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LOG CANONICAL MODELS FOR THE MODULI SPACE OF

CURVES: FIRST DIVISORIAL CONTRACTION

BRENDAN HASSETT AND DONGHOON HYEON

Abstract. In this paper, we initiate our investigation of log canonical models
for (Mg, αδ) as we decrease α from 1 to 0. We prove that for the first critical
value α = 9/11, the log canonical model is isomorphic to the moduli space
of pseudostable curves, which have nodes and cusps as singularities. We also
show that α = 7/10 is the next critical value, i.e., the log canonical model stays
the same in the interval (7/10, 9/11]. In the appendix, we develop a theory
of log canonical models of stacks that explains how these can be expressed in
terms of the coarse moduli space.

1. Introduction

This article is the first of a series of papers investigating the birational geometry
of the moduli space Mg of stable curves of genus g. The guiding problem is to

understand the canonical model of Mg

Proj
(
⊕n≥0Γ(Mg, nKMg

)
)
,

when Mg is of general type. The moduli space is known to be of general type for
g ≥ 24 by work of Eisenbud, Harris, and Mumford [HM82]; recently, Farkas has
announced results for g = 22 [Far06].

It is a fundamental conjecture of birational geometry (recently proven by Birkar,
Cascini, Hacon and McKernan [BCHM06]) that canonical rings of varieties of gen-
eral type are finitely generated. The projective variety associated with this graded
ring is called the canonical model. Explicit canonical models of Mg are not known
for any genus g. To get around this difficulty, we study the intermediate log canon-
ical models

Mg(α) := Proj
(
⊕n≥0Γ(n(KMg

+ αδ))
)

for various values of α ∈ Q∩ [0, 1]. Here Mg is the moduli stack, δi, i = 0, . . . , ⌊g/2⌋

its boundary divisors, and KMg
its canonical divisor. Let Mg → Mg denote the

morphism to the coarse moduli space, which has boundary divisors ∆i and canonical
class KMg

.

A general discussion of log canonical models for stacks is offered in Appendix A,
but we sketch the basic idea here. Assume that g ≥ 4; the g = 2 case is discussed
in [Has05]. Then the Q-divisor on the coarse moduli space

(†) KMg
+ α(∆0 + ∆2 + . . .+ ∆⌊g/2⌋) +

1 + α

2
∆1
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pulls back to KMg
+αδ on the moduli stack (see Remark 4.9 of [Has05]). We shall

often abuse notation by conflating these divisors. The universal property of the
coarse moduli space implies that sections of invertible sheaves on Mg are all pull-

backs of sections of the corresponding reflexive sheaves on Mg. The log canonical

model of Mg with respect to KMg
+αδ can thus be identified with the log canonical

model of Mg with respect to (†) (see Proposition A.13).
For large values of α these log canonical models are well-understood. Results of

Mumford, Cornalba, and Harris imply that Mg(α) ≃Mg if and only if 9/11 < α ≤
1. Indeed, by the uniqueness of log canonical models, it suffices to show the pair
(Mg, αδ) has log canonical singularities and KMg

+ αδ is ample on Mg, for α in

this range. By Theorem 2 of [HM82], Mg \∆1 actually has canonical singularities;

the pair (Mg, αδ) is a smooth stack with a normal-crossings divisor and thus is log
canonical. The main result of [CH88] says that

aλ− δ =
a

13
(KMg

+ (2 −
13

a
)δ)

is ample for a > 11. Indeed, (Mg, αδ) is a strict log canonical model in the sense
that all divisors with negative discrepancies lie over δ (cf. [Has05] §4.3).

In this paper, we describe what happens when α = 9/11. The pair (Mg, 9/11 δ)

remains log terminal, but KMg
+ 9/11 δ is not ample on Mg. Mumford [Mum77]

described an extremal ray R for this divisor, parametrizing the elliptic tails. Recall
that the normalization of δ1 is isomorphic to M1,1 ×Mg−1,1 and M1,1 ≃ P1. Our
ray is the class of the fiber under projection to the second factor. Explicitly, for
each (C2, p) of Mg−1,1 consider the stable curves C = C1 ∪p C2, where (C1, p) is a

varying curve in M1,1 ≃ P1, meeting C2 at a single node p. These are parametrized
by a rational curve R(C2, p); the class R = [R(C2, p)] is independent of C2 and p
and

(KMg
+ 9/11 δ).R = 0.

This is the unique extremal ray for KMg
+ 9/11 δ; it meets every other curve class

in Mg positively (by the analysis of [CH88] or §6 of [GKM02]).
Applying the basepoint-freeness theorem to KMg

+ 9/11 δ (see Corollary A.14),

we obtain an extremal contraction of R

Υ : Mg →Mg(9/11).

Since R.∆1 < 0, Υ is birational with exceptional locus contained in ∆1. More
precisely, its restriction to the generic point of ∆1 is projection onto the Mg−1,1

factor. Thus Υ is a divisorial contraction, and Mg(9/11) remains Q-factorial.

Is Mg(9/11) the coarse moduli space of some moduli stack of curves with pre-
scribed properties? Such a moduli functor is implicit in the work of D. Schubert
[Sch91]. He constructed the moduli space M

ps

g of pseudostable curves applying
geometric invariant theory (GIT) to tricanonical curves. Recall that a cusp is a
curve singularity analytically-locally isomorphic to y2 = x3. A complete curve is
pseudostable if

(1) it is connected, reduced, and has only nodes and cusps as singularities;
(2) every subcurve of genus one meets the rest of the curve in at least two

points;
(3) the canonical sheaf of the curve is ample.
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The last condition means that each subcurve of genus zero meets the rest of the
curve in at least three points. The corresponding moduli stack is denoted M

ps

g .

Theorem 1.1. There is a morphism of stacks

T : Mg → M
ps

g

which is an isomorphism in the complement of δ1. For a stable curve C ∈ δ1, T (C)

is obtained by replacing each elliptic tail of C with a cusp. M
ps

g and Mg(9/11)
are isomorphic compactifications of the moduli space of curves and the induced
morphism on coarse moduli spaces

T : Mg →M
ps

g

coincides with the extremal contraction Υ.

See §3 for a precise formulation of what it means to replace an elliptic tail with
a cusp. We can characterize the α for which Mg(α) is isomorphic to the moduli
space of pseudostable curves:

Theorem 1.2. For 7/10 < α ≤ 9/11, Mg(α) exists as a projective variety and is

isomorphic to M
ps

g .

We shall describe what happens at the next critical value α = 7/10 in our
forthcoming paper [HH08].

Finally, we survey recent results of a similar flavor. Shepherd-Barron has an-
alyzed the canonical model of the moduli space of principally polarized abelian
varieties of dimension ≥ 12 [SB06, Theorem 0.2]. Hacking, Keel, and Tevelev have
considered log canonical models for moduli of hyperplane arrangements [KT06, 1.6]
(cf. [HKT06]). These can be understood explicitly in special cases, e.g., (M0,n, δ)
is a log canonical model [Has03, 7.1].

Throughout, we work over an algebraically closed field k of characteristic zero.
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Foundation grants 0196187 and 0134259, the Sloan Foundation, and the Institute
of Mathematical Sciences of the Chinese University of Hong Kong. The second
author was partially supported by the Korea Institute for Advanced Study and
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(KRF-2005-042-C00005). We owe a great deal to S. Keel, who helped shape our
understanding of the birational geometry of Mg through detailed correspondence.
We gratefully acknowledge Ian Morrison who pointed out Remark 2.4 and an error
in an earlier version. We are also grateful to D. Abramovich, Y. Kawamata, B.P.
Purnaprajna, and D. Smyth for useful conversations.

2. Moduli stack of pseudostable curves

To lay groundwork for the construction of T : Mg →M
ps

g in the subsequent sec-
tion, we shall sketch Schubert’s construction of the moduli space of pseudostable
curves [Sch91] and reformulate the main results using language of stacks. Through-
out this section we assume g > 2. (The special features of the g = 2 case are
addressed in [HL07].)
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Definition 2.1. An n-canonical curve

C ⊂ PN , N :=

{
g − 1 if n = 1

(2n− 1)(g − 1) − 1 if n > 1

is a Deligne-Mumford stable curve imbedded by the sections of the pluricanonical
bundle ω⊗n

C . (ω⊗n
C is very ample for n ≥ 3 [DM69, Theorem 1.2].)

These form a locally closed subset Chown of the Chow variety parametrizing
curves in PN of degree d := 2n(g − 1). Schubert investigated the stability of
points in Chow3. He proves that a Chow point is GIT stable if and only if the
corresponding cycle is a pseudostable curve of genus g. Furthermore, there are no
strictly semistable points. Here is the idea of the argument: Using the methods
of [Mum77] for finding destabilizing one-parameter subgroups, one checks that the
cycles associated to non pseudostable curves are necessarily GIT unstable. The
proof that pseudostable curves have stable Chow points is indirect: By general
results from [Mum77], smooth tricanonical curves have GIT stable Chow points.
Let C ⊂ P5g−6 be a tricanonically-embedded pseudostable curve. A deformation-
theoretic argument shows there exists a flat family of curves in P5g−6

π : C → ∆ = Spec k[[t]]

with closed fiber C and generic fiber smooth and tricanonically embedded. Consider
the induced morphism to the GIT quotient

µ : ∆ → Chow3//SL5g−5;

of course, µ(0) must correspond to certain semistable points in Chow3. After base

change ∆̃ → ∆ (substitute t = τM for some M), we obtain a lift

µ̃ : ∆̃ → Chowss
3

into the semistable locus of the Chow variety. The generic point maps into the

stable locus. Let D → ∆̃ be the family of pseudostable curves associated to µ̃.

Note that D and the pull-back C̃ := C ×∆ ∆̃ agree up to the action of SL5(g−1).
To prove that C is semistable, we show that the closed fibers of C and D agree.
We require the following uniqueness result, which may be regarded the valuative
criterion for separatedness for the moduli functor of pseudostable curves:

Proposition 2.2 (cf. Lemma 4.2 of [Sch91]). Let D1,D2 → ∆ be flat families of
pseudostable curves with smooth generic fibers, isomorphic over k((t)). Then the
closed fibers are isomorphic as well.

Finally, suppose there were strictly semistable points: Then some point of Chowss
3

would have positive-dimensional stabilizer, but pseudostable curves have finite au-
tomorphism groups [Sch91, pp. 312].

Implicit in Schubert’s work is the moduli stack M
ps

g of pseudostable curves:

M
ps

g (S) =




f : C → S

∣∣∣∣∣∣

(i) f is a proper and flat morphism.
(ii) geometric fibres of f are pseudo-
stable curves of genus g.






where S is a scheme of finite type over k. This is a Deligne-Mumford stack, as
pseudostable curves have finite automorphism groups when g > 2. Its coarse moduli
space is denoted M

ps

g .
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Theorem 2.3. (cf. [Sch91, Theorem 5.4]) The quotient stack [Chows
3/PGL5g−5]

is isomorphic to M
ps

g and

Chow3//SL(5g − 5) ≃M
ps

g .

Remark 2.4. It is shown in [HM08] that most of Schubert’s analysis goes through
in the four-canonical case except that curves with elliptic tails as well as the cor-
responding cuspidal curves (Proposition 3.1) are strictly Chow semistable and are
identified in the quotient space Chow4//SL7g−7. Although this is isomorphic to

the coarse moduli space of M
ps

g , the quotient stack [Chowss
4 /PGL7g−7] is not sep-

arated.
When the Hilbert scheme Hilb4 (with asymptotic linearization [HH08]) is used

in place of the Chow variety, a four-canonical curve is Hilbert stable if and only
if it is pseudostable, and there are no strictly Hilbert semistable points. Hence
the quotient stack [Hilbs

4/PGL7g−7] is isomorphic to M
ps

g and Hilb4//SL7g−7 is

isomorphic to the coarse moduli space M
ps

g .

3. Constructing the natural transformation T

Here we prove the first part of Theorem 1.1. Throughout, we assume g > 2.

3.1. Replacing elliptic tails with cusps.

Proposition 3.1. Let C be a stable curve of genus g > 2 with elliptic tails
E1, . . . , Er, i.e., connected genus-one subcurves meeting the rest of C in a sin-
gle node. Let D denote the union of the components of C other than elliptic tails
and pi the node where Ei meets D, i = 1, . . . , r. Then there exists a unique curve
T (C) characterized by the following properties:

(1) there is a birational morphism ν : D → T (C), which is an isomorphism
away from p1, . . . , pr;

(2) ν is bijective and maps each pi ∈ D to a cusp qi ∈ T (C), formally isomor-
phic to y2 = x3.

There is a unique replacement morphism ξC : C → T (C) with ξC |D = ν and ξC |Ei

constant. Note that T (C) has arithmetic genus g.

Proof. To determine T (C), it suffices to specify the subrings

OT (C),qi
⊂ OD,pi

.

Let mD,pi
⊂ OD,pi

be the maximal ideal and define OT (C),qi
to be the algebra

generated by the constants and m
2
D,pi

. A local computation shows that T (C) has
a cusp at qi. Indeed, mT (C),qi

is generated by two elements x̂ and ŷ, vanishing at

pi to orders two and three respectively, whence ŷ2 = cx̂3 for some unit c ∈ OD,pi
.

Conversely, any germ of a cuspidal curve normalized by (D, pi) is obtained in this
way. The morphism ν is the normalization of the cusps q1, . . . , qr. �

A morphism of stacks

T : Mg → M
ps

g

assigns to each stable curve f : C → S (over a scheme S of finite type) a pseu-
dostable curve T (f) : T (C) → S. This recipe must be compatible with base exten-
sion and isomorphisms. (This is just the definition of a 1-morphism between two
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categories fibered in groupoids over the category of schemes cf. [LMB00, chapter
2].)

Our main tool is a replacement morphism ξC : C → T (C) defined over S, with
the following properties:

(a) over the open subset S0 ⊂ S mapping to the complement to δ1, ξC is an
isomorphism;

(b) for s ∈ S mapped to δ1, ξCs
: Cs → T (C)s replaces each elliptic tail in Cs

with a cusp;
(c) ξC is compatible with base extension and isomorphisms as indicated above.

We shall specify T and ξ using a suitable atlas of Mg in the smooth or flat
topology. Let π : Z → U be a stable curve over a scheme so that the classifying
map ρπ : U → Mg is faithfully flat. For example, we could take U to be Chows

3 (or
the corresponding Hilbert scheme) and π : Z → U the universal family. Let R ⇉

U be the corresponding presentation of Mg, where R encodes the isomorphisms

among the fibers of π. To construct T and ξ over Mg, it suffices to construct
T (π) : T (Z) → U and ξZ compatibly with the isomorphism relation R. Indeed,
given an arbitrary stable curve f : C → S with classifying map ρf : S → Mg, we
can pullback to the fiber product

S′ := S ×Mg
U

prU
//

prS

��

U

ρπ

��

S ρf

// Mg

Consider the resulting stable curves

pr∗Sf : pr∗SC → S′, pr∗Uπ : pr∗UZ → S′,

with classifying maps ρf ◦prS and ρπ ◦prU . The commutativity of the fiber product
diagram implies that our two stable curves are isomorphic over S′. By basechange,
we have

pr∗UT (π) : pr∗UT (Z) → S′, pr∗UξZ : pr∗UZ → pr∗UT (Z)

and thus the corresponding constructions for pr∗Sf : pr∗SC → S′. Now prS is the
basechange of ρπ and thus is faithfully flat. Since T is compatible with isomor-
phisms, the desired

T (f) : T (C) → S, ξC : C → T (C)

exist by descent.

3.2. Sketch construction of the morphism. Assume π : Z → U is a stable
curve over a smooth base with faithfully flat classifying map ρπ : U → Mg. Let

W = ρ∗πδ1. Let µπ : Z → Mg,1 denote the classifying morphism to the universal

family, δ1,{1} ⊂ Mg,1 the boundary divisor corresponding to the elliptic tails, and
E = µ∗

πδ1,{1}, which is also a Cartier divisor on Z.

Example 3.2. It may seem counterintuitive that the divisor of elliptic tails should
always be Cartier. For example, consider a stable curve

π : Z → ∆ = Spec k[[t]]
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with smooth generic fiber and special fiber

π−1(0) = C1 ∪p C2

where C1 is smooth of genus one, C2 is smooth of genus g−1, and {p} = C1∩C2 is
a single node. If Z has local analytic equation xy = tm at p then C1 is not Cartier
at p unless m = 1. However, note that E ≡ mC1 is a Cartier divisor.

Fix

L = ωπ(E)

where ωπ is the dualizing sheaf for the morphism π. Away from W we have L = ωπ

and for each n > 0, π∗L
n is locally free of rank

kn :=

{
g if n = 1,

(2n− 1)(g − 1) if n ≥ 2,

over U \W . Furthermore, the higher-direct image

R1π∗L
n ≃

{
OU if n = 1,

0 if n ≥ 2,

over U \W . In particular, π∗L
n|u ≃ Γ(Zu, ω

n
Zu

) for each u ∈ U \W .
The family {π∗L

n|u}u∈U of linear systems over U will induce the U -morphism
Z → T (Z). For the remainder of this section, we focus our attention on the
behavior of these linear systems near a point u0 ∈ W . In §3.5 we shall prove the
local freeness of π∗L

n. The proof depends on identifying the limits of linear series
π∗L

n|u, which can be obtained by using [CF91]. We do this in §3.4 and also show
that each linear system π∗L

n|u replaces the elliptic tails of Zu with cusps.

3.3. An explicit complex computing the cohomology of L. Suppose that
Zu0 := C has r elliptic tails E1, . . . , Er, and let D denote the union of the re-
maining components. In analyzing whether π∗L

n is locally free, we may liberally
apply faithfully flat base-extensions U ′ → U . (Cohomology commutes with flat
basechange, and being locally-free is a local property in the faithfully-flat topol-
ogy.) For simplicity, we will not use new notation for these base extensions.

After such a base extension, we may assume there exist sections s1, . . . , sr : U →
Z so that si(u0) ∈ Ei as a smooth point of Zu0 . Over this neighborhood, we
consider the exact sequence

0 → Ln → Ln(s1 + . . .+ sr) → Ln(s1 + . . .+ sr)|s1,...,sr
→ 0.

The last term is supported in s1(u0), . . . , sr(u0), a finite set, and thus has vanishing
higher cohomology. As for the second term,

H1(Zu0 , L
n(s1 + . . .+ sr)|Zu0) = H1(D,Ln|D) ⊕

(
⊕r

i=1H
1(Ei,OEi

(si(u0)))
)

= 0.

The resulting long exact sequence takes the form

0 → π∗L
n → F 0 ϕ

→ F 1 → R1π∗L
n → 0

with F 0 := π∗(L
n(s1 + . . . + sr)) and F 1 := π∗(L

n(s1 + . . . + sr)|s1,...,sr
) locally

free of rank r0 and r1, respectively. The cokernel sheaf Q := Coker(π∗L
n → F 0)

is a subsheaf of a locally-free sheaf, hence is locally-free of rank r0 − kn away from
a subset Y ⊂ U of codimension ≥ 2. Note that Y is contained in the locus where
R1π∗L

n fails to be locally free, and thus is a subset of W = ρ∗πδ1.



8 BRENDAN HASSETT AND DONGHOON HYEON

3.4. Some results from limit linear series. Let B be spectrum of a DVR over
k, with special point 0 and closed point b. Consider a morphism β : (B, 0) → (U, u0)
with β(0) = u0 ∈W and β(b) 6∈W . We have the fiber square

ZB
β′

//

πB

��

Z

π

��

B
β

// U

and we write LB = β′∗L. The direct image πB∗L
n
B is locally free of rank kn–it is a

subsheaf of β∗F0.

Proposition 3.3. ([CF91, 4.3.iii]) For n ≥ 1, Vn := πB∗L
n
B|0 is naturally identified

with

Γ(D,ωn
D((2n− 2)

r∑

j=1

pj)) + 〈σn
1 , . . . , σ

n
r 〉

as a subspace of H0(C,Ln|C), where σj are sections of V1 such that σj(pj) 6= 0 and
σj vanishes to order two at pi for i 6= j.

Corollary 3.4. For n ≥ 2, the linear series Vn defines a morphism

C → Pkn−1

with image T (C). The induced C → T (C) is the morphism introduced in Proposi-
tion 3.1.

Proof. The linear series Vn contains

Γ(D,ωn
D((2n− 2)

r∑

j=1

pj)).

For any pointed stable curve (D, p1, . . . , pr), (ωD(p1 + . . . + pr))
2 is very ample

unless g(D) = 2 and r = 0, which cannot occur. Thus the sections of Vn induce an
imbedding of D away from p1, . . . , pr. Proposition 3.3 implies that the vanishing
sequence of Vn at each pj is (0, 2, 3, . . . ) and pj is thus mapped to an ordinary cusp.
Also, the images of pj ’s are distinct as they are separated by σn

j ’s. Finally, sections
in Vn are constant along the Ei, but not identically zero, so each Ei is collapsed to
the corresponding cusp. �

3.5. Local freeness of π∗L
n.

Proposition 3.5. For each integer n ≥ 1, π∗L
n is locally free of rank kn.

Proof. Given a locally-free sheaf F on U of rank r, let Grass(m,F ) denote the
scheme representing the functor

Grass(m,F ) : U -schemes → Sets

that associates to a U -scheme β : B → U the set of rank-m subbundles of β∗F ,
or equivalently, rank-(r −m) locally-free quotients of β∗F . Our map ϕ : F 0 → F 1

induces a morphism

τ : U \ Y → Grass(r0 − kn, (F
0)∗) × Grass(r0 − kn, F

1)
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and a rational map over Y . Via the Plücker and Segre embeddings

Grass(r0 − kn, (F
0)∗) × Grass(r0 − kn, F

1) →֒ P(
∧r0−kn(F 0)∗) × P(

∧r0−kn F 1)

→֒ P(
∧r0−kn(F 0)∗ ⊗

∧r0−kn F 1) = P(Hom(
∧r0−kn F 0,

∧r0−kn F 1))

we consider τ as a rational map U 99K P(Hom(
∧r0−kn F 0,

∧r0−kn F 1)) given by
the section ∧r0−knϕ. The indeterminacy locus of τ is precisely the zero locus of
∧r0−knϕ which is defined by the ideal generated by (r0 − kn)× (r0 − kn) minors of
ϕ. This is the (r1 − r0 + kn)th Fitting ideal I of R1π∗L

n. Blowing up along I to
resolve indeterminacy, we get

Ũ := BlI(U)

++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

σ

��

U //_____ Grass(r0 − kn, (F
0)∗) × Grass(r0 − kn, F

1).

Let τ̃ denote the lift of τ to Ũ . We claim that σ is an isomorphism so that τ̃ is
defined on U and extends τ . This implies that there exists a subbundle K of F 0

over U such that K|U\Y ≃ π∗L
n|U\Y . For a general discussion of flattening and

blowing up, we refer the reader to [Ray72, chapter 4].
Since σ is proper birational and U is normal, it suffices to show that σ is quasi-

finite. Suppose that it is not quasi-finite and there exist two distinct closed points

x1, x2 ∈ Ũ such that τ is not regular at u := σ(x1) = σ(x2). Choose curves β̃i : B =

Spec R → Ũ with β̃i(0) = xi and β̃i(r) 6∈ δ1, i = 1, 2. Here R = k[[t]], 0 denotes

the closed point and r, the generic point. We can assume that τ̃ ◦ β̃1(0) 6= τ̃ ◦ β̃2(0)

since otherwise τ̃ descends to a (regular) morphism on U at u. Let βi = σ ◦ β̃i. Due

to the functoriality of Grass(kn, F
0), τ̃ ◦ β̃i corresponds to a locally-free quotient

0 → Ki → β∗
i F

0 → Qi → 0 such that rank (Ki) = kn. Consider the fibre square:

ZB

�

µi
//

πi

��

Z

π

��

B
βi

// U

We have the exact sequence

0 −→ πi∗µ
∗
iL

n −→ β∗
i F

0 β∗

i ϕ
−→ β∗

i F
1 −→ R1(πi)∗µ

∗
iL

n −→ 0.

Note that the quotient sheaf β∗
i F

0/πi∗µ
∗
iL

n is locally free, and πi∗µ
∗
iL

n and Ki

are subbundles of β∗
i F

0 that agree on B \ {0}. It follows that they are isomor-
phic on B. By Proposition 3.3, [(π1)∗µ

∗
1L

n]|0 and [(π2)∗µ
∗
2L

n]|0 are identified in

H0(Z|βi(0), L
n|Z|βi(0)

). This implies that τ̃ ◦ β̃1(0) = τ̃ ◦ β̃2(0) and that there exists

a subbundleK of F 0 over U such that K|U\Y ≃ π∗L
n|U\Y . Let j denote the natural

inclusion U \ Y →֒ U . Since π∗L
n is the kernel of a homomorphism of locally-free

sheaves, it is reflexive and j∗
(
π∗L

n|U\Y

)
≃ π∗L

n since codim(Y ) ≥ 2. Therefore,
we have

K ≃ j∗
(
K|U\Y

)
= j∗

(
π∗L

n|U\Y

)
≃ π∗L

n

and hence π∗L
n is a vector subbundle of F 0. �
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3.6. Analysis of the morphisms.

Proposition 3.6. For n ≥ 2, the sections of Ln relative to π induce a morphism
Z → P(π∗L

n) over U , which factors

Z
ξZ
→ T (Z) →֒ P(π∗L

n)

where the second arrow is a closed embedding.

Proof. By Proposition 3.5 π∗L
n is locally free. For u ∈ U \W , π∗L

n|u = Γ(ω⊗n
Zu

)

and ω⊗n
Zu

is very ample on stable curves of genus g > 2. For u ∈ W , Corollary 3.4
implies π∗L

n|u = Vn induces the morphism replacing elliptic tails with cusps.
We therefore have a morphism Z → P(π∗L

n) whose Stein factorization is T (Z).
Due to the functoriality of the relative dualizing sheaf and the line bundle δ1,1 on

the moduli stack Mg,1, this construction is compatible with isomorphism relation
and commutes with base extension. �

4. M
ps

g as a log canonical model for Mg

In this section, we identify M
ps

g and Mg(9/11), thus completing our proof of
Theorem 1.1. We also prove Theorem 1.2: A log canonical model for the pair
(Mg,KMg

+ αδ) exists as a projective variety for 7/10 < α ≤ 9/11.

We want to relate the contraction of the extremal ray R parametrizing elliptic
tails

Υ : Mg →Mg(9/11)

to the natural birational morphism

T : Mg →M
ps

g .

Since M
ps

g is a GIT quotient, it is a normal projective variety. Our pointwise

description of the natural transformation T : Mg → M
ps

g in Proposition 3.1 implies
that

• T is an isomorphism over Mg \ ∆1;
• T takes R(C2, p) to the cuspidal curve T (C1 ∪p C2), i.e., the curve normal-

ized by C2 with conductor in p;
• T (C) = T (C′) if and only if C and C′ have the same number of elliptic

tails and

(D, p1, . . . , pr) ≃ (D′, p′1, . . . , p
′
r),

in the notation of Proposition 3.1.

In particular, the only curves contracted by T are in the class R, i.e., T is also
an extremal contraction of R. Uniqueness of extremal contractions [KM98] 1.26

implies T = Υ and M
ps

g ≃Mg(9/11), and the proof of Theorem 1.1 is complete.
We turn to the proof of Theorem 1.2. Let δps denote the boundary divisor of

M
ps

g ; it is the image of δ under T . The proper transform of δps in Mg is δ − δ1.

Lemma 4.1 (Log discrepancy formula).

KMg
+ αδ = T ∗(KM

ps

g
+ αδps) + (9 − 11α)δ1
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Proof. We determine the value of the discrepancy c in

KMg
+ αδ = T ∗(KM

ps

g
+ αδps) + cδ1

by intersecting both sides with the contracted extremal ray R. We have

(KMg
+ αδ).R = (13λ− 2δ + αδ).R = 13λ.R− (2 − α)(δ0.R+ δ1.R)

= 13/12− (2 − α)(1 − 1/12) = (11α− 9)/12

and cδ1.R = −c/12; the term T ∗(KM
ps

g
+ αδps) obviously yields zero. �

Thus (M
ps

g , αδ
ps) has log canonical singularities for α ≤ 9/11 provided (Mg, αδ−

(9 − 11α)δ1) has log canonical singularities. The argument sketched in the Intro-
duction still applies away from ∆1. However, reducing the coefficient of δ1 can
only increase the discrepancies of divisors lying over δ1 [GK92] 2.17.3; this does not
affect whether the singularities are log canonical.

To analyze whether KM
ps

g
+αδps is ample for 7/10 < α < 9/11, we describe the

ample cone of M
ps

g in terms of the ample cone of Mg. We have

T ∗NS(M
ps

g ) = R⊥ ⊂ NS(Mg),

the hyperplane spanned by a facet of the nef cone of Mg. The interior of this facet

corresponds to the ample divisors of M
ps

g . It suffices then to check:

Proposition 4.2. For 7/10 < α ≤ 9/11, the divisor

KMg
+ αδ − (9 − 11α)δ1

lies in the interior of the facet R⊥ of the nef cone of Mg.

The following conjectural description of the ample cone of Mg,n would end the
discussion in one stroke:

Conjecture 4.3 (Fulton’s conjecture [GKM02]). Every one-dimensional facet of
the closed cone of effective curves NE1(Mg,n) is generated by a one-dimensional

boundary stratum. Equivalently, any effective curve in Mg,n is an effective combi-
nation of one-dimensional strata.

We recapitulate the description of the one-dimensional strata in [Fab96] and
[GKM02]: Let X0 be a 4-pointed stable curve of genus zero with one point moving
and the other three fixed.

(a) a family of elliptic tails;
(b) attach a fixed 4-pointed curve of genus g − 3 to X0;
(c) attach a fixed pointed curve of genus i and a 3-pointed curve of genus

g − 2 − i to X0, with g − 2 ≥ i ≥ 0;
(d) attach two fixed 2-pointed curves of genus i and g − 2 − i, respectively, to

X0, with (g − 2)/2 ≥ i ≥ 0;
(e) attach two 1-pointed curves of genus i and j respectively, and a 2-pointed

curve of genus g − 1 − i− j to X0, with i, j ≥ 1 and i+ j ≤ g − 1;
(f) attach four pointed curves of genus i,j,k, and l, respectively, to X0, with

i+ j + k + l = g and i, j, k ≥ 1.

Where we attach a 2-pointed curve of genus zero, we stabilize the resulting ‘rational
bridge’ to a node.
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The intersection of a divisor aλ−
∑⌊g/2⌋

i=0 biδi with the one-dimensional strata is
as follows:

(a) a/12 − b0 + b1/12
(b) b0
(c) bi
(d) 2b0 − bi+1

(e) bi + bj − bi+j

(f) bi + bj + bk + bl − bi+j − bi+k − bi+l

Here we use the convention that bi = bg−i for i > g/2.
Fortunately, we do not need the full strength of the conjecture. The following

special case is sufficient:

Proposition 4.4. (6.1, [GKM02]) Let D = aλ−
∑

0≤i≤g/2 biδi be a divisor on Mg

such that either bi = 0 or bi ≥ b0, 1 ≤ i ≤ ⌊g/2⌋. If D has non-negative intersection
with all the one-dimensional strata, then D is nef.

In our case, we have

a = 13, bi =

{
2 − α, i 6= 1

11 − 12α, i = 1

and our divisor satisfies the hypothesis of Proposition 4.4 as long as α ≤ 9/11. We
consider when each class of one-dimensional stratum intersects our divisor posi-
tively:

• For (b), (c) and (f), we have positivity provided α ≤ 11/12.
• For (d), we have positivity provided 2(2−α)−(11−12α) > 0, i.e., α > 7/10;

the case i = 0 shows this is sharp.
• For (e), we have positivity provided α > 7/10; the case i + j = g − 1, i 6=

1, j 6= 1 shows this is sharp.

Proposition 4.2 therefore follows from Proposition 4.4. This completes the proof of
Theorem 1.2.

Remark 4.5. T ∗(KM
ps

g
+ 7/10 δps) contracts ∆1 and the following loci:

• the stratum (d) with i = 0 induces the contraction of

T0 = {C1 ∪p,q C2 | g(C1) = 1, g(C2) = g − 2},

the locus of two-pointed elliptic tails or elliptic bridges;
• the stratum (e) with i+ j = g − 1 and i, j 6= 1 induces the contraction of

Ti = {C1∪pC2∪qC3 | g(C1) = i, g(C2) = 1, g(C3) = g−1−i}, i = 2, . . . , ⌊(g−1)/2⌋.

These have codimension two in the moduli space; at α = 7/10 we obtain a small
contraction.

Remark 4.6. For special values of α ∈ (7/10, 9/11], we can prove the ampleness
of KM

ps

g
+ αδps using invariant theory. Recall from §2 that

M
ps

g ≃ Chown//SL(2n−1)(g−1), n = 3, 4,

where the Chow variety has its natural linearization. By Theorem 5.15 of [Mum77],
the corresponding line bundle on Mg equals n(g − 1)(n(12λ − δ) − 4λ), which is
proportional to 11λ−δ = KMg

+9/11δ for n = 4, and to 32λ−3δ ∼ KMg
+25/32 δ



LOG CANONICAL MODELS 13

for n = 3. These are not ample of Mg; ∆1 is a fixed component. However, the

corresponding divisors KM
ps

g
+ αδps on M

ps

g are ample for α = 9/11, 25/32.

Appendix A. Log canonical models of stacks

Here are conventions for this section: A ‘scheme’ is a separated scheme of finite
type over k. A ‘stack’ is a Deligne-Mumford stack, separated and of finite type over
k; a ‘morphism’ is a 1-morphism over the base field. For a general discussion of local
properties of representable morphisms, we refer the reader to [LMB00, 3.10] and
[Gro65, 2.6,2.7]; we use these without specific attribution. Roughly, every property
that behaves well under étale basechange makes sense for Deligne-Mumford stacks.

Definition A.1. A birational morphism of stacks is a morphism f : X1 → X2 such
that there exist dense open substacks U1 ⊂ X1 and U2 ⊂ X2 with U2 = f−1(U1) and
f : U1 → U2 an isomorphism. We say that X1 and X2 are properly birational if there
exists a stack Y and birational proper morphisms g1 : Y → X1 and g2 : Y → X2.

It is straightforward to check that this is an equivalence relation. There is a
distinguished open substack U ⊂ X1 which is the largest open set over which f
is an isomorphism; its complement is called the exceptional locus Ex(f). For any
closed substack D ⊂ X2 with f(U) ∩ D dense in D, the birational transform f−1

∗ D
is defined as the closure of f−1(D ∩ f(U)) in X1.

Proposition A.2. For each reduced stack X , there exists a smooth stack X̃ and a

birational proper morphism f : X̃ → X ; this is called a resolution of X . Further-

more, Ex(f) can be taken to be a normal crossings divisor in X̃. If Z →֒ X is a
closed substack with ideal sheaf IZ ⊂ OX then f can be chosen so that f∗IZ is an

invertible sheaf OX̃ (−D̃) and Ex(f) ∪ D̃ is simple normal crossings. This is called
a log resolution of Z in X .

Proof. This statement should be compared to Theorem 0.2 of [KM98]. It is an
application of the functorial procedure for resolving singularities [BM97]: Such
procedures commute with étale base extension [Hau03], pp. 329. In particular,
given a étale presentation of X

R ⇉ U

canonical resolutions R̃ → R and Ũ → U form a presentation

R̃ ⇉ Ũ

for a smooth stack X̃ . The induced representable morphism X̃ → X is birational
and proper. If E ⊂ U denotes the closed subscheme corresponding to Z then the
canonical embedded resolution of E in U naturally induces a resolution of Z in
X . �

Remark A.3. Dan Abramovich has pointed out that the 1992 Harvard thesis of
Andrew Joel Schwartz, Functorial Smoothing Of Morphisms In Equal Characteristic
0 , should also suffice for our purposes.

Let X be a normal connected scheme, separated and of finite type over a field,
as usual. Let D =

∑
ajDj be a Q-divisor on X , with the Dj ⊂ X distinct

codimension-one reduced closed subschemes; we assume each aj ∈ [0, 1].

Proposition A.4. The following properties of (X,D) are local in the étale topology
on X:
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(1) X is normal;
(2) Dj is a codimension-one reduced closed subscheme;
(3) m(KX +D) is Cartier for some m > 0.

A pair (X,D) satisfying the first three conditions is said to be admissible. Given a
coherent OX-module F , the following properties are local in étale topology:

(1) F satisfies Serre’s condition Sk for some fixed k > 0;
(2) F is locally free.

Proof. These are standard properties of descent: See [Gro65] §6.1, 6.4, 6.5, and
6.8 for the behavior of dimension, property Sk, property Rk, and other standard
singularity conditions under faithfully-flat basechange. See [Gro65] 2.5.1 for the
stability of local-freeness under faithfully-flat base extension. �

Proposition A.5. Let X be a normal integral scheme with field of fractions K(X),
and D an integral Weil divisor on X. Let OX(D) denote the OX -module associated
to

{f ∈ K(X) : div(f) +D ≥ 0}.

This is a coherent OX-module of rank one, satisfying Serre’s condition S2. The
formation of OX(D) commutes with étale base-extension.

Proof. Let j : U ⊂ X be the locus where X is smooth, which is compatible with
étale basechange. Then OX(D) = j∗OU (D ∩ U), which is coherent, S2, and com-
patible with base extension. �

Let X denote a normal connected stack. Let D =
∑
ajDj be a Q-divisor on

X , where the Dj ⊂ X are distinct codimension-one reduced closed substacks; we
assume each aj ∈ [0, 1].

Definition A.6. Suppose (X ,D) is proper and admissible in the sense of Propo-
sition A.4. Its log canonical ring is the graded ring

R(X ,D) := ⊕m≥0Γ(X ,OX (mKX + ⌊mD⌋)),

where
⌊mD⌋ =

∑

j

⌊maj⌋Dj

and the summands are defined via Proposition A.5.

We refer the reader to §2.3 of [KM98] for definitions of the various singularities
arising in birational geometry.

Proposition A.7 (Proposition 5.20 of [KM98]). Let (X,D) be an admissible pair,
as in Proposition A.4, defined over a field of characteristic zero. The following
singularity conditions are local in the étale topology: terminal, canonical, Kawamata
log terminal, or log canonical.

Hence the following notions are well-defined:

Definition A.8. (X ,D) is terminal, (resp. canonical, Kawamata log terminal, or
log canonical) if it admits a étale presentation with the same property. It is strictly
log canonical if it is log canonical and X \ ∪iDi is canonical.

The reader will recall that these notions are defined in terms of discrepancies
[KM98] §2.3, measuring how the canonical divisor changes under birational mor-
phisms:
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Proposition A.9. The admissible pair (X ,D) is terminal, (resp. canonical, Kawa-
mata log terminal, or log canonical) if and only if there exists a log resolution

f : X̃ → X such that

(1) Ex(f) = ∪Ei is a divisor, Ex(f)∪f−1(D) is normal crossings, and
∑

j f
−1
∗ Dj

is smooth;
(2) we have a Q-linear equivalence

(∗) KX̃ +
∑

j

ajf
−1
∗ Dj ≡ f∗(KX + D) +

∑

i

d(Ei;X ,D)Ei, di := d(Ei;X ,D),

with each aj < 1 and di > 0 (resp. aj ≤ 1 and di ≥ 0, aj < 1 and di > −1,
or aj ≤ 1 and di ≥ −1.)

Proof. Proposition A.2 guarantees there exists a resolution with the prescribed
properties. By definition, if (X ,D) has the prescribed singularities then the dis-
crepancies di and coefficients aj satisfy the listed properties. The converse direction
is an application of Corollary 2.32 of [KM98]. �

Definition A.10. The discrepancy d(E0;X ,D) is defined via equation (∗) for any
integral codimension-one substack in the exceptional locus of some birational proper
morphism Y → X . By convention, we set

dj = d(Dj ;X ,D) = −aj

and take d(D0;X ,D) = 0 for any integral codimension-one substack D0 ⊂ X not in
the support of D.

Definition A.11. Two admissible pairs (X ,D) and (X ′,D′) are properly birational

if there exists an admissible pair (X̃ , D̃) and proper birational morphisms f : X̃ →

X , f ′ : X̃ → X ′, so that KX̃ + D̃ − f∗(KX +D) (resp. KX̃ + D̃ − f ′∗(KX ′ +D′)) is
effective and f -exceptional (resp. f ′-exceptional).

Our main interest is the case where (X ,D) and (X ′,D′) are log canonical and

(X̃ , D̃) is a log resolution with suitably chosen boundary.

Proposition A.12. If the admissible pairs (X ,D) and (X ′,D′) are properly bira-
tional then there is a natural isomorphism

R(X ,D)
∼
→ R(X ′,D′)

of graded rings.

Proof. It suffices to prove the isomorphism

R(X ,D)
∼
→ R(X̃ , D̃).

We have the discrepancy equation

KX̃ + D̃ =Q f∗(KX + D) +
∑

i

diEi

where the di ≥ 0 and the Ei are f -exceptional. This was formulated on the level of
Q-Cartier divisors, but there is a refined interpretation: For each m ≥ 0, consider
the homomorphisms

(∗∗) f
∗OX (mKX + ⌊mD⌋) → OX̃ (mKX̃ + ⌊m( eD −

X

i

diEi)⌋) ⊂ OX̃ (mKX̃ + ⌊m eD⌋).
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These deserve some explanation: First, there is no harm passing to an étale neigh-
borhood which is a scheme; for simplicity, we leave the notation unchanged. The

divisors ⌊mf−1
∗ D⌋ and ⌊m(X̃ −

∑
i diEi)⌋ agree on all the components which have

codimension one in X , so we can focus on the f -exceptional components. Every
section s ∈ OX (mKX + ⌊mD⌋) extends to a section with poles of some order on
the exceptional locus of f . Replacing s by a suitable power sN , we may assume
that mN(KX + D) is integral and Cartier, and our discrepancy equation gives the
requisite bound on the pole order. The inclusions (∗∗) induce injections

Γ(mKX + ⌊mD⌋) →֒ Γ(mKX̃ + ⌊mD̃⌋).

This is surjective: Each element in the target of the map is a section of

Γ(X − ∪if(Ei),mKX + ⌊mD⌋),

which extends to all of X because X is normal. �

Proposition A.13. Let (X ,D) be a proper log canonical (resp. Kawamata log
terminal) pair, and let π : X → X denote the coarse moduli space of X. Then there
exists an effective Q-divisor Ď =

∑
ℓ čℓĎℓ, 0 ≤ čℓ ≤ 1 on X, with the Ďℓ distinct

and irreducible with the following properties:

(1) (X, Ď) is log canonical (resp. Kawamata log terminal);
(2) for each positive integer m such that m(KX + Ď) is integral and Cartier,

there is an equivalence of Cartier divisors

m(KX + D) = π∗m(KX + Ď);

(3) for every m ≥ 0 we have

Γ(X,mKX + ⌊mĎ⌋)
∼
→ Γ(X ,mKX + ⌊mD⌋).

Together, these yield a natural isomorphism

π∗ : R(X, Ď)
∼
→ R(X ,D).

Proof. We first produce the divisor Ď; to extract its coefficients, we localize along
each codimension-one integral closed substack B ⊂ X . Let a(B) denote the coeffi-
cient of D at B, which might be zero if B does not appear in D. Suppose π ramifies
to order e(B) at the generic point η(B), i.e., the order of the automorphism group
at the generic point of B is e(B) times the order of the automorphism group at
the generic point of X . If B ⊂ X is the reduced image of B then the ramification
formula gives

π∗ωX,η(B) = ωX ,η(B)(−(e(B) − 1)B), π∗B = e(B)B

which yields the equation of Q-Cartier divisors

π∗(KX +
∑

B

e(B) − 1 + a(B)

e(B)
B) ≡ KX + D.

We therefore set

Ď =
∑

B

e(B)− 1 + a(B)

e(B)
B;

the pair (X, Ď) is log canonical (resp. Kawamata log terminal) by [KM98] 5.20.
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It remains then to check

Γ(X,mKX +
∑

B

⌊m
e(B) − 1 + a(B)

e(B)
⌋B) ≃ Γ(X ,mKX +

∑

B

⌊ma(B)⌋B).

By the ramification formulas, we have

Γ(X,mKX +
∑

B

⌊m
e(B)− 1 + a(B)

e(B)
⌋B) →֒

Γ(X ,mKX +
∑

B

(e(B)⌊m
e(B)− 1 + a(B)

e(B)
⌋ −m(e− 1))B).

This is surjective: For any OX -module F we have Γ(X,F ) = Γ(X , π∗F), as every
section of π∗F is pulled back from the coarse moduli space. We must verify that
the inclusion

Γ(X ,mKX +
∑

B

(e(B)⌊m
e(B)− 1 + a(B)

e(B)
⌋ −m(e(B) − 1))B) ⊂

Γ(X ,mKX +
∑

B

⌊ma(B)⌋B)

is an isomorphism. We analyze sections locally in an étale neighborhood of η(B),
where the stack can be presented as a µe-quotient, with e = e(B) (Lemma 2.2.3 of
[AV02]); fix a = a(B). Let ω be a local generator of the canonical class and F the
local defining equation for B, so that µe acts on both ω and F via multiplication
by ζ, a primitive e-th root of unity. The sheaf OX (mKX +

∑
B⌊ma(B)⌋B) has local

generator ω⊗m/F ⌊ma⌋, on which µe acts by ζm−⌊ma⌋. Of course, µe acts trivially
on global sections, so global sections must be multiples of

F ⌊ma⌋−m−e⌊(⌊ma⌋−m)/e⌋ω⊗m/F ⌊ma⌋ = ω⊗m/Fm+e⌊(⌊ma⌋−m)/e⌋.

Thus global sections of OX (mKX +
∑

B⌊ma(B)⌋B) are forced to have zeros along
B; precisely, we find

Γ

(
mKX +

∑

B

(
m+ e(B)

⌊
⌊ma(B)⌋ −m

e(B)

⌋)
B

)
= Γ(mKX +

∑

B

⌊ma(B)⌋B).

The final step is the combinatorial statement

e⌊m
e− 1 + a

e
⌋ −m(e− 1) = m+ e⌊(⌊ma⌋ −m)/e⌋,

which is equivalent to

⌊
ma−m

e
⌋ = ⌊(⌊ma⌋ −m)/e⌋.

Here e and m are positive integers and a ∈ [0, 1] ∩ Q. If this were false then we
could find an integer n with

(⌊ma⌋ −m)/e < n ≤ (ma−m)/e

and hence

⌊ma⌋ < en+m ≤ ma,

violating the definition of the round-down operation. �

The Kawamata basepoint-freeness theorem [KM98] yields
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Corollary A.14 (Basepoint-freeness for stacks). Let (X ,D) be a proper Kawamata
log terminal pair. Assume KX + D is nef and big, i.e., KX + Ď is nef and big,
where (X, Ď) is the pair constructed in Proposition A.13. Consider the quotient
stack and coarse moduli space

Y := [(SpecR(X ,D) \ 0)/Gm] Y := ProjR(X ,D) = ProjR(X, Ď),

where the action of Gm arises from the grading. Then there is a morphism of stacks

ψ : X → Y

inducing on coarse moduli spaces the contraction from X to the log canonical model
of (X, Ď).
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