to 
on
ludethat X is also 
anoni
al. �5 Proof of the Correlation TheoremIn this se
tion, we prove the Correlation Theorem for surfa
es of general type(Theorem 1.1). We �rst prove a spe
ial 
ase where the family has maximalvariation of moduli and the singularities are not too bad:Theorem 5.1 (Correlation for Families with Maximal Variation) LetX ! B be a family of stable surfa
es, with proje
tive integral base and smoothgeneral �ber. Assume that the asso
iated map � : B !M is generi
ally �-nite. Then there exists a positive integer n su
h that XnB is of general type.Being of general type is a birational property, so there is no loss of generalityif we take the base B to be smooth. To show that XnB is of general type, wemust verify two statements:1. XnB has 
anoni
al singularities2. !XnB is bigWe proved the �rst statement in se
tion four, so pluri
anoni
al forms on XnBpull ba
k to regular forms on any desingularization. The se
ond statementsays that there are enough pluri
anoni
al di�erentials on XnB to guarantee itis of general type. To prove this we use the following theorem:Theorem 5.2 Let f : X ! B be a family of surfa
es, su
h that the general�ber is a surfa
e of general type. Assume this family has maximal variation.Then for m suÆ
iently large, the sheaf f�!mX=B is big.This result is proven by Viehweg in [V℄ (and more generally for arbitrarydimensional �bers by Koll�ar in [K2℄). Let S [n℄ denote the re
exive hull ofthe nth symmetri
 power of a sheaf. By de�nition, f�!mX=B is big if for anyample line bundle H on B there exists an integer n su
h thatS [n℄(f�!mX=B)
H�110



is generi
ally globally generated, i.e. the global se
tions of this sheaf generateover an open set of B. It is equivalent to say that this sheaf is generi
allyglobally generated for suÆ
iently large n. We need the following 
onsequen
eof Viehweg's theorem:Proposition 5.1 Under the hypotheses of the Theorem 5.2, !XnB is big forn suÆ
iently large.We will show that Theorem 5.2 implies the proposition. We restri
t ourselvesto values of m for whi
h ![m℄X=B is lo
ally free and f�!mX=B is big. Let T [n℄denote the re
exive hull of the nth tensor power of a sheaf. We 
laim thatfor suÆ
iently large n T [n℄(f�!mX=B)
H�1is generi
ally globally generated. Sin
e quotients of generi
ally globally gen-erated sheaves are generi
ally globally generated, this is a 
onsequen
e of thefollowing result from representation theory (see [H2℄):Proposition 5.2 Let V be an r dimensional ve
tor spa
e over a �eld of
hara
teristi
 zero, let T n(V ) and Sq(V ) be the nth tensor power and qthsymmetri
 power representations of Gl(V ) respe
tively, and write t = r!.Then ea
h irredu
ible 
omponent of T n(V ) is a quotient of a representationSq1(V )
 � � � 
 Sqk(V )where qi � nt+1 .Now we will prove that for some large n the dualizing sheaf !XnB is big,i.e. for large m we have h0(XnB; ![m℄XnB) � m(b+2n)where b = dim(B). Generally, the relative dualizing sheaves of �bered prod-u
ts satisfy the equation!XnB=B = ��1!X=B 
 � � � 
 ��n!X=Bwhere the �j are the proje
tions. Using the basi
 properties of re
exivesheaves we obtain:![m℄XnB = ��1![m℄X=B 
 � � � 
 ��n![m℄X=B 
 fn�!mB11



Applying fn� to this givesfn� ![m℄XnB = T n(f�![m℄X=B)
 !mBwhi
h is also a re
exive sheaf. The in
lusion map !mX=B ! ![m℄X=B indu
es amap of re
exive sheavesT [n℄(f�!mX=B)! T n(f�![m℄X=B) = fn� ![m℄XnB 
 !�mBwhi
h is an isomorphism at the generi
 point of B.Let H be an invertible sheaf on B so that H 
!B is very ample. We 
an
hoose n so that T [n℄(f�!mX=B)
H�m is generi
ally globally generated for alladmissible values of m. The 
omputations of the last paragraph show thatfn� ![m℄XnB 
 (H 
 !B)�m is also generi
ally globally generated for these valuesof m. This sheaf has rank on the order of m2n, so there at least this manyglobal se
tions. By our assumption on H, we have that (H 
 !B)m has onthe order of mb se
tions varying horizontally along the base B. Tensoring,we obtain that fn� ![m℄XnB has on the order of m2n+b global se
tions. Thus we
on
lude that h0(![m℄XnB) � m2n+bThis 
ompletes the proof of Proposition 5.1 and the spe
ial 
ase of the Cor-relation theorem. �We use this spe
ial 
ase to prove the general Correlation Theorem. Sin
estable surfa
e singularities are in
lusive, after a generi
ally �nite base exten-sion B0 ! B every family of surfa
es of general type dominates a family ofstable surfa
es  : T ! �0 with maximal variation:X 0 ! T# # (�)B0 ! �0By Theorem 5.1, the �ber produ
ts T n�0 are of general type for n suÆ
ientlylarge. Let X 0nB0 denote the 
omponent of the �ber produ
t dominating B0.We obtain a diagram: X 0nB0 ! T n�0# # (��)B0 ! �012



with X 0nB0 dominating T n�0, a variety of general type.We 
laim that the �ber produ
ts XNB also dominate varieties of generaltype, provided that N is large enough. The diagrams (�) and (��) are G-equvariant, so it suÆ
es to prove the following 
laim:For very large N , enough forms on TN�0 des
end to smooth formson W = (TN�0 )=G to guarantee that W is of general type.By de�nition, smooth forms are pluri
anoni
al forms that remain regularwhen pulled ba
k to a desingularization. The 
laim implies that the map ofquotients (X 0NB0)=G! (TN�0 )=G gives a dominant rational map h : XNB !Wto a variety of general type.The proof of the 
laim is identi
al to the analogous proof for 
urves givenin [CHM℄, so we only sket
h the basi
 ideas. First let D0 � �0 be a divisor
ontaining the following points: (1) s 2 �0 with nonminimal stabilizer inG, and (2) s 2 �0 for whi
h Ts is �xed pointwise by a nontrivial subgroupof G. Let D be the pull ba
k of gD0 to TN�0 . Repeating the argument ofProposition 5.1 we show that for large N , !TN�0 (�D) is big. Using a lemmafrom x4 of [CHM℄, the invariant se
tions of powers of this sheaf des
end tosmooth forms on W . Counting these smooth forms, we 
on
lude that W isof general type. �6 Consequen
es of the Correlation TheoremWe give some 
onsequen
es of the Correlation Theorem. Many of theseare stated in x6 of [CHM℄. Re
all the statement of the Geometri
 LangConje
ture [L℄Conje
ture 6.1 (Geometri
 Lang Conje
ture) IfW is a variety of gen-eral type, the union of all irredu
ible, positive dimensional subvarieties of Wnot of general type is a proper, 
losed subvariety �W � W .We will 
all �W the Lang ex
eptional lo
us of W . The following theoremdes
ribes how the Lang ex
eptional lo
us varies in families, if the Geometri
Lang Conje
ture is true.Theorem 6.1 Assume the Geometri
 Lang Conje
ture.Let f : X ! B be a 
at family of surfa
es in proje
tive spa
e, su
h that the13



general �ber is an integral surfa
e of general type. Then there is a uniformbound on the degree of the Lang ex
eptional lo
us of �bers that are of generaltype i.e. deg(�Xb) � DWe will not prove this here. The proof is sket
hed in the last se
tion of[CHM℄, and is similar to the proof given below for Theorem 6.2. Theorem6.1 gives many remarkable 
orollaries, for example:Corollary 6.1 Assume the Geometri
 Lang Conje
ture. There exists a 
on-stant D su
h that the sum of the degrees of all the rational and ellipti
 
urveson a smooth quinti
 surfa
e in P3 is less than D. In parti
ular, there is auniform bound on the number of rational and ellipti
 
urves on a quinti
surfa
e.Re
ently, Abramovi
h [AV℄ has found another proof of these results.Now we shall dis
uss some number theoreti
 
onsequen
es of the Corre-lation Theorem. First, re
all the Weak Lang Conje
ture:Conje
ture 6.2 (Weak Lang Conje
ture) If W is a variety of generaltype de�ned over a number �eld K, then the K rational points of W are notZariski dense in W .Assuming this 
onje
ture, the Correlation Theorem implies the following:Theorem 6.2 Assume the Weak Lang Conje
ture.Let X ! B be a 
at family of surfa
es in proje
tive spa
e de�ned over anumber �eld K, su
h that the general �ber is an integral surfa
e of generaltype. For any b 2 B(K) for whi
h Xb is of general type, let N(b) be the sumof the degrees of the 
omponents of Xb(K). Then N(b) is uniformly bounded;in parti
ular, the number of K rational points not 
ontained in the Lang lo
usis uniformly bounded.The proof uses indu
tion on the dimension of the base B. First, we shallshow that the rational points of the �bers must lie on a proper subs
hemeof bounded degree. Choose an integer n so that there is a dominant rationalmap  : XnB !W14



to a variety of general type W . Let Y be a proper subvariety of W that
ontains W (K), and let Z be its preimage in XnB. All the K rational pointsof XnB are 
ontained in Z. We use�j : XjB ! Xj�1Bto denote the proje
tion morphisms. Finally, let Zj denote the maximal
losed set in XjB whose preimage in XnB is Z, and let Uj be the 
omplementto Zj. Note that ��1j (Zj�1) � Zj by de�nition and that for u 2 Uj�1 we havethat ��1j (u) \ Zj is a proper subvariety of ��1j (u). We will use dj to denotethe sum of the degrees of all the 
omponents of Zj \ ��1j (u), regardless oftheir dimensions, and we set N = maxj(dj)If all the K rational points of B are 
on
entrated along a 
losed subset,we are done by indu
tion. Otherwise, pi
k a general K rational point b 2B. Let j be the smallest integer for whi
h Uj \ Xjb (K) is empty, and letu 2 Uj�1 \Xj�1b (K). We have that Xb = ��1j (u) and our set-up guaranteesthat Xb(K) � Zj \ ��1j (u). In parti
ular, sin
e we have 
hosen everythinggeneri
ally, we �nd that Xb(K) is 
ontained in a subs
heme of degree N .Now we 
omplete the proof. We have shown that the rational points onea
h �ber are 
on
entrated along a subs
heme of degree N . The 
omponentsof this subs
heme 
onsist of points, rational and ellipti
 
urves, and 
urvesof higher genus. The rational and ellipti
 
urves are 
ontained in the Langlo
us, so we ignore them, and there are at most N 
omponents of dimensionzero. Therefore, we just need the following lemma:Lemma 6.1 Assume the Weak Lang Conje
ture. Let C be a (possibly sin-gular) 
urve in proje
tive spa
e of degree N de�ned over a number �eld K.Assume C has no rational or ellipti
 
omponents. Then there is a uniformbound on the number of K rational points on C.First, be
ause the degree is bounded there are only �nitely many possibilitiesfor the geometri
 genera of the 
omponents of C. By the hypothesis, thesegenera are all at least two, so we 
an apply the uniform boundedness resultsfor 
urves in [CHM℄. This 
ompletes the proof of the theorem. �In the 
orollary whi
h follows, quadrati
 points are points de�ned oversome degree two extension of the base �eld.15



Corollary 6.2 Assume the Weak Lang Conje
ture. Fix a number �eld K,and an integer g > 2. Then there is a uniform bound on the number ofquadrati
 points lying on a non-hyperellipti
, non-biellipti
 
urve C of genusg de�ned over K.Note that quadrati
 points on C 
orrespond to K rational points on itssymmetri
 square Sym2(C). Moreover, a hyperellipti
 (respe
tively biellip-ti
) system on C 
orresponds to a rational (respe
tively ellipti
) 
urve onSym2(C) ([AH℄). In parti
ular, the 
urves allowed in the 
orollary are pre-
isely those for whi
h �Sym2(C) = ;, so by the theorem #Sym2(C)(K) is�nite and uniformly bounded. �Referen
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