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1. Introduction

Recent breakthroughs of Voisin [Voi15], developed and amplified by
Colliot-Thélène and Pirutka [CTP16b, CTP16a], Beauville [Bea16b],
and Totaro [Tot16], have reshaped the classical study of rationality
questions for higher-dimensional varieties. Failure of stable rationality
is now known for large classes of rationally-connected threefolds. The
key tool is (Chow-theoretic) integral decompositions of the diagonal,
which necessarily exist for stably rational varieties. Integral decompo-
sitions of the diagonal specialize well, even to mildly singular varieties,
connecting logically the stable rationality of various classes of varieties.
This puts a premium on discovering appropriate degenerations linking
different classes of rationally connected varieties. In this paper we ex-
hibit novel degenerations of smooth Fano threefolds and use these to
prove:

Theorem 1. Let X be a very general smooth non-rational Fano three-
fold over C. Assume that X is not birational to a cubic threefold. Then
X is not stably rational.

Here, ‘very general’ refers to the complement to a countable union of
Zariski-closed proper subsets of the families enumerated in Sections 5
and 7.

While smooth cubic threefolds are all known to be non-rational, de-
termining whether or not they are stably rational remains an open
problem. No smooth cubic threefolds are known to be stably rational.
However, Voisin [Voi14] has shown that the cubic threefolds where her
techniques fail to apply, i.e., those admitting an integral decomposition
of the diagonal, are dense in moduli.

Several common geometric threads, developed in collaboration with
Kresch, unify our approach to Theorem 1. In [HKT16b], we showed
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that very general conic bundles over rational surfaces with sufficiently
large discriminant fail to be stably rational. The conic bundle struc-
tures on cubic threefolds arising from projection from a line have quin-
tic plane curves as their discriminants—too small for our techniques
to apply. Nevertheless, conic bundles are a useful tool for analyzing
stable rationality of Fano threefolds. Second, in [HKT16a] we classi-
fied quartic del Pezzo surfaces with mild singular fibers and maximal
monodromy; previously [HT14] we showed that a number of these arise
as specializations of Fano threefolds of index one. Together, these fa-
cilitate a streamlined approach to most families of non-rational Fano
threefolds.

Acknowledgments: The first author was supported by NSF grant
1551514. We are grateful to Andrew Kresch for his foundational con-
tributions that made this research possible. We also benefitted from
conversations with Alena Pirutka. Kresch and Pirutka also offered
helpful feedback on early drafts of this paper.

2. Conic bundles over rational surfaces

We recall the set-up for the results of [HKT16b]: Let S be a smooth
projective rational surface over C. Fix a linear system L of effective
divisors on S such that the general member is smooth and irreducible.
Consider the space of pairs{

D ∈ L nodal and reduced, D′ → D étale of degree two
}
→ L

and let M be one of its irreducible components. The curves with at
worst nodes as singularities form an open dense subset in L; the étale
coverings of a projective variety are formally smooth over its deforma-
tion space [Gro71, Exp. IX,Prop. 1.7]. HenceM is unramified over its
image in L and thus smooth.

AssumeM contains a point {D′ → D} with the following properties:

• the nodes of D are disjoint from the base locus of L;
• D is reducible and for each irreducible component D1 ⊂ D the

induced cover D′ ×D D1 → D1 is non-trivial.

Results of Artin and Mumford [AM72] and Sarkisov [Sar82] allow
us to assign to each point of M a conic bundle X → S, unique up
to birational equivalences over S. Essentially, M parametrizes rami-
fication data for the associated Brauer elements in the function field
of S, which determine them as S is rational. The condition on the
distinguished point implies that the corresponding conic bundle has
non-trivial Brauer group.
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Using Voisin’s decomposition of the diagonal technique, we proved in
[HKT16b] that a very general point [X] ∈M parametrizes a threefold
that fails to be stably rational.

We first observe an obvious strengthening of the main theorem of
[HKT16b]: M need not dominate the linear series L but can be any
smooth irreducible parameter space of reduced nodal curves D ∈ L
with étale double covers D′ → D. Let K denote the image of M in L,
so we have

M ϕ→ K ⊂ L
where ϕ is étale and a covering space over the open subset parametriz-
ing smooth curves. We still insist that there is a reducible member
whose nodes are disjoint from the base locus of K, such that the cover
over each component is non-trivial.

Second, our result is easiest to apply in cases where the monodromy
action is large, e.g., whenM parametrizes all non-trivial double covers
of the general point [D] ∈ K, or equivalently, when the monodromy
representation on H1(D,Z/2Z)\{0} is transitive. This is the case when
S = P2 and L parametrizes plane curves of even degree; in odd degree
there are two such orbits [Bea86]. Large monodromy actions make it
easier to decide which component contains a given distinguished point
{D′ → D}.

3. Classification of quartic del Pezzo fibrations and
stable rationality

A quartic del Pezzo surface fibration π : X → P1 is a flat projective
morphism whose general fiber is a degree four del Pezzo surface, i.e.,
a smooth complete intersection of two quadrics in P4. We suppose π
satisfies two non-degeneracy conditions:

• the discriminant is square-free, i.e., X is regular and the singular
fibers are complete intersections of two quadrics with at most
one ordinary singularity;
• the monodromy action on the Picard groups of the fibers is the

full Weyl group W (D5).

The fundamental invariant of such fibrations is the height

h(X ) = deg(c1(ωπ)3) = −2 deg(π∗ω
−1
π ),

an even integer (see [HKT16a, HT14] for more background). The prin-
cipal results we require are [HKT16a, Th. 10.2]:

• under the non-degeneracy conditions we have h(X ) ≥ 8;
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• when h(X ) = 8 or 10, the moduli space of these fibrations has
two irreducible components;
• when h(X ) ≥ 12 the moduli space is irreducible.

When h(X ) = 8, 10, 12 the total space X is either rational or bira-
tional to a cubic threefold; see [HKT16a, §11] and [HT14, §8-10] for
details. Thus we will focus on fibrations with heights at least fourteen.
Note that Alexeev [Ale87] established non-rationality in these cases by
relating the del Pezzo fibrations to conic bundles. (We will review this
below.)

Theorem 2. Let X → P1 be a fibration in quartic del Pezzo surfaces
satisfying our non-degeneracy conditions, with h(X ) ≥ 14, and very
general in moduli. Then X fails to admit an integral decomposition of
the diagonal and thus is not stably rational.

Proof. We first reduce to the conic bundle case, following Alexeev.
Choose a section σ : P1 → X , which we may assume is not contained
in any line of the general fiber. Blowing up this section gives a cubic
surface fibration with a distinguished line and projecting from this line
gives a conic fibration:

L ↪→ X̃ π→ S
↘ ↓ ↙

P1

Here S → P1 is a rational ruled surface.
The conic bundle structure over S yields a discriminant curve D ⊂ S

and an étale double cover D′ → D. Note that D′ → D coincides with
the spectral data introduced in [HKT16a, §§2,8] and S is the natural
ruled surface containing D described in [HKT16a, §10].

Using [HKT16a, §6] we pin down the numerical invariants: Suppose
first that h(X ) = 4n + 2 for n ≥ 3. Here the surface S ' F1, the
Hirzebruch surface. Let ξ denote the (−1)-curve and f the class of a
fiber. Then [D] = 5ξ+(n+3)f which has genus h(X )−4. If h(X ) = 4n
for n ≥ 4 then S ' F0 ' P1 × P1. Here D has bidegree (n, 5), also of
genus h(X )− 4.

The fundamental dictionary between del Pezzo fibrations and spec-
tral data [HKT16a, Th. 10.1] implies that the D ⊂ S arising from del
Pezzo fibrations are general in the linear series L = |D|. The analysis of
[HKT16a, §3] shows that the monodromy acts on H1(D,Z/2Z) via the
full symplectic group, hence transitively on the non-trivial elements.
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As indicated in Section 2, we let M parametrize étale connected
double covers of nodal curves in L, which is étale over L. To apply the
main result of Section 2, it suffices to exhibit a distinguished point in L,
i.e., a reducible curve D = D1∪D2 with D1 and D2 smooth of positive
genus, intersecting transversally. For S = F1 take D1 ∈ |2ξ + 3f |,
the proper transform of a cubic plane curve, and D2 ∈ |3ξ + nf |, a
smooth curve of genus 2n − 5 ≥ 1. For S = F0 ' P1 × P1 take D1 of
bidegree (2, 2), an elliptic curve, and D2 of bidegree (n−2, 3), of genus
2n− 6 ≥ 2. �

4. Quartic del Pezzo fibrations and sextic double solids

Our goal in this section is:

Proposition 3. The general sextic double solid arises as a deformation
of a nodal birational model of a general height 22 quartic del Pezzo
fibration X → P1.

Let V = OP1 ⊕OP1(1)⊕4 and consider

V ∗ ↪→ O⊕9
P1

associated with global sections of V . Then we have morphisms

P(V ∗) ↪→ P1 × P8 π2−→ P8,

where the composition collapses the distinguished section

σ : P1 → P(V ∗)

arising from the OP1 summand. We use π = π1 for the fibration over
P1. Let ξ = c1(OP(V ∗)(1)) and h = π∗(c1(OP1(1))) so that ξ5 = 4ξ4h.

A general height 22 quartic del Pezzo X → P1 admits an embedding

X ↪→ P(V ∗)
↘ ↓

P1

as a complete intersection of divisors of degrees 2ξ−h and 2ξ [HT14, §4,
Case 5]. Let Q → P1 denote the former divisor, which necessarily con-
tains σ. The second divisor Q′ is a pull-back of a quadric hypersurface
via π2.

Consider projection from σ:

$ : P(V ∗)→ P(OP1(−1)⊕4) ' P1 × P3

inducing a birational map

Q ∼
99K P1 × P3.
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Restricting to X yields a generically finite morphism

φ : X → P3.

We compute its invariants via intersections in P(V ∗). The pullback of
the hyperplane class on P3 via φ is ξ − h. First, we have

deg(φ) = (ξ − h)3(2ξ)(2ξ − h) = 2

which means φ is a double cover. Its ramification divisor

R = KX − φ∗KP4 = −ξ + h+ 4(ξ − h) = 3(ξ − h)

maps to the branch surface B ⊂ P3 of degree six.
We interpret when φ fails to be finite. Points p ∈ P3 correspond to

line subbundles

σ(P1) ↪→ L(p) ' P(OP1 ⊕OP1(−1)) ' F1 ↪→ P(V ∗)

where F1 is the blowup of the projective plane at a point. ThusQ∩L(p)
is the union of the (−1)-curve and the proper transform of a line ` and
Q′ ∩ L(p) is the proper transform of a conic disjoint from the (−1)-
curve. These typically meet at two points but the conic might contain
the line `, i.e., φ−1(p) = `; this is a codimension-three condition on p
and corresponds to singular points of B.

Proposition 4. Let y0, y1, y2, y3 denote coordinates on P3.

• The equation for B takes the form det(M) = 0 where

M =

L2 Q0 Q1

Q0 Q′00 Q′01

Q0 Q′01 Q′11

 ,

with L linear in the yi and the remaining entries quadratic.
• Conversely, the general such matrix arises from a height 22

fibration in quartic del Pezzo surfaces.
• When M is general, the singularities of B are of two types. The

first type corresponds to the vanishing of the 2×2 minors of M ;
there are 32 such singularities. The second type corresponds to
the locus

L = Q0 = Q1 = 0;

there are four such singularities. All 36 singularities are nodes.

This suffices to establish Proposition 3.
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Proof. Let x0 and x1 denote homogeneous coordinates on P1 and their
pullbacks to P(V ∗). Designate generating global sections

y0, y1, y2, y3 ∈ Γ(OP(V ∗)(ξ − h)) ' Γ(OP3(1))

and

z, x0y0, x1y0, . . . , x0y3, x1y3 ∈ Γ(OP(V ∗)(ξ)).

After completing the square to eliminate the term linear in z, the defin-
ing equation Q′ may be written in the form

z2 = Q′00x
2
0 + 2Q′01x0x1 +Q′11x

2
1,

where the Q′ij are quadratic in the yi. The defining equation for Q
takes the form

−zL(y0, y1, y2, y3) +Q0x0 +Q1x1 = 0,

where L is linear and Q0 and Q1 are quadratic in the yi. Eliminating
z we obtain

x2
0(Q

′
00L

2 −Q2
0) + 2x0x1(Q

′
01L

2 −Q0Q1) + x2
1(Q

′
11L

2 −Q2
1) = 0,

which is the defining equation for the image of X in P1 × P3. The
discriminant of this polynomial—regarded as a binary quadratic form
in x0 and x1—can be written as

L4((Q′01)
2 −Q′00Q

′
11) + L2(−2Q′01Q0Q1 +Q′00Q

2
1 +Q′11Q

2
0).

After dividing out by −L2 we obtain det(M). This proves the first
assertion. Reversing the algebra gives the second assertion.

We analyze the singularities of the hypersurface det(M) = 0. In
general, the singularities of the determinant of a symmetric 3×3 matrix
of forms is given by the vanishing of the 2 × 2 minors. In geometric
terms, this is the Veronese surface Ver ↪→ P5 which has degree four.
If the entries are quadratic forms in y0, . . . , y3 then the image of the
associated morphism P3 → P5 has degree eight. Bézout’s Theorem
gives 32 transversal points of intersection, which are nodes of B.

However, we also have to take into account singularities of the entries.
Given the form of the upper-left entry of M , these occur precisely when
L = 0. (The other entries are general.) The determinantal hypersurface
thus has additional singularities along the locus L = Q0 = Q1 = 0. Our
generality assumption implies this is a complete intersection, thus we
obtain four additional ordinary double points. �
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5. Index one Fano threefolds

The tables in [IP99] enumerate non-rational Fano threefolds; see also
the summary in [Bea16a, Section 2.3], which includes references to
methods used to establish non-rationality. Our proofs of failure of sta-
ble rationality for very general members of these families are based on
the degeneration method of Voisin and its strengthening by Colliot-
Thélene and Pirutka: if a smooth threefold admits an integral decom-
position of the diagonal the same holds true for a specialization with
mild singularities [Voi15, Th. 1.1] and [CTP16b]. We will exhibit spe-
cializations not admitting such decompositions.

Let V be a smooth Fano threefold with Pic(V ) = ZKV , i.e., with
rank one and index one. Its degree d(V ) = −K3

V takes the following
values [IP99]:

d(V ) = 2, 4, 6, 8, 10, 12, 14, 16, 18, 22.

For each d(V ) there is an irreducible parameter space for the corre-
sponding Fano threefolds. The cases d(V ) = 12, 16, 18, and 22 are
rational.

When d(V ) = 14 the general X ⊂ P9 arises as a linear section of
the Grassmannian Gr(2, 6). Projective duality gives a codimension
ten section of the Pfaffian cubic hypersurface in P14, a cubic threefold
V ′. There is a birational map V 99K V ′; see [IM00, §1], for example,
for additional details. This example is related to quartic del Pezzo
fibrations: One of the two species of quartic del Pezzo fibrations of
height ten X → P1 admits a natural morphism [HKT16a, §11]

X → V ⊂ P9;

the image is a nodal Fano threefold of degree 14. However, stable
rationality of cubic threefolds (and birationally equivalent varieties)
remains an open problem.

5.1. d(V ) = 2: Sextic double solids. Failure of stable rationality in
this case has been established by Beauville [Bea16b] and by Colliot-
Thélène and Pirutka [CTP16a]. It also follows from Proposition 3: a
general height 22 fibration in quartic del Pezzo surfaces fails to have an
integral decomposition of the diagonal, by Theorem 2, but also arises
as a nodal sextic double solid.

5.2. d(V ) = 4: Quartic threefolds. Failure of stable rationality in
this case has been established by Colliot-Thélène and Pirutka [CTP16b].
As above, we obtain an alternative proof: a general quartic del Pezzo
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fibration of height 20 fails an integral decomposition of the diagonal,
by Theorem 2, but also admits a birational model as a determinantal
quartic threefold with sixteen nodes [HT14, §11 ] (cf. [Che06, Th. 11]).

5.3. d(V ) = 6: Complete intersections of a quadric and a cubic
in P5. We proceed as before, using the fact that a general quartic del
Pezzo fibration of height 18 admits a birational model as a complete
intersection Y ⊂ P5 with eight nodes. Indeed, realize

X ⊂ P(O⊕4
P1 ⊕OP1(−1)) ⊂ P1 × P5

as a complete intersection of forms of bidegree (1, 1), (0, 2), and (1, 2),
as in Case 2 of [HT14, §4]. (Here we are using the irreducibility of the
moduli space of quartic del Pezzo fibrations of height 18.) Let Y ⊂ P5

denote the image of projection onto the second factor. Consider first
the image in P5

[x0,...,x5] of the locus cut out by the forms of bidegree

(1, 1) and (1, 2):

sL0 + tL1 = sQ0 + tQ1 = 0,

with

L0, L1 ∈ C[x0, . . . , x5]1, Q0, Q1 ∈ C[x0, . . . , x5]2.

Its equation is obtained by eliminating s and t, which yields

L0Q1 − L1Q0 = det

(
L0 L1

Q0 Q1

)
= 0.

This is a cubic fourfold W singular along the elliptic quartic curve

C = {L0 = L1 = Q0 = Q1 = 0}.

Let Q ∈ C[x0, . . . , x5]2 be the form of bidegree (0, 2), so that

Y =W ∩ {Q = 0}.

This is a complete intersection of Q withW , having eight nodes at the
intersection C ∩{Q = 0} = {p1, . . . , p8}. The preimages of these nodes
in X are distinguished sections of X → P1.

We establish failure of stable rationality for very general complete
intersections as before: Theorem 2 gives failure of integral decompo-
sition of the diagonal for very general quartic del Pezzo fibrations of
height eighteen. Thus very general complete intersections V ⊂ P5 of a
quadric and a cubic also lack such decompositions, so stable rationality
fails.
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5.4. d(V ) = 8: Complete intersections of three quadrics in P6.
Let V ⊂ P6 denote a complete intersection of three quadrics. Beauville
[Bea77, §6.4,§6.23] has shown that V is birational to a conic fibration

X → P2,

with discriminant D ⊂ P2 of degree seven, and a general plane curve
of degree seven arises in this way. Thus the results in §2 apply: a very
general such V fails to be stably rational.

We sketch an alternative proof using the fact that a general quartic
del Pezzo fibration of height 16 admits a birational model as a complete
intersection Y ⊂ P6 with four nodes. Express the fibration

X ⊂ P(O⊕3
P1 ⊕OP1(−1)⊕2) ⊂ P1

[s,t] × P6
[x0,...,x6]

as a complete intersection of two forms of bidegree (1, 1), and two
quadratic forms from P6 (see Case 3 of [HT14, §4]). Write the bilinear
forms as

sL0 + tL1 = sM0 + tM1 = 0, L0, L1,M0,M1 ∈ C[x0, . . . , x6]1

so that eliminating s and t gives

L0M1 − L1M0 = det

(
L0 L1

M0 M1

)
= 0,

defining a quadric hypersurface W ⊂ P6 singular along P = {L0 =
L1 = M0 = M1 = 0}. Let Y be the projection of X onto the second
factor; it is the intersection of W with two arbitrary quadric hypersur-
faces, and is singular where these both meet P . The failure of stable
rationality for a very general complete intersection of three quadrics
follows as before from Theorem 2.

5.5. d(V ) = 10: Complete intersections in Gr(2, 5). Fano three-
folds V of this type are obtained by intersecting the Grassmannian
Gr(2, 5) ⊂ P9 with two linear forms and one quadratic form.

In [HT14, §11] we showed that general quartic del Pezzo fibrations of
height fourteen are birational to Y ⊂ P7, where Y is a specialization of
V with two nodes. Repeating the arguments above, we conclude that
the very general such V fails to be stably rational.

6. Fano threefolds of index two

In this section we consider Fano threefolds V with Pic(V ) = ZKV

2
,

i.e., those of rank one and index two. Here the degree d(V ) = −K3
V =

8 · δ(V ) where δ(V ) ∈ N. The possible values are δ(V ) = 1, 2, 3, 4, 5; if
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δ(V ) = 4 or 5 then V is rational, and when δ(V ) = 3 then V is a cubic
threefold.

6.1. δ(V ) = 1: Double cover of Veronese cone. Let

P := P(1, 1, 1, 2) ⊂ P6

denote the cone over the Veronese surface Ver ⊂ P5; the vertex p =
[0, 0, 0, 1] is a terminal singularity of P of index 2. Let B ⊂ P denote
the restriction of a general cubic hypersurface in P6, which has degree
six in the natural grading on P. Consider the double cover

φ : V → P

branched over B. It is also ramified over p; its preimage v0 ∈ V is
smooth.

We elaborate the geometry: Blowing up p gives a resolution

β : P(OP2 ⊕OP2(−2)) ' Blp(P)→ P.

Let ξ and h generate the Picard group of the projective bundle, where
h is the pullback of the hyperplane class on P2 and ξ = c1(OP(O⊕O(−2))).
Let

E ' P2 ⊂ P(OP2 ⊕OP2(−2))

denote the exceptional divisor; note that [E] = ξ − 2h. The divisor
B+E = 4ξ− 2h is divisible by two, so we obtain a double cover V ′ →
Blp(P) branched along E and B. The normal bundle NE/V ′ ' OP2(−1)
so we can blown down V ′ along E; the resulting variety is V .

We may also regard V as a hypersurface in P(1, 1, 1, 2, 3) of degree
six, which is clearly Fano of index two. Note that h1(Ω2

V ) = 21 [IP99,
§12] and that V depends on 34 parameters.

We specialize B so it contains v0, analyzing the resulting double
cover φ : V → P. (This imposes one condition so the construction
depends on 33 parameters.) Let B̃ denote the proper transform of B
with [B̃] = 2ξ+ 2h, Ṽ → P(OP1 ⊕OP1(−2)) the double cover branched
along B̃, and Ẽ ⊂ Ṽ the preimage of E. Note that Ẽ ' P1 × P1 as
B̃ meets E ' P2 in a plane conic C. Moreover, applying the Hurwitz
formula and adjunction yields

NẼ/Ṽ ' OP1×P1(−2,−2).

The induced birational morphism Ṽ → V resolves v0 with exceptional
divisor Ẽ ' P1 × P1. In particular, Ṽ → V is universally CH0-trivial
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(see [CTP16b, Prop. 1.8]). For the equivalence between universal CH0-
triviality and the existence of integral decompositions of the diagonal,
see [ACTP16, Lemma 1.3] and [Voi15, §1].

We compute the invariants of Ṽ : The bundle structure

$ : P(OP2 ⊕OP2(−2))→ P2

induces a morphism

ψ : Ṽ → P2.

Since B̃ is a bisection of $, ψ endows V with the structure of a conic
bundle. Let D ⊂ P2 denote its discriminant curve, which coincides
with the branch locus of $ : B̃ → P2. An adjunction computation
implies KB̃ = h|B̃ so D is a plane octic curve, generically smooth.

Now D and C are tangent at each point of their intersection, i.e.,

D ∩ C = 2(z1 + . . .+ z8) = 2Z

with IZ ⊂ OD the ideal sheaf. Thus D depends on 44 − 8 − 3 =
33 parameters; moreover, the parameter space of smooth octic plane
curves eight-tangent to C is birational to a projective bundle over C [8],
thus irreducible. Furthermore, η := OD(1)⊗IZ is a two-torsion element
of the Jacobian of D. The double cover D′ → D associated with
Ṽ → P2 is classified by η. From it, we read off the cohomology of Ṽ :

IJ(Ṽ ) = Prym(D′ → D).

The curve D has genus 21 so h1(Ω2
Ṽ

) = 20. Thus the singularity v0

reduces this Hodge number by one.

Lemma 5. There exists a specialization

D  D1 ∪D2

of octic curves eight-tangent to C, such that D1 and D2 are transverse
plane quartics each four-tangent to C. This satisfies the requirements
of §2.

Proof. Consider the space of pairs (D1, D2) where D1 and D2 are plane
quartics four-tangent to C, with D1 and D2 meeting transversally. Re-
peating the argument above, the plane quartics four-tangent to C are
birational to a P6 bundle over C [4], an irreducible rational variety of
dimension ten. It is easy to check that a general pair of such curves
meets transversally, yielding a rational parameter space of dimension
twenty. Write

D1 ∩ C = 2(z1 + z2 + z3 + z4) D2 ∩ C = 2(z5 + z6 + z7 + z8)
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and IZ ⊂ OD1∪D2 for the ideal sheaf of Z = {z1, . . . , z8}. Thus η0 :=
IZ(1) is two-torsion in the Picard group of D1 ∪ D2 and restricts to
non-trivial two-torsion elements on D1 and D2 because

z1 + z2 + z3 + z4 6≡ [OD1(1)], z5 + z6 + z7 + z8 6≡ [OD2(1)].

Otherwise, these four-tuples of points would be collinear.
Linear algebra shows that we can smooth D1∪D2 to a smooth plane

octic D tangent to C at z1, . . . , z8. As we saw in the proof of Theorem 2,
this gives rise to a cover D′ → D classified by the divisor η. As D  
D1 ∪D2 we have η  η0. �

Thus the results of §2 imply that Ṽ fails to admit an integral de-
composition of the diagonal. An application of the results of [CTP16b,
§1] implies that a very general V ⊂ P(1, 1, 1, 2, 3) also fails to admit an
integral decomposition of the diagonal, and thus is not stably rational.

6.2. δ(V ) = 2: Quartic double solids. Let V be a quartic double
solid

φ : V → P3

with branch locus a degree four K3 surface B. When V is smooth
we have h1(Ω2

V ) = 10. Voisin [Voi15] and Colliot-Thélène and Pirutka
[CTP16a] established the failure of stable rationality for very general
varieties in this class. Here we discuss how to approach this through
conic bundle fibrations.

Now suppose V (or equivalently B) has a node p and write Ṽ =
Blp(V ). Projection from p gives a conic bundle structure

π : Ṽ → P2

branched along a sextic plane curve D. The plane curve is typically
smooth but admits a six-tangent conic curve C corresponding to the
exceptional divisor of the induced resolution of B. Write

D ∩ C = 2Z, Z = z1 + · · ·+ z6

so that η := OD(1)⊗IZ is two-torsion on D. Here IZ is the ideal sheaf
of Z.

As we saw in the previous case, the parameter space of sextic plane
curves six-tangent to a prescribed conic is irreducible, being a projective
bundle over the Hilbert scheme C [6]. We can specialize

D  D1 ∪D2,
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where D1 and D2 are smooth plane cubics meeting transversally, each
three-tangent to C. Thus η specializes to a two-torsion divisor on
D1 ∪D2 that is non-trivial on each component.

An application of the results of §2 implies that the very general quar-
tic double solid fails to have an integral decomposition of the diagonal,
thus is not stably rational.

7. Fano threefolds of higher Picard rank

As before we write d(V ) = −K3
V .

7.1. d(V ) = 6, h1,2(V ) = 20. The first case is double covers

V → P1 × P2

branched over a divisor of bidegree (2, 4). These depend on

3× 15− (1 + 3 + 8) = 33

parameters. Projection onto the second factor gives a conic bundle
structure V → P2 with octic discriminant curve D ⊂ P2. The equation
of D is given by the vanishing of the determinant of a 2× 2 symmetric
matrix of quartic forms in three variables. In particular, D is not gen-
eral in its linear series and each symmetric determinantal octic comes
with a distinguished non-trivial two-torsion class, i.e., the one associ-
ated with the ramification data of V → P2. This makes it hard to
apply the methods of §2 directly.

However, there is a natural degeneration of such Fano threefolds
to another class of rationally connected varieties: Fix distinct points
p, q ∈ P2 and consider divisors B0 ⊂ P1 × P2 of bidegree (2, 4) whose
fibers over P1 admit nodes at p and q. (Equivalently, these are singular
along P1 × {p, q}.) Consider the birational map

P2 99K P1 × P1

blowing up p and q and blowing down the line joining them. This
takes quartic plane curves singular at p and q to bidegree (2, 2) curves
in P1 × P1. Using the induced birational map

P1 × P2 99K P1 × P1 × P1,

we see that B0 is mapped to (2, 2, 2) divisor in the image. Conversely,
(2, 2, 2) divisors in the image all arise from this construction.

Lemma 6. Let V0 denote the double cover of P1 × P2 branched over a

very general such B0. Let Ṽ0 → V0 denote the blowup along P1×{p, q}.
If Ṽ0 admits no integral decomposition of the diagonal then the same
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holds for the very general Fano variety V arising as a double cover of
P1 × P2 branched over a divisor of bidegree (2, 4).

Proof. The singularities of V0 are along the lines `p := P1 × {p} and
`q := P1×{q}. The singularities of B0 are ordinary double points along
the general points of these lines and cusps (analytically isomorphic to
x2 + y3 = 0) at a finite number of special points. For special r ∈ P1

the local singularity type of V0 at (r, p) is of the form

w2 = x2 + ty2 + y3,

where {x, y} are local coordinates of P2 centered at p, t is a local
coordinate of P1 centered at r, and w is used to realize the double
cover over P1×P2. Thus the singularities of V0 are resolved by blowing
up the lines

Ṽ0 = Bl`p∪`q(V0)→ V0.

The exceptional fibers over the generic points of `p and `q are smooth
conics; the fibers over special points are reducible conics. This com-
putation is similar to, but simpler than, the singularity analysis of
[CTP16b, App.].

The key is that the exceptional fibers are universally CH0-trivial,
in the sense of [CTP16b, Déf. 1.2]. Applying the result on universal
CH0-triviality in [CTP16b, §1], we conclude that V fails to be univer-

sally CH0-trivial if the same holds for Ṽ0. (See [ACTP16, Lemma 1.3]
and [Voi15, §1] for the equivalence with integral decompositions of the
diagonal.) �

In §7.4 we will show that very general double covers of P1 × P1 × P1

branched over a (2, 2, 2) divisor do not admit integral decompositions
of the diagonal.

7.2. d(V ) = 12, h1,2(V ) = 9. The first part of the second case is re-
alized as a divisor in P2 × P2 of bidegree (2, 2), depending on 19 pa-
rameters. Using either projection, we obtain a conic bundle over P2

with sextic discriminant. It is well known that the plane sextic can
be chosen generally [vG05, HVA13, §9]. The main result of §2 implies
that very general conic bundles over P2 with sextic discriminant fail to
be stably rational. That is, for a very general pair (D,D′ → D), where
D is a plane sextic and D′ → D is a non-trivial étale double cover,
the corresponding conic bundle X → P2 fails to be stably rational. It
follows that for very general D, every double cover D′ → D is associ-
ated with a conic bundle that is not stably rational. In particular, this
applies to the very general divisor of bidegree (2, 2) in P2 × P2.
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The second part of the second case is a double cover V of a hypersur-
face F(1, 2) ⊂ P2×P2 of bidegree (1, 1) branched over an anticanonical
divisor B of bidegree (2, 2). This depends on 18 parameters. Again,
either projection induces a conic bundle V → P2 with sextic discrim-
inant curve D. The Mori-Mukai classification [MM82] shows this is a
specialization of the first part.

The surface B is a lattice polarized K3 surface of type

Φ :=
f1 f2

f1 2 4
f2 4 2

and the general such surface arises as a complete intersection of forms
of bidegree (1, 1) and (2, 2) in P2 × P2.

The branch curve of πi|B : B → P2 coincides with the locus where
πi|V : V → P2 fails to be smooth, i.e., the discriminant curve D. This
is a sextic plane curve that is not of general moduli—the associated
K3 double cover has Picard rank two. The technique of §2 does not
immediately apply in this case.

It is easy to use degeneration techniques to reduce this to cases where
there is no integral decomposition of the diagonal. Consider a quartic

surface B0 ⊂ P3 with nodes n1 and n2 and minimal resolution B̃0. Its
Picard group takes the form

h R1 R2

h 4 0 0
R1 0 −2 0
R2 0 0 −2

where h is the pullback of the hyperplane class and the Ri are the
exceptional divisors. The lattice Φ embeds into this lattice

f1 = h−R1, f2 = h−R2.

Projection from the nodes n1 and n2 gives a morphism

B̃0 → P2 × P2

with image B◦ a complete intersection of hypersurfaces of degrees (1, 1)
and (2, 2). This extends to a birational map

P3 99K F(1, 2) := P(Ω1
P2(1)) ⊂ P2 × P2

onto the divisor of bidegree (1, 1). To summarize:
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Lemma 7. A double cover of P3 branched over a general quartic surface
with two nodes is birational to a double cover of the complete flag variety
F(1, 2) along a special anticanonical divisor.

By [Voi15, Th. 1.1] a very general such quartic double solid fails to
admit an integral decomposition of the diagonal. Thus the same holds
for very general Fano threefolds V → F(1, 2) and so these fail to be
stably rational.

7.3. d(V ) = 14, h1,2(V ) = 9. The third case is the double cover of P3

blown up at a point, with anticanonical branch locus B meeting the
exceptional divisor transversally. These conic bundles were addressed
in §6.2 as singular quartic double solids.

7.4. d(V ) = 12, h1,2(V ) = 8. The fourth case is a double cover

V → P1 × P1 × P1

branched over a divisor of degree (2, 2, 2). These depend on 27−1−9 =
17 parameters. For each projection onto P1 × P1 we obtain a conic
bundle, with discriminant D of bidegree (4, 4). Note that this is not
general; it has equation

D = {det(M) = 0}, M =

(
M11 M12

M12 M22

)
,

with

M11,M12,M22 ∈ Γ(OP1×P1(2, 2)).

This may be interpreted geometrically: the K3 double cover

B → P1 × P1

has Picard group

Π :=

E1 E2 E3

E1 0 2 2
E2 2 0 2
E3 2 2 0

Regarding D as a curve on B, we may write D ≡ 4(E1 + E2). The
curves E3 and 2(E1 + E2) − E3 are conjugate under the involution
associated with the first two factors, which fixes D. Thus E1 +E2−E3

restricts to a two-torsion divisor η on D, which classifies the double
cover D′ → D.

Given that D is not general in its linear series, the techniques of §2
do not apply directly. Clearly the monodromy cannot act transitively
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on the non-trivial two-torsion of D, as there is a distinguished element
η. Keeping track of what happens to η as D  D1∪D2 can be delicate.

The quickest proof that the very general V → P1 × P1 × P1 fails to
admit a decomposition of the diagonal is via degeneration of the branch
locus. Let B0 ⊂ P3 denote a quartic surface with nodes n1, n2, n3 and

minimal resolution B̃0. Let h denote the pullback of the polarization
and R1, R2, R3 the exceptional divisors over n1, n2, n3:

h R1 R2 R3

h 4 0 0 0
R1 0 −2 0 0
R2 0 0 −2 0
R3 0 0 0 −2

Note that R0 = h − R1 − R2 − R3 is also a smooth rational curve in
B̃0. We can embed Π naturally into this lattice:

E1 = h−R2 −R3, E2 = h−R1 −R3, E3 = h−R1 −R2.

These reflect elliptic fibrations induced by pencils of planes in P3 pass-
ing through two of the three nodes. Note that

Ei = R0 +Ri, i = 1, 2, 3,

which means that each elliptic fibration admits a fiber of Kodaira type
I2 containing R0 as a component.

The connection between B0 ⊂ P3 and (2, 2, 2) K3 surfaces in P1 ×
P1 × P1 goes further. There is a birational map

P3 99K P1 × P1 × P1,

where the map onto each factors is given by the pencil of planes through
a pair of nodes of B0. This maps B0 birationally onto a (2, 2, 2) nodal
K3 surface B◦, as R0 is in the fiber of each of the elliptic fibrations.
Conversely, general nodal (2, 2, 2) surfaces B◦ ⊂ P1 × P1 × P1 yield
quartic surfaces with three nodes. To summarize:

Lemma 8. General double solids V0 → P3 branched over a quartic
surface with three nodes yield double covers V◦ → P1×P1×P1 branched
over a nodal (2, 2, 2) surface, and vice versa.

Voisin [Voi15, Th. 1.1] has shown that a double solid branched over a
very general quartic surface with r ≤ 7 nodes fails to admit an integral
decomposition of the diagonal. Thus the same holds for a double cover
of P1 × P1 × P1 branched over a very general (2, 2, 2) surface. We
conclude that such threefolds fail to be stably rational.
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49(2):371–397, 2016.

[Gro71] Revêtements étales et groupe fondamental. Lecture Notes in Mathemat-
ics, Vol. 224. Springer-Verlag, Berlin-New York, 1971. Séminaire de
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