
Characterizing projective spaces on deformations of
Hilbert schemes of K3 surfaces

DAVID HARVEY
Courant Institute

BRENDAN HASSETT
Rice University

AND

YURI TSCHINKEL
Courant Institute

Abstract

We seek to characterize homology classes of Lagrangian projective spaces em-
bedded in irreducible holomorphic-symplectic manifolds, up to the action of the
monodromy group. This paper addresses the case of manifolds deformation-
equivalent to the Hilbert scheme of length-three subschemes of a K3 surface.
The class of the projective space in the cohomology ring has prescribed intersec-
tion properties, which translate into Diophantine equations. Possible homology
classes correspond to integral points on an explicit elliptic curve; our proof en-
tails showing that the only such point is two-torsion. c© 2000 Wiley Periodicals,
Inc.

1 Introduction

Let X be an irreducible holomorphic symplectic manifold, i.e., a compact Kähler
simply-connected manifold admitting a unique nondegenerate holomorphic two-
form. Let (,) denote the Beauville–Bogomolov form on the cohomology group
H2(X ,Z), normalized so that it is integral and primitive. When X is a K3 surface
this coincides with the intersection form. In higher dimensions, the form induces
an inclusion

(1.1) H2(X ,Z)⊂ H2(X ,Z),

which allows us to extend (,) to a Q-valued quadratic form.
Lagrangian projective spaces play a fundamental rôle in the birational geometry

of these classes of manifolds. If X contains a holomorphically embedded projective
space Pdim(X)/2 we can consider the Mukai flop of X , obtained by blowing up the
projective space and blowing down the exceptional divisor

E ' P(Ω1
Pdim(X)/2)
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along the opposite ruling. Our goal is to characterize possible homology classes of
such submanifolds, modulo the monodromy representation on the cohomology of
X .

Assuming X contains a Lagrangian projective space Pdim(X)/2, let ` ∈H2(X ,Z)
denote the class of a line in Pdim(X)/2, and λ = N` ∈ H2(X ,Z) a positive integer
multiple. We can take N to be the index of H2(X ,Z)⊂H2(X ,Z). Hodge theory [19,
24] shows that the deformations of X containing a deformation of the Lagrangian
space coincide with the deformations of X for which λ ∈H2(X ,Z) remains of type
(1,1). Infinitesimal Torelli implies this is a divisor in the deformation space, i.e.,

λ
⊥ ⊂ H1(X ,Ω1

X)' H1(X ,TX).

We seek to establish intersection theoretic properties of ` for various deformation-
equivalence classes of holomorphic symplectic manifolds. Previous results in this
direction include

(1) If X is a K3 surface then (`,`) =−2.
(2) If X is deformation equivalent to the Hilbert scheme of length-two sub-

schemes of a K3 surface then (`,`) =−5/2. [11]
(3) If X is deformation equivalent to a generalized Kummer fourfold then

(`,`) =−3/2. [12]
Here we prove

Theorem 1.1. Let X be a six-dimensional Kähler manifold, deformation equivalent
to the Hilbert scheme of length-three subschemes of a K3 surface. Let P3 ⊂ X be
a smooth subvariety and ` ⊂ P3 a line. Then (`,`) = −3 and ρ = 2` ∈ H2(X ,Z).
Furthermore, we have [

P3] =
1

48
(
ρ

3 +ρ
2c2(X)

)
.

This uniquely characterizes the class of the Lagrangian plane, modulo the mono-
dromy action, which acts transitively on the ρ ∈ H2(X ,Z) with (ρ,ρ) = −12 and(
ρ,H2(X ,Z)

)
= 2Z [9, §3].

In general, we conjectured in [13] that if X is of dimension 2n then

(`,`) =−(n+3)/2,

if X is deformation equivalent to a Hilbert scheme of a K3 surface. Our main
motivation for making these conjectures is to achieve a classification of extremal
rational curves on irreducible holomorphic symplectic varieties (i.e., generators of
extremal rays of birational contractions) in terms of intersection properties under
the Beauville-Bogomolov form.

The structure of this paper is as follows: Section 2 reviews the cohomology
groups of Hilbert schemes of K3 surfaces; Section 3 focuses on the ring structure.
We employ representation theory to get results on the Hodge classes in Section 4.
The Hilbert scheme of length-three subschemes is studied in detail in Section 5.
We extract the distinguished absolute Hodge class in the middle cohomology in
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Section 6. Here ‘absolute Hodge classes’ are classes that remain Hodge under
arbitrary deformations of complex structure; their span is stable under the mono-
dromy representation, which is why we use this terminology (cf. [4, p. 28]). The
computation of the class of the Lagrangian three planes is worked out in Section 7,
modulo a number theoretic result. This is proved in Section 8.

2 Cohomology of Hilbert schemes

Let X be deformation equivalent to the punctual Hilbert scheme S[n], where S is
a K3 surface. For n > 1 the Beauville-Bogomolov form can be written [1, §8]

H2(X ,Z)' H2(S,Z)(,)⊕⊥Zδ , (δ ,δ ) =−2(n−1)

where 2δ is the class of the ‘diagonal’ divisor ∆[n] ⊂ S[n] parameterizing nonre-
duced subschemes. For each cohomology class f ∈ H2(S,Z), let f ∈ H2(X ,Z)
denote the class of the locus parameterizing subschemes with some support along
f . This is compatible with the lattice embedding above. Duality gives a Q-valued
form on homology

H2(X ,Z)' H2(S,Z)(,)⊕⊥Zδ
∨,

(
δ
∨,δ∨

)
=− 1

2(n−1)
,

where δ∨ is characterized as the homology class orthogonal to H2(S,Z) and satis-
fying δ∨ ·δ = 1.

Theorem 2.1. [8] Let S be a K3 surface and S[n] its Hilbert scheme. Consider the
Poincaré polynomial

p(S[n],z) =
4n

∑
j=0

β j(S[n])z j,

where β j(S[n]) denotes the jth Betti number of S[n]. Then
∞

∑
n=0

p(S[n],z)tn =
∞

∏
m=1

(1− z2m−2tm)−1(1− z2mtm)−22(1− z2m+2tm)−1.

To save space, we write

q(S[n],z) =
n

∑
j=0

β2 jz j,

which determines the Poincaré polynomial by Poincaré duality. We have

q(S,z) = 1+22z
q(S[2],z) = 1+23z+276z2

q(S[3],z) = 1+23z+299z2 +2554z3.

A theorem of Verbitsky [23, Theorem 1.5] asserts that the homomorphism aris-
ing from the cup product

µk,n : SymkH2(S[n],Q)→ H2k(S[n],Q)
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is injective for k ≤ n. Thus its image has dimension(
22+ k

k

)
.

In light of the computations above, µ2,2 is an isomorphism, µ2,3 has cokernel of
dimension 23, and µ3,3 has cokernel of dimension

2554−
(

25
3

)
= 254 =

(
23
2

)
+1.

The cup product also induces a homomorphism

coker(µ2,3)⊗H2(S[3],Q)→ coker(µ3,3).

This homomorphism has been observed by Markman [16, p. 80]. More generally,
he analyzes what classes are needed to generate the cohomology ring H∗(S[n],Q),
beyond those coming from H2(S[2],Q). Markman uses Chern classes of universal
sheaves over the product S[n]×S; a detailed discussion of the n = 3 case is given in
[16, Ex. 14].

3 The ring structure on cohomology

Lehn-Sorger [15] and Nakajima [18] described H∗(S[n],Q) in terms of H∗(S,Q).
We review the Lehn-Sorger formalism for the cup product on the cohomology ring.

Let S be a K3 surface and A = H∗(S,Q)(1), the cohomology ring shifted so that
it has weights −2,0, and 2; this is written as H∗(S,Q)[2] in their paper. Shifting
the weights changes the sign of the intersection form, which is denoted by 〈,〉; this
has signature (20,4). Let T : A →Q denote the linear form

γ 7→ −
∫

S
γ

and 〈,〉 the induced bilinear form

〈γ1,γ2〉= T (γ1γ2) =−
∫

S
γ1γ2.

For each n ∈ N, we endow A⊗n with an analogous structure. We shall use the
fact that A has only graded pieces of even degrees to simplify the description in
[15]. In this situation, graded commutative multiplication rules are in fact commu-
tative, given by the rule

(a1⊗·· ·⊗an) · (b1⊗·· ·⊗bn) = (a1b1)⊗·· ·⊗ (anbn).

The linear form
T : A⊗n →Q

is defined by
T (a1⊗·· ·⊗an) = T (a1) · · ·T (an).

Let 〈,〉 denote the associated bilinear form

〈a,b〉= T (a ·b).
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The symmetric group Sn acts on A⊗n by the rule

π(a1⊗·· ·⊗an) = aπ−1(1)⊗·· ·⊗aπ−1(n).

Given a partition n = n1 + . . .+ nk with n1, . . . ,nk ∈ N, we have a generalized
multiplication map

A⊗n → A⊗k

a1⊗·· ·⊗an 7→ (a1 · · ·an1)⊗·· ·⊗ (an1+···+nk−1+1 · · ·an1+···+nk).

Given a finite set I ⊂ {1, . . . ,n}, let A⊗I denote the tensor power with factors
indexed by elements of I. Given a surjection φ : I → J, there is an induced multi-
plication

φ
∗ : A⊗I → A⊗J

defined as above. Let
φ∗ : A⊗J → A⊗I

denote the adjoint of φ ∗, i.e.,

〈φ ∗a,b〉= 〈a,φ∗b〉
for a ∈ A⊗I and b ∈ A⊗J .

We have the composite
A ∆∗→ A⊗A → A,

where the first map is adjoint comultiplication and the second is multiplication. Let
e := e(A) denote the image of 1 under the composed map.

Remark 3.1. We evaluate the signs of ∆∗1 and e(A). Let ∆S denote the fundamental
class of the diagonal in H∗(S× S,Z) = H∗(S,Z)⊗H∗(S,Z). Using the adjoint
property, we have

〈∆∗1,α ⊗β 〉 = 〈1,αβ 〉
= T (αβ )
= −

∫
S αβ

whereas
〈∆S,α ⊗β 〉 =

〈
∑ j e j ⊗ e∨j ,α ⊗β

〉
= ∑ j T (e jα)T (e∨j β )
=

∫
S αβ ,

where {e j} is a homogeneous basis for H∗(S,Q) with Poincaré-dual basis e∨j .
Therefore, we find

(3.1) ∆∗1 =−[∆S].

Furthermore, we have∫
S

e(A) =−T (e(A)) =−〈e(A),1〉=−〈∆∗1,∆∗1〉=−χ(S) =−24,

so e(A) is a negative multiple of the point class. Nevertheless, we still have (cf.
[15, §2.2])

e(A) = χ(S)vol, where T (vol) = 1,
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but vol differs from the standard volume form by sign.

Let 〈π〉\[n] denote the set of orbits of [n] = {1,2, . . . ,n} under the action of
π ∈Sn. Set

A{Sn}=⊕π∈SnA⊗〈π〉\[n] ·π
which admits an action of Sn. First, note that σ ∈Sn induces a bijection

σ : 〈π〉\[n] →
〈
σπσ−1

〉
\[n]

x 7→ σx.

Thus we obtain an isomorphism

σ̃ : A{Sn} → A{Sn}
aπ 7→ σ∗(a)σπσ−1.

Example 3.2. [15, §2.9, 2.17] We have A{S2}= A⊗2id⊕A(12) and

A{S3}= A⊗3id⊕A⊗2(12)⊕A⊗2(13)⊕A⊗2(23)⊕A(123)⊕A(132).

Let A[n] ⊂ A{Sn} denote the invariants under this action. Then we have [15,
§2]

A[n] = ∑
‖α‖=n

⊗
i

SymαiA,

where α corresponds to a partition

1+ · · ·+1︸ ︷︷ ︸
α1 times

+2+ · · ·+2︸ ︷︷ ︸
α2 times

+ · · ·

and
n = ‖α‖= α1 +2α2 + · · ·+nαn.

Note that this is compatible with Hodge structures; in particular, A[n] is a represen-
tation of the Hodge group of S and the special orthogonal group GS associated with
the intersection form on H2(S,R). We interpret this as acting on A, trivially on the
summands H0(S,R) and H4(S,R).

Theorem 3.3. [15, Theorem 1.1] Let S be a K3 surface. Then there is a canonical
isomorphism of graded rings

(H∗(S,Q)[2])[n] ∼→ H∗(S[n],Q)[2n].

In the cohomology of the Hilbert scheme, the subring generated by H2(S[n])
plays a special role. We have an isomorphism

H2(S[n],Z) = H2(S,Z)⊕Zδ ,

where 2δ parameterizes the non-reduced subschemes of S. We express this in terms
of our presentation. Given D ∈ H2(S,Z), the class

n

∑
i=1

1{1}⊗·· ·⊗1{i−1}⊗D{i}⊗1{i+1}⊗·· ·⊗1{n}(id)
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is the corresponding class in H2(S[n],Q)[2n]. Using the explicit form of the isomor-
phism in [15, §2.10 (2.7)] and Nakajima’s correspondence (the isomorphism Ψ in
[15, Thm. 3.5]), we find that

δ = ∑
1≤i< j≤n

1{1}⊗. . .⊗1{i−1}⊗1{i, j}⊗1{i+1}⊗·· ·⊗1{ j−1}⊗1{ j+1}⊗·· ·⊗1{n}(i j).

Here is the essence of the computation: the interpretation of the nonreduced sub-
schemes via the correspondence

Z2 = {(ξ ,x,ξ ′) : |ξ ′|− |ξ |= 2x} ⊂ S[n−2]×S×S[n]

allows us to express δ in terms of Nakajima’s creation and annihilation operators,
and thus in

H∗(S[n],Q)[2n].
We describe the general rule for evaluating the fundamental class in A[n]. Let

[pt] ∈ H4(S,Z)[2]⊂ A

be the point class, which is of degree −2. Let

[pt]{1}⊗·· ·⊗ [pt]{n}(id) ∈ A[n]

denote the unique class of degree −2n up to scalar. Then the class of a point in S[n]

is equal to [15, §2.10]

(3.2) [ptS[n] ] = n![pt]{1}⊗·· ·⊗ [pt]{n}(id).

4 Decomposition of the cohomology representation

We summarize general results on representations of complex (or split) orthog-
onal groups. Consider the orthogonal group of odd dimension 2r + 1, i.e., one
associated with a quadratic form of rank 2r + 1. Let V (λ ) denote the representa-
tion with highest weight λ = (λ1, . . . ,λr), where λ is a vector consisting entirely
of integers (or half integers) in the fundamental chamber

{λ1 ≥ λ2 ≥ . . .≥ λr−1 ≥ λr ≥ 0}.
For orthogonal groups of even dimension 2r, we also use V (λ ) to denote the rep-
resentation of highest weight λ , taken from the fundamental chamber

{λ1 ≥ λ2 ≥ . . .≥ λr−1 ≥ |λr| ≥ 0}.
We only consider representations where the λ j are integers.

Recall that
• V (1,0, . . .) is the standard representation V .
• We have

V (1, · · · ,1︸ ︷︷ ︸
k times

,0, · · ·) =
k∧

V,

provided k < r (in the even case) or k≤ r (in the odd case); see, for instance,
[7, Thms. 19.2 and 19.14].
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• V (k,0, . . .) = Symk(V )/Symk−2(V ), embedded via the dual to the qua-
dratic form on V .

• For the odd orthogonal group, we have

dimV (λ ) = ∏
i< j

`i− ` j

j− i ∏
i≤ j

`i + ` j

2n+1− i− j

where `i = λi +n− i+ 1
2 [7, p. 408].

• For the even orthogonal group, we have

dimV (λ ) = ∏
i< j

`2
i − `2

j

( j− i)(2n− i− j)

where `i = λi +n− i [7, p. 410].
• Let VX(λ ) denote an irreducible representation of an orthogonal group GX

of dimension 2r+1, GS ⊂GX the orthogonal subgroup of dimension 2r fix-
ing a non-isotropic vector, and VS(λ ) the representation of GS with highest
weight λ . Then we have the branching rule [7, p. 426]

ResGX
GS

VX(λ ) =⊕
λ
VS(λ ),

where the sum ranges over all λ with

λ1 ≥ λ 1 ≥ λ2 ≥ λ 2 ≥ ·· ·λr ≥ |λ r|,

with the λi and λ i simultaneously all integers or half-integers.

Let X be a generic deformation of S[n], where S is a K3 surface. Our goal is
to decompose H∗(X ,Q) into irreducible representations for the action of the iden-
tity component GX of the special orthogonal group associated with the Beauville-
Bogomolov form on H2(X ,Q). Let GS denote the identity component of the special
orthogonal group associated with the intersection form on H2(S,Q). The decom-
position

H2(S[2],Z) = H2(S,Z)⊕⊥Zδ

induces an inclusion GS ⊂ GX .

Proposition 4.1. Let X be deformation equivalent to S[n] for some n, where S is a
K3 surface. Then GX admits a representation on the cohomology ring of X.

Proof. Let Mon ⊂ Aut(H∗(X ,Z)) denote the monodromy group, i.e., the group
generated by the monodromy representations of all connected families containing
X . Let Mon2 ⊂ Aut(H2(X ,Z)) denote its image under projection to the second
cohomology group, so we have an exact sequence

1 → K → Mon → Mon2 → 1.

Markman has shown [17, §4.3] that K is finite.
Note that GX is a connected component of the Zariski closure of Mon2 (see,

for example [17, §1.8]). Since Mon and Mon2 differ only by finite subgroups, it
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follows that the universal cover G̃X →GX acts on the cohomology ring of X . Since
the cohomology of X is nonzero only in even degrees, this representation passes to
GX . �

In principle, we can decompose H∗(X ,R) explicitly into isotypic components
as follows:

(1) Fix an embedding GS ⊂ GX , e.g., using the isomorphism

H2(X ,Z)' H2(S,Z)⊕⊥Zδ ,

and compatible maximal tori (both of which have rank 11).
(2) Identify the highest-weight irreducible GS-representation VS(λ )⊂H∗(S[n],R),

which is a summand of the restriction of an irreducible VX(λ )⊂H∗(X ,R).
Decompose VX(λ ) into irreducible GS-representations.

(3) Repeat step two for H∗(X ,R)/VX(λ ) and subsequent quotients.

First consider X = S[2]. We have decompositions

H∗(S[2]) = A⊕Sym2(A)

inducing

H2(S[2]) = H0(S)⊕ (H0(S)⊗H2(S)) = 1S⊕VS(1,0, . . .)
H4(S[2]) = H2(S)⊕ (H0(S)⊗H4(S))⊕Sym2(H2(S))

= VS(1,0, . . .)⊕1⊕2
S ⊕VS(2,0, . . .),

where 1S is the trivial irreducible representation. Let VX(2,0, . . . ,0) denote the
highest-weight representation associated to Sym2(H2(X)) so that

Sym2(H2(X)) = VX(2,0, . . .)⊕1X .

The branching rule gives

VX(1,0, . . .) = VS(1,0, . . .)⊕1S

and

VX(2,0, . . .) = VS(2,0, . . .)⊕VS(1,0, . . .)⊕1S.

Therefore we obtain

H2(X) = VX(1,0, . . .)
H4(X) = VX(2,0, . . .)⊕1X .

Now consider X = S[3]. We have

H∗(S[3]) = A⊕ (A⊗A)⊕Sym3(A)
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inducing the following decompositions (as described in [15, Example 2.9]):

H2(S[3]) = (H0(S)⊗2)⊕ (H2(S)⊗H0(S)⊗2)
= 1S⊕VS(1,0 . . .)

H4(S[3]) = H0(S)⊕ (H0(S)⊗H2(S))⊕2

⊕(Sym2(H2(S))⊗H0(S))⊕ (H4(S)⊗H0(S)⊗2)
= 1⊕3

S ⊕VS(1,0, . . .)⊕2⊕VS(2,0, . . .)
H6(S[3]) = H2(S)⊕ (H2(S)⊗H2(S))⊕ (H0(S)⊗H4(S))⊕2

⊕Sym3(H2(S))⊕ (H4(S)⊗H2(S)⊗H0(S))
= 1⊕3

S ⊕VS(1,0, . . .)⊕3⊕VS(1,1,0, . . .)
⊕VS(2,0, . . .)⊕VS(3,0, . . .).

Note that two of the trivial summands in H4(S[3]) lie in the decomposable classes,
i.e., the image of Sym2(H2(S[2])).

Let VX(1,1,0, . . .) =
∧2VX(1,0, . . .) and VX(3,0, . . .) denote the highest weight

representation in Sym3(VX(1,0, . . .)) so that

Sym3(VX(1,0, . . .)) = VX(3,0, . . .)⊕VX(1,0, . . .).

Therefore we obtain

H2(X) = VX(1,0, . . .)
H4(X) = VX(2,0, . . .)⊕VX(1,0, . . .)⊕1X
H6(X) = VX(3,0, . . .)⊕VX(1,1,0 . . .)⊕VX(1,0, . . .)⊕1X .

The trivial factor in H4(X) corresponds to the Chern class c2(X); indeed, c2(X)
is a Hodge class and is nonzero because c2(X)3 > 0 [5, Remark 5.5]. Note that
c2(X) is proportional to the trivial summand in Sym2(H2(X)) associated with the
Beauville-Bogomolov form, regarded as an object in the symmetric algebra over
H2(X).

Our main task is to analyze the trivial summand in H6(X).

5 Cohomology computations for length-three subschemes

The general rule for multiplication in A{Sn} is fairly complicated, so we will
only give a formula in the case (n = 3) we need. The fact that A only has terms of
even degree simplifies the expressions of [15, §2.17]:

(α{1,2}⊗β{3})(12) · (γ{1,3}⊗δ{2})(13) = αβγδ (132)
(α{1,2}⊗β{3})(12) · (γ{1,2}⊗δ{3})(12) = ∆∗(αγ)⊗ (βδ )(id)

α{1,2,3}(123) ·β{1,2,3}(123) = (αβe)(132)
α{1,2,3}(123) ·β{1,2,3}(132) = (∆∗(αβ )){1,2,3}(id),

where ∆∗ in the last line is the adjoint of the threefold multiplication A⊗A⊗A→A.
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The remaining products can be deduced as formal consequences using the as-
sociativity of the multiplication, e.g.,

(α{1,2}⊗β{3})(12) · γ{1,2,3}(132)
= (α{1,2}⊗β{3})(12) · (γ{1,2}⊗1{3})(12) · (13)
= (∆∗(αγ){1,2}⊗β{3})(id) · (1{1,3}⊗1{2})(13)
= αβγ(∆∗(1)){1,3},{2}(13),

where α,β , and γ act on the diagonal via either the first or second variable. Thus
in particular

(12) · (132) = (∆∗(1)){1,3},{2}(13).

We compute intersections among the absolute Hodge classes for S[3], i.e., classes
that are Hodge for general K3 surfaces S. From now on, to condense notation we
omit factors of the form 1{i},1{i, j}, etc. from our expressions.

Based on the representation-theoretic analysis in Section 4, we expect one inde-
pendent classes in codimension one, three in codimension two, and three in codi-
mension three. We have the unique divisor

δ = (12)+(13)+(23).

In codimension two, we have

P = [pt]{1}+[pt]{2}+[pt]{3}
Q = ∑

22
j=1 e j{1}⊗ e∨j {2}+ e j{1}⊗ e∨j {3}+ e j{2}⊗ e∨j {3}

R = (132)+(123).

We identify the linear combinations of P,Q, and R that are decomposable, i.e., lie
in the symmetric algebra generated by H2(S[3]). First, we have

δ 2 = (∆∗1){1,2}(12)+(∆∗1){1,3}(13)+(∆∗1){2,3}(23)
+ 3((132)+(123))

= −2P−Q+3R.

For the second decomposable class, we extract the intersection form on H2(S) in-
terpreted as an element in Sym2(H2(S)):

∑
22
j=1(e j{1}+ e j{2}+ e j{3}) · (e

∨
j {1}+ e∨j {2}+ e∨j {3})

= ∑
22
j=1(e j · e∨j {1}+ e j · e∨j {2}+ e j · e∨j {3})

+2∑
22
j=1 e j{1}⊗ e∨j {2}+ e j{1}⊗ e∨j {3}+ e j{2}⊗ e∨j {3}

= 22P+2Q.

We now isolate the class in Sym2(H2(S[3])) ⊂ H4(S[3]) corresponding to the
Beauville-Bogomolov quadratic form (,). Recall this generates the unique trivial
factor in the fourth cohomology, regarded as a representation of GX . As we saw
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in Section 2, the Beauville-Bogomolov form agrees with the intersection form on
H2(S)⊂ H2(S[3]) and (δ ,δ ) =−4. Thus we obtain

(5.1) 22P+2Q− 1
4

δ
2.

In codimension three, we have

U = [pt]{1,2}(12)+ [pt]{1,3}(13)+ [pt]{2,3}(23)
V = [pt]{3}(12)+ [pt]{2}(13)+ [pt]{1}(23)
W = ∑

22
j=1 e j{1,2}⊗ e∨j {3}(12)+ e j{1,3}⊗ e∨j {2}(13)+ e j{2,3}⊗ e∨j {1}(23).

Furthermore, we have

δ ·P = ((12)+(13)+(23)) · ([pt]{1}+[pt]{2}+[pt]{3})
= 2U +V

δ ·Q = ((12)+(13)+(23)) · (∑22
j=1 e j{1}⊗ e∨j {2}+ e j{1}⊗ e∨j {3}

+ e j{2}⊗ e∨j {3})
= 22([pt]{1,2}(12)+ [pt]{1,3}(13)+ [pt]{2,3}(23))

+2(∑22
j=1 e j{1,2}⊗ e∨j {3}+ e j{1,3}⊗ e∨j {2}+ e j{2,3}⊗ e∨j {1})

= 22U +2W
δ ·R = ((12)+(13)+(23))((132)+(123))

= 2(∆∗1{1,2},{3}(12)+∆∗1{1,3},{2}+∆∗1{2,3},{1})
= −2(U +V +W ).

We deduce then that

δ
3 = δ · (−2P−Q+3R) =−32U −8V −8W

and
δ · (22P+2Q) = 88U +22V +4W.

Finally, we compute the intersection pairing on the subspace of the middle co-
homology spanned by U,V, and W . Dimensional considerations give vanishing

U2 = V 2 = U ·W = V ·W = 0.

For the remaining numbers, we get

U ·V = ([pt]{1,2}(12)+ [pt]{1,3}(13)+ [pt]{2,3}(23))
·([pt]{3}(12)+ [pt]{2}(13)+ [pt]{1}(23))

= −3[pt]{1}⊗ [pt]{2}⊗ [pt]{3}id

and
W 2 = (∑22

j=1 e j{1,2}⊗ e∨j {3}(12)+ e j{1,3}⊗ e∨j {2}(13)+ e j{2,3}⊗ e∨j {1}(23))2

= −3 ·22 · [pt]{1}⊗ [pt]{2}⊗ [pt]{3}id.

Remark 5.1. As a consistency check, we evaluate

δ 6 = (−32U −8V −8W )2 = 26(8UV +W 2)
= 26(−24−66)[pt]{1}⊗ [pt]{2}⊗ [pt]{3}id.
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Using the formula for the point class (Equation 3.2), we obtain

δ
6 =−27 ·32 ·5

2 ·3
=−26 ·3 ·5.

This is compatible with the Fujiki-type identity

D6 = 15(D,D)3 , D ∈ H2(S[3],Q),

as (δ ,δ ) =−4.

6 Evaluation of the distinguished absolute Hodge class

Let S be a general K3 surface and X a general deformation of S[3]. The compu-
tations above show that the middle cohomology of X admits one Hodge class

H6(X ,Q)∩H3,3(X) = Qη

and the middle cohomology of S[3] admits three Hodge classes

H6(S[3],Q)∩H3,3(S[3]) = Qη ⊕Qδ
3⊕Qc2(X)δ .

Our goal is to compute the self-intersection of η , at least up to the square of a
rational number. Note that η is orthogonal to δ 3 and δc2(X) under the intersec-
tion form, by the analysis in Section 4. The analysis here gives the one structure
constant left open in [16, Ex. 14].

Proposition 6.1. Let X be deformation equivalent to S[3], for S a K3 surface. Let
η ∈H6(X ,Q) denote the unique (up to scalar) absolute Hodge class. Then η2 = 4.

Proof. The argument relies heavily on the analysis in Section 5. Consider the
decomposable classes in H6(S[3]), i.e., those coming from Sym3(H2(S[3])). We
have computed

δ
3 =−32U −8V −8W, δ · (22P+2Q) = 88U +22V +4W,

hence the subspace

span{32U +8V +8W,88U +22V +4W}= span{4U +V,W}

is spanned by decomposable classes. It has orthogonal complement spanned by
4U −V . Thus we have

η = 4U −V

and
η2 = −8UV

= 24([pt]{1}⊗ [pt]{2}⊗ [pt]{3})id
= 4.

�
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7 Proof of the main theorem

We compute the cohomology class of a Lagrangian subspace P3 ⊂ X , where X
is deformation equivalent to the Hilbert scheme of length-three subschemes. As
we shall see, the formula for [P3] involves only decomposable classes, and not the
absolute Hodge class η :

Lemma 7.1. Let Pn ⊂ X be embedded in a general irreducible holomorphic sym-
plectic variety of dimension 2n. Then we have

c2 j(TX |Pn) = (−1) jh2 j
(

n+1
j

)
,

where h is the hyperplane class.

This is proved using the exact sequence

0 →TPn →TX |Pn →NPn/X → 0

and
NPn/X 'T ∨

Pn ,

reflecting the fact that Pn is a Lagrangian subvariety of X .
Regarding

H2(X ,Z)⊂ H2(X ,Z)

as a subgroup of index four, we can express ` = λ/4 for some divisor class λ ∈
H2(X ,Z). (This might not be primitive.)

Given a deformation of X such that λ remains algebraic, the subvariety P3

deforms as well [10]. Without loss of generality, we can deform X to a variety
containing a P3, but otherwise having a general Hodge structure. In particular, we
have an injection

Sym(H2(X ,Q)) ↪→ H∗(X ,Q).

We expect to be able to write[
P3] = aλc2(X)+bλ

3 +dη

for some a,b,d ∈Q.
Furthermore, the Fujiki relations [6] imply that for each f ∈ H2(X ,Z),

f 6 = e0 ( f , f )3 , c2(X) f 4 = e2 ( f , f )2 , c4(X) f 2 = e4 ( f , f )

for suitable rational constants e0,e2,e4. Precisely, we have [5]

c2
2(X) f 2 =

5
2

c4(X) f 2.

The Riemann-Roch formula gives

χ(OX( f )) =
f 6

6!
+

c2(X) f 4

12 ·4!
+

f 2(3c2
2− c4)

720 ·2!
+4.
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On the other hand, we know that

χ(OX( f )) =
1

3!23 (( f , f )+8)(( f , f )+6)(( f , f )+4).

Perhaps the quickest way to check this formula is to observe that if X = S[3] and
f is a very ample divisor on S with no higher cohomology then the induced sheaf
OX( f ) has no higher cohomology and

dimΓ(OX( f )) = dimSym3(Γ(OS( f ))) =
(

χ(OS( f ))+2
3

)
.

Equating coefficients, we find

f 6 = 15( f , f )3

f 4c2 = 108( f , f )2

f 2c4 = 480( f , f )
f 2c2

2 = 1200( f , f ) .

Remark 7.2. These structural constants allow us to normalize expression (5.1) to
get the second Chern class

c2(TX) =
4
3
(22P+2Q− 1

4
δ

2).

We generate Diophantine equations for a,b,(λ ,λ ) and eventually, d. First,
observe that

(λ , `) = λ · ` = degλ |P3

so that λ |P3 is (λ ,λ )/4 times the hyperplane class. Thus we have[
P3]

λ
3 = ((λ ,λ )/4)3

and [
P3]

λ
3 = aλ

4c2(X)+bλ
6.

Equating these expressions and evaluating the terms, we find

(λ ,λ )(15b−1/64)+108a = 0.

We have divided out by (λ ,λ ); the solution (λ ,λ ) = 0 is not possible for geometric
reasons, and we shall exclude it algebraically below.

Second, the Lemma on restrictions of Chern classes implies[
P3]

λc2(X) =−(λ ,λ )

whereas the formula for the class of P3 yields[
P3]

λc2(X) = aλ
2c2(X)2 +bλ

4c2(X).

Thus we obtain
108b(λ ,λ )+(1200a+1) = 0.
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Remark 7.3. The cup product of H∗(X) is compatible with the GX -action, so the
subring generated by Chern classes and elements of H2(X) is orthogonal to η .
Thus even if the decomposition of [P3] were to involve η , the computations up to
this point would not reflect this.

Finally, the fact that[
P3]2

= c3(NP3/X) = c3(T ∨
P3) =−4

yields the cubic equation

15b2 (λ ,λ )3 +216ab(λ ,λ )2 +1200(λ ,λ )a2 +d2
η ·η =−4.

The proof of Proposition 6.1 implies that η ·η = 4. In particular, (λ ,λ ) = 0 is
excluded.

Eliminating a and b from these equations and setting L = (λ ,λ ), we obtain

(7.1) −216 ·3 ·11d2 = 52L3 +25 ·32L2 +28 ·5L+216 ·3 ·11.

We know, a priori, that L ∈ Z and d ∈Q.

Proposition 7.4. The only solution to (7.1) with L ∈ Z and d ∈ Q is d = 0 and
L =−48.

We assume this for the moment; its proof can be found in Section 8.
Back-substitution yields

a = 1/96, b = 1/384, (`,`) =−3.

We claim that λ/2 ∈ H2(X ,Z), i.e., λ is not primitive. Using the isomorphism

H2(X ,Z) = H2(S,Z)⊕⊥Zδ
∨,

(
δ
∨,δ∨

)
=−1/4

we can express
` = D+mδ

∨, D ∈ H2(S,Z),m ∈ Z.

If λ were primitive then m would have to be odd and

−3 = (`,`) = (D,D)−m2/4.

Since (D,D) ∈ 2Z, we have a contradiction.

8 Diophantine analysis

Theorem 8.1. The only solution to

−216·3·11d2 = 52L3 +25·32L2 +28·5L+216·3·11

with L ∈ Z and d ∈Q is L =−48, d = 0.
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Proof. Put x = −2−4·3·52·11(L + 48) and y = 22·32·52·112d. The equation then
takes the form

(8.1) E : y2 = x3 +ax2 +bx

where
a = 33·11·23, b = 22·32·52·113·13.

It suffices to prove the stronger statement that there are no solutions to (8.1) with
x,y ∈ Z[1

2 ], apart from x = y = 0.
The proof is given in two steps. Proposition 8.2 below determines explicitly

the structure of the Mordell–Weil group E(Q). Proposition 8.3 then identifies the
integral points. �

Algorithms for both of these steps are implemented in computer algebra sys-
tems such as Sage [22] and Magma [2], and the theorem may be verified this way.
To avoid depending on the correctness of these systems, we give alternative proofs
that use as little machine assistance as possible.

We first set notation and briefly recall some facts about point multiplication on
elliptic curves given in the form (8.1). Let O denote the zero element of E(Q) (the
point at infinity). For nonzero R ∈ E(Q) we write

R = (x(R),y(R)) =
(

α(R)
e(R)2 ,

β (R)
e(R)3

)
,

where α,β ,e∈Z, e≥ 1 and (α,e) = (β ,e) = 1. If p is a prime, then p |e(R) if and
only if R reduces to the identity in E(Fp). If m ≥ 1 and mR 6= O, then e(R) |e(mR)
[14, Ch. III, Thm. 1.2]. The point Q = (0,0) has order two, and addition with Q is
given by the formula

(8.2) R+Q =
(

b
x(R)

,
−b·y(R)

x(R)2

)
(R 6= O,Q).

Proposition 8.2. We have E(Q)∼= Z×(Z/2Z), where the torsion part is generated
by Q, and the free part by

P =
(

22·3·5·2772

532 ,
23·32·5·29·277·11311

533

)
.

Proof. The discriminant of the Weierstrass equation (8.1) is given by

∆ = 16b2(a2−4b) =−28·36·54·118·132·113·127,

so the model is minimal, and the primes of bad reduction are 2, 3, 5, 11, 13, 113
and 127.

We first check that the torsion subgroup is as described. For ` prime, by [20,
Prop. VII.3.1] we see that E(Q)[`] injects into E(F17) = Z/18Z for ` 6= 17 and into
E(F19) = Z/14Z for ` 6= 19. These facts force E(Q)[2] = Z/2Z and E(Q)[`] = 0
for ` 6= 2. Hence Etors(Q) = 〈Q〉.
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Now we consider the free part. The point P was found using Cremona’s mwrank
library [3] via the Sage computer algebra system [22]. We may check that P ∈
E(Q) using a computer (or by hand with some patience); this shows that rankE ≥ 1.

To show that rankE ≤ 1 we use a standard 2-descent strategy (see for example
[21, Ch. III]). Consider the auxiliary curve

E ′ : y2 = x3−2ax2 +(a2−4b)x.

There are isogenies φ : E → E ′ and φ̂ : E ′ → E of degree 2, and injections

E(Q)/φ̂(E ′(Q))
ψ

↪→ S ⊂Q∗/(Q∗)2,

E ′(Q)/φ(E(Q))
ψ ′

↪→ S′ ⊂Q∗/(Q∗)2,

where S consists of the cosets δ (Q∗)2 for δ | 2·3·5·11·13, and S′ of the cosets for
δ |3·11·113·127 (these are the primes dividing b and a2−4b respectively).

We must determine which elements of S and S′ arise from points in E(Q) and
E ′(Q). This is achieved by testing for the existence of Q-rational points on the two
families of quartic curves

Cδ : δw2 = δ
2z4 +δaz2 +b, δ ∈ S,

C′
δ

: δw2 = δ
2z4−2δaz2 +(a2−4b), δ ∈ S′.

First consider Cδ , which may be rewritten as

δw2 = δ
2z4 +33·11·23δ z2 +22·32·52·113·13,

or
4δw2 = (2δ z2 +33·11·23)2 +32·112·113·127,

for δ |2·3·5·11·13.
For δ = 11·13 there is a trivial rational point z = 0, w = 2·3·5·11, corresponding

to the class of Q in E(Q)/φ̂(E ′(Q)). For δ = 3·5 there is a nontrivial rational point
corresponding to P, namely z = 2·277/53, w = 22·3·29·11311/532. Rational points
are automatic for δ = 1 and 3·5·11·13 since the image of ψ is a subgroup of S. We
will show that Cδ (Q) = /0 for all other δ , by identifying local obstructions. We
only summarize the obstructions encountered, omitting detailed arguments (which
are straightforward, but in some cases lengthy).

Consider the conic 4δw2 = u2 + 32·112·113·127. If δ < 0 then the conic has
no points over R. If (δ/113) = −1 then the conic has no points over Q113. Since
(2/113) = (11/113) = (13/113) = 1 and (3/113) = (5/113) = −1, this shows
that 3 | δ if and only if 5 | δ . No further information can be obtained from local
analysis of the conic, so we proceed to Cδ itself. If 2 |δ then Cδ has no points over
Q2. If (δ/11) = −1, or if δ = 11ε with (ε/11) = 1, then Cδ has no points over
Q11. These conditions rule out all but the four values for δ noted in the previous
paragraph.
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Next we give a similar analysis for C′
δ
, which becomes

δw2 = δ
2z4−2·33·11·23δ z2−32·112·113·127,

or
δw2 = (δ z2−33·11·23)2−24·32·52·113·13,

for δ |3·11·113·127. The values δ = 1 and δ =−113·127 correspond to the classes
in E ′(Q)/φ(E(Q)) of O and the unique two-torsion point of E ′(Q); both have
trivial image in φ̂(E ′(Q))/2E(Q). We will show that C′

δ
(Q) = /0 for all other

possible δ .
If 3 | δ , then the conic δw2 = u2 − 24·32·52·113·13 has no points over Q3. If

11 |δ , then (δ/13) =−1 (because (−1/13) = (113/13) = (127/13) = 1) and the
conic has no points over Q13. If (δ/11) = −1 the conic has no points over Q11.
If (δ/5) = −1, then C′

δ
has no points over Q5. These conditions rule out all but

δ = 1 and δ =−113·127.
This completes the 2-descent. In particular, we have found that

|E(Q)/2E(Q)|= |E(Q)/φ̂(E ′(Q))| · |φ̂(E ′(Q))/2E(Q)|= 4 ·1 = 4,

and that E(Q)/2E(Q) is generated by the classes of P and Q. Moreover, for R 6=
O,Q the image of x(R) in Q∗/(Q∗)2 is one of {1,3·5,11·13,3·5·11·13}.

At this stage we know that 〈P,Q〉 is of finite index in E(Q); we must still check
that it exhausts E(Q). Suppose not; then for some odd prime ` and some R∈ E(Q)
we have `R = ±P or `R = ±P + Q. In the latter case we replace R by R + Q, and
we may also switch the sign of R if necessary, so now may assume that `R = P and
`(R+Q) = P+Q.

In this case e(R) |e(P) = 53 and e(R+Q) |e(P+Q) = 277. Moreover, by (8.2)
we have α(R)α(R+Q) = b·e(R)2e(R+Q)2. Since

(α(R),e(R)) = (α(R+Q),e(R+Q)) = 1

this implies that α(R) = b1e(R + Q)2 and α(R + Q) = (b/b1)e(R)2 for some b1 |
b. But also P = R and P + Q = R + Q in E(Q)/2E(Q), so comparing with the
result of the 2-descent shows the only possibilities are b1 = 3·5, 22·3·5, 3·5·112, or
22·3·5·112. This leaves only 16 choices for x(R), and it is easy to check that only
one of them defines a point on the curve (namely for R = P). �

Proposition 8.3. The only solution to (8.1) with x,y ∈ Z[1
2 ] is x = y = 0.

Proof. First consider the points nP for n 6= 0. Since 53 | e(±P), also 53 | e(nP), so
x(nP) /∈ Z[1

2 ].
Now consider nP+Q. Write n = 2ir for some i≥ 0 and odd r. We may assume

r is positive. Then nP + Q = 2irP + Q = r(2iP + Q), so it suffices to show that
e(2iP + Q) is divisible by some prime q 6= 2. By (8.2), it suffices to show that
α(2iP) is divisible by some prime q 6= 2,3,5. For i = 0 we may take q = 277.

To establish the result for i ≥ 1, we prove the following series of claims. Let
Np denote the set of points R ∈ E(Q) such that R reduces to a nonsingular point in
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E(Fp); it is a subgroup of E(Q). For p = 2,3,5,11,13 the only singular point on
E(Fp) is (0,0), so for these primes we have Np = {P ∈ E(Q) : p |α(P)}.

Claim 1: P ∈ Np for all p except p = 2,3,5.
Claim 2: 2P ∈ Np for all p except p = 5.
Claim 3: 4P ∈ Np for all p, and hence 2iP ∈ Np for all p and all i ≥ 2.
Claim 4: α(2P) = 52U , where U = 4 (mod 11) and 2,3,5 - U .
Claim 5: α(4P) = 5 (mod 11).

Claim 6: For i ≥ 2, α(2iP) =

{
5 (mod 11) i even,

9 (mod 11) i odd.
Claims 1–5 can easily be proved with a computer, by directly computing the

coordinates of 2P and 4P. This approach is infeasible by hand, as the coordinates
are rather large (for example α(4P) has almost 100 decimal digits). In Remark 8.4
we sketch an indirect method that is amenable to manual verification.

For Claim 6, we will need the following doubling formula, valid for R ∈ E(Q),
2R 6= O:

(8.3) x(2R) =
(

x(R)2−b
2y(R)

)2

=
(α(R)2−b·e(R)4)2

(2e(R)β (R))2 .

Moreover, if R ∈ Np then p cannot divide both the numerator and denominator
of the fraction on the right side of (8.3). In other words, there is no cancellation
locally at p. One proof of this is given in [25, Prop. IV.2]; as pointed out in that
paper, it can also be proved from properties of real-valued non-archimedean local
heights.

Using this non-cancellation result, if R ∈ Np for all p, we obtain α(2R) =
(α(R)2−b·e(R)4)2. Claim 6 follows by induction, the base case being Claim 5.

The main result for i = 1 follows from Claim 4, since U must be divisible by a
suitable prime. (In fact the only primes dividing U are 159319 and 709141!) For
i ≥ 2 it follows from Claim 6. �

Remark 8.4. Claims 1–5 can all be checked by using low-precision p-adic approx-
imations, together with the non-cancellation result for (8.3), without needing to
compute the full coordinates of 2P or 4P. For example, one calculates that

(α(P)2−b·e(P)4)2 = 24 mod 25, 34 mod 35, 54 mod 55,

(2e(P)β (P))2 = 28 mod 29, 34 mod 35, 4·52 mod 53.

Thus the cancellation between the numerator and denominator of (8.3) is exactly
243452. It follows that

α(2P) = 2−43−45−2(α(P)2−b·e(P)4)2,

e(2P)2 = 2−43−45−2(2e(P)β (P))2,

and Claims 2 and 4 follow easily. A similar but more involved calculation estab-
lishes Claim 5.
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fred Lehn, Eyal Markman, and Christoph Sorger for useful conversations, to Letao
Zhang for suggesting a number of improvements to our manuscript, to Benjamin
Bakker and Andrei Jorza for pointing out errors in an earlier version, and to Jay
Pottharst for helping to streamline the proof in Section 8. The second author
was supported by National Science Foundation Grant 0554491 and 0901645; the
third author was supported by National Science Foundation Grants 0554280 and
0602333. We appreciate the hospitality of the American Institute of Mathematics,
where some of this work was done.

Bibliography
[1] Beauville, A. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential

Geom. 18 (1983), no. 4, 755–782 (1984).
[2] Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Sym-

bolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London,
1993), URL http://dx.doi.org/10.1006/jsco.1996.0125.

[3] Cremona, J. E. The mwrank library. www.warwick.ac.uk/staff/J.E.Cremona/mwrank.
[4] Deligne, P.; Milne, J. S.; Ogus, A.; Shih, K.-Y. Hodge cycles, motives, and Shimura varieties,

Lecture Notes in Mathematics, vol. 900. Springer-Verlag, Berlin, 1982.
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