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1 Introduction

Let K be a number field, S a finite set of valuations of K. including the
archimedean valuations, and Og the ring of S-integers. Let X be an algebraic
variety defined over K and D a divisor on X. We will use X and D to denote
models over Spec(Os).

We will say that integral points on (X, D) (see Section 2 for a precise
definition) are potentially dense if they are Zariski dense on some model
(X, D), after a finite extension of the ground field and after enlarging S. A
central problem in arithmetic geometry is to find conditions insuring potential
density (or nondensity) of integral points. This question motivates many
interesting and concrete problems in classical number theory, transcendence
theory and algebraic geometry, some of which will be presented below.

It we think about general reasons for the density of points - the first idea
would be to look for the presence of a large automorphism group. There
are many beautiful examples both for rational and integral points, like K3
surfaces given by a bihomogeneous (2, 2,2) form in P* x P! x P! or the classical
Markov equation 2% + y? + 2% = 3zyz. However, large automorphism groups
are “sporadic” - they are hard to find and usually, they are not well behaved in
families. There is one notable exception - namely automorphisms of algebraic
groups, like tori and abelian varieties.

Thus it is not a surprise that the main geometric reason for the abundance
of rational points on varieties treated in the recent papers [11], [3], [12] is the
presence of elliptic or, more generally, abelian fibrations with multisections
having a dense set of rational points and subject to some nondegeneracy
conditions. Most of the effort goes into ensuring these conditions.



In this paper we focus on cases when D is nonempty. We give a systematic
treatment of known approaches to potential density and present several new
ideas for proofs. The analogs of elliptic fibrations in log geometry are conic
bundles with a bisection removed. We develop the necessary techniques
to translate the presence of such structures to statements about density of
integral points and give a number of applications.

The paper is organized as follows: in Section 2 we introduce the main def-
initions and notations. Section 3 is geometrical - we introduce the relevant
concepts from the log minimal model program and formulate several geomet-
ric problems inspired by questions about integral points. In Section 4, we
recall the fibration method and nondegeneracy properties of multisections.
We consider approximation methods in Section 5. Section 6 is devoted to
the study of integral points on conic bundles with sections and bisections re-
moved. In the final section, we survey the known results concerning potential
density for integral point on log K3 surfaces.
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2 Generalities

2.1 Integral points

Let # : U — Spec(Os) be a flat scheme over Og with generic fiber U. An
integral point on U is a section of 7; the set of such points is denoted U (Os).

In the sequel, ¢ will be the complement to a reduced effective Weil divisor
D in a normal proper scheme X', both generally flat over Spec(Og). Hence
an S-integral point P of (X', D) is a section sp : Spec(Og) — X of x, which
does not intersect D, that is, for each prime ideal p € Spec(Og) we have



sp(p) ¢ Dy. We denote by X (resp. D) the corresponding generic fiber. We
generally assume that X is a variety (i.e., a geometrically integral scheme);
frequently X is smooth and D is normal crossings. Potential density of
integral points on (X, D) does not depend on the choice of S or on the choices
of models over Spec(Og), so we will not always specify them. Hopefully, this
will not create any confusion.

It D is empty then every K-rational point of X is an S-integral point for
(X, D) (on some model). Every K-rational point of X, not contained in D
is S-integral on (X', D) for S large enough. Clearly, for any A" and D there
exists a finite extension K'/K and a finite set S’ of prime ideals in Ok such
that there is an S’-integral point on (X’,D’) (where X" is the base change of
X to Spec(OY%)).

The definition of integral points can be generalized as follows: let Z be
any closed subscheme of X'. An S-integral point for (X, Z) is an Og-valued
point of X'\ Z.

2.2 Vojta’s conjecture

A pair consists of a proper normal variety X and a reduced effective Weil
divisor D C X. A morphism of pairs ¢ : (X1, D1) — (X2, D2) is a morphism
¢ : X1 — X; such that (the support of) ¢='(D;) is a subset of D;. In
particular, ¢ restricts to a morphism X; \ D; — X5 \ Dz. A morphism
of pairs is dominant if ¢ : X; — X3 is dominant. If (X7, D;) dominates
(X3, D3) then integral points are dense on (X3, Dy) when they are dense on
(X1, D1) (after choosing appropriate integral models). A morphism of pairs
is properif ¢ : X7 — X, is proper and the restriction X7 \ D1 — Xy \ D,
is also proper; equivalently, we may assume that ¢ : X; — X, is proper
and Dy is a subset of p~*(Dz). A resolution of the pair (X, D) is a proper
morphism of pairs p : (X, D) — (X, D) such that p: X — X is birational,
X is smooth, and D is normal crossings.

Let X be a normal proper variety of dimension d. Recall that a Cartier
divisor D C X is big if h°(Ox(nD)) > Cn? for some C > 0 and all n
sufficiently large and divisible.

Definition 2.1 A pair (X, D) is of log general type if it admits a resolution
p:(X,D)— (X,D) with wg (D) big.

Let us remark that the definition does not depend on the resolution.



Conjecture 2.2 (Vojta, [30]) Let (X, D) be a pair of log general type. Then
integral points on (X, D) are not potentially dense.

This conjecture is known for semiabelian varieties and their subvarieties ([9],
[31], [16]). Vojta’s conjecture implies that a pair with dense integral points
cannot dominate a pair of log general type.

We are interested in geometric conditions which would insure potential
density of integral points. The most naive statement would be the direct
converse to Vojta’s conjecture. However this can’t be true even when D = ).
Indeed, varieties which are not of general type may dominate varieties of
general type, or more generally, admit finite étale covers which dominate
varieties of general type (see the examplesin [7]). In the next section we will
analyze other types of covers with the same arithmetic property.

3 Geometry

3.1 Morphisms of pairs

Definition 3.1 We will say that a class of dominant morphisms of pairs ¢ :
(X1, D1) — (X3, Dy) is arithmetically continuous if the density of integral
points on (X3, Dy) implies potential density of integral points on (Xy, Dy).

For example, assume that D = (). Then any projective bundle in the
Zariski topology P — X is arithmetically continuous. In the following sec-
tions we present other examples of arithmetically continuous morphisms of
pairs.

Definition 3.2 A pseudo-étale cover of pairs ¢ : (X1, D7) — (X3, Ds) is a
proper dominant morphism of pairs such that

a) ¢ : X7 — Xy is generically finite, and

b) the map from the normalization X7°™ of X, (in the function field of

X1) onto X, is étale away from Ds.

Remark 3.3 For every pair (X, D) there exists a birational pseudo-étale
morphism ¢ : (X, D) — (X, D) such that X is smooth and D is normal
crossings.

The following theorem is a formal generalization of the well-known theo-

rem of Chevalley-Weil. It shows that potential density is stable under pseudo-
étale covers of pairs.



Theorem 3.4 Let ¢ : (X1, D1) — (X3, Dy) be a pseudo-étale cover of pairs.
Then ¢ is arithmetically continuous.

Remark 3.5 An elliptic fibration £/ — X, isotrivial on X \ D, is arithmeti-
cally continuous. Indeed, it splits after a pseudo-étale morphism of pairs and
we can apply Theorem 3.4.

The following example is an integral analog of the example of Skoroboga-
tov, Colliot-Thélene and Swinnerton-Dyer ([7]) of a variety which does not
dominate a variety of general type but admits an étale cover which does.

Example 3.6 Consider P! x P! with coordinates (z1,¥1), (22, y2) and invo-
lutions

j1(:1?1,y1) = (—51?17311) j2($27y2) = (312751?2)

on the factors. Let j be the induced involution on the product; it has fixed

points
1 =0 T9 = Yo
1 =0 To = —Y2
y1 =10 Ty = Yz
y1 =10 To2 = —Y2

The first projection induces a map of quotients
(P*x P/ {(j) = P/ (j1).

We use X to denote the source; the target is just Proj(Clz?,y7]) ~ P*. Hence
we obtain a fibration f : X — P! Note that f has two nonreduced fibers,

corresponding to ;1 = 0 and y; = 0 respectively. Let D be the image in X
of

(21 =0) U (y1 = 0) U (22 = mayz) U (w2 = may2)
where mq and my are distinct, myms # 1, and my,my # 0,1. Since D
intersects the general fiber of f in just two points, (X, D) is not of log general

type.
We can represent X as a degenerate quartic Del Pezzo surface with four

Al singularities (see figure 1). If we fix invariants
a = airyys, b=ai(r3+y;), ¢ = miye; —u3), d=yi(es+y3), € =yizay,
then X is given as a complete intersection of two quadrics:

ad = be, = bd — 4dae.
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Figure 1: The log surface (X, D)

The components of D satisfy the equations

Dy = {a=b=c=0}
Dy = {e=d=e=0}
Ds = {(1+m}a—mib=(1+m?)e—mid=0}
Dy = {(1+m3)a—mob= (1 +m3)e—mod =0}

Our assumptions guarantee that Ds and D, are distinct.

We claim that (X, D) does not admit a dominant map onto a variety of
log general type and that there exists a pseudo-étale cover of (X, D) which
does. Indeed, the preimage of X \ D in P! x P! is

(Al \0) X (Pl \ {m17m271/m171/m2})7

which dominates a curve of log general type, namely, P! minus four points.
However, (X, D) itself cannot dominate a curve of log general type. Any
such curve must be rational, with at least three points removed; however, the
boundary D contains at most two mutually disjoint irreducible components.

The following was put forward as a possible converse to Vojta’s conjecture.

Problem 3.7 (Strong converse to Vojta’s conjecture) Assume that the
pair (X3, Dy) does not admit a pseudo-étale cover (Xy, Dy) — (X3, D) such
that (X1, D1) dominates a pair of log general type. Are integral points for
(X3, D3) potentially dense?



3.2 Projective bundles in the étale topology

We would like to produce further classes of dominant arithmetically contin-

uous morphisms (Xy, D1) — (X2, D2).

Theorem 3.8 Let ¢ : (X1,D1) — (X2, D2) be a projective morphism of
pairs such that ¢ is a projective bundle (in the étale topology) over Xy \ Ds.
We also assume that o' (Dy) = Dy. Then ¢ is arithmetically continuous.

Proof. We are very grateful to Prof. Colliot-Thélene for suggesting this
proof.

Choose models (X;,D;) (¢ = 1,2) over some ring of integers Og, so that
the morphism ¢ is well-defined and a projective bundle. (We enlarge S as
necessary. )

We recall basic properties of the Brauer group Br(Ogs). Let v denote a
place for the quotient field K and K, the corresponding completion. Class-
field theory gives the following exact sequences

0 — Br(K) — &,Br(K,) - Q/Z — 0
0 — Br(Og) — Br(K) — @,gsBr(K,).

The Brauer groups of the local fields corresponding to nonarchimedean val-
uations are isomorphic to Q/Z. Given a finite extension of K,/ K, of degree
n, the induced map on Brauer groups is multiplication by n.

Let p denote an S-integral point of (X3, D3). The fiber ¢~!(p) is a Brauer-
Severi variety over Og. If  — 1 denotes the relative dimension of ¢ then the
corresponding element 3(p) € Br(Og) has order dividing r. Integral points in
©~'(p) are dense if rational points are dense, which is the case when 3(p) = 0.

Our exact sequences imply that 8(p) yields elements of Br(K,) which are
zero unless v € S, and are annihilated by r otherwise. It suffices to find an
extension K'/K inducing a cyclic extension of K, of order divisible by r for
all v € S. Indeed, such an extension necessarily kills 3(p) for each point p
defined over Og. If Og is the integral closure of Og in K’ then ¢~'(p) has
dense S’-integral points. O

Remark 3.9 Let X be a smooth simply connected projective variety which
does not dominate a variety of general type. It may admit an projective
bundle (in the étale topology) ¢ : P — X, for example if X is a K3 surface.
However, P cannot dominate a variety of general type. Indeed, given such a



dominant morphism 7 : P — Y, the fibers of ¢ are mapped to points by .
In particular, 7 necessarily factors through ¢. (We are grateful to J. Kollar
for emphasizing this point.)

Problem 3.10 (Geometric counterexamples to Problem 3.7) Arethere
pairs which do not admit pseudo-étale covers dominating pairs of log general
type but which do admit arithmetically continuous covers dominating pairs
of log general type?

3.3 Punctured varieties

In Section 3.1 we have seen that potential density of integral points is pre-
served under pseudo-étale covers. It is not an easy task, in general, to check
whether or not some given variety (like an elliptic surface) admits a (pseudo-)
étale cover dominating a variety of general type. What happens if we modity
the variety (or pair) without changing the fundamental group?

Problem 3.11 (Geometric puncturing problem) Let X be a projective
variety with canonical singularities and Z a subvariety of codimension > 2.
Assume that no (pseudo-) étale cover of (X, ()) dominates a variety of general
type. Then (X, 7) admits no pseudo-étale covers dominating a pair of log
general type. A weaker version would be to assume that X and Z are smooth.

By definition, a pseudo-étale cover of (X, 7) is a pseudo-étale cover of a pair

(X', D"), where X’ is proper over X and X'\ D' ~ X \ Z.

Proposition 3.12 Assume X and Z are as in Problem 3.11, and that X is
smooth. Then
a) No pseudo-étale covers of (X, 7) dominate a curve of log general type.
b) No pseudo-étale covers of (X, Z) dominate a variety of log general type
of the same dimension.

Proof. Suppose we have a pseudo-étale cover p : (X1, D1) — (X, Z)and a
dominant morphism ¢ : (X1, D1) — (X3, D) to a variety of log general type.
By Remark 3.3, we may take the X; smooth and the I); normal crossings.
Since Dy is exceptional with respect to p, litaka’s Covering Theorem ([13]
Theorem 10.5) yields an equality of Kodaira dimensions

K([(X) = K([(Xl + Dl)



Assume first that X3 is a curve. We claim it has genus zero or one. Let
X" he the normalization of X in the function field of X;. The induced
morphism ¢ : X" — X is finite, surjective, and branched only over 7, a
codimension > 2 subset of X. Since X is smooth, it follows that ¢ is étale
(see SGA II X §3.4 [10]). If X, has genus > 2 then ¢ : X7 — X3 is constant
along the fibers of X7 — X™"™ and thus descends to a map X" — X,.
This would contradict our assumption that no étale cover of X dominates a
variety of general type.

Choose a point p € Dy and consider the divisor F' = ¢~ *(p). Note that
2F moves because 2p moves on X;. However, 2F is supported in Dy, which
lies in the exceptional locus for p, and we obtain a contradiction.

Now assume ¢ is generically finite. We apply the Logarithmic Ramifica-
tion Formula to ¢ (see [13] Theorem 11.5)

Kx, + Dy = ¢"(Kx, + D) + R

where R is the (effective) logarithmic ramification divisor. Applying the Cov-
ering Theorem again, we find that k(Kx,+D1—R) = «(Kx,+D3) = dim(X).
It follows that Kx, + Dy is also big, which contradicts the assumption that
X is not of general type. O

Problem 3.13 (Arithmetic puncturing problem) Let X be a projec-
tive variety with canonical singularities and Z a subvariety of codimension
> 2. Assume that rational points on X are potentially dense. Are integral
points on (X, Z) potentially dense?

For simplicity, one might first assume that X and Z are smooth.

Remark 3.14 Assume that Problem 3.13 has a positive solution. Then
potential density of rational points holds for all K3 surfaces.

Indeed, it Y is a K3 surface of degree 2n then potential density of rational
points holds for the symmetric product X = Y (see [12]). Denote by Z
the large diagonal in X and by A the large diagonal in Y (the ordinary
product). Assume that integral points on (X, Z) are potentially dense. Then,
by Theorem 3.4 integral points on (Y™, A) are potentially dense. This implies
potential density for rational points on Y.



4 The fibration method and nondegenerate
multisections

This section is included as motivation. Let B be an algebraic variety, defined
over a number field K and = : G — B be a group scheme over B. We will
be mostly interested in the case when the generic fiber is an abelian variety
or a split torus G,. Let s be a section of 7. Shrinking the base we may
assume that all fibers of (G are smooth. We will say that s is nondegenerate
if U,,s™ 1s Zariski dense in G.

Problem 4.1 (Specialization) Assume that ¢ — B has a nondegenerate
section s. Describe the set of b € B(K) such that s(b) is nondegenerate in
the fiber G}.

For simple abelian varieties over a field a point of infinite order is non-
degenerate. If £ — B is a Jacobian elliptic fibration with a section s of
infinite order then this section is automatically nondegenerate, and s(b) is
nondegenerate if it is nontorsion. By a result of Néron (see [26] 11.1), the set
of b € B(K) such that s(b) is not of infinite order is thin; this holds true for
abelian fibrations of arbitrary dimension.

For abelian fibrations A — B with higher-dimensional fibers, one must
also understand how rings of endomorphisms specialize. The set of b € B(K)
for which the restriction

End(A) — End(A(b))

fails to be surjective is also thin; this is a result of Noot [21] Corollary 1.5. In
particular, a nondegenerate section of a family of generically simple abelian
varieties specializes to a nondegenerate point outside a thin set of fibers.
More generally, given an arbitrary abelian fibration A — B and a nonde-
generate section s, the set of b € B(K) such that s(b) is degenerate is thin
in B. (We are grateful to Prof. Masser for pointing out the proof.) After re-
placing A by an isogenous abelian variety and taking a finite extension of the
function field K(B), we obtain a family A" — B’ with A’ ~ AT* x ... x A’m,
where the A; are (geometrically) simple and mutually non-isogenous. By
the Theorems of Néron and Noot, the A;(b’) are simple and mutually non-
isogenous away from some thin subset of B’. A section s’ of A — B’ is
nondegenerate iff its projection onto each factor A;J is nondegenerate; for
b’ not contained in our thin subset, s'(¥') is nondegenerate iff its projection

10



onto each A;J(b’) is nondegenerate. Hence we are reduced to proving the
claim for each A;J. Since A; is simple, a section s; of A;J is nondegenerate
iff its projections s;1,... ,s;,, are linearly independent over End(A;). Away
from a thin subset of B’, the same statement holds for the specializations to
b'. However, Néron’s theorem implies that s;,(8'),...,s;, (') are linearly
independent away from a thin subset.

Remark 4.2 There are more precise versions of Néron’s Theorem due to
Demyanenko, Manin and Silverman (see [28], for example). Masser has pro-
posed another notion of what it means for a subset of B(K) to be small,
known as ‘sparcity’. For instance, the endomorphism ring of a family of
abelian varieties changes only on a ‘sparse’ set of rational points of the base
(see [18]). For an analogue to Néron’s Theorem, see [17].

Similar results hold for algebraic tori and are proved using a version of
Néron’s Theorem for G, -fibrations (see [26] pp. 154). A sharper result (for
one-dimensional bases B) can be obtained from the following recent theorem:

Theorem 4.3 ([4]) Let C be an absolutely irreducible curve defined over
a number field K and xq,...,x, rational functions in K(C), multiplicatively
independent modulo constants. Then the set of algebraic points p € C(Q)
such that x1(p), ..., x,(p) are multiplicatively dependent has bounded height.

The main idea of the papers [11], [3], [12] can be summarized as follows.
We work over a number field K and we assume that all geometric data are
defined over K. Let 7 : ¥ — B be a Jacobian elliptic fibration over a one
dimensional base B. This means that we have a family of curves of genus
one and a global zero section so that every fiber is in fact an elliptic curve.
Suppose that we have another section s which is of infinite order in the
Mordell-Weil group of F(K(B)). The specialization results mentioned above
show that for a Zariski dense set of b € B(K) the restriction s(b) is of infinite
order in the corresponding fiber Fj. If K-rational points on B are Zariski
dense then rational points on E are Zariski dense as well.

Let us consider a situation when E does not have any sections but in-
stead has a multisection M. By definition, a multisection (resp. ratio-
nal multisection) M is irreducible and the induced map M — B is finite
flat (resp. generically finite) of degree deg(M). The base-changed family
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FE xg M — M has the identity section Id (i.e., the image of the diagonal
under M xg M — E xp M) and a (rational) section

v = deg(M)Id — Tr(M xg M)

where Tr(M xp M) is obtained (over the generic point) by summing all the
points of M x5 M. By definition, M is nondegenerate if 7j; is nondegenerate.

When we are concerned only with rational points, we will ignore the dis-
tinction between multisections and rational multisections, as every rational
multisection is a multisection over an open subset of the base. However, this
distinction is crucial when integral points are considered.

It M is nondegenerate and if rational points on M are Zariski dense then
rational points on £ are Zariski dense (see [3]).

Example 4.4 ([11]) Let X be a quartic surface in P? containing a line L.
Consider planes P? passing through this line. The residual curve has degree
3. Thus we obtain an elliptic fibration on X together with the trisection L.
If L is ramified in a smooth fiber of this fibration then the multisection is
nondegenerate and rational points are Zariski dense.

This argument generalizes to abelian fibrations 7 : A — B. However, we
do not know of any simple geometric conditions insuring nondegeneracy of a
(multi)section in this case. We do know that for any abelian variety A over
K there exists a finite extension K’/ K with a nondegenerate point in A(K”)
(see [12]). This allows us to produce nondegenerate sections over function

fields.

Proposition 4.5 Let Y be a Fano threefold of type Wy, that is a double
cover of P? ramified in a smooth surface of degree 6. Then rational points on
the symmetric square Y'?) are potentially dense.

Proof. Observe that the symmetric square Y'? is birational to an abelian
surface fibration over the Grassmannian of lines in P2 This fibration is
visualized as follows: consider two generic points in Y. Their images in P?
determine a line, which intersects the ramification locus in 6 points and lifts
to a (hyperelliptic) genus two curve on Y. On Y () we have an abelian surface
fibration corresponding to the degree two component of the relative Picard
scheme. Now we need to produce a nondegenerate multisection. Pick two
generic points by and by on the branch surface. The preimages in Y of the
corresponding tangent planes are K3 surfaces 3; and X, of degree two with

12



ordinary double points at the points of tangency. The surfaces ¥; and ¥,
therefore have potentially dense rational points (this was proved in [3]), as
does ¥y x Y. This is our multisection; we claim it is nondegenerate for
generic by and by. Indeed, it suffices to show that given a (generic) point
in Y(z), there exist b; and by so that ¥y x ¥, contains the point. Observe
that through a (generic) point of P?, there pass many tangent planes to the
branch surface. O

Remark 4.6 Combining the above Proposition with the strong form of
Problem 3.13 we obtain potential density of rational points on a Fano three-
fold of type W5 - the last family of smooth Fano threefolds for which potential
density i1s not known.

Here is a formulation of the fibration method useful for the analysis of
integral points:

Proposition 4.7 Let B be a scheme over a number field K, G — B a flat
group scheme, T'— B an étale torsor for G, and M C T a nondegenerate
multisection over B. If M has potentially dense integral points then T has
potentially dense integral points.

Proof. Without loss of generality, we may assume that B is geometrically
connected and smooth. The base-changed family T' x5 M dominates T', so
it suffices to prove density for 7' xg M. Note that since M is finite and flat
over B, 7y is a well-defined section over all of M (i.e., it is not just a rational
section). Hence we may reduce to the case of a group scheme ¢ — B with a
nondegenerate section 7.

We may choose models G and B over Spec(Og) so that G — B is a group
scheme with section 7. We may also assume that S-integral points of 7 are
Zariski dense. The set of multiples 7" of 7, each a section of G — B, is dense
in G by the nondegeneracy assumption. Since each has dense S-integral
points, it follows that S-integral points are Zariski dense. O

A similar argument proves the following

Proposition 4.8 Let o : X — P! be a K3 surface with elliptic fibration.
Let M be a multisection over its image o(M), nondegenerate and contained
in the smooth locus of w. Let Fy,... F, be fibers of ¢ and D «a divisor
supported in these fibers and disjoint from M. If M has potentially dense
integral points then (X, D) has potentially dense integral points.
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Proof. We emphasize that X is automatically minimal and the fibers of ¢
are reduced (see [3]). Our assumptions imply that M is finite and flat over
p(M).

After base-changing to M, we obtain a Jacobian elliptic fibration X' :=
X xp1 M with identity and a nondegenerate section 7p;. Let G C X' be
the open subset equal to the connected component of the identity. Since
D' := D xp1 M is disjoint from the identity, it is disjoint from . Hence it
suffices to show that G has potentially dense integral points.

We assumed that M is contained in the smooth locus of ¢, so 7as is
contained in the grouplike part of X', and some multiple of 73; is contained
in (G. Repeating the argument for Proposition 4.7 gives the result. O

5 Approximation techniques

In this section we prove potential density of integral points for certain pairs
(X, D) using congruence conditions to control intersections with the bound-
ary. Several of these examples are included as support for the statement of

Problem 3.13.

Proposition 5.1 Let G = Hﬁv G where G are algebraic tori G, or geo-
metrically simple abelian varieties. Let Z be a subvariety in G of codimension
> = max;(dim(G;)) and let U = G\ Z be the complement. Then integral
points on U are potentially dense.

Proof. We are grateful to Prof. McKinnon for inspiring the following
argument.

The proof proceeds by induction on the number of components N. The
base case N = 1 follows from the fact that rational points on tori and abelian
varieties are potentially dense, so we proceed with the inductive step. Con-
sider the projections ' : G — G' = H#N Gj and 7y @ G — Gy. By
assumption, generic fibers of 7’ are geometrically disjoint from Z.

Choose a ring of integers Og and models G; over Spec(Og). We assume
that each G; is smooth over Spec(Og) and that Gy has a nondegenerate S-
integral point ¢ (see [12], for example, for a proof of the existence of such
points on abelian varieties).

Let 7 be any subscheme of Gy supported over a finite subset of Spec(Og)
such that Gx has an S-integral point py disjoint from 7. We claim that such

14



integral points are Zariski dense. Indeed, for some m > 0 we have
mg=0 (mod p)

for each p € Spec(Og) over which 7 has support. Hence we may take the
translations of py by multiples of mg.

After extending Og, we may assume U has at least one integral point p =
(p', pn) so that 7' (p') and 7' (px) intersect Z in the expected dimensions.
In particular, F/_l(p/) is disjoint from Z. By the inductive hypothesis, we
may extend Og so that

(7x'(pv) 2 G 7y (pn) N Z)

has dense integral points. In particular, almost all such integral points are
not contained in 7'(Z), a closed proper subscheme of G'. Let r be such a
point, so that F, = 71"—1(7“) ~ Gy intersects Z in a subscheme 7 supported
over a finite number of primes. Since (r,py) € F, is disjoint from 7, the
previous claim implies that the integral points of F, disjoint from 7 are
Zariski dense. As r varies, we obtain a Zariski dense set of integral points on

G\ Z. 0

Corollary 5.2 Let X be a toric variety and Z C X a subvariety of codi-
mension > 2, defined over a number field. Then integral points on (X, 7)
are potentially dense.

Another special case of the Arithmetic puncturing problem 3.13 is the
following:

Problem 5.3 Are integral points on punctured simple abelian varieties of
dimension n > 1 potentially dense?

Example 5.4 Potential density of integral points holds for simple abelian
varieties punctured in the origin, provided that their ring of endomorphisms
contains units of infinite order.

6 Conic bundles and integral points

Let K be a number field, S a finite set of places for K (including all the infinite
places), Og the corresponding ring of S-integers, and n € Spec(Og) the
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generic point. For each place v of K, let K, be the corresponding complete
field and o, the discrete valuation ring (if v is nonarchimedean). As before,
we use calligraphic letters (e.g., X') for schemes (usually flat) over Og and
roman letters (e.g., X) for the fiber over 7.

6.1 Results on linear algebraic groups

Consider a linear algebraic group GG/ K. Choose a model G for GG over Og, i.e.,
a flat group scheme of finite type G/Os restricting to G at the generic point.
This may be obtained by fixing a representation ¢ — GL,(K) (see also [32]
§10-11). The S-rank of G (denoted rank((G,Og)) is defined as the rank of
the abelian group of sections of G(Og) over Og. This does not depend on the
choice of a model. Indeed, consider two models G; and G, with a birational
map b: Gy ——+ Gy; of course, b is an isomorphism over the generic point and
the proper transform of the identity section [; is the identity. There is a
subscheme Z C Spec(QOg) with finite support such that the indeterminacy
of b is in the preimage of Z. It follows that the sections of G; congruent to
I; modulo Z have proper transforms which are sections of G,. Such sections
form a finite-index subgroup of G1(Os).

Let G,, be the multiplicative group over Z, i.e., Spec(Z[z,y]|/ (xy — 1));
it can be defined over an arbitrary scheme by extension of scalars. There is
a natural projection

G (Z) — Spec(Z[z]) = A, C P},
so that PL\ G,,(Z) = {0,00}. A form of G,, over K is a group scheme G/K

for which there exists a finite field extension K'/K and an isomorphism
G xg K' ~ G, (K'). These are classified as follows (see [23] for a complete
account). Any group automorphism

a:G,(K') — G, (K

is either inversion or the identity, depending on whether it exchanges 0 and
00. The corresponding automorphism group is smooth, so we may work in
the étale topology (see [19] Theorem 3.9). In particular,

K —forms of G,, ~ H},(Spec(K),Z/27Z).

Each such form admits a natural open imbedding into a projective curve
G — X, generalizing the imbedding of G,, into P'. The complement D =
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X \ G consists of two points. The Galois action on D is given by the cocycle
in H(Spec(K),Z/27Z) classifying G.

There is a general formula for the rank of a torus 7" due to T. Ono and
J.M. Shyr (see [22], Theorem 6 and [27]). Let 7' (resp. 7T,) the group of
characters defined over K (resp. K, ), and p(T') (resp. p(T,v)) the number
of independent elements of T (resp. Tv) The formula takes the form

rank(7T, Og) = Z p(T,v)— p(T).

vES

For forms of G,, this is particularly simple. For split forms
rank(G,,, Og) = #{places v € S} — 1.

Now let G/K be a nonsplit form, corresponding to the quadratic extension
K'/K, and S’ the places of K’ lying over the places of S. Then we have

rank(G, Og) = #{places v € S completely splitting in S'}.

6.2 Group actions and integral points

Throughout this subsection, X" is a normal, geometrically connected scheme
and X — Spec(Os) a flat projective morphism. Let D C X’ be an effective
reduced Cartier divisor. Contrary to our previous conventions, we do not
assume that D is flat over Og. Assume that a linear algebraic group G acts

on X so that X' \ D is a G-torsor.

Proposition 6.1 There exists a model G for G such that G acts on X and
stabilizes D.

Proof. Choose an imbedding X' — Pp_ and a compatible linearization
G — GLu41(K) (see [20], Ch. 1, Cor. 1.6 and Prop. 1.7). Let ¢' —
GL,11(Os) be the resulting integral model of (7, so that G’ stabilizes the
ideal of X and therefore acts on it. Furthermore, G’ evidently stabilizes the
irreducible components of D dominating Og. The fibral components of D
are supported over a finite subset of Spec(Og). We take G C G’ to be the
subgroup acting trivially over this subset; it has the desired properties. [

Proposition 6.2 Assume (X, D) has an S-integral point and that G has
positive Og-rank. Then (X, D) has an infinite number of S-integral points.
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Proof. Consider the action of G(Ogs) on the integral point o (which has
trivial stabilizer). The orbit consists of S-integral points of (X', D), an infinite
collection because G has positive rank. O

Now assume that X is a smooth rational curve. A rational section (resp.
bisection) D C & is a reduced effective Cartier divisor such that the generic
fiber D is reduced of degree one (resp. two). Note that the open curve X \ D
is geometrically isomorphic to P' — {oo} (resp. P' —{0,00}), and thus is a
torsor for some K-form GG of G, (resp. G,,). This form is easily computed.
Of course, G, has no nontrivial forms. In the G,, case, we can regard D, as
an element of H},(Spec(K),Z/27), which gives the descent data for G.

The following result is essentially due to Beukers (see [1], Theorem 2.3):

Proposition 6.3 Let (X', D) — Spec(Os) be a rational curve with rational
bisection and G the corresponding form of G,, (as described above). Assume
that (X, D) has an S-integral point and rank(G,Og) > 0. Then S-integral
points of (X, D) are Zariski dense.

Proof. This follows from Proposition 6.2. Given an S-integral point o of
(X, D), the orbit G(Os)o is infinite and thus Zariski dense. O

Combining with the formula for the rank, we obtain the following:

Corollary 6.4 Let (X,D) — Spec(Os) be a rational curve with rational
bisection such that (X, D) has an S-integral point. Assume that either

a) D is reducible over Spec(K') and |S| > 1; or

b) D is irreducible over Spec(K) and at least one place in S splits com-
pletely in K(D).

Then S-integral points of (X', D) are Zariski dense.

When D is a rational section we obtain a similar result (also essentially
due to Beukers [1], Theorem 2.1):

Proposition 6.5 Let (X', D) — Spec(Os) be a rational curve with rational
section such that (X, D) has an S-integral point. Then S-integral points of
(X, D) are Zariski dense.

6.3 wv-adic geometry

For each place v € S, consider the projective space P}(K,) as a manifold
with respect to the topology induced by the v-adic absolute value on K,.
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For simplicity, this will be called the v-adic topology; we will use the same
term for the induced subspace topology on PY(K). Given an étale morphism
of curves f : U — P! defined over K,, we will say that f(U(K,)) is a basic
€tale open subset. These are open in the v-adic topology, either by the open
mapping theorem (in the archimedean case) or by Hensel’s lemma (in the
nonarchimedean case).

Let
X7(B):=#{z € Opy |zl < Band z € f(U(K,))}

where B is a positive integer and
Opy :=1{2 € K : |z|,, <1 for each w # v}.
We would like to estimate the quantity
py = liminfx 1 (B)/x1a(B)

i.e., the fraction of the integers contained in the image of the v-adic points

of U.

Proposition 6.6 Let [ : U — P! be an étale morphism defined over K, and
fi : C — P! a finite morphism of smooth curves extending f. If there exists
a point q € fi'(00) NC(K,) at which fi is unramified then p; = 1.

Proof. This follows from the fact that f(U(K,)) is open if f is étale along
U. O

As an illustrative example, we take K = Q and K, = R, so that Oy, = Z.
The set f(U(R)) is a finite union of open intervals (r, s) with r,s € RU{oo},
where the (finite) endpoints are branch points. We observe that

0 if f(U(R)) is bounded;

py =« 1/2 if f(U(R)) contains a one-sided neighborhood of oo;

1 if f(U(R)) contains a two-sided neighborhood of oo.

We can read off easily which alternative occurs in terms of the local behavior
at infinity. Let f; : C — P! be a finite morphism of smooth curves extending
f. If f7'(cc) has no real points then p; = 0. If f;'(00) has unramified (resp.
ramified) real points then gy =1 (resp. s > 0.)

We specialize to the case of double covers:
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Proposition 6.7 Let U — P! be an étale morphism defined over K, and
fi : C — P! a finite morphism of smooth curves extending f. Assume that
fi has degree two and ramifies at ¢ € f{'(c0). Then s > 0.

Proof. Of course, ¢ is necessarily defined over K,. The archimedean case
follows from the previous example, so we restrict to the nonarchimedean case.
Assume f; is given by

2 -1
Yy =cp2" + 12"+ .+ co,

where z is a coordinate for the affine line in P'(K,), ¢, # 0, and the ¢; € 0,.
Substituting z = 1/t and y = x/t/"/?!, we obtain the equation at infinity

22 =c,+ ol + ...+ cot” for n even

22 =ct+c, 1124 ...+cot™ forn odd
If n is even then f;'(oo) consists of two non-ramified points, so we may
assume n odd. Then f;'(co) consists of one ramification point ¢, necessarily
defined over K.

Write ¢, = ugn® and z = u;n %, where ug and u; are units and 7 is a

uniformizer in 0,. (We may assume that some power 7" is contained in Of.)
Our equation takes the form

Y27 = wgul 4 cpqut T TP b 4 cquy PO (1)

We review a property of the v-adic numbers, (proved in [25], Ch. XIV
§4). Consider the multiplicative group

UM ={uco,:u=1 (modx™)}.

Then for m sufficiently large we have U(™) C K2. In particular, to deter-
mine whether a unit u is a square, it suffices to consider its representative
mod 7.

Consequently, if 3 is sufficiently large and has the same parity as «, then
we can solve Equation 1 for y € K, precisely when uguy is a square. For
example, choose any M € O so that M = uer"~"Y? (mod 7"%) and set
z = M/r"" € Oy. Hence, of the z € O,y with |z|, < B (with B > 0),
the fraction satisfying our conditions is bounded from below. It follows that
py > 0. U
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Now let f : U — P! be an étale morphism of curves defined over K.
Consider the function

wis(B):=#{2€ Os:|z|, < Bforeachv e S and z € f(U(K))}

and the quantity
lim supwy ) (B)/x;(B).

— 00

We expect that this is zero provided that f does not admit a rational section.
We shall prove this is the case when f has degree two.

A key ingredient of our argument is a version of Hilbert’s Irreducibility
Theorem:

Proposition 6.8 Let f : U — P! be an étale morphism of curves, defined
over K and admitting no rational section. Then we have

lim supwy, ) (B)/x1a(B) = 0.
Proof. We refer the reader to Serre’s discussion of Hilbert’s irreducibil-

ity theorem ([26], §9.6, 9.7). Essentially the same argument applies in our

situation. g
Combining Propositions 6.6, 6.7, and 6.8, we obtain:

Corollary 6.9 Let f : ¢ — P! be a finite morphism of smooth curves
defined over K. Assume that f admits no rational section and that f~'(oo)
contains a K ,-rational point. We also assume that f has degree two. Then
we have

limsupwy (,3(B)/xs(B) = 0.

— 00

In particular, the set {z € O,y : z € f(C(K,))\ f(C(K))} is infinite.

6.4 A density theorem for surfaces

Geometric assumptions: Let X" and B be flat and projective over Spec(Og)
and ¢ : X — B be a morphism. Let £ C & be a closed irreducible subscheme,
D C X a reduced effective Cartier divisor, and g := D N L. We assume the
generic fibers satisfy the following: X is a geometrically connected surface,
B a smooth curve, ¢ : X — B a flat morphism such that the generic fiber
is a rational curve with bisection D. We also assume L ~ Pj., ¢|L is finite,
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and L meets D at a single point ¢, at which D is nonsingular. Write X" for
X xg L, D for D xp L, L for the image of the diagonal in X xz L (now
a section for ¢' : A" — L), and ¢ for £' N D'. Finally, if C’ denotes the
normalization of the union of the irreducible components of D’ dominating
L, we assume that C' — L has no rational section over K (i.e., that C’ is
irreducible over K).

Arithmetic assumptions: We assume that (£, q) has an S-integral point.
Furthermore, we assume that for some v € S, €’ has a K,-rational point

lying over ¢'(¢).

Remark 6.10 The second assumption is valid if any of the following are
satisfied:

1. D — B is unramified at g.

2. D — Bis finite (but perhaps ramified) at ¢ and L. — B has ramification
at ¢ of odd order.

3. D — B is finite (but ramified) at ¢ and L. — B has ramification at
g of order two. Choose local uniformizers ¢, z, and y so that we have
local analytic equations ¢ + ax? = 0 and ¢ + by* = 0 (with a,b € K) for
D — B and L — B. We assume that ab is a square in K.

2 2

Note that in the last case, D’ and C’ have local analytic equations ax*—by* =

0 and x/y = £4/b/a respectively.

Theorem 6.11 Under the geometric and arithmetic assumptions made above,
S-integral points of (X, D) are Zariski dense.

Proof. 1t suffices to prove that S-integral points of (X', D) are Zariski
dense. These map to S-integral points (X, D).

Consider first S-integral points of (£, q'). These are dense by Proposition
6.5, and contain a finite index subgroup of G,(Os) C P}. Corollary 6.9 and
our geometric assumptions imply that infinitely many of these points lie in
H(CK))\ $(C'(K)).

Choose a generic S-integral point p of (L', q’) as described above. Let
X = qb’_l(p),D; =X/ ND, and £, = X N L', so that (], D)) is a rational
curve with rational bisection and integral point £7. Combining the results
of the previous paragraph with Proposition 6.3, we obtain that S-integral
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points of (X7, D)) are Zariski dense. As we vary p, we obtain a Zariski dense
collection of integral points for (X', D’). O

6.5 Cubic surfaces containing a line

Let X be a cubic surface in [F%S, Dy C A&} a hyperplane section, and £, C A}
a line not contained in Dy, all assumed to be flat over Spec(QOg). Write
g1 := D1 N L4, a rational section over Spec(Ogs). Let [F%S --» B be the
projection associated with £,, X = Blg, &1, and ¢ : X — B the induced
projection (of course, B = Pf,_ if Os is a UFD). Let £ C & be the proper
transform of £y, D C & the total transform of Dy, and q = L ND. We
shall apply Theorem 6.11 to obtain density results for S-integral points of
(X1, Dy).

We will need to assume the following geometric conditions:

GA1 Dy is reduced everywhere and nonsingular at ¢q;

GA2 X has only rational double points as singularities, with at most one
singularity along Lq;

GA3 Dy is not the union of a line and a conic containing ¢; (defined over

K).

The first assumption and the fact that Dy is Cartier imply that X is non-
singular at ¢;. We analyze the projection from the line L; using the first two
assumptions. This induces a morphism

6: X — Pl

Of course, X = Xj if and only if [ is Cartier in Xy, which is the case
exactly when X; is smooth along L;. We use L and D to denote the proper
transforms of Ly and Dy. Our three assumptions imply that D equals the
total transform of D and has a unique irreducible component €' dominating
P!. We also have that the generic fiber of ¢ is nonsingular, intersects D in
two points, and intersects L in two points (if X; is smooth along L) or in
one point (if X; has a singularity along L;). In particular, L is a bisection
(resp. section) of ¢ if X; is nonsingular (resp. singular) along L.

We emphasize that S-integral points of (X, D) map to S-integral points
of (X1, D1), and all the Geometric Assumptions of Theorem 6.11 are satisfied
except for the last one. The last assumption is verified if any of the following

hold:

23



GA4a The branch loci of €' — P! and L — P! do not coincide.
GA4b The curve C has genus one.
GA4c X has a singularity along L;.

Clearly, either the second or the third condition implies the first.

We turn next to the Arithmetic Assumptions.
AA1l (Ly,q1) has an S-integral point.

Note that S-integral points of (L£y,q1) not lying in the singular locus of
X1 — Spec(Ogs) lift naturally to S-integral points of (L, q).

Our next task is to translate the conditions of Remark 6.10 to our situa-
tion. They are satisfied in any of the following contexts:

AA2a D is irreducible over K and ¢; is not a flex of Dy;
AA2b X has a singularity along Lq;

AA2c¢ Dy isirreducible over K and ¢q is a flex of Dy. Let H be the hyperplane
section containing 4 and the flex line. We assume that H N X; =
Ly U M, where M is a smooth conic.

AA2d D; is irreducible over K but ¢ is a flex so that the hyperplane H
containing [ and the flex line F' intersects X; in three coincident lines,
ie., HNX; = L1UM;UM,. Choose local coordinates x and y for H so
that L, = {a# =0}, F = {y = 0}, and MyUM; = {az*+cxy+by* = 0}.

Then we assume that ab is a square in K.

AA2e D consists of a line and a conic (Y irreducible over K, intersecting in
two distinct points, each defined over K.

In the first case, the map D — B is unramified at ¢. Note that in the second
case L is a section for ¢. In the third case, our assumption implies that
L — B is unramified at ¢. In the last case, we observe that the points of L
lying over ¢(q) are defined over K, hence C' has a K,-rational point over
¢'(q').

It remains to show that AA2d allows us to apply case 3 of Remark 6.10.
We fix projective coordinates on P? compatibly with the coordinates already
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chosen on H: y = 0 is the linear equation for the hyperplane containing Dy,
z = 0 the equation for H, * = z = 0 the equations for Ly, andx =z =y =0
the equations for ¢;. Under our assumptions, the equations for Dy and X;
take the form

g = 2w + az’ +cwzz + 02w22 + c4:1;22 + c5:1;22 + c623 =0
[ o= g+ ey +bay* +yzl(w,z,y,2) =0

where ( is linear in the variables. The conic bundle structure ¢ : X — B is
obtained by making the substitution z = tx

¢ = tw'+ x(weyt + wcztz) + :1;2(@ + gt + st + c6t3) =0
= g +cay+ by’ + tyl(w, z,y,tx).

We analyze the local behavior of D — B at ¢ using x as a coordinate for D.
First dehomogenize

" =t+a(at+ cztz) + :1;2(61 + eyt + st + c6t3) =0

and then take a suitable analytic change of coordinate on D to obtain ¢t +
aX? = 0. To analyze L — B, we set x = 0 and use y as a coordinate

" =t+by* +tyl(1,0,y,0) = 0.
After a suitable analytic change of coordinate on L, we obtain ¢ 4+ 6Y? = 0.

Remark 6.12 We further analyze condition AA2d when K, = R. Then ab
is a square if and only if ab > 0. This is necessarily the case if ¢ — 4ab < 0,
i.e., 1f the lines M7 and M, are defined over an imaginary quadratic extension.

We summarize our discussion in the following theorem:

Theorem 6.13 Let X be a cubic surface, D; C X1 a hyperplane section,
and L1 C Xy a line not contained in Dy, all assumed to be flat over Spec(Og).
Write qy := Dy N Ly. Assume the following:

1. GAI,GA2,GA3, and AAIL;
2. at least one of the assumptions GAja,GALb,or GAje;
3. at least one of the assumptions AA2a, AA20,AA2c,AA2d, or AAZ2e.
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Then S-integral points of (X1, Dy) are Zariski dense.

We recover the following result (essentially Theorem 2 of Beukers [2]):

Corollary 6.14 Let A} be a cubic surface, D; C A} a hyperplane section,
and £; C & a line not contained in Dy, all assumed to be flat over Spec(Z).
Write q; := D; N Ly. Assume that

1. X; and D; are smooth;
2. there exists an Z-integral point of (Ly, q1);

3. if ¢ is a flex of Dy, we assume that the hyperplane containing [, and
the flex line intersects X, in a smooth conic and L;.

Then Z-integral points of (X4, D;) are Zariski dense.

We also recover a weak version of Theorem 1 of [2]. (This theorem is
asserted to be true but the proof is not quite complete; the problem occurs
in the argument for the second part of Lemma 2.)

Corollary 6.15 Retain all the hypotheses of Corollary 6.14, except that we
allow the existence of a hyperplane H intersecting Xy in three lines Ly, My,
and M, and containing a flex line F' for Dy at ¢. Let p be a place for Z
(either infinite or finite). Choose local coordinates = and y for H so that
Ly ={z =0}, F = {y =0}, and M; U My = {ax? + czy + by* = 0}, and
assume that ab is a square in Q,. Then Z[1/p]-integral points of (X}, D;) are
Zariski dense (where Z[1/oo] = Z and Q. = R.)

Of course, there are infinitely many primes p such that ab is a square in
Q,. When p = oo, by Remark 6.12 it suffices to verify that M; and M; are
defined over an imaginary quadratic extension.

We also obtain results in cases where the boundary is reducible:

Corollary 6.16 Let A} be a cubic surface, D; C A} a hyperplane section,
and £; C & a line not contained in Dy, all assumed to be flat over Spec(Z).
Write q; := D; N Ly. Assume that

1. X; is smooth;

2. there exists an S-integral point of (Ly, q1);
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3. Dy = FUC, where F is aline intersecting [y and (' is a conic irreducible
over K;

4. (' intersects K in two points, defined over K, where v is some place in

o
5. there exists at most one conic in X; tangent to both L; and C'.

Then S-integral points of (X', D) are Zariski dense.

Note that the assumption on the conics tangent to L; and C' is used to

verify GA4a.

6.6 Other applications

Theorem 6.11 can be applied in many situations.

Theorem 6.17 Let X = Pp_ x Py, D C X a divisor of type (2,2), and
L C X aruling of X, all flat over Og. Assume that

1. D is nonsingular;
2. L s tangent to D at q;
3. S-integral points of (L,q) are Zariski dense.

Then S-integral points of (X, D) are Zariski dense.

Proof. Let ¢ be the projection for which £ is a section. Since C = D
in this case, the second arithmetic assumption of Theorem 6.11 is easily
satisfied. O

We also obtain the following potential density result:

Theorem 6.18 Let X be a smooth Del Pezzo surface of degree K% and index
one (i.e., ZKy is saturated in Pic(X)). Let D C X be a smooth anticanonical
divisor. If X and D are defined over a number field K then integral points
of (X, D) are potentially dense.

Proof. Applying the classification theory of surfaces (and enlarging the
base field), we may represent X as a conic bundle ¢ : X — P! First express
X as a blow-up of P? in 9 — K% points. The pencil of lines in P? containing
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one of the points w gives the conic bundle structure. Let L denote a (—1)-
curve not contained in a fiber of ¢, e.g., the exceptional curve lying over
w. By adjunction, D is a bisection for ¢ and intersects L in one point g.
Finally, the irreducible components of the normalization of D xp1 L all have
positive genus, because D has positive genus. In particular, X, D, L, and ¢
satisfy all the geometric assumptions of Theorem 6.11. On the other hand,
its arithmetic assumptions may always be satisfied after judicious extensions
of Og. It follows that integral points of (X, D) are potentially dense. O

7 Potential density for log K3 surfaces
We consider the following general situation:

Problem 7.1 (Integral points of log K3 surfaces) Let X be a surface
and D a reduced effective Weil divisor such that (X, D) has log terminal
singularities and Kx + D is trivial. Are integral points on (X, D) potentially
dense?

Problem 7.1 has been studied when D = ) (see, for example, [3]). In this
case density holds if X has infinite automorphisms or an elliptic fibration.

The case X = P? and D a plane cubic has also attracted significant atten-
tion. Silverman [29] proved potential density in the case where D is singular
and raised the general case as an open question. Beukers [1] established this
by considering the cubic surface X; obtained as the triple cover of X totally
branched over D.

Implicit in [2] is a proof of potential density when X is a smooth cubic
surface and Dy is a smooth hyperplane section. Note that this also follows
from Theorem 6.13 (cf. also Corollaries 6.14 and 6.15.) After suitable ex-
tensions of K and additions to 5, there exists a line L. C X defined over K
and the relevant arithmetic assumptions are satisfied. Similarly, the case of
X = P! x P! and D a smooth divisor of type (2,2) follows from Theorem
6.17. Finally, Theorem 6.18 gives potential density when X is an index-one
Del Pezzo surface and D is a smooth anticanonical divisor.

We summarize our results as follows:

Theorem 7.2 Let X be a smooth Del Pezzo surface and D a smooth anti-
canonical divisor. Then integral points for (X, D) are potentially dense.
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We close this section with a list of open special cases of Problem 7.1.

1. Let X be a Del Pezzo surface and D a singular anticanonical cycle.
Show that integral points for (X, D) potentially dense.

2. Let X be a Hirzebruch surface and D an anticanonical cycle. Find a
smooth rational curve L, intersecting D in exactly one point p, so that
the induced map ¢ : L — P! is finite surjective.

7.1 Appendix: some geometric remarks

The reader will observe that the methods employed to prove density for inte-
gral points on conic bundles (with bisection removed) are not quite analogous
to the methods used for elliptic fibrations. The discrepancy can be seen in
a number of ways. First, given a multisection M for a conic bundle (with
bisection removed), we can pull-back the conic bundle to the multisection.
The resulting fibration has two rational sections, Id and 7as (see section 4).
However, a priori one cannot control how 7y intersects the boundary divisor
(clearly, this is irrelevant if the boundary is empty). A second explanation
may be found in the lack of a good theory of (finite type) Néron models for
algebraic tori (see chapter 10 of [5]).

We should remark that in some special cases these difficulties can be
overcome, so that integral points may be obtained by geometric methods
completely analogous to those used for rational points. Consider the cubic
surface

0+ y3 +22=1
with distinguished hyperplane at infinity. This surface contains a line with
equations * +y = z — 1 = 0. Euler showed that the resulting conic bundle
admits a multisection (zo,%0,20) = (9*,3t — 9t*,1 — 9¢*), which may be
reparametrized as (z1,y1,21) = (9%, =3t — 9¢*, 1 + 9¢%). Lehmer [15] showed
that this is the first in a sequence of multisections, given recursively by

(xn—l—la Yn41, Zn—l—l) = 2(216t6 - 1)(xn7 Yny Zn) - (xn—la Yn—1, Zn—l)
+ (=108, —108t*,216¢° + 4)

This is related to the fact that the norm group scheme

u’ —3(108t° — 1)v* =1,
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admits a section of infinite order (u,v) = (216¢° — 1, 12¢*). Remarkably, this
group acts regularly on the conic bundle, i.e., the coordinate transformations
are integral polynomials in £. In general, one would only expect a rational

action, defined over the generic point of the ¢-line.
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