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Abstract. We discuss several constructions of universal torsors over rational surfaces.

1. Universal torsors and Cox rings

1.1. Motivating Example. All fields are supposed to be of characteristic 0.
__Let X/K be a quintic Del Pezzo surface over a number field K. We have
X = X3 = Blp, p,,p,,p, P?, i.e. geometrically, X is the blow-up of P? in four
points in general position. Without loss of generality, we may assume that

P, =11,0,0], P =1[0,1,0], Ps = [0,0,1], Py = [1,1,1].
Theorem 1 (Enriques, Swinnerton-Dyer). Even in the non-split case,
X(K) #0.
Proof. See [Sko93]. O
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Since there is a unique projectivity taking arbitrary generic points Py, P», P3, P4
(i-e., distinct and no three of them collinear) to [1,0,0],...,[1,1, 1] as above,
the geometry behind this over K is (where P5; € X is the point we want to
describe):

X =SLs\\{(Py,..., P5) € P?*}

xry T2 T3 T4 Ts

=SLs\\ |v1 v vs wa us|//G,.
21 Z2 23 24 X5

Consider the Grassmannian of 3-dimensional subspaces of 5-dimensional
space Gr(3,5). Since such a subspace is described by a basis which is unique
only up to an action of GL3, we have GL3\\M (3 x 5) = Gr(3,5), where
we interpret the three rows of a 3 x 5 matrix as a basis. This implies that
SL3 \\M (3 x 5) is the cone over this Grassmannian.

Therefore, X = Cone(Gr(3,5))//G>,. Here, Gr(3,5) is embedded into P? by
the Pliicker embedding.

The “miracle” is that this generalizes to non-closed fields.

Remark 2. The permutation group S5 of the five points acts on the situation,
and actually Aut(X) = Ss.

Descent data for X is given by representations p : Gal(K/K) — S5. Let T,
be the nonsplit form of G3, corresponding to p. In fact, X is Cone(Gr(3,5))//T).

1.2. Universal torsors. Let X be a smooth projective variety over K.
Assume Pic(X) is free of rank r. Let Tx be the Néron-Severi torus, i.e., its
character group is x*(T'x) = Pic(X).

Definition 3. A universal torsor % is a Tx-principal homogeneous space
T, —— U
X

so that given an element A € x*(Tx) (i.e., A : Tx — Gy,), then .Z =
2\ — {0-section} as G,,-bundles over X. Here, . € Pic(X) is the line bundle
associated to A by x*(Tx) = Pic(X), and .#) is the associated bundle to the
principal bundle %4 — X induced by the representation .

Ezample 4. 1. Let X = P". Then % = A""! — {0} is the corresponding
universal torsor with the torus acting diagonally. We have % /G,,, = X = P".
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2. Let X be the quintic Del Pezzo surface as above with the action of
Tx on Cone(Gr(3,5)). Then the universal torsor % is the open subset of
Cone(Gr(3,5)) on which T'x acts freely.

The abstract approach to universal torsors is as follows: Choose a minimal
set Z1, ..., 2, generating Pic(X) over Z. Denote .Z; — {0-section} by .. Let
U =L % x LX Then Tx — % — X is a Tx-principal bundle defining
the universal torsor.

However, this abstract definition is not very useful, e.g., for number theoretic
applications.

Remark 5. Over non-closed fields, we may not be able to descend the univer-
sal torsor % .

For example, consider a non-split conic X. It is geometrically isomorphic
to P, but it has no line bundle isomorphic to @p: (1) over the ground field. It
only has line bundles of even degree, so there cannot exist a universal torsor
over the ground field.

1.3. Total coordinate rings / Cox rings.

Definition 6. Let X be a projective variety with properties as above. Let
A, ..., % be a basis of Pic(X). Then the Cox ring of X is defined as

Cox(X)= P TIXL"@ 2L

Properties of Cox(X) are:

1. It is graded by Pic(X): for A € x*(Tx) = Pic(X), the part of degree X is
given by Cox(X)y =T'(X,.%)).

2. The torus Tx acts naturally on Cox(X): For t € Tx, s € Cox(X),, this
action is given by t(s) := A(t) - s.

3. Cox(X) is independent of the choice of generators .%; of the Picard group.
Given two sets of generators .Z; and ./, the induced isomorphism of rings
is canonical only up to the action of the torus Tx. The reason is that the
isomorphism depens on a choice of isomorphisms

L2 4" ® --#4',je{l,...,r}.

However, such an isomorphism is not canonical: .#; has automorphisms
given by scalar multiplication. For details, see [HT04].

The existence of non-trivial automorphisms makes the descent of uni-
versal torsors an interesting question.
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4. The graded pieces of Cox(X) which are non-zero correspond to effective
divisors on X.

The Cox ring does not need to be finitely generated:

Ezample 7 (Mukai). Let X = Blp,_p, P! be the blowup of projective
space in n points in general position. If 1 + 1 + —L~ > 1, then Cox(X) is not
finitely generated (i.e., for P?: n > 9; for P3: n > 8). Details can be found in
[Muko01].

However, it is finitely generated if one of the following conditions is true:

1. The cone of effective divisors NE(X) is generated by a finite collection of
semi-ample line bundles (e.g., X = G/P where P is parabolic subgroup
of an algebraic group G).

2. X is (log) Fano of dimension < 3.

3. X is toric. In this case, for X — GImX = |JI| D; where the D; are
subvarieties of codimension 1, and s; € I'(€x(D;)) is non-zero, then
Cox(X) = K|[s1,...,8N].

1.4. Relations between universal torsors and Cox rings. From now
on, assume that Cox(X) is finitely generated. Let ¥ = Spec(Cox(X)). It is
affine with T'x-action Tx x ¥ — ¥. Fix an open subset % on which Tx acts
freely. The basic fact is that % is a T'x-principal bundle over X:

Tx — %

|

X

and % is a universal torsor.

The punchline is that this way, the universal torsor % is naturally a quasi-
affine variety. Therefore, giving equations for % is equivalent to giving genera-
tors and relations for Cox(X). This can be done by algebro-geometric methods,
which may be seen as an improvement to the existing number theoretic method
to calculate universal torsors.

To sketch a proof of these results, observe that X is naturally a Geometric
Invariant Theory quotient (¥ //Tx)x (by Keel-Hu, [HKO0O0]) after specifying a
linearization A € x*(T'x) so that %) is an ample line bundle on X.

Note that we need to mix affine invariant theory and the usual projective
Geometric Invariant Theory to interpret (¥ //T'x)x: First take the affine quo-
tient under the action of ker(\), which gives an affine variety. Then take Proj
using the grading coming from the character .
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Then Proj(6B,,~, Cox(X)nr) = (¥//Tx)» by Geometric Invariant Theory.
The left hand side is Proj(€D,,-, (X, £>")), which is just X since %) is
ample. B

A second observation is that given A € x*(Tx), i.e., A : Tx — Gy, the
associated bundle induces f;l. Therefore, it suffices to check the claim for
ample A.

We have an inclusion @, .., Cox(X),x — Cox(X) which induces a dominant

map ¥ — Cone(X C PV, .#)). Therefore, we have

Y — Cone(X C PY)

I I

U ——— (Cone(X C PV)—{0}) = (£ 1>

The point is: One gets hold of the universal torsor by embedding it into the
affine variety Spec(Cox(X)).

2. Equations of universal torsors

From now on, let X be a smooth projective variety over on algebraically
closed field K of characteristic 0 with Pic(X) = Z" whose Cox ring is finitely
generated. Therefore, the cone of effective divisors NE(X) is finitely generated.

2.1. The method of Colliot-Théléne and Sansuc. This approach to the
calculation of Cox rings can be found in [CTS87].

On X, choose effective divisors D1, ..., Dy generating Pic(X). Let W =
X\(DyU---UDy. Since removing these generators kills the Picard group,
Pic(W) = 0.

We have an exact sequence

N
0— K[W]*/K* — @D ZD; — Pic(X) — 0

Jj=1

where K [W]*/K* describes the linear equivalences among {D1,...,Dx}.
Dualizing this sequence by applying Hom(-, G,,), we obtain

1—>TX—>G,]X1>RW—>1.
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Remark 8. A morphism ¢ : Z — Ry gives a T'x-torsor:

Tx —= G Xpy Z > q ' (p(2))
VA > z

The strategy is to construct a T'x-torsor % over W which extend to a
universal torsor over X. This strategy works well in many cases, but not in
general.

The morphism ¢ : W — Ry is constructed by constructing a splitting o to
the quotient

Note that o induces a K-algebra homomorphism
K[Rw] = K[ti, 7" tn—p I3, = K[W], 1y = a(t),

where the ¢; form a basis for x*(Rw) and r = Rank(Pic(X)). Since Ry is
affine, such a homomorphism corresponds to a K-morphism W — Ry, which
defines .

The key fact is that the morphism ¢ extracted from o gives a torsor Ty —
Uw — W on W admitting an extension to a universal torsor Ty — % — X
over X.

Tx —— Yw ~ Tx — U
w X

An explicit method for constructing such an extension is not known. Only the
existence is proven in [CTS87].

Remark 9 (Batyrev). Given a point P € W, we get a natural splitting op :
K[W]*/K* — K[W]*: for every element of K[W]*/K™*, choose a representing
f satistfying f(P) = 1.

2.2. The example of the quintic Del Pezzo surface. Let X =Blp . p, P2
be again the blow-up of P? in
P, =11,0,0], P =1[0,1,0], Ps = [0,0,1], Py = [1,1,1].

We will see how to obtain the Pliicker equations defining the universal torsor
by this method.
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Consider the exceptional divisors F; and the transforms [;; of the lines
through P; and P; (i # j € {1,...,4}). Choose coordinates [z,y, z] and let
u=—-.0v= ;

Consider

div(u = .T/Z) =log + F3 —l1o — E4
div(v =y/2) = li3 + E3 — l12 — By
le(u — 1) = l24 + E4 — 112 — El
diviv—1)=ligs+ Es —lia — E»
div(u—v) =lgy+ 3+ FEy —li1o— FE1 — Ey
Next, we normalize these functions by constructing a section op from a chosen
point, say P = [3,2,1]. This gives a morphism ¢ : W — Ry, as above.

Consider the sections \;; corresponding to /;; and 7; to E;. Using the nor-

malization, we obtain:

3 A’ 2 A’ 2 dom’ A’ C Aemne
Then the relations between the sections u,v,u —1,v—1,u — v give relations
between the sections \;;, n;:

w  Aasmz v Aigmz u—1 Ao A _ A3am3ma
= = v—1l="—, u—v=_—"—o-—

u v
3§ - 25 =u—v ~  —(BXag)n2+ (2 \i3)m + Azama =0

2-=(@w—-1)+1 ~ A — (2 i3)n3 + A2 =0

N

2u—1

—(=1=u—v ~ sz —(2X2a)m + Aam =0

U u—1
3= 2 ) +1 ~ (2Xa)na — (BA23)ns + A2 =0

—(’U, — ’U) + v(u - 1) - (’U - 1)’(1, =0 ~> )\12)\34 — (2)\13)(2)\24) + (3)\23))\14 =0

Replacing 3)Xa3,2M\13, 224 by new variables exactly gives the Pliicker rela-
tions.

3

2.3. The Cox ring approach. Consider a different example:
X = Blp, p,.p, P? where P, = [1,0,0], P, = [1,1,0], P3 = [0, 1,0],

i.e., X is the blow-up of P? in three points lying on a line. Let 123 be the
transform of this line.
Basic facts on X are:

1. NE(X) = (l123, E1, F2, E3) is a simplicial cone, i.e., there are no relations
between its generators. Therefore, the previous method does not work.
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We have W = X — {E, Es, E3,l123} = A2, and X is an equivariant
compactification of G2, acting on A? by translation.
2. The ample cone, which is the dual of the effective cone, is generated by

{lias + E1 + E> + E3,l123 + B\ + Es, lias + Ey + E3,li23 + Es + E3}.

3. The anticanonical divisor — K x is nef and big. Therefore, X is (log) Del
Pezzo.

Next, we are looking for generators and relations of Cox(X). Generators are
A123 € F(ﬁx (1123)) - COX(‘X)[123 which is vanishing exactly along l123, and
n; € F(ﬁx(EJ)) - COX(X)Ej for j € {172,3}.

These sections do not generate the Cox ring — in cases where they generate
it, the method of Colliot-Théléne works well, but not here. We must choose
additional generators: I'(€x(l123 + E1 + E2)) corresponds to linear forms in
x,y, z vanishing at P3, i.e., it is K2 = (z,2). Besides A1237172, which can be
identified as z, we can choose another section {3 such that &3n3 = —x.

Similarly, we have & € F(ﬁx (1123 + Fy + E3)) such that y = &n1 and
52 S F(ﬁx(llgg + E1 + Eg)) such that x — Yy = 52772.

This gives a homomorphism

Y K[ M2, m1,m2, 13, €15 €2, §3] /(m&r + n2ba +n383) — Cox(X),

and since the dimension of both of these is 6 (dim(X) = 2 and Rank(Pic(X)) =
4), it is reasonable to hope that this is an isomorphism.

Remark 10. Then n1& + n2€2 + 133 is the equation of the universal torsor
Tx — % — X in the sense that

U C V= Spec K[Ai23,m1, M2, 13, &1, &2, &3]/ (m&r + m2e + 1383).

Strategy of the proof. First, consider v in degrees v corresponding to a nef line
bundles on X. Such line bundles are semi-ample and in this case even globally
generated. By induction on the effective monoid or by application of a vanishing
theorem, we can prove that 1 is surjective in these nef degrees.

In degrees v corresponding to not necessarily nef divisors v, we reduce to
the nef case the following way: Given s € Cox(X), = I'(X,.%,), there exists
a nef line bundle m, a section p € Cox(X),, and a,bi,bs,b3 € Z>o so that
s = u/\‘f%nll“ng? ng?’. This follows from the geometric fact that, given effective
D on X, we can write D = M + F for a base point free divisor M and a fixed
divisor F' supported in {1123, El, EQ, Eg} O
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