
Correlation for Surfaes of General TypeBrendan Hassett�January, 1996
1 IntrodutionThe purpose of this paper is to prove the following theorem:Theorem 1.1 (Correlation Theorem for Surfaes) Let f : X �! Bbe a proper morphism of integral varieties, whose general �ber is an integralsurfae of general type. Then for n suÆiently large, XnB admits a dominantrational map h to a variety W of general type suh that the restrition of hto a general �ber of fn is generially �nite.This theorem has a number of geometri and number theoreti onsequeneswhih will be disussed in the �nal setion of this paper. In partiular,assuming Lang's onjeture on rational points of varieties of general type,we prove a uniform bound on the number of rational points on a surfae ofgeneral type that are not ontained in rational or ellipti urves.The inspiration for this paper is the work of Caporaso, Harris, and Mazur[CHM℄, where the Correlation Theorem is proved for families of urves ofgenus g � 2. The same result is onjetured for families of varieties ofgeneral type of any dimension. The paper [CHM℄ ontains many of the ideasneeded for a proof of the general onjeture. However, at one point theargument hinges on the fat that the �bers of the map are urves: it invokesthe existene of a `nie' lass of singular urves, the stable urves. For thepurposes of this disussion, `nie' means two things:�This work was partially supported by a National Siene Foundation GraduateFellowship 1



1. Given any proper morphism f : X �! B whose generi �ber is asmooth urve of genus g � 2, there exists a generially �nite basehange B0 �! B so that the dominating omponent X 0 � X �B B0 isbirational to a family of stable urves over B0.2. Let X ! B be a family of stable urves, smooth over the generi point.Then the �ber produts XnB have anonial singularities.For the purpose of generalizing to higher dimensions, we make the followingde�nitions:Let C be a lass of singular varieties.C is inlusive if for any proper morphism f : X ! B whosegeneri �ber is a variety of general type, there is a generially�nite base hange B0 ! B so that the dominating omponentX 0 � X �B B0 is birational to a family Y 0 ! B0 with �bers in C.C is negligible if for any family of varieties of general type f : X ! Bwith singular �bers belonging to C, the �ber produts XnB haveanonial singularities.In a nutshell, the main obstrution to extending the results of [CHM℄ is to�nd a lass of higher dimensional singular varieties that is both negligibleand inlusive. In this paper, we identify suh a lass, the `stable surfaes' atthe boundary of a ompati�ation of the moduli spae of surfaes of generaltype.In the seond setion of this paper, we desribe these stable surfaes andmotivate their de�nition. In the third setion, we prove that these stablesurfaes atually form an inlusive lass of singularities. In the fourth setion,we prove that stable surfaes are negligible. In the �fth setion, we ompletethe proof of the Correlation Theorem for surfaes of general type outlinedin [CHM℄. Finally, we state some onsequenes of the Correlation Theorem,assuming various forms of the Lang onjetures. Throughout this paper, thebase �eld will have harateristi zero.I would like to thank Joe Harris for suggesting this problem and J�anosKoll�ar for his helpful advie, espeially onerning the results in setion four.Dan Abramovih has also provided many useful omments and orretions.2



2 Stable SurfaesHere we desribe the lass of stable surfaes and their singularities, following[K-SB℄ and [K℄. Stable surfaes are de�ned so that there is stable redutiontheorem for surfaes, analogous to stable redution for urves. Let X ! �be a family of varieties of general type over a dis �, and hoose a semistableredution Y ! ~� of this family [KKMS℄. The �bers of Y ! ~� have very sim-ple singularities (redued normal rossings singularities), but Y is not unique.The stable redution Y ! ~� should be a modi�ation of the semistable fam-ily with two salient properties: it is unique and the singularities of its �bersan be desribed expliitly. The natural andidate for Y is the anonialmodel of Y , and the existene of anonial models for semistable families ofsurfaes is proved in [Ka℄. The �bers of the anonial model are alled stablesurfaes.Now we introdue the formal de�nitions. A variety X is said to be Q -Gorenstein if X is Cohen-Maaulay and ![k℄X is loally free for some k, where![k℄X denotes the reexive hull (i.e. the double dual) of the kth power ofthe dualizing sheaf. For a Q -Gorenstein singularity, the smallest suh k isalled the index of the singularity. A surfae T is semi-smooth if the onlysingularities of T are 2-fold normal-rossings singularities (x2 = y2) and pinhpoints (x2 = zy2). A good semi-resolution of a surfae S is a proper mapg : T �! S satisfying the following properties:1. T is semi-smooth2. g is an isomorphism in the omplement of a odimension two subshemeof S3. No omponent of the double urve of T is exeptional for g4. The omponents of the double urve of T and the exeptional lous ofg are smooth and meet transversallyA surfae S is said to have semi-log-anonial singularities if1. S is Cohen-Maaulay and Q -Gorenstein with index k2. S is semi-smooth in odimension one3



3. The disrepanies of a good semi-resolution of S are all greater than orequal to �1 (i.e. !kT = g�![k℄S (ka1E1 + � � �+ kaNEN ) where ai � �1)In [K-SB℄ a omplete lassi�ation of semi-log-anonial singularities is given.The following theorem explains why semi-log-anonial singularities areuseful:Theorem 2.1 Let f : X ! � be a family of surfaes over the dis suh thatX is Q -Gorenstein. Then the following are equivalent:1. The general �ber has rational double points, and the entral �ber hassemi-log-anonial singularities.2. For any base hange ~�! �, the base-hanged family~f : ~X �! ~�has anonial singularities.In fat, if X ! � has a semistable resolution of singularities, then X hasanonial singularities if and only if the general �ber has rational doublepoints and the entral �ber has semi-log-anonial singularities.In partiular, this means that the `bad' �bers in a stable redution of surfaeshave semi-log-anonial singularities. For the sake of this disussion, surfaeswith only rational double point singularities are `good' �bers, beause theanonial model of a surfae of general type should be `good'.A surfae S is stable if S has semi-log-anonial singularities and ![k℄S isloally free and ample for some k. Note that a smooth surfae of general typeis not stable if it ontains �1 or �2 urves, but its anonial model will bestable. A family of stable surfaes is a proper at morphism S ! B whose�bers are stable surfaes, with the property that taking reexive powers ofthe relative dualizing sheaf ommutes with restriting to a �ber:![k℄S=BjSb = ![k℄SbIn partiular, the reexive powers of the relative dualizing sheaf are at. Thisadditional ondition is neessary to guarantee that the moduli spae in thenext setion is separated. 4



Note that we an de�neK2S = 1k2#(![k℄S ; ![k℄S )for any stable surfae S, and that this number is onstant in families. Theinvariant �S = �(OS) is also onstant in families. Finally, stable surfaes areanalogous to stable urves in one more important sense:Theorem 2.2 A stable surfae has a �nite automorphism group.The essene of the proof is easy to grasp. Let S be stable, and let ~S be itsnormalization. Let D be the double urve on ~S. The pair ( ~S;D), is log-anonial (see [K-SB℄). Therefore, eah omponent of ( ~S;D) is of log-generaltype, and has a �nite automorphism group by [I℄.3 Stable Surfae Singularities are InlusiveTo prove that stable surfaes are inlusive, we use the moduli spae of stablesurfaes:Theorem 3.1 There exists a projetive oarse moduli spaeM�;K2 for smooth-able stable surfaes with invariants � and K2. There is a �nite over of themoduli spae � : 
!M�;K2 that admits a universal family S ! 
:S#
 �! M�;K2By de�nition, a stable surfae is smoothable if it is ontained in a familyof stable surfaes whose general member has only rational double points.The proof of Theorem 3.1 is sattered throughout the literature. The proofthat the moduli spae exists as a separated algebrai spae is ontained in[K-SB℄ x5. This relies on the properties of semi-log-anonial singularitiesand the �nite automorphism theorem. The proof that the moduli spaehas a funtorial semipositive polarization is ontained in [K℄ x5. This paperalso ontains a general argument for the existene of a �nite overing of themoduli spae possessing a universal family (see Proposition 2.7). The proof5



that the moduli spae is of �nite type for a given pair of invariants (and thusproper and projetive by [K℄) is ontained in [A℄.Using this moduli spae, we prove that the lass of stable surfae singu-larities is inlusive. The preise statement we need is the following:Proposition 3.1 Let f : X ! B be a proper morphism of integral vari-eties. Assume that the general �ber of f is a surfae of general type, and let� denote the image of B in the moduli spae M�;K2. Then there exists agenerially �nite Galois base extension B0 ! B with Galois group G, a �niteover �0 ! �, and a family of stable surfaes T ! �0 with the followingproperties:1. G ats on �0 and T , and there are G-equivariant maps � : B0 ! �0and X 0 9 9 KT so that diagramX 0 9 9 K T# #B0 ! �0ommutes, where X 0 is a dominating omponent of X �B B0.2. The pull bak family Y 0 = T ��0 B0 is birational to X 0, and Y 0=G isbirational to X.We sketh the proof; see [CHM℄ and [K℄ for more details. This is an applia-tion of the properties of the moduli spae desribed in Theorem 3.1. Let B1be the graph of the map B 9 9 K�, so there is a morphism B1 ! �. Write�2 = ��1(�), T2 = S �
�2, B2 = B1���2, Y2 = T2��2 B2, and let X2 be adominating omponent of X�BB2. If we denote the projetion � : B2 ! �2,then for general b 2 B2 we have(X2)b �bir (T2)�(b) = (Y2)bWe might expet the families X2 and Y2 to be birational to eah other, astheir generi �bers are birational. This is not neessarily the ase. However,sine the automorphism group of any stable surfae is �nite, after anothergenerially �nite base hange B3 ! B2 we �nd that X3 and Y3 are birational.The variety B0 is the Galois normalization of B3 over B, G the orrespondingGalois group, �0 the Stein fatorization of B0 ! �, and T the pull bak of Sto �0. In partiular, X 0 is birational to the family of stable surfaes Y 0 ! B0.� 6



4 Stable Surfae Singularities are NegligibleIn this setion, we restrit our attention to families of stable surfaes f :X ! B, where B is of �nite type over the base �eld. The lous S � Borresponding to �bers with singularities worse than anonial singularities(i.e. rational double points) is Zariski losed. Here we assume that S is aproper subvariety of B. We will prove the following result on �ber produtsof these families:Theorem 4.1 Let f : X ! B be a family of stable surfaes, and assumeB has only anonial singularities. If the generi �ber has only anonialsingularities, then the �ber produts of this familyfn : XnB �! Balso have anonial singularities.We give the strategy of the proof. First, we fator fn as a sequene of mapsXnB ! Xn�1B ! � � � ! X ! BThe theorem follows by applying the following proposition to eah term ofthis sequene:Proposition 4.1 Let f : X ! B be a family of stable surfaes, and assumeB has only anonial singularities. If the generi �ber has only anonialsingularities, then X also has anonial singularities.We shall prove this result by indution. The base ase for the indution isessentially the fundamental property of stable surfae singularities stated inTheorem 2.1. The indutive step uses a result of Stevens [St℄, whih givesonditions for a �bration to have anonial singularities.We will use the following preliminary lemma.Lemma 4.1 Let f : X ! B a family of stable surfaes, suh that the general�ber is normal. Then X is Cohen-Maaulay, normal, and Q -Gorenstein. Therelative anonial lass KX=B is Q -Cartier.7



By de�nition, stable surfaes are Cohen-Maaulay. Canonial singularitiesare rational [E℄, whih implies they are also Cohen-Maaulay. In partiu-lar, the base and the �bers of the morphism f : X ! B are both Cohen-Maaulay, so X itself is Cohen-Maaulay. Moreover, the singularities of Xare in odimension � 2, beause the singularities of the base and the general�ber are in odimension two, and all the �bers are generially nonsingular(i.e. redued). We onlude that X is normal by Serre's riterion.The dualizing sheaves !X and !B are reexive and determine Weil divisorlasses KX and KB (see [H℄ for general properties of reexive sheaves). Therelative anonial lass KX=B is de�ned by the formulaKX=B = KX � f �KBKX is Q -Cartier if and only if KX=B is, beause KB is Q -Cartier by hypoth-esis. We show that KX=B is Q -Cartier. Sine X ! B is a family of stablesurfaes, we have O(kKX=B)jXb = ![k℄Xbfor all k. Stable surfaes are themselves Q -Gorenstein, so for some suÆientlydivisible k the right hand side is loally free for all b 2 B. Consequently,O(kKX=B) is loally free and kKX=B is Cartier. �Now we prove the base ase of our indution, where the base B is onedimensional. A urve with only anonial singularities is atually smooth.Sine our result is loal on the base, we may assume B = �. In this ase,Proposition 4.1 is just the impliation 1 ) 2 of Theorem 2.1. Canonialsurfae singularities are just rational double points, and the stable surfae inthe entral �ber has semi-log-anonial singularities.Now that we have established the base ase for the indutive proof ofProposition 4.1, we turn to the indutive step. This indutive argumentholds more generally than the ontext of stable surfaes, so we summarize itin the following proposition:Proposition 4.2 Let f : X ! B be a at family of varieties, where B hasanonial singularities, and KX=B is Q -Cartier. Assume thatFor any map � : � ! B of the dis into the base for whihX�(t) is anonial for t 6= 0, the total spae X�B� has anonialsingularities. 8



Then X has anonial singularities.Note that this ompletes the proof of Proposition 4.1. By Lemma 4.1, thefamily f : X ! B satis�es the hypotheses of Proposition 4.2. The assump-tion in the statement is the base ase proved in the last paragraph.Now we prove Proposition 4.2. First we redue to the ase where B issmooth. Let � : ~B ! B be a resolution of singularities, ~X = X �B ~B,and  : ~X ! X the indued map. The family ~X ! ~B still satis�es thehypotheses of the proposition. The base B has anonial singularities, so forsome k we have!k~B = ��![k℄B (ka1E1 + � � �+ kaNEN) where ai � 0and ![k℄~X =  �![k℄X (ka1E 01 � � �+ kaNE 0N )where the Ei are exeptional for � and the E 0i are the orresponding divisorsin ~X. In partiular,  imposes no adjoint onditions on di�erentials and Xhas anonial singularities if ~X does.To omplete the proof, we use the following result:Theorem 4.2 (Stevens' Theorem [St℄) Let h : X ! � be a at familyof varieties. Assume:1. X is a Q -Gorenstein integral variety, and the �bers of h are integralvarieties.2. The general �bers h�1(s) have only anonial singularities.3. The speial �ber h�1(0) has log terminal singularities.Then X has anonial singularities.We apply this theorem indutively to redue the dimension of the base. As-sume the proposition is proved if the dimension is less than b = dim(B).Choose a loal analyti oordinate y on B, and onsider the level surfaesBs = fb 2 B : y(b) = sgfor s 2 �. Assume that the Bs are smooth and are not ontained in thelosed set S where the singularities of the �bers are not anonial. Let9



Xs = f�1(Bs) and let h : X ! � be the indued �bration of X. Thevarieties Xs satisfy the hypotheses of Proposition 4.2, and so are anonialby the indution hypothesis. Sine all the �bers of h are anonial and thetotal spae X is Q -Gorenstein, we may apply Stevens' theorem to onludethat X is also anonial. �5 Proof of the Correlation TheoremIn this setion, we prove the Correlation Theorem for surfaes of general type(Theorem 1.1). We �rst prove a speial ase where the family has maximalvariation of moduli and the singularities are not too bad:Theorem 5.1 (Correlation for Families with Maximal Variation) LetX ! B be a family of stable surfaes, with projetive integral base and smoothgeneral �ber. Assume that the assoiated map � : B !M is generially �-nite. Then there exists a positive integer n suh that XnB is of general type.Being of general type is a birational property, so there is no loss of generalityif we take the base B to be smooth. To show that XnB is of general type, wemust verify two statements:1. XnB has anonial singularities2. !XnB is bigWe proved the �rst statement in setion four, so plurianonial forms on XnBpull bak to regular forms on any desingularization. The seond statementsays that there are enough plurianonial di�erentials on XnB to guarantee itis of general type. To prove this we use the following theorem:Theorem 5.2 Let f : X ! B be a family of surfaes, suh that the general�ber is a surfae of general type. Assume this family has maximal variation.Then for m suÆiently large, the sheaf f�!mX=B is big.This result is proven by Viehweg in [V℄ (and more generally for arbitrarydimensional �bers by Koll�ar in [K2℄). Let S [n℄ denote the reexive hull ofthe nth symmetri power of a sheaf. By de�nition, f�!mX=B is big if for anyample line bundle H on B there exists an integer n suh thatS [n℄(f�!mX=B)
H�110



is generially globally generated, i.e. the global setions of this sheaf generateover an open set of B. It is equivalent to say that this sheaf is generiallyglobally generated for suÆiently large n. We need the following onsequeneof Viehweg's theorem:Proposition 5.1 Under the hypotheses of the Theorem 5.2, !XnB is big forn suÆiently large.We will show that Theorem 5.2 implies the proposition. We restrit ourselvesto values of m for whih ![m℄X=B is loally free and f�!mX=B is big. Let T [n℄denote the reexive hull of the nth tensor power of a sheaf. We laim thatfor suÆiently large n T [n℄(f�!mX=B)
H�1is generially globally generated. Sine quotients of generially globally gen-erated sheaves are generially globally generated, this is a onsequene of thefollowing result from representation theory (see [H2℄):Proposition 5.2 Let V be an r dimensional vetor spae over a �eld ofharateristi zero, let T n(V ) and Sq(V ) be the nth tensor power and qthsymmetri power representations of Gl(V ) respetively, and write t = r!.Then eah irreduible omponent of T n(V ) is a quotient of a representationSq1(V )
 � � � 
 Sqk(V )where qi � nt+1 .Now we will prove that for some large n the dualizing sheaf !XnB is big,i.e. for large m we have h0(XnB; ![m℄XnB) � m(b+2n)where b = dim(B). Generally, the relative dualizing sheaves of �bered prod-uts satisfy the equation!XnB=B = ��1!X=B 
 � � � 
 ��n!X=Bwhere the �j are the projetions. Using the basi properties of reexivesheaves we obtain:![m℄XnB = ��1![m℄X=B 
 � � � 
 ��n![m℄X=B 
 fn�!mB11



Applying fn� to this givesfn� ![m℄XnB = T n(f�![m℄X=B)
 !mBwhih is also a reexive sheaf. The inlusion map !mX=B ! ![m℄X=B indues amap of reexive sheavesT [n℄(f�!mX=B)! T n(f�![m℄X=B) = fn� ![m℄XnB 
 !�mBwhih is an isomorphism at the generi point of B.Let H be an invertible sheaf on B so that H 
!B is very ample. We anhoose n so that T [n℄(f�!mX=B)
H�m is generially globally generated for alladmissible values of m. The omputations of the last paragraph show thatfn� ![m℄XnB 
 (H 
 !B)�m is also generially globally generated for these valuesof m. This sheaf has rank on the order of m2n, so there at least this manyglobal setions. By our assumption on H, we have that (H 
 !B)m has onthe order of mb setions varying horizontally along the base B. Tensoring,we obtain that fn� ![m℄XnB has on the order of m2n+b global setions. Thus weonlude that h0(![m℄XnB) � m2n+bThis ompletes the proof of Proposition 5.1 and the speial ase of the Cor-relation theorem. �We use this speial ase to prove the general Correlation Theorem. Sinestable surfae singularities are inlusive, after a generially �nite base exten-sion B0 ! B every family of surfaes of general type dominates a family ofstable surfaes  : T ! �0 with maximal variation:X 0 ! T# # (�)B0 ! �0By Theorem 5.1, the �ber produts T n�0 are of general type for n suÆientlylarge. Let X 0nB0 denote the omponent of the �ber produt dominating B0.We obtain a diagram: X 0nB0 ! T n�0# # (��)B0 ! �012



with X 0nB0 dominating T n�0, a variety of general type.We laim that the �ber produts XNB also dominate varieties of generaltype, provided that N is large enough. The diagrams (�) and (��) are G-equvariant, so it suÆes to prove the following laim:For very large N , enough forms on TN�0 desend to smooth formson W = (TN�0 )=G to guarantee that W is of general type.By de�nition, smooth forms are plurianonial forms that remain regularwhen pulled bak to a desingularization. The laim implies that the map ofquotients (X 0NB0)=G! (TN�0 )=G gives a dominant rational map h : XNB !Wto a variety of general type.The proof of the laim is idential to the analogous proof for urves givenin [CHM℄, so we only sketh the basi ideas. First let D0 � �0 be a divisorontaining the following points: (1) s 2 �0 with nonminimal stabilizer inG, and (2) s 2 �0 for whih Ts is �xed pointwise by a nontrivial subgroupof G. Let D be the pull bak of gD0 to TN�0 . Repeating the argument ofProposition 5.1 we show that for large N , !TN�0 (�D) is big. Using a lemmafrom x4 of [CHM℄, the invariant setions of powers of this sheaf desend tosmooth forms on W . Counting these smooth forms, we onlude that W isof general type. �6 Consequenes of the Correlation TheoremWe give some onsequenes of the Correlation Theorem. Many of theseare stated in x6 of [CHM℄. Reall the statement of the Geometri LangConjeture [L℄Conjeture 6.1 (Geometri Lang Conjeture) IfW is a variety of gen-eral type, the union of all irreduible, positive dimensional subvarieties of Wnot of general type is a proper, losed subvariety �W � W .We will all �W the Lang exeptional lous of W . The following theoremdesribes how the Lang exeptional lous varies in families, if the GeometriLang Conjeture is true.Theorem 6.1 Assume the Geometri Lang Conjeture.Let f : X ! B be a at family of surfaes in projetive spae, suh that the13



general �ber is an integral surfae of general type. Then there is a uniformbound on the degree of the Lang exeptional lous of �bers that are of generaltype i.e. deg(�Xb) � DWe will not prove this here. The proof is skethed in the last setion of[CHM℄, and is similar to the proof given below for Theorem 6.2. Theorem6.1 gives many remarkable orollaries, for example:Corollary 6.1 Assume the Geometri Lang Conjeture. There exists a on-stant D suh that the sum of the degrees of all the rational and ellipti urveson a smooth quinti surfae in P3 is less than D. In partiular, there is auniform bound on the number of rational and ellipti urves on a quintisurfae.Reently, Abramovih [AV℄ has found another proof of these results.Now we shall disuss some number theoreti onsequenes of the Corre-lation Theorem. First, reall the Weak Lang Conjeture:Conjeture 6.2 (Weak Lang Conjeture) If W is a variety of generaltype de�ned over a number �eld K, then the K rational points of W are notZariski dense in W .Assuming this onjeture, the Correlation Theorem implies the following:Theorem 6.2 Assume the Weak Lang Conjeture.Let X ! B be a at family of surfaes in projetive spae de�ned over anumber �eld K, suh that the general �ber is an integral surfae of generaltype. For any b 2 B(K) for whih Xb is of general type, let N(b) be the sumof the degrees of the omponents of Xb(K). Then N(b) is uniformly bounded;in partiular, the number of K rational points not ontained in the Lang lousis uniformly bounded.The proof uses indution on the dimension of the base B. First, we shallshow that the rational points of the �bers must lie on a proper subshemeof bounded degree. Choose an integer n so that there is a dominant rationalmap  : XnB !W14



to a variety of general type W . Let Y be a proper subvariety of W thatontains W (K), and let Z be its preimage in XnB. All the K rational pointsof XnB are ontained in Z. We use�j : XjB ! Xj�1Bto denote the projetion morphisms. Finally, let Zj denote the maximallosed set in XjB whose preimage in XnB is Z, and let Uj be the omplementto Zj. Note that ��1j (Zj�1) � Zj by de�nition and that for u 2 Uj�1 we havethat ��1j (u) \ Zj is a proper subvariety of ��1j (u). We will use dj to denotethe sum of the degrees of all the omponents of Zj \ ��1j (u), regardless oftheir dimensions, and we set N = maxj(dj)If all the K rational points of B are onentrated along a losed subset,we are done by indution. Otherwise, pik a general K rational point b 2B. Let j be the smallest integer for whih Uj \ Xjb (K) is empty, and letu 2 Uj�1 \Xj�1b (K). We have that Xb = ��1j (u) and our set-up guaranteesthat Xb(K) � Zj \ ��1j (u). In partiular, sine we have hosen everythinggenerially, we �nd that Xb(K) is ontained in a subsheme of degree N .Now we omplete the proof. We have shown that the rational points oneah �ber are onentrated along a subsheme of degree N . The omponentsof this subsheme onsist of points, rational and ellipti urves, and urvesof higher genus. The rational and ellipti urves are ontained in the Langlous, so we ignore them, and there are at most N omponents of dimensionzero. Therefore, we just need the following lemma:Lemma 6.1 Assume the Weak Lang Conjeture. Let C be a (possibly sin-gular) urve in projetive spae of degree N de�ned over a number �eld K.Assume C has no rational or ellipti omponents. Then there is a uniformbound on the number of K rational points on C.First, beause the degree is bounded there are only �nitely many possibilitiesfor the geometri genera of the omponents of C. By the hypothesis, thesegenera are all at least two, so we an apply the uniform boundedness resultsfor urves in [CHM℄. This ompletes the proof of the theorem. �In the orollary whih follows, quadrati points are points de�ned oversome degree two extension of the base �eld.15
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