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1 Introduction

The purpose of this paper is to prove the following theorem:

Theorem 1.1 (Correlation Theorem for Surfaces) Let f : X — B
be a proper morphism of integral varieties, whose general fiber is an integral
surface of general type. Then for n sufficiently large, Xp admits a dominant
rational map h to a variety W of general type such that the restriction of h
to a general fiber of f™ is generically finite.

This theorem has a number of geometric and number theoretic consequences
which will be discussed in the final section of this paper. In particular,
assuming Lang’s conjecture on rational points of varieties of general type,
we prove a uniform bound on the number of rational points on a surface of
general type that are not contained in rational or elliptic curves.

The inspiration for this paper is the work of Caporaso, Harris, and Mazur
[CHM], where the Correlation Theorem is proved for families of curves of
genus ¢ > 2. The same result is conjectured for families of varieties of
general type of any dimension. The paper [CHM] contains many of the ideas
needed for a proof of the general conjecture. However, at one point the
argument hinges on the fact that the fibers of the map are curves: it invokes
the existence of a ‘nice’ class of singular curves, the stable curves. For the
purposes of this discussion, ‘nice’ means two things:
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1. Given any proper morphism f : X —— B whose generic fiber is a
smooth curve of genus g > 2, there exists a generically finite base
change B’ — B so that the dominating component X' C X xg B’ is
birational to a family of stable curves over B'.

2. Let X — B be a family of stable curves, smooth over the generic point.
Then the fiber products X7 have canonical singularities.

For the purpose of generalizing to higher dimensions, we make the following
definitions:
Let C be a class of singular varieties.

C is inclusive if for any proper morphism f : X — B whose
generic fiber is a variety of general type, there is a generically
finite base change B’ — B so that the dominating component
X' C X xp B'is birational to a family Y’ — B’ with fibers in C.

C is negligible if for any family of varieties of general type f : X — B
with singular fibers belonging to C, the fiber products X} have
canonical singularities.

In a nutshell, the main obstruction to extending the results of [CHM] is to
find a class of higher dimensional singular varieties that is both negligible
and inclusive. In this paper, we identify such a class, the ‘stable surfaces’ at
the boundary of a compactification of the moduli space of surfaces of general
type.

In the second section of this paper, we describe these stable surfaces and
motivate their definition. In the third section, we prove that these stable
surfaces actually form an inclusive class of singularities. In the fourth section,
we prove that stable surfaces are negligible. In the fifth section, we complete
the proof of the Correlation Theorem for surfaces of general type outlined
in [CHM]. Finally, we state some consequences of the Correlation Theorem,
assuming various forms of the Lang conjectures. Throughout this paper, the
base field will have characteristic zero.

I would like to thank Joe Harris for suggesting this problem and Jénos
Kollar for his helpful advice, especially concerning the results in section four.
Dan Abramovich has also provided many useful comments and corrections.



2 Stable Surfaces

Here we describe the class of stable surfaces and their singularities, following
[K-SB] and [K]. Stable surfaces are defined so that there is stable reduction
theorem for surfaces, analogous to stable reduction for curves. Let X — A
be a family of varieties of general type over a disc A, and choose a semistable
reduction Y — A of this family [KKMS]. The fibers of Y — A have very sim-
ple singularities (reduced normal crossings singularities), but Y is not unique.
The stable reduction ) — A should be a modification of the semistable fam-
ily with two salient properties: it is unique and the singularities of its fibers
can be described explicitly. The natural candidate for ) is the canonical
model of Y, and the existence of canonical models for semistable families of
surfaces is proved in [Ka]. The fibers of the canonical model are called stable
surfaces.

Now we introduce the formal definitions. A variety X is said to be Q-
Gorenstein if X is Cohen-Macaulay and w[Xk} is locally free for some k, where

w[Xk} denotes the reflexive hull (i.e. the double dual) of the kth power of
the dualizing sheaf. For a Q-Gorenstein singularity, the smallest such & is
called the index of the singularity. A surface T is semi-smooth if the only
singularities of T are 2-fold normal-crossings singularities (z? = y?) and pinch
points (22 = zy%). A good semi-resolution of a surface S is a proper map
g : T — S satisfying the following properties:

1. T is semi-smooth

2. ¢ is an isomorphism in the complement of a codimension two subscheme

of S
3. No component of the double curve of T is exceptional for ¢

4. The components of the double curve of T" and the exceptional locus of
g are smooth and meet transversally

A surface S is said to have semi-log-canonical singularities if
1. S is Cohen-Macaulay and Q-Gorenstein with index k

2. S is semi-smooth in codimension one



3. The discrepancies of a good semi-resolution of S are all greater than or
equal to —1 (i.e. wk = g*wgﬂ(kalEl + -+ kayEy) where a; > —1)

In [K-SB] a complete classification of semi-log-canonical singularities is given.
The following theorem explains why semi-log-canonical singularities are
useful:

Theorem 2.1 Let f: X — A be a family of surfaces over the disc such that
X is Q-Gorenstein. Then the following are equivalent:

1. The general fiber has rational double points, and the central fiber has
semi-log-canonical singularities.

2. For any base change A — A, the base-changed family

has canonical singularities.

In fact, if X — A has a semistable resolution of singularities, then X has
canonical singularities if and only if the general fiber has rational double
points and the central fiber has semi-log-canonical singularities.

In particular, this means that the ‘bad’ fibers in a stable reduction of surfaces
have semi-log-canonical singularities. For the sake of this discussion, surfaces
with only rational double point singularities are ‘good’ fibers, because the
canonical model of a surface of general type should be ‘good’.

A surface S is stable if S has semi-log-canonical singularities and wgc] is
locally free and ample for some k. Note that a smooth surface of general type
is not stable if it contains —1 or —2 curves, but its canonical model will be
stable. A family of stable surfaces is a proper flat morphism & — B whose
fibers are stable surfaces, with the property that taking reflexive powers of
the relative dualizing sheaf commutes with restricting to a fiber:

w‘[gk/} 58 = wg?
In particular, the reflexive powers of the relative dualizing sheaf are flat. This
additional condition is necessary to guarantee that the moduli space in the
next section is separated.



Note that we can define

for any stable surface S, and that this number is constant in families. The
invariant ys = x(Ogs) is also constant in families. Finally, stable surfaces are
analogous to stable curves in one more important sense:

Theorem 2.2 A stable surface has a finite automorphism group.

The essence of the proof is easy to grasp. Let S be stable, and let S be its
normalization. Let D be the double curve on S. The pair (S',D), is log-
canonical (see [K-SB]). Therefore, each component of (S, D) is of log-general
type, and has a finite automorphism group by [I].

3 Stable Surface Singularities are Inclusive

To prove that stable surfaces are inclusive, we use the moduli space of stable
surfaces:

Theorem 3.1 There exists a projective coarse moduli space MXJ(Q for smooth-
able stable surfaces with invariants x and K%. There is a finite cover of the
moduli space ¢ : 8 — M, k> that admits a universal family S — €Q:

S
!
QO 5 M,

By definition, a stable surface is smoothable if it is contained in a family
of stable surfaces whose general member has only rational double points.
The proof of Theorem 3.1 is scattered throughout the literature. The proof
that the moduli space exists as a separated algebraic space is contained in
[K-SB] §5. This relies on the properties of semi-log-canonical singularities
and the finite automorphism theorem. The proof that the moduli space
has a functorial semipositive polarization is contained in [K| §5. This paper
also contains a general argument for the existence of a finite covering of the
moduli space possessing a universal family (see Proposition 2.7). The proof



that the moduli space is of finite type for a given pair of invariants (and thus
proper and projective by [K]) is contained in [A].

Using this moduli space, we prove that the class of stable surface singu-
larities is inclusive. The precise statement we need is the following:

Proposition 3.1 Let f : X — B be a proper morphism of integral vari-
eties. Assume that the general fiber of f is a surface of general type, and let
Y. denote the image of B in the moduli space ﬂx,;(z. Then there exists a
generically finite Galois base extension B' — B with Galois group G, a finite
cover X' — X, and a family of stable surfaces T — X' with the following
properties:

1. G acts on X' and T, and there are G-equivariant maps v : B' — Y/
and X' ——+ T so that diagram

X' - T
! !
B - Y

commutes, where X' is a dominating component of X xg B’.

2. The pull back family Y' = T xyx» B' is birational to X', and Y'/G 1is
birational to X.

We sketch the proof; see [CHM] and [K] for more details. This is an applica-
tion of the properties of the moduli space described in Theorem 3.1. Let B,
be the graph of the map B -+ X, so there is a morphism B; — . Write
Yo =9 (X)), Ty = Sxq¥y, By = By Xy, X9, Yy = Ty Xy, By, and let X, be a
dominating component of X x g B,. If we denote the projection p: By — Yo,
then for general b € By we have

(X2)b ~pir (T2)upy = (Y2)p

We might expect the families X, and Y5 to be birational to each other, as
their generic fibers are birational. This is not necessarily the case. However,
since the automorphism group of any stable surface is finite, after another
generically finite base change B3 — By we find that X3 and Y3 are birational.
The variety B’ is the Galois normalization of B; over B, G the corresponding
Galois group, ¥’ the Stein factorization of B" — X, and T the pull back of S
to X', In particular, X' is birational to the family of stable surfaces Y’ — B'.
O



4 Stable Surface Singularities are Negligible

In this section, we restrict our attention to families of stable surfaces f :
X — B, where B is of finite type over the base field. The locus S C B
corresponding to fibers with singularities worse than canonical singularities
(i.e. rational double points) is Zariski closed. Here we assume that S is a
proper subvariety of B. We will prove the following result on fiber products
of these families:

Theorem 4.1 Let f : X — B be a family of stable surfaces, and assume
B has only canonical singularities. If the generic fiber has only canonical
singularities, then the fiber products of this family

f": X, —B
also have canonical singularities.

We give the strategy of the proof. First, we factor f" as a sequence of maps
Xp—>Xp't—-.->X—>B

The theorem follows by applying the following proposition to each term of
this sequence:

Proposition 4.1 Let f : X — B be a family of stable surfaces, and assume
B has only canonical singularities. If the generic fiber has only canonical
singularities, then X also has canonical singularities.

We shall prove this result by induction. The base case for the induction is
essentially the fundamental property of stable surface singularities stated in
Theorem 2.1. The inductive step uses a result of Stevens [St], which gives
conditions for a fibration to have canonical singularities.

We will use the following preliminary lemma.

Lemma 4.1 Let f: X — B a family of stable surfaces, such that the general
fiber is normal. Then X is Cohen-Macaulay, normal, and Q-Gorenstein. The
relative canonical class Kx g is Q-Cartier.



By definition, stable surfaces are Cohen-Macaulay. Canonical singularities
are rational [E], which implies they are also Cohen-Macaulay. In particu-
lar, the base and the fibers of the morphism f : X — B are both Cohen-
Macaulay, so X itself is Cohen-Macaulay. Moreover, the singularities of X
are in codimension > 2, because the singularities of the base and the general
fiber are in codimension two, and all the fibers are generically nonsingular
(i.e. reduced). We conclude that X is normal by Serre’s criterion.

The dualizing sheaves wx and wp are reflexive and determine Weil divisor
classes Ky and Kpg (see [H| for general properties of reflexive sheaves). The
relative canonical class Ky p is defined by the formula

Kx/p=Kx — ["Kp

Ky is Q-Cartier if and only if Ky, p is, because Kp is Q-Cartier by hypoth-
esis. We show that Ky, p is Q-Cartier. Since X — B is a family of stable

surfaces, we have
O(kKxn)lx, = wx,

for all k. Stable surfaces are themselves Q-Gorenstein, so for some sufficiently
divisible k£ the right hand side is locally free for all b € B. Consequently,
O(kKx/p) is locally free and kK x/p is Cartier. [J

Now we prove the base case of our induction, where the base B is one
dimensional. A curve with only canonical singularities is actually smooth.
Since our result is local on the base, we may assume B = A. In this case,
Proposition 4.1 is just the implication 1 = 2 of Theorem 2.1. Canonical
surface singularities are just rational double points, and the stable surface in
the central fiber has semi-log-canonical singularities.

Now that we have established the base case for the inductive proof of
Proposition 4.1, we turn to the inductive step. This inductive argument
holds more generally than the context of stable surfaces, so we summarize it
in the following proposition:

Proposition 4.2 Let f: X — B be a flat family of varieties, where B has
canonical singularities, and Kx, g is Q-Cartier. Assume that

For any map ¢ : A — B of the disc into the base for which
Xy 15 canonical for t # 0, the total space X x g A has canonical
singularities.



Then X has canonical singularities.

Note that this completes the proof of Proposition 4.1. By Lemma 4.1, the
family f : X — B satisfies the hypotheses of Proposition 4.2. The assump-
tion in the statement is the base case proved in the last paragraph.

Now we prove Proposition 4.2. First we reduce to the case where B is
smooth. Let ¢ : B — B be a resolution of singularities, X = X x3 B,
and ¢ : X — X the induced map. The family X — B still satisfies ’rhe
hypotheses of the proposition. The base B has canonical singularities, so for
some k we have

w% = U*w%ﬂ(k‘alEl + -+ kayEy) where a; > 0

and
w[X!ﬂ = w*w[Xk}(kJalEi <+ kayEY)

where the E; are exceptional for o and the E] are the corresponding divisors
in X. In particular, ¢ imposes no adjoint conditions on differentials and X
has canonical singularities if X does.

To complete the proof, we use the following result:

Theorem 4.2 (Stevens’ Theorem [St]) Let h : X — A be a flat family
of varieties. Assume:

1. X is a Q-Gorenstein integral variety, and the fibers of h are integral
varieties.

2. The general fibers h™'(s) have only canonical singularities.
3. The special fiber h=1(0) has log terminal singularities.
Then X has canonical singularities.

We apply this theorem inductively to reduce the dimension of the base. As-
sume the proposition is proved if the dimension is less than b = dim(B).
Choose a local analytic coordinate y on B, and consider the level surfaces

B, ={be B:y(b) = s}

for s € A. Assume that the By are smooth and are not contained in the
closed set S where the singularities of the fibers are not canonical. Let



X, = f7'(Bs) and let h : X — A be the induced fibration of X. The
varieties X satisfy the hypotheses of Proposition 4.2, and so are canonical
by the induction hypothesis. Since all the fibers of h are canonical and the
total space X is @Q-Gorenstein, we may apply Stevens’ theorem to conclude
that X is also canonical. [

5 Proof of the Correlation Theorem

In this section, we prove the Correlation Theorem for surfaces of general type
(Theorem 1.1). We first prove a special case where the family has maximal
variation of moduli and the singularities are not too bad:

Theorem 5.1 (Correlation for Families with Maximal Variation) Let
X — B be a family of stable surfaces, with projective integral base and smooth
general fiber. Assume that the associated map ¢ : B — M is generically fi-
nite. Then there exists a positive integer n such that X} is of general type.

Being of general type is a birational property, so there is no loss of generality
if we take the base B to be smooth. To show that X7}, is of general type, we
must verify two statements:

1. X} has canonical singularities
2. wxg is blg

We proved the first statement in section four, so pluricanonical forms on XJ
pull back to regular forms on any desingularization. The second statement
says that there are enough pluricanonical differentials on X7} to guarantee it
is of general type. To prove this we use the following theorem:

Theorem 5.2 Let f: X — B be a family of surfaces, such that the general
fiber is a surface of general type. Assume this family has maximal variation.
Then for m sufficiently large, the sheaf f*wg’(l/B s big.

This result is proven by Viehweg in [V] (and more generally for arbitrary
dimensional fibers by Kollar in [K2]). Let Sl denote the reflexive hull of
the nth symmetric power of a sheaf. By definition, f*w’;g/B is big if for any
ample line bundle H on B there exists an integer n such that

S[n}(f*w?(l/l?) ®H!

10



is generically globally generated, i.e. the global sections of this sheaf generate
over an open set of B. It is equivalent to say that this sheaf is generically
globally generated for sufficiently large n. We need the following consequence
of Viehweg’s theorem:

Proposition 5.1 Under the hypotheses of the Theorem 5.2, wxy is big for
n sufficiently large.

We will show that Theorem 5.2 implies the proposition. We restrict ourselves
to values of m for which u)[;(”}B is locally free and f*u)g’(l/B is big. Let T
denote the reflexive hull of the nth tensor power of a sheaf. We claim that
for sufficiently large n

T[n}(f*W?/B) ®H!

is generically globally generated. Since quotients of generically globally gen-
erated sheaves are generically globally generated, this is a consequence of the
following result from representation theory (see [H2]):

Proposition 5.2 Let V be an r dimensional vector space over a field of
characteristic zero, let T™(V') and S9(V') be the nth tensor power and qth
symmetric power representations of GU(V') respectively, and write t = r!.
Then each irreducible component of T™(V') is a quotient of a representation

STV)®- - ®@8%(V)
where q; > H’j—l

Now we will prove that for some large n the dualizing sheaf wxr is big,
i.e. for large m we have

h (X, w[;g) ~ m+2)

where b = dim(B). Generally, the relative dualizing sheaves of fibered prod-
ucts satisfy the equation

* *
u)xg/y — T1Wx/B K- ® ThWX/B

where the 7; are the projections. Using the basic properties of reflexive
sheaves we obtain:

w[)?g = wi‘w[;}},; ®- - ® w;‘lw[;}},; ® Wl

11



Applying fI' to this gives

froly = T"(fuwl}y) ® W

[m]

X/B induces a

which is also a reflexive sheaf. The inclusion map w’;}/g — w
map of reflexive sheaves

(f*wX/B) — Tn(f*wX/R) = fn“)x" ®wp™

which is an isomorphism at the generic point of B.

Let H be an invertible sheaf on B so that H ® wg is very ample. We can
choose n so that TII(f, u)X ) ® H™™ is generically globally generated for all
admissible values of m. The computations of the last paragraph show that
f”wxn} ® (H ® wp)~™ is also generically globally generated for these values

of m. This sheaf has rank on the order of m?", so there at least this many
global sections. By our assumption on H, we have that (H ® wg)™ has on
the order of m® sections varying horizontally along the base B. Tensoring,
we obtain that f”wxn} has on the order of m?"*? global sections. Thus we
conclude that

Lo ( [;ﬂ) s 2t

This completes the proof of Proposition 5.1 and the special case of the Cor-
relation theorem. [J

We use this special case to prove the general Correlation Theorem. Since
stable surface singularities are inclusive, after a generically finite base exten-
sion B' — B every family of surfaces of general type dominates a family of
stable surfaces 1) : T'— ¥’ with maximal variation:

X = T
N
B —= Y

By Theorem 5.1, the fiber products 7V, are of general type for n sufficiently
large. Let X'%, denote the component of the fiber product dominating B'.
We obtain a diagram:
X% = T
b L (%)
B - ¥

12



with X', dominating T, a variety of general type.

We claim that the fiber products X2 also dominate varieties of general
type, provided that N is large enough. The diagrams (x) and (xx) are G-
equvariant, so it suffices to prove the following claim:

For very large N, enough forms on T3 descend to smooth forms
on W = (T))/G to guarantee that W is of general type.

By definition, smooth forms are pluricanonical forms that remain regular
when pulled back to a desingularization. The claim implies that the map of
quotients (X'%)/G — (T)/G gives a dominant rational map h: X5 — W
to a variety of general type.

The proof of the claim is identical to the analogous proof for curves given
in [CHM], so we only sketch the basic ideas. First let Dy C ¥’ be a divisor
containing the following points: (1) s € X' with nonminimal stabilizer in
G, and (2) s € ¥’ for which T is fixed pointwise by a nontrivial subgroup
of G. Let D be the pull back of gDy to TYy. Repeating the argument of
Proposition 5.1 we show that for large N, wry (—D) is big. Using a lemma
from §4 of [CHM], the invariant sections of powers of this sheaf descend to
smooth forms on W. Counting these smooth forms, we conclude that W is
of general type. O

6 Consequences of the Correlation Theorem

We give some consequences of the Correlation Theorem. Many of these
are stated in §6 of [CHM]. Recall the statement of the Geometric Lang
Conjecture [L]

Conjecture 6.1 (Geometric Lang Conjecture) IfW is a variety of gen-
eral type, the union of all irreducible, positive dimensional subvarieties of W
not of general type is a proper, closed subvariety =y C W.

We will call =y, the Lang exceptional locus of W. The following theorem
describes how the Lang exceptional locus varies in families, if the Geometric
Lang Conjecture is true.

Theorem 6.1 Assume the Geometric Lang Conjecture.
Let f: X — B be a flat family of surfaces in projective space, such that the

13



general fiber is an integral surface of general type. Then there is a uniform
bound on the degree of the Lang exceptional locus of fibers that are of general
type 1i.e.

deg(Zx,) < D

We will not prove this here. The proof is sketched in the last section of
[CHM], and is similar to the proof given below for Theorem 6.2. Theorem
6.1 gives many remarkable corollaries, for example:

Corollary 6.1 Assume the Geometric Lang Conjecture. There exists a con-
stant D such that the sum of the degrees of all the rational and elliptic curves
on a smooth quintic surface in P? is less than D. In particular, there is a
uniform bound on the number of rational and elliptic curves on a quintic
surface.

Recently, Abramovich [AV] has found another proof of these results.
Now we shall discuss some number theoretic consequences of the Corre-
lation Theorem. First, recall the Weak Lang Conjecture:

Conjecture 6.2 (Weak Lang Conjecture) If W is a variety of general
type defined over a number field K, then the K rational points of W are not
Zariski dense in W.

Assuming this conjecture, the Correlation Theorem implies the following:

Theorem 6.2 Assume the Weak Lang Conjecture.

Let X — B be a flat family of surfaces in projective space defined over a
number field K, such that the general fiber is an integral surface of general
type. For any b € B(K) for which X, is of general type, let N(b) be the sum
of the degrees of the components of X,(K). Then N(b) is uniformly bounded;
in particular, the number of K rational points not contained in the Lang locus
18 uniformly bounded.

The proof uses induction on the dimension of the base B. First, we shall
show that the rational points of the fibers must lie on a proper subscheme
of bounded degree. Choose an integer n so that there is a dominant rational
map

v Xg - W

14



to a variety of general type W. Let Y be a proper subvariety of W that
contains W (K), and let Z be its preimage in X7%. All the K rational points
of X7 are contained in Z. We use

. YI Jj—1
T XB — XB

to denote the projection morphisms. Finally, let Z; denote the maximal
closed set in X',j? whose preimage in Xg is Z, and let U; be the complement
to Z;. Note that 7; ' (Z;_1) C Z; by definition and that for u € U;_; we have
that 7, '(u) N Z; is a proper subvariety of m; ' (u). We will use d; to denote
the sum of the degrees of all the components of Z; N W;](U,), regardless of
their dimensions, and we set

N = Hlan (d])

If all the K rational points of B are concentrated along a closed subset,
we are done by induction. Otherwise, pick a general K rational point b €
B. Let j be the smallest integer for which U; N X,‘f(K) is empty, and let
u e U1 N X] " (K). We have that X, = W;I(u) and our set-up guarantees
that X,(K) C Z; N W;](U,). In particular, since we have chosen everything
generically, we find that X;,(K) is contained in a subscheme of degree N.

Now we complete the proof. We have shown that the rational points on
each fiber are concentrated along a subscheme of degree N. The components
of this subscheme consist of points, rational and elliptic curves, and curves
of higher genus. The rational and elliptic curves are contained in the Lang
locus, so we ignore them, and there are at most N components of dimension
zero. Therefore, we just need the following lemma:

Lemma 6.1 Assume the Weak Lang Conjecture. Let C' be a (possibly sin-
gular) curve in projective space of degree N defined over a number field K.
Assume C' has no rational or elliptic components. Then there is a uniform
bound on the number of K rational points on C.

First, because the degree is bounded there are only finitely many possibilities
for the geometric genera of the components of C'. By the hypothesis, these
genera are all at least two, so we can apply the uniform boundedness results
for curves in [CHM]. This completes the proof of the theorem. [

In the corollary which follows, quadratic points are points defined over
some degree two extension of the base field.

15



Corollary 6.2 Assume the Weak Lang Conjecture. Fix a number field K,
and an integer g > 2. Then there is a uniform bound on the number of

quadratic points lying on a non-hyperelliptic, non-bielliptic curve C of genus
g defined over K.

Note that quadratic points on C correspond to K rational points on its
symmetric square Sym?(C). Moreover, a hyperelliptic (respectively biellip-
tic) system on C' corresponds to a rational (respectively elliptic) curve on
Sym*(C) ([AH]). In particular, the curves allowed in the corollary are pre-
cisely those for which Zg .2y = 0, so by the theorem # Sym*(C)(K) is
finite and uniformly bounded. []
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