
Density of integral points on algebraic varietiesBrendan Hassett and Yuri TschinkelJuly 30, 20001 IntroductionLet K be a number �eld, S a �nite set of valuations of K, including thearchimedean valuations, and OS the ring of S-integers. LetX be an algebraicvariety de�ned over K and D a divisor on X. We will use X and D to denotemodels over Spec(OS).We will say that integral points on (X;D) (see Section 2 for a precisede�nition) are potentially dense if they are Zariski dense on some model(X ;D), after a �nite extension of the ground �eld and after enlarging S. Acentral problem in arithmetic geometry is to �nd conditions insuring potentialdensity (or nondensity) of integral points. This question motivates manyinteresting and concrete problems in classical number theory, transcendencetheory and algebraic geometry, some of which will be presented below.If we think about general reasons for the density of points - the �rst ideawould be to look for the presence of a large automorphism group. Thereare many beautiful examples both for rational and integral points, like K3surfaces given by a bihomogeneous (2; 2; 2) form inP1�P1�P1 or the classicalMarkov equation x2+ y2+ z2 = 3xyz. However, large automorphism groupsare \sporadic" - they are hard to �nd and usually, they are not well behaved infamilies. There is one notable exception - namely automorphisms of algebraicgroups, like tori and abelian varieties.Thus it is not a surprise that the main geometric reason for the abundanceof rational points on varieties treated in the recent papers [11], [3], [12] is thepresence of elliptic or, more generally, abelian �brations with multisectionshaving a dense set of rational points and subject to some nondegeneracyconditions. Most of the e�ort goes into ensuring these conditions.1



In this paper we focus on cases whenD is nonempty. We give a systematictreatment of known approaches to potential density and present several newideas for proofs. The analogs of elliptic �brations in log geometry are conicbundles with a bisection removed. We develop the necessary techniquesto translate the presence of such structures to statements about density ofintegral points and give a number of applications.The paper is organized as follows: in Section 2 we introduce the main def-initions and notations. Section 3 is geometrical - we introduce the relevantconcepts from the log minimal model program and formulate several geomet-ric problems inspired by questions about integral points. In Section 4, werecall the �bration method and nondegeneracy properties of multisections.We consider approximation methods in Section 5. Section 6 is devoted tothe study of integral points on conic bundles with sections and bisections re-moved. In the �nal section, we survey the known results concerning potentialdensity for integral point on log K3 surfaces.Acknowledgements. The �rst author was partially supported by anNSF Postdoctoral Research Fellowship, NSF Continuing Grant 0070537, andthe Institute of Mathematical Sciences of the Chinese University of HongKong. The second author was partially supported by the NSA. We ben-e�tted from conversations with D. Abramovich, Y. Andr�e, F. Bogomolov,A. Chambert-Loir, J.-L. Colliot-Th�el�ene, J. Koll�ar, D. McKinnon, and B.Mazur. We are grateful to P. Vojta for comments that improved the paper,especially Proposition 3.12, and to D.W. Masser for information on special-ization of nondegenerate sections. Our approach in Section 6 is inspired bythe work of F. Beukers (see [1] and [2]).2 Generalities2.1 Integral pointsLet � : U ! Spec(OS) be a 
at scheme over OS with generic �ber U . Anintegral point on U is a section of �; the set of such points is denoted U(OS).In the sequel, U will be the complement to a reduced e�ectiveWeil divisorD in a normal proper scheme X , both generally 
at over Spec(OS). Hencean S-integral point P of (X ;D) is a section sP : Spec(OS)! X of �, whichdoes not intersect D, that is, for each prime ideal p 2 Spec(OS) we have2



sP (p) =2 Dp. We denote by X (resp. D) the corresponding generic �ber. Wegenerally assume that X is a variety (i.e., a geometrically integral scheme);frequently X is smooth and D is normal crossings. Potential density ofintegral points on (X ;D) does not depend on the choice of S or on the choicesof models over Spec(OS), so we will not always specify them. Hopefully, thiswill not create any confusion.If D is empty then every K-rational point of X is an S-integral point for(X ;D) (on some model). Every K-rational point of X, not contained in Dis S-integral on (X ;D) for S large enough. Clearly, for any X and D thereexists a �nite extension K 0=K and a �nite set S 0 of prime ideals in OK0 suchthat there is an S 0-integral point on (X 0;D0) (where X 0 is the base change ofX to Spec(O0S)).The de�nition of integral points can be generalized as follows: let Z beany closed subscheme of X . An S-integral point for (X ;Z) is an OS-valuedpoint of X n Z.2.2 Vojta's conjectureA pair consists of a proper normal variety X and a reduced e�ective Weildivisor D � X. A morphism of pairs ' : (X1;D1)! (X2;D2) is a morphism' : X1 ! X2 such that (the support of) '�1(D2) is a subset of D1. Inparticular, ' restricts to a morphism X1 n D1 ! X2 n D2. A morphismof pairs is dominant if ' : X1 ! X2 is dominant. If (X1;D1) dominates(X2;D2) then integral points are dense on (X2;D2) when they are dense on(X1;D1) (after choosing appropriate integral models). A morphism of pairsis proper if ' : X1 ! X2 is proper and the restriction X1 n D1 ! X2 n D2is also proper; equivalently, we may assume that ' : X1 ! X2 is properand D1 is a subset of '�1(D2). A resolution of the pair (X;D) is a propermorphism of pairs � : ( ~X; ~D) ! (X;D) such that � : ~X ! X is birational,~X is smooth, and ~D is normal crossings.Let X be a normal proper variety of dimension d. Recall that a Cartierdivisor D � X is big if h0(OX(nD)) > Cnd for some C > 0 and all nsu�ciently large and divisible.De�nition 2.1 A pair (X;D) is of log general type if it admits a resolution� : ( ~X; ~D)! (X;D) with ! ~X ( ~D) big.Let us remark that the de�nition does not depend on the resolution.3



Conjecture 2.2 (Vojta, [30]) Let (X;D) be a pair of log general type. Thenintegral points on (X;D) are not potentially dense.This conjecture is known for semiabelian varieties and their subvarieties ([9],[31], [16]). Vojta's conjecture implies that a pair with dense integral pointscannot dominate a pair of log general type.We are interested in geometric conditions which would insure potentialdensity of integral points. The most naive statement would be the directconverse to Vojta's conjecture. However this can't be true even when D = ;.Indeed, varieties which are not of general type may dominate varieties ofgeneral type, or more generally, admit �nite �etale covers which dominatevarieties of general type (see the examples in [7]). In the next section we willanalyze other types of covers with the same arithmetic property.3 Geometry3.1 Morphisms of pairsDe�nition 3.1 We will say that a class of dominant morphisms of pairs ' :(X1;D1) ! (X2;D2) is arithmetically continuous if the density of integralpoints on (X2;D2) implies potential density of integral points on (X1;D1).For example, assume that D = ;. Then any projective bundle in theZariski topology P! X is arithmetically continuous. In the following sec-tions we present other examples of arithmetically continuous morphisms ofpairs.De�nition 3.2 A pseudo-�etale cover of pairs ' : (X1;D1)! (X2;D2) is aproper dominant morphism of pairs such thata) ' : X1 ! X2 is generically �nite, andb) the map from the normalization Xnorm2 of X2 (in the function �eld ofX1) onto X2 is �etale away from D2.Remark 3.3 For every pair (X;D) there exists a birational pseudo-�etalemorphism ' : ( ~X; ~D) ! (X;D) such that ~X is smooth and ~D is normalcrossings.The following theorem is a formal generalization of the well-known theo-rem of Chevalley-Weil. It shows that potential density is stable under pseudo-�etale covers of pairs. 4



Theorem 3.4 Let ' : (X1;D1)! (X2;D2) be a pseudo-�etale cover of pairs.Then ' is arithmetically continuous.Remark 3.5 An elliptic �bration E ! X, isotrivial on X nD, is arithmeti-cally continuous. Indeed, it splits after a pseudo-�etale morphism of pairs andwe can apply Theorem 3.4.The following example is an integral analog of the example of Skoroboga-tov, Colliot-Th�el�ene and Swinnerton-Dyer ([7]) of a variety which does notdominate a variety of general type but admits an �etale cover which does.Example 3.6 Consider P1�P1 with coordinates (x1; y1); (x2; y2) and invo-lutions j1(x1; y1) = (�x1; y1) j2(x2; y2) = (y2; x2)on the factors. Let j be the induced involution on the product; it has �xedpoints x1 = 0 x2 = y2x1 = 0 x2 = �y2y1 = 0 x2 = y2y1 = 0 x2 = �y2 :The �rst projection induces a map of quotients(P1�P1)= hji ! P1= hj1i :We use X to denote the source; the target is just Proj(C [x21; y21]) ' P1: Hencewe obtain a �bration f : X ! P1. Note that f has two nonreduced �bers,corresponding to x1 = 0 and y1 = 0 respectively. Let D be the image in Xof (x1 = 0) [ (y1 = 0) [ (x2 = m1y2) [ (x2 = m2y2)where m1 and m2 are distinct, m1m2 6= 1, and m1;m2 6= 0; 1. Since Dintersects the general �ber of f in just two points, (X;D) is not of log generaltype.We can represent X as a degenerate quartic Del Pezzo surface with fourA1 singularities (see �gure 1). If we �x invariantsa = x21x2y2; b = x21(x22+ y22); c = x1y1(x22� y22); d = y21(x22 + y22); e = y21x2y2then X is given as a complete intersection of two quadrics:ad = be; c2 = bd� 4ae:5
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A1Figure 1: The log surface (X;D)The components of D satisfy the equationsD1 = fa = b = c = 0gD2 = fc = d = e = 0gD3 = f(1 +m21)a�m1b = (1 +m21)e�m1d = 0gD4 = f(1 +m22)a�m2b = (1 +m22)e�m2d = 0g:Our assumptions guarantee that D3 and D4 are distinct.We claim that (X;D) does not admit a dominant map onto a variety oflog general type and that there exists a pseudo-�etale cover of (X;D) whichdoes. Indeed, the preimage of X nD in P1�P1 is(A 1 n 0)� (P1 n fm1;m2; 1=m1; 1=m2g);which dominates a curve of log general type, namely, P1 minus four points.However, (X;D) itself cannot dominate a curve of log general type. Anysuch curve must be rational, with at least three points removed; however, theboundary D contains at most two mutually disjoint irreducible components.The following was put forward as a possible converse to Vojta's conjecture.Problem 3.7 (Strong converse to Vojta's conjecture) Assume that thepair (X2;D2) does not admit a pseudo-�etale cover (X1;D1)! (X2;D2) suchthat (X1;D1) dominates a pair of log general type. Are integral points for(X2;D2) potentially dense? 6



3.2 Projective bundles in the �etale topologyWe would like to produce further classes of dominant arithmetically contin-uous morphisms (X1;D1)! (X2;D2).Theorem 3.8 Let ' : (X1;D1) ! (X2;D2) be a projective morphism ofpairs such that ' is a projective bundle (in the �etale topology) over X2 nD2.We also assume that '�1(D2) = D1. Then ' is arithmetically continuous.Proof. We are very grateful to Prof. Colliot-Th�el�ene for suggesting thisproof.Choose models (Xi;Di) (i = 1; 2) over some ring of integers OS, so thatthe morphism ' is well-de�ned and a projective bundle. (We enlarge S asnecessary.)We recall basic properties of the Brauer group Br(OS). Let v denote aplace for the quotient �eld K and Kv the corresponding completion. Class-�eld theory gives the following exact sequences0! Br(K)! �vBr(Kv)! Q=Z! 00! Br(OS)! Br(K)!�v 62SBr(Kv):The Brauer groups of the local �elds corresponding to nonarchimedean val-uations are isomorphic to Q=Z. Given a �nite extension of Kw=Kv of degreen, the induced map on Brauer groups is multiplication by n.Let p denote an S-integral point of (X2;D2). The �ber '�1(p) is a Brauer-Severi variety over OS. If r� 1 denotes the relative dimension of ' then thecorresponding element �(p) 2 Br(OS) has order dividing r. Integral points in'�1(p) are dense if rational points are dense, which is the case when �(p) = 0.Our exact sequences imply that �(p) yields elements of Br(Kv) which arezero unless v 2 S, and are annihilated by r otherwise. It su�ces to �nd anextension K 0=K inducing a cyclic extension of Kv of order divisible by r forall v 2 S. Indeed, such an extension necessarily kills �(p) for each point pde�ned over OS. If OS0 is the integral closure of OS in K 0 then '�1(p) hasdense S 0-integral points. �Remark 3.9 Let X be a smooth simply connected projective variety whichdoes not dominate a variety of general type. It may admit an projectivebundle (in the �etale topology) ' : P! X, for example if X is a K3 surface.However, P cannot dominate a variety of general type. Indeed, given such a7



dominant morphism � : P! Y , the �bers of ' are mapped to points by �.In particular, � necessarily factors through '. (We are grateful to J. Koll�arfor emphasizing this point.)Problem 3.10 (Geometric counterexamples to Problem 3.7) Are therepairs which do not admit pseudo-�etale covers dominating pairs of log generaltype but which do admit arithmetically continuous covers dominating pairsof log general type?3.3 Punctured varietiesIn Section 3.1 we have seen that potential density of integral points is pre-served under pseudo-�etale covers. It is not an easy task, in general, to checkwhether or not some given variety (like an elliptic surface) admits a (pseudo-)�etale cover dominating a variety of general type. What happens if we modifythe variety (or pair) without changing the fundamental group?Problem 3.11 (Geometric puncturing problem) LetX be a projectivevariety with canonical singularities and Z a subvariety of codimension � 2.Assume that no (pseudo-) �etale cover of (X; ;) dominates a variety of generaltype. Then (X;Z) admits no pseudo-�etale covers dominating a pair of loggeneral type. A weaker version would be to assume thatX and Z are smooth.By de�nition, a pseudo-�etale cover of (X;Z) is a pseudo-�etale cover of a pair(X 0;D0), where X 0 is proper over X and X 0 nD0 ' X n Z.Proposition 3.12 Assume X and Z are as in Problem 3.11, and that X issmooth. Thena) No pseudo-�etale covers of (X;Z) dominate a curve of log general type.b) No pseudo-�etale covers of (X;Z) dominate a variety of log general typeof the same dimension.Proof. Suppose we have a pseudo-�etale cover � : (X1;D1)! (X;Z) and adominant morphism ' : (X1;D1)! (X2;D2) to a variety of log general type.By Remark 3.3, we may take the Xi smooth and the Di normal crossings.Since D1 is exceptional with respect to �, Iitaka's Covering Theorem ([13]Theorem 10.5) yields an equality of Kodaira dimensions�(KX) = �(KX1 +D1):8



Assume �rst that X2 is a curve. We claim it has genus zero or one. LetXnorm be the normalization of X in the function �eld of X1. The inducedmorphism g : Xnorm ! X is �nite, surjective, and branched only over Z, acodimension � 2 subset of X. Since X is smooth, it follows that g is �etale(see SGA II X x3.4 [10]). If X2 has genus � 2 then ' : X1 ! X2 is constantalong the �bers of X1 ! Xnorm, and thus descends to a map Xnorm ! X2.This would contradict our assumption that no �etale cover of X dominates avariety of general type.Choose a point p 2 D2 and consider the divisor F = '�1(p). Note that2F moves because 2p moves on X2. However, 2F is supported in D1, whichlies in the exceptional locus for �, and we obtain a contradiction.Now assume ' is generically �nite. We apply the Logarithmic Rami�ca-tion Formula to ' (see [13] Theorem 11.5)KX1 +D1 = '�(KX2 +D2) +Rwhere R is the (e�ective) logarithmic rami�cation divisor. Applying the Cov-ering Theorem again, we �nd that �(KX1+D1�R) = �(KX2+D2) = dim(X).It follows that KX1 +D1 is also big, which contradicts the assumption thatX is not of general type. �Problem 3.13 (Arithmetic puncturing problem) Let X be a projec-tive variety with canonical singularities and Z a subvariety of codimension� 2. Assume that rational points on X are potentially dense. Are integralpoints on (X;Z) potentially dense?For simplicity, one might �rst assume that X and Z are smooth.Remark 3.14 Assume that Problem 3.13 has a positive solution. Thenpotential density of rational points holds for all K3 surfaces.Indeed, if Y is a K3 surface of degree 2n then potential density of rationalpoints holds for the symmetric product X = Y (n) (see [12]). Denote by Zthe large diagonal in X and by � the large diagonal in Y n (the ordinaryproduct). Assume that integral points on (X;Z) are potentially dense. Then,by Theorem 3.4 integral points on (Y n;�) are potentially dense. This impliespotential density for rational points on Y .9



4 The �bration method and nondegeneratemultisectionsThis section is included as motivation. Let B be an algebraic variety, de�nedover a number �eld K and � : G ! B be a group scheme over B. We willbe mostly interested in the case when the generic �ber is an abelian varietyor a split torus G nm . Let s be a section of �. Shrinking the base we mayassume that all �bers of G are smooth. We will say that s is nondegenerateif [nsn is Zariski dense in G.Problem 4.1 (Specialization) Assume that G ! B has a nondegeneratesection s. Describe the set of b 2 B(K) such that s(b) is nondegenerate inthe �ber Gb.For simple abelian varieties over a �eld a point of in�nite order is non-degenerate. If E ! B is a Jacobian elliptic �bration with a section s ofin�nite order then this section is automatically nondegenerate, and s(b) isnondegenerate if it is nontorsion. By a result of N�eron (see [26] 11.1), the setof b 2 B(K) such that s(b) is not of in�nite order is thin; this holds true forabelian �brations of arbitrary dimension.For abelian �brations A ! B with higher-dimensional �bers, one mustalso understand how rings of endomorphisms specialize. The set of b 2 B(K)for which the restriction End(A)! End(A(b))fails to be surjective is also thin; this is a result of Noot [21] Corollary 1.5. Inparticular, a nondegenerate section of a family of generically simple abelianvarieties specializes to a nondegenerate point outside a thin set of �bers.More generally, given an arbitrary abelian �bration A! B and a nonde-generate section s, the set of b 2 B(K) such that s(b) is degenerate is thinin B. (We are grateful to Prof. Masser for pointing out the proof.) After re-placing A by an isogenous abelian variety and taking a �nite extension of thefunction �eld K(B), we obtain a family A0 ! B 0 with A0 ' Ar11 � : : :�Armm ,where the Aj are (geometrically) simple and mutually non-isogenous. Bythe Theorems of N�eron and Noot, the Aj(b0) are simple and mutually non-isogenous away from some thin subset of B 0. A section s0 of A0 ! B 0 isnondegenerate i� its projection onto each factor Arjj is nondegenerate; forb0 not contained in our thin subset, s0(b0) is nondegenerate i� its projection10



onto each Arjj (b0) is nondegenerate. Hence we are reduced to proving theclaim for each Arjj . Since Aj is simple, a section sj of Arjj is nondegeneratei� its projections sj;1; : : : ; sj;rj are linearly independent over End(Aj). Awayfrom a thin subset of B 0, the same statement holds for the specializations tob0. However, N�eron's theorem implies that sj;1(b0); : : : ; sj;rj (b0) are linearlyindependent away from a thin subset.Remark 4.2 There are more precise versions of N�eron's Theorem due toDemyanenko, Manin and Silverman (see [28], for example). Masser has pro-posed another notion of what it means for a subset of B(K) to be small,known as `sparcity'. For instance, the endomorphism ring of a family ofabelian varieties changes only on a `sparse' set of rational points of the base(see [18]). For an analogue to N�eron's Theorem, see [17].Similar results hold for algebraic tori and are proved using a version ofN�eron's Theorem for G nm -�brations (see [26] pp. 154). A sharper result (forone-dimensional bases B) can be obtained from the following recent theorem:Theorem 4.3 ([4]) Let C be an absolutely irreducible curve de�ned overa number �eld K and x1; :::; xr rational functions in K(C), multiplicativelyindependent modulo constants. Then the set of algebraic points p 2 C(Q)such that x1(p); :::; xr(p) are multiplicatively dependent has bounded height.The main idea of the papers [11], [3], [12] can be summarized as follows.We work over a number �eld K and we assume that all geometric data arede�ned over K. Let � : E ! B be a Jacobian elliptic �bration over a onedimensional base B. This means that we have a family of curves of genusone and a global zero section so that every �ber is in fact an elliptic curve.Suppose that we have another section s which is of in�nite order in theMordell-Weil group of E(K(B)). The specialization results mentioned aboveshow that for a Zariski dense set of b 2 B(K) the restriction s(b) is of in�niteorder in the corresponding �ber Eb. If K-rational points on B are Zariskidense then rational points on E are Zariski dense as well.Let us consider a situation when E does not have any sections but in-stead has a multisection M . By de�nition, a multisection (resp. ratio-nal multisection) M is irreducible and the induced map M ! B is �nite
at (resp. generically �nite) of degree deg(M). The base-changed family11



E �B M ! M has the identity section Id (i.e., the image of the diagonalunder M �B M ! E �B M) and a (rational) section�M := deg(M)Id� Tr(M �B M)where Tr(M �B M) is obtained (over the generic point) by summing all thepoints ofM�BM . By de�nition,M is nondegenerate if �M is nondegenerate.When we are concerned only with rational points, we will ignore the dis-tinction between multisections and rational multisections, as every rationalmultisection is a multisection over an open subset of the base. However, thisdistinction is crucial when integral points are considered.IfM is nondegenerate and if rational points on M are Zariski dense thenrational points on E are Zariski dense (see [3]).Example 4.4 ([11]) Let X be a quartic surface in P3 containing a line L.Consider planes P2 passing through this line. The residual curve has degree3. Thus we obtain an elliptic �bration on X together with the trisection L.If L is rami�ed in a smooth �ber of this �bration then the multisection isnondegenerate and rational points are Zariski dense.This argument generalizes to abelian �brations � : A! B. However, wedo not know of any simple geometric conditions insuring nondegeneracy of a(multi)section in this case. We do know that for any abelian variety A overK there exists a �nite extension K 0=K with a nondegenerate point in A(K 0)(see [12]). This allows us to produce nondegenerate sections over function�elds.Proposition 4.5 Let Y be a Fano threefold of type W2, that is a doublecover of P3 rami�ed in a smooth surface of degree 6. Then rational points onthe symmetric square Y (2) are potentially dense.Proof. Observe that the symmetric square Y (2) is birational to an abeliansurface �bration over the Grassmannian of lines in P3. This �bration isvisualized as follows: consider two generic points in Y . Their images in P3determine a line, which intersects the rami�cation locus in 6 points and liftsto a (hyperelliptic) genus two curve on Y . On Y (2) we have an abelian surface�bration corresponding to the degree two component of the relative Picardscheme. Now we need to produce a nondegenerate multisection. Pick twogeneric points b1 and b2 on the branch surface. The preimages in Y of thecorresponding tangent planes are K3 surfaces �1 and �2, of degree two with12



ordinary double points at the points of tangency. The surfaces �1 and �2therefore have potentially dense rational points (this was proved in [3]), asdoes �1 � �2. This is our multisection; we claim it is nondegenerate forgeneric b1 and b2. Indeed, it su�ces to show that given a (generic) pointin Y (2), there exist b1 and b2 so that �1 � �2 contains the point. Observethat through a (generic) point of P3, there pass many tangent planes to thebranch surface. �Remark 4.6 Combining the above Proposition with the strong form ofProblem 3.13 we obtain potential density of rational points on a Fano three-fold of typeW2 - the last family of smooth Fano threefolds for which potentialdensity is not known.Here is a formulation of the �bration method useful for the analysis ofintegral points:Proposition 4.7 Let B be a scheme over a number �eld K, G ! B a 
atgroup scheme, T ! B an �etale torsor for G, and M � T a nondegeneratemultisection over B. If M has potentially dense integral points then T haspotentially dense integral points.Proof. Without loss of generality, we may assume that B is geometricallyconnected and smooth. The base-changed family T �B M dominates T , soit su�ces to prove density for T �B M . Note that since M is �nite and 
atover B, �M is a well-de�ned section over all ofM (i.e., it is not just a rationalsection). Hence we may reduce to the case of a group scheme G! B with anondegenerate section � .We may choose models G and B over Spec(OS) so that G ! B is a groupscheme with section � . We may also assume that S-integral points of � areZariski dense. The set of multiples �n of � , each a section of G ! B, is densein G by the nondegeneracy assumption. Since each has dense S-integralpoints, it follows that S-integral points are Zariski dense. �A similar argument proves the followingProposition 4.8 Let ' : X ! P1 be a K3 surface with elliptic �bration.Let M be a multisection over its image '(M), nondegenerate and containedin the smooth locus of '. Let F1; : : : ; Fn be �bers of ' and D a divisorsupported in these �bers and disjoint from M . If M has potentially denseintegral points then (X;D) has potentially dense integral points.13



Proof. We emphasize that X is automatically minimal and the �bers of 'are reduced (see [3]). Our assumptions imply that M is �nite and 
at over'(M).After base-changing to M , we obtain a Jacobian elliptic �bration X 0 :=X �P1 M with identity and a nondegenerate section �M . Let G � X 0 bethe open subset equal to the connected component of the identity. SinceD0 := D �P1 M is disjoint from the identity, it is disjoint from G. Hence itsu�ces to show that G has potentially dense integral points.We assumed that M is contained in the smooth locus of ', so �M iscontained in the grouplike part of X 0, and some multiple of �M is containedin G. Repeating the argument for Proposition 4.7 gives the result. �5 Approximation techniquesIn this section we prove potential density of integral points for certain pairs(X;D) using congruence conditions to control intersections with the bound-ary. Several of these examples are included as support for the statement ofProblem 3.13.Proposition 5.1 Let G = QNj Gj where Gj are algebraic tori Gm or geo-metrically simple abelian varieties. Let Z be a subvariety in G of codimension> � = maxj(dim(Gj)) and let U = G n Z be the complement. Then integralpoints on U are potentially dense.Proof. We are grateful to Prof. McKinnon for inspiring the followingargument.The proof proceeds by induction on the number of components N . Thebase case N = 1 follows from the fact that rational points on tori and abelianvarieties are potentially dense, so we proceed with the inductive step. Con-sider the projections �0 : G ! G0 = Qj 6=N Gj and �N : G ! GN . Byassumption, generic �bers of �0 are geometrically disjoint from Z.Choose a ring of integers OS and models Gj over Spec(OS). We assumethat each Gj is smooth over Spec(OS) and that GN has a nondegenerate S-integral point q (see [12], for example, for a proof of the existence of suchpoints on abelian varieties).Let T be any subscheme of GN supported over a �nite subset of Spec(OS)such that GN has an S-integral point pN disjoint from T . We claim that such14



integral points are Zariski dense. Indeed, for some m > 0 we havemq � 0 (mod p)for each p 2 Spec(OS) over which T has support. Hence we may take thetranslations of pN by multiples of mq.After extending OS, we may assume U has at least one integral point p =(p0; pN ) so that �0�1(p0) and ��1N (pN ) intersect Z in the expected dimensions.In particular, �0�1(p0) is disjoint from Z. By the inductive hypothesis, wemay extend OS so that (��1N (pN ) ' G 0; ��1N (pN ) \ Z)has dense integral points. In particular, almost all such integral points arenot contained in �0(Z), a closed proper subscheme of G 0. Let r be such apoint, so that Fr = �0�1(r) ' GN intersects Z in a subscheme T supportedover a �nite number of primes. Since (r; pN) 2 Fr is disjoint from T , theprevious claim implies that the integral points of Fr disjoint from T areZariski dense. As r varies, we obtain a Zariski dense set of integral points onG n Z. �Corollary 5.2 Let X be a toric variety and Z � X a subvariety of codi-mension � 2, de�ned over a number �eld. Then integral points on (X;Z)are potentially dense.Another special case of the Arithmetic puncturing problem 3.13 is thefollowing:Problem 5.3 Are integral points on punctured simple abelian varieties ofdimension n > 1 potentially dense?Example 5.4 Potential density of integral points holds for simple abelianvarieties punctured in the origin, provided that their ring of endomorphismscontains units of in�nite order.6 Conic bundles and integral pointsLetK be a number �eld, S a �nite set of places forK (including all the in�niteplaces), OS the corresponding ring of S-integers, and � 2 Spec(OS) the15



generic point. For each place v of K, let Kv be the corresponding complete�eld and ov the discrete valuation ring (if v is nonarchimedean). As before,we use calligraphic letters (e.g., X ) for schemes (usually 
at) over OS androman letters (e.g., X) for the �ber over �.6.1 Results on linear algebraic groupsConsider a linear algebraic group G=K. Choose a model G for G overOS, i.e.,a 
at group scheme of �nite type G=OS restricting to G at the generic point.This may be obtained by �xing a representation G ,! GLn(K) (see also [32]x10-11). The S-rank of G (denoted rank(G;OS)) is de�ned as the rank ofthe abelian group of sections of G(OS) over OS. This does not depend on thechoice of a model. Indeed, consider two models G1 and G2 with a birationalmap b : G1 9 9 KG2; of course, b is an isomorphism over the generic point andthe proper transform of the identity section I1 is the identity. There is asubscheme Z � Spec(OS) with �nite support such that the indeterminacyof b is in the preimage of Z. It follows that the sections of G1 congruent toI1 modulo Z have proper transforms which are sections of G2. Such sectionsform a �nite-index subgroup of G1(OS).Let Gm be the multiplicative group over Z, i.e., Spec(Z[x; y]= hxy � 1i);it can be de�ned over an arbitrary scheme by extension of scalars. There isa natural projection Gm(Z)! Spec(Z[x]) = A 1Z� P1Zso that P1Zn Gm(Z) = f0;1g. A form of Gm over K is a group scheme G=Kfor which there exists a �nite �eld extension K 0=K and an isomorphismG �K K 0 ' Gm(K 0). These are classi�ed as follows (see [23] for a completeaccount). Any group automorphism� : Gm(K 0)! Gm(K 0)is either inversion or the identity, depending on whether it exchanges 0 and1. The corresponding automorphism group is smooth, so we may work inthe �etale topology (see [19] Theorem 3.9). In particular,K � forms of Gm ' H1�et(Spec(K);Z=2Z):Each such form admits a natural open imbedding into a projective curveG ,! X, generalizing the imbedding of Gm into P1. The complement D =16



X nG consists of two points. The Galois action on D is given by the cocyclein H1�et(Spec(K);Z=2Z) classifying G.There is a general formula for the rank of a torus T due to T. Ono andJ.M. Shyr (see [22], Theorem 6 and [27]). Let T̂ (resp. T̂v) the group ofcharacters de�ned over K (resp. Kv), and �(T ) (resp. �(T; v)) the numberof independent elements of T̂ (resp. T̂v). The formula takes the formrank(T;OS) =Xv2S �(T; v)� �(T ):For forms of Gm this is particularly simple. For split formsrank(Gm ;OS) = #fplaces v 2 Sg � 1:Now let G=K be a nonsplit form, corresponding to the quadratic extensionK 0=K, and S 0 the places of K 0 lying over the places of S. Then we haverank(G;OS) = #fplaces v 2 S completely splitting in S 0g:6.2 Group actions and integral pointsThroughout this subsection, X is a normal, geometrically connected schemeand X ! Spec(OS) a 
at projective morphism. Let D � X be an e�ectivereduced Cartier divisor. Contrary to our previous conventions, we do notassume that D is 
at over OS. Assume that a linear algebraic group G actson X so that X nD is a G-torsor.Proposition 6.1 There exists a model G for G such that G acts on X andstabilizes D.Proof. Choose an imbedding X ,! PnOS and a compatible linearizationG ,! GLn+1(K) (see [20], Ch. 1, Cor. 1.6 and Prop. 1.7). Let G 0 ,!GLn+1(OS) be the resulting integral model of G, so that G 0 stabilizes theideal of X and therefore acts on it. Furthermore, G 0 evidently stabilizes theirreducible components of D dominating OS. The �bral components of Dare supported over a �nite subset of Spec(OS). We take G � G 0 to be thesubgroup acting trivially over this subset; it has the desired properties. �Proposition 6.2 Assume (X ;D) has an S-integral point and that G haspositive OS-rank. Then (X ;D) has an in�nite number of S-integral points.17



Proof. Consider the action of G(OS) on the integral point � (which hastrivial stabilizer). The orbit consists of S-integral points of (X ;D), an in�nitecollection because G has positive rank. �Now assume that X is a smooth rational curve. A rational section (resp.bisection) D � X is a reduced e�ective Cartier divisor such that the generic�ber D is reduced of degree one (resp. two). Note that the open curve X nDis geometrically isomorphic to P1� f1g (resp. P1� f0;1g), and thus is atorsor for some K-form G of G a (resp. Gm ). This form is easily computed.Of course, G a has no nontrivial forms. In the Gm case, we can regard D� asan element of H1�et(Spec(K);Z=2Z), which gives the descent data for G.The following result is essentially due to Beukers (see [1], Theorem 2.3):Proposition 6.3 Let (X ;D) ! Spec(OS) be a rational curve with rationalbisection and G the corresponding form of Gm (as described above). Assumethat (X ;D) has an S-integral point and rank(G;OS) > 0. Then S-integralpoints of (X ;D) are Zariski dense.Proof. This follows from Proposition 6.2. Given an S-integral point � of(X ;D), the orbit G(OS)� is in�nite and thus Zariski dense. �Combining with the formula for the rank, we obtain the following:Corollary 6.4 Let (X ;D) ! Spec(OS) be a rational curve with rationalbisection such that (X ;D) has an S-integral point. Assume that eithera) D is reducible over Spec(K) and jSj > 1; orb) D is irreducible over Spec(K) and at least one place in S splits com-pletely in K(D).Then S-integral points of (X ;D) are Zariski dense.When D is a rational section we obtain a similar result (also essentiallydue to Beukers [1], Theorem 2.1):Proposition 6.5 Let (X ;D) ! Spec(OS) be a rational curve with rationalsection such that (X ;D) has an S-integral point. Then S-integral points of(X ;D) are Zariski dense.6.3 v-adic geometryFor each place v 2 S, consider the projective space P1(Kv) as a manifoldwith respect to the topology induced by the v-adic absolute value on Kv.18



For simplicity, this will be called the v-adic topology; we will use the sameterm for the induced subspace topology on P1(K). Given an �etale morphismof curves f : U ! P1 de�ned over Kv, we will say that f(U(Kv)) is a basic�etale open subset. These are open in the v-adic topology, either by the openmapping theorem (in the archimedean case) or by Hensel's lemma (in thenonarchimedean case).Let �f (B) := #fz 2 Ofvg : jzjv � B and z 2 f(U(Kv))gwhere B is a positive integer andOfvg := fz 2 K : jzjw � 1 for each w 6= vg:We would like to estimate the quantity�f := lim infB!1 �f(B)=�Id(B)i.e., the fraction of the integers contained in the image of the v-adic pointsof U .Proposition 6.6 Let f : U ! P1 be an �etale morphism de�ned over Kv andf1 : C ! P1 a �nite morphism of smooth curves extending f . If there existsa point q 2 f�11 (1) \ C(Kv) at which f1 is unrami�ed then �f = 1.Proof. This follows from the fact that f(U(Kv)) is open if f is �etale alongU . �As an illustrative example, we takeK = Q and Kv = R, so thatOfvg =Z.The set f(U(R)) is a �nite union of open intervals (r; s) with r; s 2 R[f1g,where the (�nite) endpoints are branch points. We observe that�f = 8><>:0 if f(U(R)) is bounded;1=2 if f(U(R)) contains a one-sided neighborhood of 1;1 if f(U(R)) contains a two-sided neighborhood of 1.We can read o� easily which alternative occurs in terms of the local behaviorat in�nity. Let f1 : C ! P1 be a �nite morphism of smooth curves extendingf . If f�11 (1) has no real points then �f = 0. If f�11 (1) has unrami�ed (resp.rami�ed) real points then �f = 1 (resp. �f > 0.)We specialize to the case of double covers:19



Proposition 6.7 Let U ! P1 be an �etale morphism de�ned over Kv andf1 : C ! P1 a �nite morphism of smooth curves extending f . Assume thatf1 has degree two and rami�es at q 2 f�11 (1). Then �f > 0.Proof. Of course, q is necessarily de�ned over Kv. The archimedean casefollows from the previous example, so we restrict to the nonarchimedean case.Assume f1 is given byy2 = cnzn + cn�1zn�1 + : : :+ c0;where z is a coordinate for the a�ne line in P1(Kv), cn 6= 0, and the ci 2 ov.Substituting z = 1=t and y = x=tdn=2e, we obtain the equation at in�nity(x2 = cn + cn�1t+ : : :+ c0tn for n evenx2 = cnt+ cn�1t2 + : : :+ c0tn for n odd :If n is even then f�11 (1) consists of two non-rami�ed points, so we mayassume n odd. Then f�11 (1) consists of one rami�cation point q, necessarilyde�ned over Kv.Write cn = u0�� and z = u1���, where u0 and u1 are units and � is auniformizer in ov. (We may assume that some power �r is contained in OK.)Our equation takes the formy2�n��� = u0un1 + cn�1un�11 ���� + : : :+ c0u1�n���: (1)We review a property of the v-adic numbers, (proved in [25], Ch. XIVx4). Consider the multiplicative groupU (m) := fu 2 ov : u � 1 (mod �m)g:Then for m su�ciently large we have U (m) � K2v . In particular, to deter-mine whether a unit u is a square, it su�ces to consider its representativemod �m.Consequently, if � is su�ciently large and has the same parity as �, thenwe can solve Equation 1 for y 2 Kv precisely when u0u1 is a square. Forexample, choose any M 2 OK so that M � u0�(r�1)� (mod �r�) and setz = M=�r� 2 Ofvg. Hence, of the z 2 Ofvg with jzjv � B (with B � 0),the fraction satisfying our conditions is bounded from below. It follows that�f > 0. �20



Now let f : U ! P1 be an �etale morphism of curves de�ned over K.Consider the function!f;S(B) := #fz 2 OS : jzjv � B for each v 2 S and z 2 f(U(K))gand the quantity lim supB!1 !f;fvg(B)=�f (B):We expect that this is zero provided that f does not admit a rational section.We shall prove this is the case when f has degree two.A key ingredient of our argument is a version of Hilbert's IrreducibilityTheorem:Proposition 6.8 Let f : U ! P1 be an �etale morphism of curves, de�nedover K and admitting no rational section. Then we havelim supB!1 !f;fvg(B)=�Id(B) = 0:Proof. We refer the reader to Serre's discussion of Hilbert's irreducibil-ity theorem ([26], x9.6, 9.7). Essentially the same argument applies in oursituation. �Combining Propositions 6.6, 6.7, and 6.8, we obtain:Corollary 6.9 Let f : C ! P1 be a �nite morphism of smooth curvesde�ned over K. Assume that f admits no rational section and that f�1(1)contains a Kv-rational point. We also assume that f has degree two. Thenwe have lim supB!1 !f;fvg(B)=�f (B) = 0:In particular, the set fz 2 Ofvg : z 2 f(C(Kv)) n f(C(K))g is in�nite.6.4 A density theorem for surfacesGeometric assumptions: Let X and B be 
at and projective over Spec(OS)and � : X ! B be a morphism. Let L � X be a closed irreducible subscheme,D � X a reduced e�ective Cartier divisor, and q := D \ L. We assume thegeneric �bers satisfy the following: X is a geometrically connected surface,B a smooth curve, � : X ! B a 
at morphism such that the generic �beris a rational curve with bisection D. We also assume L ' P1K, �jL is �nite,21



and L meets D at a single point q, at which D is nonsingular. Write X 0 forX �B L, D0 for D �B L, L0 for the image of the diagonal in X �B L (nowa section for �0 : X 0 ! L), and q0 for L0 \ D0. Finally, if C 0 denotes thenormalization of the union of the irreducible components of D0 dominatingL, we assume that C 0 ! L has no rational section over K (i.e., that C 0 isirreducible over K).Arithmetic assumptions: We assume that (L; q) has an S-integral point.Furthermore, we assume that for some v 2 S, C 0 has a Kv-rational pointlying over �0(q0).Remark 6.10 The second assumption is valid if any of the following aresatis�ed:1. D ! B is unrami�ed at q.2. D ! B is �nite (but perhaps rami�ed) at q and L! B has rami�cationat q of odd order.3. D ! B is �nite (but rami�ed) at q and L ! B has rami�cation atq of order two. Choose local uniformizers t; x; and y so that we havelocal analytic equations t+ ax2 = 0 and t+ by2 = 0 (with a; b 2 K) forD ! B and L! B. We assume that ab is a square in Kv.Note that in the last case, D0 and C 0 have local analytic equations ax2�by2 =0 and x=y = �pb=a respectively.Theorem 6.11 Under the geometric and arithmetic assumptions made above,S-integral points of (X ;D) are Zariski dense.Proof. It su�ces to prove that S-integral points of (X 0;D0) are Zariskidense. These map to S-integral points (X ;D).Consider �rst S-integral points of (L0; q0). These are dense by Proposition6.5, and contain a �nite index subgroup of G a(OS) � P1K. Corollary 6.9 andour geometric assumptions imply that in�nitely many of these points lie in�0(C 0(Kv)) n �0(C 0(K)).Choose a generic S-integral point p of (L0; q0) as described above. LetX 0p = �0�1(p);D0p = X 0p \ D0; and L0p = X 0p \ L0, so that (X 0p;D0p) is a rationalcurve with rational bisection and integral point L0p. Combining the resultsof the previous paragraph with Proposition 6.3, we obtain that S-integral22



points of (X 0p;D0p) are Zariski dense. As we vary p, we obtain a Zariski densecollection of integral points for (X 0;D0). �6.5 Cubic surfaces containing a lineLet X1 be a cubic surface in P3OS, D1 � X1 a hyperplane section, and L1 � X1a line not contained in D1, all assumed to be 
at over Spec(OS). Writeq1 := D1 \ L1, a rational section over Spec(OS). Let P3OS 9 9 K B be theprojection associated with L1, X = BlL1X1, and � : X ! B the inducedprojection (of course, B = P1OS if OS is a UFD). Let L � X be the propertransform of L1, D � X the total transform of D1, and q = L \ D. Weshall apply Theorem 6.11 to obtain density results for S-integral points of(X1;D1).We will need to assume the following geometric conditions:GA1 D1 is reduced everywhere and nonsingular at q1;GA2 X1 has only rational double points as singularities, with at most onesingularity along L1;GA3 D1 is not the union of a line and a conic containing q1 (de�ned overK).The �rst assumption and the fact that D1 is Cartier imply that X1 is non-singular at q1. We analyze the projection from the line L1 using the �rst twoassumptions. This induces a morphism� : X ! P1:Of course, X = X1 if and only if L1 is Cartier in X1, which is the caseexactly when X1 is smooth along L1. We use L and D to denote the propertransforms of L1 and D1. Our three assumptions imply that D equals thetotal transform of D1 and has a unique irreducible component C dominatingP1. We also have that the generic �ber of � is nonsingular, intersects D intwo points, and intersects L in two points (if X1 is smooth along L1) or inone point (if X1 has a singularity along L1). In particular, L is a bisection(resp. section) of � if X1 is nonsingular (resp. singular) along L1.We emphasize that S-integral points of (X ;D) map to S-integral pointsof (X1;D1), and all the Geometric Assumptions of Theorem 6.11 are satis�edexcept for the last one. The last assumption is veri�ed if any of the followinghold: 23



GA4a The branch loci of C ! P1 and L! P1 do not coincide.GA4b The curve C has genus one.GA4c X1 has a singularity along L1.Clearly, either the second or the third condition implies the �rst.We turn next to the Arithmetic Assumptions.AA1 (L1; q1) has an S-integral point.Note that S-integral points of (L1; q1) not lying in the singular locus ofX1 ! Spec(OS) lift naturally to S-integral points of (L; q).Our next task is to translate the conditions of Remark 6.10 to our situa-tion. They are satis�ed in any of the following contexts:AA2a D1 is irreducible over K and q1 is not a 
ex of D1;AA2b X1 has a singularity along L1;AA2c D1 is irreducible overK and q1 is a 
ex of D1. Let H be the hyperplanesection containing L1 and the 
ex line. We assume that H \ X1 =L1 [M , where M is a smooth conic.AA2d D1 is irreducible over K but q1 is a 
ex so that the hyperplane Hcontaining L1 and the 
ex line F intersectsX1 in three coincident lines,i.e.,H \X1 = L1[M1[M2. Choose local coordinates x and y for H sothat L1 = fx = 0g; F = fy = 0g; andM1[M2 = fax2+cxy+by2 = 0g.Then we assume that ab is a square in Kv.AA2e D1 consists of a line and a conic C1 irreducible over K, intersecting intwo distinct points, each de�ned over Kv.In the �rst case, the map D ! B is unrami�ed at q. Note that in the secondcase L is a section for �. In the third case, our assumption implies thatL! B is unrami�ed at q. In the last case, we observe that the points of Llying over �(q) are de�ned over Kv, hence C 0 has a Kv-rational point over�0(q0).It remains to show that AA2d allows us to apply case 3 of Remark 6.10.We �x projective coordinates on P3 compatibly with the coordinates already24



chosen on H: y = 0 is the linear equation for the hyperplane containing D1,z = 0 the equation for H, x = z = 0 the equations for L1, and x = z = y = 0the equations for q1. Under our assumptions, the equations for D1 and X1take the formg := zw2 + ax3 + c1wxz + c2wz2 + c4x2z + c5xz2 + c6z3 = 0f := g + cx2y + bxy2 + yz`(w; x; y; z) = 0where ` is linear in the variables. The conic bundle structure � : X ! B isobtained by making the substitution z = txg0 = tw2 + x(wc1t+ wc2t2) + x2(a+ c4t+ c5t2 + c6t3) = 0f 0 = g0 + cxy + by2 + ty`(w; x; y; tx):We analyze the local behavior of D! B at q using x as a coordinate for D.First dehomogenizeg00 = t+ x(c1t+ c2t2) + x2(a+ c4t+ c5t2 + c6t3) = 0and then take a suitable analytic change of coordinate on D to obtain t +aX2 = 0. To analyze L! B, we set x = 0 and use y as a coordinatef 00 = t+ by2 + ty`(1; 0; y; 0) = 0:After a suitable analytic change of coordinate on L, we obtain t+ bY 2 = 0.Remark 6.12 We further analyze condition AA2d when Kv = R. Then abis a square if and only if ab � 0. This is necessarily the case if c2 � 4ab < 0,i.e., if the linesM1 andM2 are de�ned over an imaginary quadratic extension.We summarize our discussion in the following theorem:Theorem 6.13 Let X1 be a cubic surface, D1 � X1 a hyperplane section,and L1 � X1 a line not contained in D1, all assumed to be 
at over Spec(OS).Write q1 := D1 \ L1. Assume the following:1. GA1,GA2,GA3, and AA1;2. at least one of the assumptions GA4a,GA4b,or GA4c;3. at least one of the assumptions AA2a,AA2b,AA2c,AA2d, or AA2e.25



Then S-integral points of (X1;D1) are Zariski dense.We recover the following result (essentially Theorem 2 of Beukers [2]):Corollary 6.14 Let X1 be a cubic surface, D1 � X1 a hyperplane section,and L1 � X1 a line not contained in D1, all assumed to be 
at over Spec(Z).Write q1 := D1 \ L1. Assume that1. X1 and D1 are smooth;2. there exists an Z-integral point of (L1; q1);3. if q is a 
ex of D1, we assume that the hyperplane containing L1 andthe 
ex line intersects X1 in a smooth conic and L1.Then Z-integral points of (X1;D1) are Zariski dense.We also recover a weak version of Theorem 1 of [2]. (This theorem isasserted to be true but the proof is not quite complete; the problem occursin the argument for the second part of Lemma 2.)Corollary 6.15 Retain all the hypotheses of Corollary 6.14, except that weallow the existence of a hyperplane H intersecting X1 in three lines L1;M1;and M2 and containing a 
ex line F for D1 at q. Let p be a place for Z(either in�nite or �nite). Choose local coordinates x and y for H so thatL1 = fx = 0g; F = fy = 0g; and M1 [M2 = fax2 + cxy + by2 = 0g, andassume that ab is a square in Qp. ThenZ[1=p]-integral points of (X1;D1) areZariski dense (where Z[1=1] =Zand Q1 = R.)Of course, there are in�nitely many primes p such that ab is a square inQp. When p = 1, by Remark 6.12 it su�ces to verify that M1 and M2 arede�ned over an imaginary quadratic extension.We also obtain results in cases where the boundary is reducible:Corollary 6.16 Let X1 be a cubic surface, D1 � X1 a hyperplane section,and L1 � X1 a line not contained in D1, all assumed to be 
at over Spec(Z).Write q1 := D1 \ L1. Assume that1. X1 is smooth;2. there exists an S-integral point of (L1; q1);26



3. D1 = E[C, where E is a line intersecting L1 and C is a conic irreducibleover K;4. C intersects E in two points, de�ned over Kv where v is some place inS;5. there exists at most one conic in X1 tangent to both L1 and C.Then S-integral points of (X ;D) are Zariski dense.Note that the assumption on the conics tangent to L1 and C is used toverify GA4a.6.6 Other applicationsTheorem 6.11 can be applied in many situations.Theorem 6.17 Let X = P1OS � P1OS, D � X a divisor of type (2; 2), andL � X a ruling of X , all 
at over OS. Assume that1. D is nonsingular;2. L is tangent to D at q;3. S-integral points of (L; q) are Zariski dense.Then S-integral points of (X ;D) are Zariski dense.Proof. Let � be the projection for which L is a section. Since C = Din this case, the second arithmetic assumption of Theorem 6.11 is easilysatis�ed. �We also obtain the following potential density result:Theorem 6.18 Let X be a smooth Del Pezzo surface of degree K2X and indexone (i.e.,ZKX is saturated in Pic(X)). Let D � X be a smooth anticanonicaldivisor. If X and D are de�ned over a number �eld K then integral pointsof (X;D) are potentially dense.Proof. Applying the classi�cation theory of surfaces (and enlarging thebase �eld), we may represent X as a conic bundle � : X ! P1. First expressX as a blow-up of P2 in 9�K2X points. The pencil of lines in P2 containing27



one of the points w gives the conic bundle structure. Let L denote a (�1)-curve not contained in a �ber of �, e.g., the exceptional curve lying overw. By adjunction, D is a bisection for � and intersects L in one point q.Finally, the irreducible components of the normalization of D �P1 L all havepositive genus, because D has positive genus. In particular, X;D;L; and qsatisfy all the geometric assumptions of Theorem 6.11. On the other hand,its arithmetic assumptions may always be satis�ed after judicious extensionsof OS. It follows that integral points of (X;D) are potentially dense. �7 Potential density for log K3 surfacesWe consider the following general situation:Problem 7.1 (Integral points of log K3 surfaces) Let X be a surfaceand D a reduced e�ective Weil divisor such that (X;D) has log terminalsingularities and KX +D is trivial. Are integral points on (X;D) potentiallydense?Problem 7.1 has been studied when D = ; (see, for example, [3]). In thiscase density holds if X has in�nite automorphisms or an elliptic �bration.The case X = P2 and D a plane cubic has also attracted signi�cant atten-tion. Silverman [29] proved potential density in the case where D is singularand raised the general case as an open question. Beukers [1] established thisby considering the cubic surface X1 obtained as the triple cover of X totallybranched over D.Implicit in [2] is a proof of potential density when X1 is a smooth cubicsurface and D1 is a smooth hyperplane section. Note that this also followsfrom Theorem 6.13 (cf. also Corollaries 6.14 and 6.15.) After suitable ex-tensions of K and additions to S, there exists a line L � X de�ned over Kand the relevant arithmetic assumptions are satis�ed. Similarly, the case ofX = P1 � P1 and D a smooth divisor of type (2; 2) follows from Theorem6.17. Finally, Theorem 6.18 gives potential density when X is an index-oneDel Pezzo surface and D is a smooth anticanonical divisor.We summarize our results as follows:Theorem 7.2 Let X be a smooth Del Pezzo surface and D a smooth anti-canonical divisor. Then integral points for (X;D) are potentially dense.28
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