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Abstract. We analyze the ample and moving cones of holomor-
phic symplectic manifolds, in light of recent advances in the min-
imal model program. As an application, we establish a numer-
ical criterion for ampleness of divisors on fourfolds deformation-
equivalent to punctual Hilbert schemes of K3 surfaces.

1. Introduction

Let X be a complex smooth projective variety. Its Néron–Severi
group N1(X,Z), i.e., the group of divisors modulo homological equiva-
lence, embeds in the cohomology group H2(X,Z). A divisor is ample
if some nonnegative multiple is in the class of a hyperplane section
of some projective embedding of X. A divisor is numerically effective
(nef) if it intersects every curve on X nonnegatively; ample divisors
are clearly nef. A divisor is effective if it is linearly equivalent to a sum
of irreducible divisors with nonnegative coefficients.

In many geometric applications, e.g., explicit factorization of ra-
tional maps, it is important to identify the classes of ample divi-
sors. By Kleiman’s criterion, a divisor is ample if and only if its
class is in the interior of the nef cone, i.e., the closed convex cone
in N1(X,R) = N1(X,Z) ⊗ R ⊂ H2(X,R) spanned by the nef divisor
classes. This description does not suffice to characterize ample divisors,
since it transfers the problem to the description of effective classes in
the group N1(X,Z) ⊂ H2(X,Z) of curves modulo homological equiv-
alence. The ample cone is known explicitly for very few classes of
varieties, e.g., varieties with rank-one Néron–Severi group (like com-
plete intersections of dimension ≥ 3), abelian varieties [1], and toric
varieties.

The case of a surface S is somewhat special: curve and divisor classes
reside in the same group, which carries the intersection form. A basic
example is the smooth cubic surface S3 ⊂ P3. Every smooth cubic
surface contains 27 lines with self-intersection −1, which span the cone
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of effective curves in N1(S3,R) = N1(S3,Z) ⊗ R, i.e., every curve on
S3 is equivalent to a sum of lines with nonnegative coefficients. The
nef cone is dual to the effective cone with respect to the intersection
pairing, and thus is controlled by (−1)-classes. The Néron–Severi group
and the cones are preserved under small deformations of S3.

A different situation arises for quartic surfaces S ⊂ P3 and their
deformations, i.e., K3 surfaces. The intersection form (, ) can be ex-
pressed

H2(S,Z)(,) ' U⊕3 ⊕⊥ (−E8)
⊕2, U =

(
0 1
1 0

)
and E8 is the positive-definite unimodular quadratic form correspond-
ing to the Dynkin diagram E8. The sublattice N1(S,Z) ⊂ H2(S,Z) de-
pends on the surface. For general S, the Néron–Severi group N1(S,Z) '
Z and every divisor class has positive self-intersection. However, defor-
mations of S may contain new algebraic cycles, so that N1(S,Z) ' Zr

with r ∈ [1, . . . , 20]. For example, when S is a quartic surface con-
taining a line the self-intersection of the line equals −2. The induced
intersection form on N1(S,Z) is nondegenerate and hyperbolic, but fails
to be unimodular in general. Hyperbolicity means that the set of ele-
ments in N1(S,R) with positive self-intersection splits into two convex
cones CS and −CS, where CS is the component containing the ample
divisors.

Select an ample divisor class g ∈ CS. The ample cone of (S, g) is
controlled by (−2)-classes: a divisor h is ample if and only if for each
curve C with (C,C) ≥ −2 and (g, C) > 0 we have (h,C) > 0 [17,
§2]. Thus the set of ample classes can be described simply using the
intersection form on N1(S,Z); this has numerous applications in the
theory of K3 surfaces.

One main result of this article is that a similar statement holds for
fourfolds F obtained by deforming the complex structure on a sym-
metric square of a K3 surface S blown-up along the diagonal. The
self-intersection form on H2(F,Z) has degree four. However, this is
proportional to the square of a quadratic form (, ) derived from the
intersection form on S:

(1) H2(F,Z)( , ) ' U⊕3 ⊕⊥ (−E8)
⊕2 ⊕⊥ (−2),

Restrict this quadratic form to the lattice N1(F,Z). Our main result
gives sufficient conditions for a divisor h on F to be ample in terms of
the quadratic form (1):

Theorem 1. Let F be a projective algebraic variety deformation equiv-
alent to the blowup of a symmetric square of a K3 surface along the
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diagonal. Fix an ample divisor g on F . A divisor h on F is ample if
(h, ρ) > 0 for each divisor class ρ satisfying (g, ρ) > 0 and either

(1) (ρ, ρ) ≥ −2, or
(2) (ρ, ρ) = −10 and (ρ,H2(F,Z)) = 2Z.

This result is part of a conjectural characterization of the ample
cones of such varieties [6]. The other half of the conjecture–that these
conditions are necessary for ampleness–remains open.

Our proof of this theorem uses the fact that F is an irreducible holo-
morphic symplectic variety, i.e., a smooth projective simply-connected
variety admitting a unique (up to scalar) non-degenerate holomor-
phic two-form. It is an interesting problem to construct new higher-
dimensional irreducible holomorphic symplectic varieties. All known
examples are among the following: deformations of Hilbert schemes
of punctual subschemes on K3 surfaces, generalized Kummer vari-
eties, and certain moduli spaces of simple sheaves on K3 surfaces
[2],[19],[22],[21]. The geometry of these varieties is much richer than
that of K3 surfaces. For example, they may admit nontrivial birational
transformations which are isomorphisms on complements of subvari-
eties of codimension ≥ 2. Ample divisors on such models yield moving
divisors on F , i.e., effective divisors D such that the complete linear
system of some positive multiple of D has no fixed components. The
moving cone of F , i.e., the cone in N1(F,R) spanned by classes of
moving divisors, is a birational invariant of F .

In all dimensions, we provide a Symplectic interpretation of moving
divisors (Theorem 7): The closure of the moving cone equals the clo-
sure of the union of the nef cones of all the nonsingular irreducible
holomorphic symplectic varieties birational to F .

The paper is organized as follows: in Section 2 we recall basic no-
tation and constructions relating to holomorphic symplectic fourfolds.
Section 3 outlines applications of the minimal model program to our
situation. Section 4 offers an analysis ‘from first principles’ of coho-
mology classes of extremal rays. Finally, Section 5 contains the proof
of the main theorem.
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2. Generalities on ample cones of holomorphic
symplectic manifolds

Let F be a irreducible holomorphic symplectic Kähler manifold and
N1(F,Z) ⊂ H2(F,Z) its group of divisor classes. A divisorD on F is big
if there exists a positive constant c such that dimH0(F, nD) ∼ cndim(F )

as n→∞.
Let N1(F,Z) denote the group of one-cycles (up to numerical equiv-

alence), NE1(F ) ⊂ N1(F,R) = N1(F,Z) ⊗ R the cone generated by
classes of effective curves, and NE1(F ) its closure. Recall that R≥0% ⊂
NE1(F ) is an extremal ray if whenever % = c1C1 + c2C2 for C1, C2 ∈
NE1(F ) and c1, c2 > 0 then C1, C2 ∈ R≥0%.

We recall some general facts:

• The cohomology group H2(F,Z) admits a quadratic form (, ),
the Beauville–Bogomolov form, with signature (3, dimH2(F,R)−
3) onH2(F,R) and signature (1, dimH2(F,R)−3) onH2(F,R)∩
H1,1(F,C) [8, 1.9]. We normalize this form so that it is integral
but not divisible.

• There is an integral formula for the Beauville–Bogomolov form
[8, §1.9] [2]. Given σ 6= 0 ∈ H0(F,Ω2

F ) there exists a positive
real constant c such that

(2) (α, β) = c

∫
F

αβ(σσ̄)dim(F )−1

for all α, β ∈ H1,1(F,C).
• Using the duality betweenH2(F,Z) andH2(F,Z), the Beauville–

Bogomolov form extends to a Q-valued form on H2(F,Z).
• For each Chern class ci(F ) there exists a constant ci such that

ci(F )αdim(F )−i = ci (α, α)(dim(F )−i)/2 .

• Each divisor class D with (D,D) > 0 is big [8, 3.10] [9].

Let CF denote the connected component of the positive cone of F

{α ∈ H2(F,R) ∩H1,1(F,C) : (α, α) > 0}

containing the Kähler class. Let

KF ⊂ CF , KF ⊂ CF

denote the Kähler cone of F and its closure. The intersection KF ∩
H2(F,Z) is the set of ample divisors on F ; nef divisors on F are defined
as elements of KF ∩H2(F,Z). Recall the following results of Boucksom
[4] and Huybrechts [10, §3], [8, §5]:
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Theorem 2. Let F be an irreducible holomorphic symplectic Kähler
manifold. A class α ∈ CF (resp. CF ) is in KF (resp. KF ) if and only
if α.C > 0 (resp. α.C ≥ 0) for each rational curve C ⊂ F .

Theorem 3. Let F be an irreducible holomorphic symplectic Kähler
manifold and α ∈ CF a ‘very general’ class, e.g., not orthogonal to any
integral class, cf. [8, 5.9]. Then there exist an irreducible holomor-
phic symplectic Kähler manifold F ′ and a correspondence Γ ⊂ F × F ′

inducing a birational map φ : F ′ 99K F such that

• Γ∗ : H2(F,Z) → H2(F ′,Z) is an isomorphism respecting the
Beauville–Bogomolov forms;

• Γ∗α ∈ KF ′.

The correspondence Γ is the specialization of the graph of an iso-
morphism F ′

t
∼→ Ft, where F ′

t and Ft are fibers of small deformations

F ′,F → D := {t : |t| < 1}

of F ′ and F respectively.

Example 4. The simplest nontrivial example is the Atiyah flop: Let
F be a K3 surface containing a (−2)-curve E and F → D a general de-
formation of F , so the cohomology class [E] does not remain algebraic.
Let F ′ → D denote the flop of E; the fiber F ′ over t = 0 contains a
(−2)-curve E ′. Note that in this case φ : F ′ ∼→ F ′ but

Γ = Graph(φ) + E × E ′ ⊂ F × F ′.

Remark 5. From our example, it is evident that

φ∗α 6= Γ∗α

in general. Equality holds iff

Γ = Graph(φ) +
∑

i

Zi

where each Zi maps to a codimension ≥ 2 subvariety in each factor.

Let

BKF ⊂ CF ⊂ H2(F,R) ∩H1,1(F,C)

denote the closure of the birational Kähler cone BKF , i.e.,

BKF = ∪ff
∗KF ′

where the union is taken over all birational maps f : F 99K F ′ to an
irreducible holomorphic symplectic Kähler manifold F ′. This has the
following numerical interpretation:
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Proposition 6. [10, 4.2] Let F be an irreducible holomorphic sym-
plectic Kähler manifold. A class α ∈ CF lies in BKF if and only if
(α,D) ≥ 0 for each uniruled divisor D ⊂ F .

Theorem 7 (Symplectic interpretation of moving divisors). Let F be
an irreducible holomorphic symplectic Kähler manifold. Each moving
divisor is contained in the closure of the birational Kähler cone BKF .

Remark 8. Corollary 19 below is a partial converse to this result.

Proof. We are grateful to Professor D. Huybrechts for his help with
this argument.

Suppose that M is moving. To show that M ∈ BKF , it suffices to
prove that (M,D) ≥ 0 for each irreducible uniruled divisor D ⊂ F .
(Our argument below only requires that D be effective.) We write
2n = dim(F ).

Replacing M by a suitable multiple if necessary, we may assume that
M has no fixed components, i.e., its base locus has codimension at least
two. There exists a diagram

Z
p→ F ′

q ↓
F

where Z → F is a smooth projective resolution of the base locus of |M |
and p is the resulting morphism. Thus there exists an ample divisor H
on F ′ such that

q∗M =
∑

i

ciEi + p∗H,

where each ci ≥ 0 and Ei is a q-exceptional divisor in Z.
Compute the Beauville–Bogomolov form by pulling back to Z:

(M,D) = c
∫

F
[M ][D](σσ̄)n−1

= c
∫

Z
q∗[M ]q∗[D]q∗((σσ̄)n−1)

= c
∫

Z
(
∑

i ci[Ei] + p∗[H])(q∗[D])q∗((σσ̄)n−1).

First, note that ∫
Z

[Ei]q
∗[D]q∗((σσ̄)n−1) = 0.

Indeed, any degree-(4n−2) form pulled back from F integrates to zero
along Ei because codimR(q(Ei), F ) ≥ 4. To evaluate the second term∫

Z

p∗[H]q∗[D]q∗((σσ̄)n−1),
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observe that the intersection p∗[H]∩q∗[D] involves a semiample divisor
and an effective divisor. In particular, we can express

p∗[H] ∩ q∗[D] =
∑

j

nj[Wj], nj > 0,

where each Wj is a (2n−2)-dimensional subvariety of Z. Thus we have∫
Z

p∗[H]q∗[D]q∗((σσ̄)n−1) =
∑

j

nj

∫
Wj

q∗((σσ̄))n−1.

Let W̃j → Wj denote a resolution of singularities and r : W̃j → F the
induced morphism. We have∫

Wj

q∗((σσ̄)n−1) =

∫
W̃j

(r∗σr∗σ)n−1 ≥ 0

because the integrand is a nonnegative multiple of the volume form on
W̃j. �

From now on, we assume that F is projective; in this case, we call
F an irreducible holomorphic symplectic variety. Recall that:

• An irreducible holomorphic symplectic Kähler manifold F is
projective if and only if there exists a divisor D on F with
(D,D) > 0 [8, 3.11].

• Let D be a nef and big divisor class on F . By Kawamata–
Viehweg vanishing [15, Theorem 2.64], D has no higher coho-
mology. By basepoint-freeness [15, Theorem 3.3], ND is glob-
ally generated for some N � 0.

Note that

BKF ∩ N1(F,R) = BKF ∩ N1(F,R),

i.e., the closure of the birational ample cone, which is the union of the
pull-backs of the ample cones of all irreducible holomorphic symplectic
varieties birational to F . Indeed, whether a class α ∈ CF is Kähler is
determined by its image under the projection

H1,1(F,C) ∩H2(F,R) → N1(F,R)

dual to the inclusion

N1(F,R) ↪→ H2(F,R) ∩H1,1(F,C);

this follows from Theorem 2. Thus taking closures is compatible with
restricting to N1(F,R).
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Remark 9. In the projective case, Theorem 7 implies that the closure
of the birational ample cone is the closure of the moving cone. Indeed,
elements of H2(F,Z) ∩ BKF correspond to ample divisors on some
model of F and thus are moving divisors.

Definition 10. Let C ⊂ Rn be a closed convex cone with nonempty
interior. We say that C is locally finite rational polyhedral at M ∈ C if
there exists an open neighborhood V of M such that C ∩ V is defined
in V by a finite number of rational linear inequalities.

Theorem 2 shows that the Kähler cone is controlled by classes of
rational curves, but this does not imply a priori that these classes
determine a locally finite rational polyhedral cone, nor does it provide a
geometric interpretation of these rational curves. Even for K3 surfaces
the cone of curves can be quite intricate [16]. The Cone Theorem sheds
some further light on this:

Proposition 11 (Cone Theorem for K-trivial varieties). [15, 3.7] Let
Y be a smooth projective variety with KY = 0 and ∆ an effective Q-
divisor on Y . Then the closed cone of effective curves NE1(Y ) can be
expressed

NE1(Y ) = NE1(Y )∆.C≥0 +
∑

j

R≥0[Cj], ∆.Cj < 0,

where the Cj are extremal and represent rational curves collapsed by
contractions of Y . This is locally finite in the following sense: Given
an ample divisor A and ε > 0, there are a finite number of Cj with
Cj.(∆ + εA) < 0.

Remark 12. This differs slightly from the standard statement of the
Cone Theorem in that we are making no assumptions on the singu-
larities of (Y,∆). Normally, one assumes that the pair has Kawamata
log terminal singularities (see [13, 2.13] for the definition). However,
we can always choose ε > 0 ∈ Q such that (Y, ε∆) is Kawamata log
terminal. Indeed, since Y is smooth if we choose ε such that

1/ε > max
x∈Y

{multx(∆)}

then the singularities are Kawamata log terminal by [14, 8.10].

Which parts of NE1(F ) can be analyzed using the Cone Theorem?

Proposition 13. Let F be an irreducible holomorphic symplectic vari-
ety and D a big divisor class on F . Then there exist a finite collection
of rational hyperplanes separating D from KF , i.e., if

〈
D,KF

〉
is the
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cone generated by D and KF then

KF ⊂
〈
D,KF

〉
is determined by a finite number of rational linear inequalities. Thus
KF is locally finite rational polyhedral at divisors in CF .

Proof. Express D = ∆+ εA for ∆ effective, A ample, and ε > 0 a small
rational number. The Cone Theorem (Proposition 11) asserts that D
intersects the generators of the cone of curves positively, except for a
finite number of extremal rays C1, . . . , Cn with D.Cj < 0. Theorem 2
shows that KF is the subcone of CF dual to NE1(F ). Thus a class

tD + (1− t)A ∈
〈
D,KF

〉
, t ∈ [0, 1], A ∈ KF ,

is in the closure of the Kähler cone if and only if

tD.Cj + (1− t)A.Cj ≥ 0, j = 1, . . . , n.

The last assertion follows from the fact that divisors in CF are auto-
matically big. �

The extremal rays described in the Cone Theorem have negative
Beauville-Bogomolov form:

Proposition 14. Let F be an irreducible holomorphic symplectic va-
riety. Suppose there exists a Kawamata log terminal pair (F,∆) such
that

(KF + ∆).R = ∆.R < 0.

Then (R,R) < 0 and the extremal contraction associated with R is
birational.

Proof. The extremal contraction β : F → F ′ associated with R is
discussed in [15, Theorem 3.7(3)]. This is characterized as a projective
morphism with connected fibers contracting precisely the curves with
classes proportional to R. First suppose that β is birational. Choose
an ample divisor A′ on F ′ and consider its pull-back A = β∗A′, which
is nef and big on F . We have (A,A) > 0 and A.R = 0, and the
Beauville-Bogomolov form has signature (1, dim N1(F,R) − 1) on the
Néron-Severi group. It follows that (R,R) < 0.

Now suppose that β has positive-dimensional fibers, in which case
it is almost an abelian fibration, in the sense that the generic fiber Z
admits an étale covering γ : Z̃ → Z by an abelian variety [18]. For
each curve C ⊂ Z, the class [C] ∈ H2(F,Z) equals rR for some r > 0
Since β is a fibration we have

∆.R =
1

r
(∆ ∩ Z).C =

1

r deg(γ)
γ∗(∆ ∩ Z).γ∗C.
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However, the last intersection number cannot be negative; a curve and
an effective divisor on an abelian variety meet with nonnegative inter-
section number. This contradicts our hypothesis. �

3. Application of the log minimal model program

We will use the following consequence of the log minimal model pro-
gram:

Theorem 15. Let Y be a smooth projective variety with KY trivial.
Suppose that D1, . . . , Dr are big divisors on Y . Then the ring

⊕(n1,...,nr)∈Zr
≥0

Γ(F,OF (n1D1 + . . .+ nrDr))

is finitely generated.

Proof. There exists a positive ε ∈ Q such that each εDi has divisorial
log terminal singularities (see [13, 2.13] for the definition). Indeed, if
we choose ε such that

1/ε > max
y∈Y,i=1,...,r

{multy(Di, y)}

then [14, 8.10] guarantees the singularities have the desired property.
It follows from [3, 1.1.9] that the graded ring

⊕(m1,...,mr)∈Zr
≥0

Γ(F,OF (b
∑

i

miεDic))

is finitely generated. It remains finitely generated when we restrict to
the multidegrees such that each miε ∈ Z. �

Definition 16. Assume C ⊂ Rn is a closed convex cone. A rational
chamber decomposition of C is a stratification by locally closed subcones
or chambers

C = tiCi

induced by a finite collection {Hj}j∈J of rational codimension-one lin-
ear subspaces Hj ⊂ Rn. Precisely, consider the stratification of Rn into
locally closed subsets characterized as the points contained in some of
the hyperplanes but not contained in others. The chambers Ci are de-
fined as the connected components of the intersections of these strata
with C. Thus the (relatively) open chambers are the connected com-
ponents of C \ ∪j∈JHj.

Let D ⊂ Rn be a convex cone with nonempty interior. A locally finite
rational chamber decomposition of D is a decomposition as a disjoint
union of connected subcones

D = tiDi
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such that, for each rational polyhedral subcone C ⊂ D, the induced
decomposition

C = ti(Di ∩ C)

is a rational chamber decomposition.

Proposition 17. Let F be a (projective) irreducible holomorphic sym-
plectic variety. Consider the collection of open subcones

(3) tF ′′KF ′′ ⊂ BKF ,

where the union is taken over irreducible holomorphic symplectic bira-
tional models of F , and the corresponding collection

(4) tF ′′(KF ′′ ∩ N1(F,R)) ⊂ BKF ∩ N1(F,R).

These are the open chambers of locally finite rational chamber decom-
positions of BKF ∩ CF and BKF ∩ CF ∩ N1(F,R) respectively.

Kawamata [11, Theorem 2.6] has similar results for Calabi-Yau three-
folds.

Proof. We first analyze the chamber decomposition of BKF ∩ CF ∩
∩N1(F,R). Recall that divisors D ∈ CF are big. Thus each element of
CF ∩N1(F,R) is contained in a polyhedral cone

〈D1, . . . , Dr〉
where D1, . . . , Dr are big divisors generating N1(F,Z).

Consider the associated graded ring

R(D1, . . . , Dr) := ⊕(n1,...,nr)∈Zr
≥0

Γ(F,OF (n1D1 + . . .+ nrDr)),

which is finitely generated by Theorem 15. As discussed in [7, 2.9], this
finite generation has implications for the birational geometry of F :

• the subcone

KF ∩ 〈D1, . . . , Dr〉 ⊂ 〈D1, . . . , Dr〉
is determined by a finite number of linear rational inequalities;

• the intersection of the closure of the moving cone with 〈D1, . . . , Dr〉
admits a chamber decomposition

(5) BKF ∩ 〈D1, . . . , Dr〉 = tF ′(KF ′ ∩ 〈D1, . . . , Dr〉),

where each F
∼

99K F ′ is a small birational modification.

Indeed, the chambers correspond to the various Geometric Invariant
Theory quotients of R(D1, . . . , Dr) under the Gr

m-action associated
with the multigrading. We consider linearizations of the action cor-
responding to positive characters of Gr

m.
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Now assume F ′ is a small modification corresponding to an open
chamber. A priori, F ′ might be very singular. However, each polar-
ization on F ′ pulls back to a moving divisor M on F ; the ‘Symplectic
interpretation of moving divisors’ (Theorem 7) implies M is contained
in the closure of the birational Kähler cone. The finiteness analysis
above implies that a sufficiently general M is actually contained in
BKF . Thus there exists a birational modification F 99K F ′′ to a po-
larized holomorphic symplectic variety such that the polarization pulls
back to M . Consequently, F ′ and F ′′ are isomorphic. This proves that
the open chambers of (5) are parametrized by smooth holomorphic
symplectic varieties; thus the collection of open subcones (4) induces a
chamber decomposition of BKF ∩ CF ∩ N1(X,R).

The hyperplanes inducing the chamber decompositions (5) corre-
spond to extremal rays contracted by moving divisors on birational
models F ′′ of F . Recall (Theorem 2) that each KF ′′ is dual to the
cone generated by rational curves of F ′′. The extremal rays determine
hyperplanes in H2(F,R)∩H1,1(X,C) which induce a chamber decom-
position of the birational Kähler cone

∪F ′′KF ′′ ⊂ BKF ,

where the union is over the holomorphic symplectic models F ′′ or F .
Thus the open subcones (3) induce a chamber decomposition of BKF ∩
CF . �

Recall that the Beauville-Bogomolov form on H2(F,R) induces a
form (, ) on H2(F,R) by duality. The following result should be read
with the Cone Theorem and Proposition 14 in mind:

Corollary 18. Let F be an irreducible holomorphic symplectic variety.
Then the intersection

NE1(F ) ∩ {R ∈ H2(F,R) : (R,R) < 0}
is locally finite rational polyhedral.

Proof. Supporting hyperplanes to NE1(F ) in the region

{R : (R,R) < 0}
correspond to divisor classes M with (M,M) > 0, and Proposition 17
applies. �

Corollary 19. Let F be an irreducible holomorphic symplectic variety.
Each divisor M ∈ BKF ∩ CF is moving.

Proof. Proposition 17 implies that M corresponds to a nef and big

divisor M ′ on some small birational modification F
∼

99K F ′, where
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F ′ is a projective irreducible holomorphic symplectic variety. Thus
basepoint-freeness implies that some multiple of M ′ is basepoint free.
Since F and F ′ are isomorphic in codimension one, we conclude that
M is moving on F . �

Remark 20. This analysis only applies to divisor classes with positive
Beauville–Bogomolov form. The case where the form is zero remains
open (cf. Conjecture 25).

Remark 21. The underlying techniques here are reminiscent of those
used in the proof that ‘minimal models are connected by flops’ [12] [3,
1.1.3].

4. Deriving (−2) and (−10)-classes from first principles

Let F be an irreducible holomorphic symplectic variety deformation
equivalent to S[2], the Hilbert scheme of length-two subschemes on a
K3 surface. The Beauville–Bogomolov form can be written [23, §2]:

(6) H2(F,Z)( , ) ' U⊕3 ⊕⊥ (−E8)
⊕2 ⊕⊥ (−2),

where U is the hyperbolic plane and E8 the positive-definite integral
lattice associated to the corresponding root system. We have

α4 = 3 (α, α)2

for each α ∈ H2(F,Z). By duality, there is an induced 1
2
Z-valued qua-

dratic form on H2(F,Z):

H2(F,Z)( , ) ' U⊕3 ⊕⊥ (−E8)
⊕2 ⊕⊥ (−1/2).

We recall additional properties of the cohomology ring H∗(F,Z) (see
[23, §2]):

• The intersection product induces an isomorphism

Sym2H2(F,Q)
∼→ H4(F,Q)

and the intersection form on the middle cohomology is given by
the formula

α1α2.α3α4 = (α1, α2) (α3, α4) + (α1, α3) (α2, α4) + (α1, α4) (α2, α3)

for all α1, α2, α3, α4 ∈ H2(F,Z).
• There is a distinguished class q∨ ∈ H4(F,Q) ∩H2,2(F,C) such

that
q∨.α1.α2 = 25 (α1, α2)

for all α1, α2 ∈ H2(F,Z). This is a rational multiple of the dual
Beauville–Bogomolov form induced on H2(F,Z) via Poincaré
duality.
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• We have the formulas

c2(F ) =
6

5
q∨, q∨.q∨ = 23 · 25.

Theorem 22 (Classification of Extremal Rays). Let F be an irreducible
holomorphic symplectic fourfold such that there exists an isomorphism

ψ : H2(F,Z)
∼→ H2(S[2],Z),

with ψ(α)4 = α4 for each α ∈ H2(F,Z), where S is a K3 surface and
S[2] its Hilbert scheme of length-two subschemes. Suppose R ∈ N1(F,Z)
is an extremal ray such that there exists a Kawamata log terminal ef-
fective divisor ∆ ⊂ F with ∆.R < 0. Then we have

(R,R) = −1/2,−2,−5/2.

Moreover, N1(F,Z) contains an element ρ satisfying one of the follow-
ing:

• (ρ, ρ) = −2 and (ρ,H2(F,Z)) = Z;
• (ρ, ρ) = −2 and (ρ,H2(F,Z)) = 2Z;
• (ρ, ρ) = −10 and (ρ,H2(F,Z)) = 2Z.

Proof. Proposition 14 guarantees that (R,R) < 0. Again, consider the
extremal contraction β : F → F ′ with β∗R = 0 and Pic(F/F ′) ' Z.

We use the partial description of extremal contractions [25], [26,
1.1], [20, 1.4,1.11], [5]. The morphism β : F → F ′ satisfies one of the
following alternatives:

• β is a divisorial contraction taking the exceptional divisor to
a surface T ⊂ F ′. At each smooth point of T , β is locally a
contraction to a two-dimensional rational double point.

• β is a small contraction, taking a smooth Lagrangian P2 ⊂ F
to an isolated singularity of F ′.

In the divisorial case, the smooth locus of T has codimension ≥ 2
complement and admits a holomorphic symplectic form.

Consider first the divisorial case. Suppose that D is the exceptional
divisor of β; the generic fiber of β|D : D → T is an ADE-configuration
of P1’s. Since β is extremal, the fundamental group of T sm acts tran-
sitively on the components of β−1(t) for t ∈ T generic. An analysis of
intersection numbers implies that only A1 and A2 configurations may
occur (see [25, 5.1]).

Let D̃ denote the normalization of D and

D̃
γ→ T̃ → T

the Stein factorization of β|D̃. Then the generic fiber C = γ−1(t) is
isomorphic to P1. However, the classification of rational double points
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yields

ND̃/F |C ' OP1(−2),

hence

D.C = −1,−2.

This analysis only requires that F is an irreducible holomorphic sym-
plectic fourfold.

We will now use integrality properties of the Beauville–Bogomolov
form. Let ρ ∈ N1(F,Z) denote the primitive class identified with a
positive multiple of the extremal ray R via the Beauville–Bogomolov
form. Precisely, for each A ∈ H2(F,Z) we have

A.R = r (A, ρ)

with r = 1, 1/2 depending on whether (R,H2(F,Z)) = Z, 1
2
Z. Since C

and D are contracted under the extremal β : F → F ′, C = mR and
D = nρ for m,n ∈ N, and we have

D.C = mnR.ρ = mnr (ρ, ρ) .

The following cases may occur:

(I) D.C = −1:
(a) r = 1: Here m = n = 1 and R.ρ = −1, hence (ρ, ρ) = −1

which is impossible because (, ) is even-valued.
(b) r = 1/2: Here mn (ρ, ρ) = −2 and thus (ρ, ρ) = −2. We

conclude that (R,R) = −1/2.
(II) D.C = −2:

(a) r = 1: Here we have (ρ, ρ) = −2/mn which forces m =
n = 1 and (ρ, ρ) = −2. We conclude that (R,R) = −2.

(b) r = 1/2: Here (ρ, ρ) = −4/mn so mn = 1 or 2. However,
the lattice (6) does not admit primitive vectors ρ of length
four with (ρ,H2(F,Z)) = 2Z. Indeed, if we had

ρ = 2v + aδ, 2 - a

with

v ∈ U⊕3 ⊕ (−E8)
⊕2, (δ, δ) = −2, (v, δ) = 0,

then it would follow that

(7) (ρ, ρ) = 4 (v, v)− 2a2 ≡ −2 (mod 8).

We conclude that mn = 2, (ρ, ρ) = −2, and (R,R) =
−1/2.
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This completes the proof in the divisorial case.
We turn to the case where β : F → F ′ is a small contraction of a

Lagrangian P2. Some multiple of the extremal ray R is necessarily the
class L of a line in P2. We shall show that (L,L) = −5/2 which implies
that R = L, completing the proof of the theorem.

Suppose that λ ∈ H2(F,Z) is the unique class with

2A.L = (A, λ)

for all A ∈ H2(F,Z). Note that (λ, λ) < 0 because λ is nonzero and
proportional to R. We do not assume a priori that λ is primitive. Con-
sider a deformation Ft of F for which [L] ∈ H2(Ft,Z) (or equivalently,
λ) remains a Hodge class. The Lagrangian plane also deforms in Ft

(see [24] and [6]). For a general deformation Ft, the only Hodge classes
in H4(Ft,Z) are rational linear combinations of q∨ and λ2. Indeed, the
Torelli map is locally an isomorphism and q∨, λ2 ∈ H4(Ft,Q) are the
only Hodge classes in Sym2H2(Ft,Z) for generic Hodge structures on
H2(Ft,Z) (see [23, §3] for a detailed proof).

We may put

(8) [P2] = aq∨ + bλ2.

Geometric properties of the Lagrangian plane translate into algebraic
conditions on the coefficients a, b; we use the intersection properties
listed above:

• The normal bundle to any Lagrangian submanifold is equal to
its cotangent bundle. Thus we have

[P2].[P2] = c2(Ω
1
P2) = 3

which implies

25 · 23a2 + 50ab (λ, λ) + 3b2 (λ, λ)2 = 3.

• Using the exact sequence

0 → TP2 → TF |P2 → NP2/F → 0

we compute that c2(TF )|P2 = −3. It follows that

−3 =
6

5
(25 · 23a+ 25b (λ, λ)).

• We know that λ|P2 is some multiple of the hyperplane class,
i.e., λ.[P2] =

(
λ.L

)
L. We deduce that

λ.λ.[P2] =
(
λ.L

)2
= (λ, λ)2 /4.

Using formula (8) to evaluate λ.λ.[P2] we obtain

(λ, λ)2 /4 = 25a (λ, λ) + 3b (λ, λ)2 .
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Altogether, we obtain three Diophantine equations in the variables
(λ, λ) , a, and b. Eliminating a and b and solving for (λ, λ) we obtain
the quadratic equation

23 (λ, λ)2 + 20 (λ, λ)− 2100 = 0

with solutions (λ, λ) = −10, 210/23. Only the first solution makes
sense. We conclude that (L,L) = −5/2, λ is primitive, and (λ,H2(F,Z)) =
2Z. �

5. Applications to ample divisors

Theorem 23 (Main theorem). Let (F, g) be a polarized irreducible
holomorphic symplectic variety deformation equivalent to the Hilbert
scheme of length-two subschemes on a K3 surface. A divisor h on F
is ample if (h, ρ) > 0 for each divisor class ρ such that (ρ, g) > 0 and
one of the following holds:

(1) (ρ, ρ) ≥ 0;
(2) (ρ, ρ) = −2 and (ρ,H2(F,Z)) = 2Z;
(3) (ρ, ρ) = −2 and (ρ,H2(F,Z)) = Z;
(4) (ρ, ρ) = −10 and (ρ,H2(F,Z)) = 2Z.

Equivalently, h.R > 0 for each curve class R such that R.g > 0 and
one of the following holds:

(1) (R,R) ≥ 0;
(2) (R,R) = −1

2
;

(3) (R,R) = −2,
(4) (R,R) = −5

2
.

Let NE(F, g) ⊂ N1(F,R) denote the smallest real cone containing
these four types of classes. Classes of the last three types that are
extremal in the closure of NE(F, g) will be called nodal classes (cf. [17,
1.4]).

Proof of Theorem 23. Let h be a divisor satisfying the hypotheses, so
in particular (h, g) > 0. We claim that (h, h) > 0, which guarantees
h ∈ CF . Indeed, if (h, h) ≤ 0 then the lattice generated by g and h is
hyperbolic with respect to (, ). However, for each

ρ ∈ (Rh+ Rg) ∩ CF ,

(h, ρ) ≥ 0 with strict inequality whenever ρ is integral. This happens
only when (h, h) > 0, contradicting our assumption.

Suppose that h fails to be ample. After a small perturbation of g,
the line segment

th+ (1− t)g, t ∈ [0, 1]
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meets the boundary of the ample cone of F in the interior of some facet
(codimension-one face) of the nef cone. Indeed, Proposition 13 shows
that the nef cone is locally finite rational polyhedral at big divisors.
Thus the value

τ := sup{t : th+ (1− t)g is ample} ∈ (0, 1]

is rational.
Let R be the (primitive, integral) generator of the extremal ray cor-

responding to our facet. We have

(τh+ (1− τ)g).R = 0 and g.R > 0,

so h.R ≤ 0. The Classification of Extremal Rays (Theorem 22) implies
that

(R,R) = −1,−2,−5/2

whence R is a nodal class. This contradicts our assumption that h.R >
0 for each such class. �

In general, we conjecture that each nodal class arises as the extremal
ray associated with a birational contraction:

Conjecture 24 (Nodal classes conjecture). Each nodal class R repre-
sents a rational curve contracted by a birational morphism β given by
sections of OF (mλ),m � 0, where λ is any nef and big divisor class
with R.λ = 0.

(1) If (R,R) = −1
2
,−2 (i.e., the corresponding ρ is a (−2)-class)

then ρ is represented by a family of rational curves parametrized
by a K3 surface, which blow down to rational double points.

(2) If (R,R) = −5
2

(i.e., the corresponding ρ is a (−10)-class) then
ρ is represented by a family of lines contained in a P2 contracted
to a point.

The remaining generators of the cone of curves are given by:

Conjecture 25 (Square-zero class conjecture). [6, 3.8] Let λ be a
primitive class on the boundary of the nef cone with (λ, λ) = 0. Then
the corresponding line bundle OF (λ) has no higher cohomology and its
sections yield a morphism

F → P2

whose generic fiber is an abelian surface.
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