
Abelian �brations and rational points on symmetricproductsBrendan Hassett and Yuri TschinkelSeptember 23, 2000AbstractGiven a variety over a number �eld, are its rational points po-tentially dense, i.e., does there exist a �nite extension over which ra-tional points are Zariski dense? We study the question of potentialdensity for symmetric products of surfaces. Contrary to the situationfor curves, rational points are not necessarily potentially dense on asu�ciently high symmetric product. Our main result is that rationalpoints are potentially dense for the Nth symmetric product of a K3surface, where N is explicitly determined by the geometry of the sur-face. The basic construction is that for some N , the Nth symmetricpower of a K3 surface is birational to an abelian �bration over PN . Itis an interesting geometric problem to �nd the smallest N with thisproperty.1 IntroductionLet X be an algebraic variety de�ned over a number �eld K and X(K) itsset of K-rational points. We are interested in properties of X(K) imposed bythe global geometry of X. We say that rational points on X are potentiallydense if there exists a �nite �eld extension L=K such that X(L) is Zariskidense. It is expected - at least for surfaces - that if there are no �nite�etale covers of X dominating a variety of general type then rational pointson X are potentially dense. This expectation complements the conjecturesof Bombieri, Lang and Vojta predicting that rational points on varieties ofgeneral type are always contained in Zariski closed subsets. This dichotomy1



holds for curves: the nondensity for curves of genus � 2 is a deep theoremof Faltings and the potential density for curves of genus 0 and 1 is classical.In higher dimensions there are at present no general techniques to provenondensity. Of course, potential density holds for abelian and unirational va-rieties. Beyond this, density results rely on the classi�cation and explicit pro-jective geometry of the classes of varieties under consideration. In dimensiontwo potential density is unknown for K3 surfaces with �nite automorphismsand without elliptic �brations (see [6]). In dimension 3 potential density isunknown, for example, for double covers W2!P3 rami�ed in a smooth sur-face of degree 6, for general conic bundles, as well as for Calabi-Yau varieties(for density results see [12], [5]).In this paper we study density properties of rational points on symmetricproducts X(n) = Xn=Sn. If C is a curve of genus g and n > 2g � 2 thesymmetric product admits a bundle structure over the Jacobian Jac(C), with�bers projective spaces Pn�g. We see that in this case rational points onC(n) are potentially dense. Contrary to the situation for curves, we arenot guaranteed to �nd many rational points on su�ciently high symmetricproducts of arbitrary surfaces. In Section 2 we show that if the Kodairadimension of a smooth surface X is equal to k then the Kodaira dimensionof X(n) is is equal to nk. This leads us to expect the behavior of rationalpoints on X(n) and X to be quite similar. At the same time we observethat symmetric products of K3 surfaces admit (at least birationally) abelian�brations over projective spaces. In fact, even symmetric squares of certain(nonelliptic) K3 surfaces have the structure of abelian surface �brations overP2. This is the starting point for proofs of potential density of rational points.Let us emphasize that if X is a variety over a number �eld K then Zariskidensity of rational points on X de�ned over degree n �eld extensions of Kis not equivalent to Zariski density of K-rational points on X(n). Of course,the �rst condition is weaker than the second. Furthermore, if rational pointson X are potentially dense then they are potential dense on X(n) as well.This paper is organized as follows. In Section 2 we recall general prop-erties of symmetric products and Hilbert schemes of surfaces. Section 3 setsup generalities concerning abelian �brations A!B. Potential density for Afollows once one can �nd a \nondegenerate" multisection for which potential2



density holds. In Section 4 we prove widely-known results concerning theexistence of elliptic curves on K3 surfaces. Then we turn to potential densityfor symmetric products of K3 surfaces. First, in Sections 5 and 6, we provepotential density for su�ciently high symmetric powers of arbitrary K3 sur-faces. This is followed in Section 7 with more precise results for symmetricsquares of K3 surfaces of degree 2m2.Throughout this paper, generic means `in a nonempty Zariski open sub-set' whereas generalmeans `in the complement of a countable union of Zariskiclosed proper subsets.'Acknowledgements. The �rst author was partially supported by anNSF postdoctoral fellowship and the Institute of Mathematical Sciences ofthe Chinese University of Hong Kong. The second author was partially sup-ported by the NSA. We are very grateful to Joe Harris and Barry Mazur fortheir help and encouragement. We thank D. Matsushita and Y. Namikawafor sending us their preprints, M. Jarden for helpful comments on Propo-sition 3.1, and K. O'Grady for emphasizing the role of the Fourier-Mukaitransform (see Remark 7.4).2 Generalities on symmetric productsLet X be a smooth projective variety over a �eld K. Denote by Xn =X �K ::: �K X the n-fold product of X. The symmetric group Sn acts onXn. The quotient X(n) = Xn=Sn is a projective variety, called the symmetricproduct.If X has dimension one then X(n) is smooth and for n > 2g� 2 the sym-metric product X(n) is a projective bundle over the Jacobian Jac(X), with�bers projective spaces of dimension n � g (see [22], Ch. 4). In particular,rational points on X(n) are potentially dense for n > 2g � 2.If X has dimension two then X(n) is no longer smooth. It has Gorensteinsingularities since the group action factors through the special linear group(see [31]), i.e., for any point with nontrivial stabilizer, the induced repre-sentation of the stabilizer on the tangent space factors through the speciallinear group. The Hilbert scheme of length n zero-dimensional subschemesis a crepant resolution of X(n) ' : X [n]!X(n)3



(see [2], Section 6 and the references therein). In particular, '�!X(n) = !X[n].The same holds for pluricanonical di�erentials. On the other hand, we havethe isomorphism H0(Xn; !mXn)Sn = H0(X(n); !mX(n)):We are using the fact that the quotient map Xn!X(n) is unrami�ed awayfrom a codimension two subset and pluricanonical di�erentials extend overcodimension two subsets. We conclude that pluricanonical di�erentials on theHilbert scheme correspond to Sn-invariant di�erentials on the n-fold productXn: H0(X [n]; !mX[n]) ' H0(Xn; !mXn)Sn:Since H0(Xn; !mXn)Sn ' SymnH0(X;!mX )we obtain the following:Proposition 2.1 Let X be a smooth surface. If X has Kodaira dimensionk then X(n) has Kodaira dimension nk.Remark 2.2 Arapura and Archava have recently proved a more generalstatement [1].If X is a K3 surface we can be more precise: X [n] is a holomorphicsymplectic manifold (see [2], Section 6). In particular, the canonical bundleof X [n] remains trivial.An important ingredient in the proofs of potential density is the construc-tion of a multisection of the abelian �bration. The following proposition willhelp us verify that certain subvarieties are multisections:Proposition 2.3 Let X be a smooth projective surface and C1; :::; Cn distinctirreducible curves. Consider the image Z of C1� :::�Cn under the quotientmap Xn!X(n). The scheme-theoretic preimage '�1(Z) � X [n] has a uniqueirreducible component of dimension � n, denoted by C1�:::�Cn. In particular,the homology class of C1 � ::: � Cn is uniquely determined by the homologyclasses of C1; :::; Cn.Proof. Let (a1; ::; ak) be a partition of n and let Da1;:::;ak be the cor-responding stratum in X(n). In particular, the Da1;:::;ak are disjoint. Theintersection of Z with Da1;:::;ak has dimension at most #faj j aj = 1g. Each4



�ber of ' over Da1;:::;ak is irreducible of dimensionPkj=1(aj � 1) (see [7]). Itfollows that the preimage of Z \ Da1;:::;ak has dimension at most#faj j aj = 1g+ kXj=1(aj � 1);which is less than n, provided the aj are not all equal to 1. �3 Generalities on abelian �brationsLet A be an abelian variety de�ned over a �eld K (not necessarily a number�eld). A point � 2 A(K) is nondegenerate if the subgroup generated by � isZariski dense in A.Proposition 3.1 Let A be an abelian variety over a number �eld K. Thenthere exists a �nite �eld extension L=K such that A(L) contains a nonde-generate point.Proof. We include an argument for completeness, since we could not �nda reference.Lemma 3.2 Let A be an abelian variety of dimension dim(A) de�ned overa number �eld K. Then there exists a �nite �eld extension L=K such thatthe rank of the Mordell-Weil group A(L) is strictly bigger than the rank ofA(K).Proof. As pointed out to us by M. Jarden, this follows from Theorem 10.1of [9] and the subsequent remark. We provide an alternate proof suggestedby B. Mazur.We �rst assume dim(A) > 1. Let � be the saturation of A(K) in A( �K)(where �K is the algebraic closure of K). This means that � consists ofall points p such that a positive multiple of p lies in A(K); in particular itcontains all torsion points. Find a smooth curve C of genus � 2 in A, de�nedover a �nite extension K1=K. By Raynaud's version of the Manin-Mumfordconjecture (see [16], I 6.4 or [26] Theorem 1) we have that C \ � is �nite.There exists a L=K1 such that C(L) contains a point q outside C \ �. Itfollows that A(L) has higher rank.We now do the case of an elliptic curve E . Write A = E � E withprojections �1 and �2; we have A(K) = E(K)� E(K). The argument above5



gives a point q 2 A(L) not contained in the saturation of A(K). It followsthat either �1(q) or �2(q) is not contained in the saturation of E(K). �We prove the proposition. We may replace A with an isogenous abelianvariety, so we may assume thatA is a product of geometrically simple abelianvarieties. Our proof proceeds by induction on the number of simple compo-nents. Any nontorsion point p of a geometrically simple abelian variety isnondegenerate. Indeed, the Zariski closure of Zp is a �nite union of translatesof abelian subvarieties. Hence it su�ces to prove the inductive step:Lemma 3.3 Let A1 and A2 be abelian varieties over a number �eld K.Assume that A2 is geometrically simple and A1 and A2 have nondegenerateK-points p1 and p2. Then A1 � A2 has a nondegenerate point over some�nite extension L=K.Proof. For any pair of abelian varieties A1;A2 the group of homomor-phisms Hom(A1;A2) is �nitely generated as a module over Z. After a �niteextension, we may assume these are all de�ned over K. We also considerHom0(A1;A2) := Hom(A1;A2) 
 Q , the group of homomorphisms de�nedup to isogeny (see [25], p. 172-176).Assume that (p1; p2) is contained in a proper abelian subvariety B (A1 � A2. Note that the projections �ijB are surjective. Let K1 � B bethe kernel of �1jB, which may be regarded as an abelian subvariety of A2.A dimension count shows that K1 ( A2, hence K1 is �nite (because A2 issimple). It follows that �1jB is an isogeny and we can regard B as an element� 2 Hom0(A1;A2). In particular, (d�)(p1) = dp2 for some nonzero integerd. We choose a Z-basis (Z1; :::; Zk) for Hom(A1;A2). There exist integersb1; :::; bk; such that (b1Z1 + ::: + bkZk)(p1) = dp2 in the Mordell-Weil group.Hence p2 is contained in the saturation of the subgroup of A2(K) generatedby the images of p1 under the Zi. Conversely, if q is not contained in thissubgroup then (p1; q) is nondegenerate. Applying Lemma 3.2, we obtain a�nite �eld extension L=K and a point q 2 A2(L) with the desired property.� Let T be an A-torsor de�ned over a �eld K, i.e., there is an actionA� T !T so that the induced mapA� T !T � T (a; t)!(at; t)6



is an isomorphism (here all morphisms and �ber products are de�ned overK.) In particular, if M=K is a �nite extension and p 2 T (M) then theinduced map restricts to an isomorphism A(M)!T (M).Consider the Albanese Alb(T ) (see, for example, [15] II. 3). It is anabelian variety de�ned over K, such that there is a morphism T �T !Alb(T )corresponding to (t1; t2) ! t1 � t2. For each zero-cycle of T , de�ned overK and of degree zero, we obtain a point in Alb(T )(K). Interpret T as thezero-cycles on T of degree one, so that the addition map Alb(T ) � T !Tmakes T into an Alb(T )-torsor as well. In particular A and Alb(T ) are bothisomorphic over K to the identity component of the automorphism group ofT . Let p 2 T (M) where M=K is a �nite extension of degree deg(M). Re-garding Spec(M)!T as a morphism of K-schemes, we obtain a zero-cycleon T of degree deg(M), de�ned over K. This pulls back to a zero-cycle onT (M) denoted trM . The zero-cycle �M := deg(M)p � trM has degree zeroand thus gives an element of Alb(T )(M). We shall say that p 2 T (M) isnondegenerate if �M is nondegenerate.Let � : T !B be an abelian �bration, that is: T and B are normal, B isconnected, and the �ber Tb over the generic point b is a torsor for an abelianvariety Ab over K(b). A multisection M of � is the closure of an M -valuedpoint of Tb, where M is a �nite �eld extension of K(b) of degree deg(M). Itis nondegenerate if the corresponding M -valued point is nondegenerate.Proposition 3.4 Let � : T !B be an abelian �bration with nondegeneratemultisectionM, both de�ned over a number �eld K. Assume that K-rationalpoints on M are Zariski dense. Then K-rational points on T are Zariskidense.Proof. We restrict to an open subset ofB over which T andM are smoothand the torsor action A�BT !T is well-de�ned. Let p :M!T �BM be thesection induced by the multisection. Our assumptions mean that A �B Mhas a nondegenerate section �M. The translates (n�M)(p(M)) are de�nedover K and are Zariski dense in T �B M. Each translate has Zariski denseK-rational points, so we �nd that rational points in T �BM are also Zariskidense. Since T �B M dominates T , rational points are dense in T as well.� 7



Remark 3.5 Our argument does not show that rational points are Zariskidense in any �ber Tx, where x is an K-rational point of B. However, whenthe �bers are of dimension 1 there exists a nonempty open subset U � Msuch that (T �BM)x has dense rational points for each x 2 U(K) (see [30]).Moreover, by a result of N�eron, the rank of the Mordell-Weil group of special�bers of abelian �brations does not drop outside a thin subset of points onthe base of the �bration [28].4 Elliptic families on K3 surfacesThroughout this section, we work over an algebraically closed �eld of char-acteristic 0. An elliptic �bration is an abelian �bration of relative dimensionone. In the sequel an elliptic �bration dominating a K3 surface will be calledan elliptic family.The following theorem is attributed to Bogomolov and Mumford (see[23]). We include a detailed proof because it is crucial for our applications.Theorem 4.1 Let S be K3 surface and f a divisor class on S such thath0(OS(f)) > 1. Then there exists a smooth curve B and an elliptic �brationE!B with the following properties:1. E dominates S;2. the generic �ber Eb is mapped birationally onto its image;3. the class f � Eb is e�ective.Proof. A genus one curve C � S is a curve whose normalization ~C is aconnected curve of genus one. It su�ces to prove the result for a singularcurve B; we can always pull back to the normalization ~B.We may restrict to the case where S is not an elliptic K3 surface. Weassume that jf j has no �xed components (and thus no base points). Indeed,if this is not the case then we extract the moving part of f . Since S is notelliptic, we have f 2 > 0. We may also assume that the class f is primitive;otherwise, take the primitive e�ective generator f 0 such that f 2 Zf 0. Westill have h0(O(f 0)) > 1 and jf 0j basepoint free (again, using the fact thatS is not elliptic.) See [29] for basic results concerning linear series on K3surfaces.We shall use the following lemma, essentially proved in [23]:8



Lemma 4.2 For each n > 0, a generic polarized K3 surface (S1; f) of degree2n contains a one-parameter family of irreducible curves with class f , suchthat the generic member is nodal of genus one.Proof. We �rst claim there exists a K3 surface S0 containing two smoothrational curves D1 and D2 meeting transversally at n + 2 points. Let S0 bethe Kummer surface associated to the product of elliptic curves E1 and E2,such that there exists an isogeny E1!E2 of degree 2n + 5. Let � be thegraph of this isogeny and p 2 E2 a 2-torsion point. Now � intersects E1 � ptransversally in 2n+ 5 points, one of which is 2-torsion in E1 �E2. We takeD1 to be the image of � and D2 to be the image of E1 � p; D1 and D2 aresmooth, rational, and intersect transversally in n+2 points. The line bundleO(f) := OS0(D1+D2) is big and nef and thus has no higher cohomology (byKawamata-Viehweg vanishing).Let � be the spectrum of a discrete valuation ring with closed point 0and generic point �. Let S ! � be a deformation of S0 such that f remainsalgebraic. We assume further that the class f is ample and indecomposiblein the monoid of e�ective curves in a (geometric) generic �ber S1. Theseconditions are satis�ed away from a �nite union of irreducible divisors. Sincef has no higher cohomology,D1[D2 is a specialization of curves in the generic�ber and the deformation space Def(D1 [D2) is smooth of dimension n+2.Consider the locus in Def(D1 [ D2) parametrizing curves with at least �nodes; this has dimension � n + 2� �. When � = n + 1 the correspondingcurves are necessarily rational. Each �ber of S ! � is not uniruled, and thuscontains a �nite number of these curves. In each �ber, the rational curveswith n + 1 nodes deform to positive-dimensional families of curves with nnodes. Hence S1 contains a family of nodal curves of genus one with thedesired properties. �To complete the proof, we use a proposition suggested by Joe Harris:Proposition 4.3 Let S!D be a projective morphism. Then there exists ascheme Kg(S=D) such that each connected component is projective over Dand the �ber over each d 2 D is isomorphic to the corresponding moduli spaceof stable maps Kg(Sd).Proof. We refer to Kontsevich's moduli space of stable maps constructedin [14],[10]. We �rst consider the special case when S = PnD. ThenKg(PnD=D) = Kg(Pn)�D9



More generally, given an embedding S!PnD over D, we de�ne Kg(S=D) asthose elements of Kg(PnD=D) which factor through S. Since it is a closedsubscheme it is projective over D. �We �nish the proof of Theorem 4.1. There exists a projective family ofK3 surfaces S!� equipped with a divisor class f , such that the (geometric)generic �ber satis�es the conditions of Lemma 4.2 and the special �ber is(S; f). Consider the component K1(S=�; f) of K1(S=�) consisting of mapswith image in the class f . After a �nite base change �0!�, there exists ageometrically irreducible curve C� � K1(S=�; f) corresponding to an elliptic�bration dominating the generic �ber S�. Let C � K1(S=�; f) be the 
atextension over � and C0 the corresponding 
at limit.There may not be a `universal stable map' de�ned over C0 � K1(S; f).However, for each irreducible reduced component Ci � C0, a universal stablemap exists after a �nite cover Bi!Ci. (This follows from the existence of auniversal stable map over the associated moduli stack.) For some such Bi,the resulting family of stable maps E 0i ! Bi dominates S. The image of thegeneric �ber contains a component of genus one because no K3 surface isuniruled. �5 Density of rational pointsIn this section S denotes a K3 surface de�ned over a number �eld K. Po-tential density holds for elliptic K3 surfaces and for all but �nitely manyfamilies of K3 surfaces with Picard group of rank � 3, and consequently fortheir symmetric products (see [6]). However, a general K3 surface has Picardgroup of rank 1. In the following sections we will prove density results forsymmetric products of general K3 surfaces.By Theorem 4.1, there is a family of elliptic curves E dominating S. LetE1; : : : ; En be generic curves in the �bration and assume that g = [Ei] is big;in particular, E is not an elliptic �bration on S. It follows that the genericmember of g is an irreducible curve of genus > 1. Note that we have a wellde�ned class g � ::: � g in the homology of S [n], equal to the homology classof C1 � ::: �Cn, where the Ci are irreducible curves in g (see Proposition 2.3).Theorem 5.1 Let S be a K3 surface satisfying the conditions of the previousparagraph. Assume that either 10



1. S [n] admits an abelian �bration T !B and g� :::�g intersects the propertransform of the generic �ber positively, or2. S [n] is birational to an abelian �bration, and E1�:::�En is a multisection.Then rational points on S [n] are potentially dense.Proof. Throughout the proof, L=K is some �nite �eld extension, whichwe will enlarge as necessary. We want to show that L-rational points areZariski dense on S [n].Under the �rst assumption, for any irreducible curves C1; :::; Cn in g,C1 � ::: � Cn � S [n] gives a multisection of T !B. In particular, E1 � ::: � Enis a multisection.Choose a point x 2 B(L) corresponding to a smooth �ber Tx of T . Choosea nondegenerate cycle in Tx of length n, represented by s1 + ::: + sn 2 S [n](see Proposition 3.1). We may assume the si are distinct, that each si lies ina smooth �ber Ei of our elliptic family, that si and Ei are de�ned over L, andthat L-rational points of Ei are Zariski dense. Then we have a multisectionM for T given as (the proper transform of) E1� :::�En. Note that L-rationalpoints on M are Zariski dense.It follows thatM satis�es the nondegeneracy assumptions of Proposition3.4. Therefore, L-rational points are Zariski dense in S [n]. �We employed two parallel sets of hypotheses because in some applicationsthe abelian �bration is only described over the generic point of B, whichmakes intersection computations di�cult. In other applications, the abelian�bration is given by an explicit linear series, but the multisection is di�cultto control.Remark 5.2 Matsushita has proved a structure theorem for irreducible holo-morphic symplectic manifolds of dimension 2n admitting a �bration struc-ture. In particular, he proved that the base has dimension n, is Fano, hasPicard group of rank 1, and log-terminal singularities. Furthermore, the�bers admit �nite �etale covers which are abelian varieties (see [19]).Remark 5.3 We do not know how to produce abelian �brations on sym-metric products of Calabi-Yau varieties of dimension � 3. For example, dothey exist for quintic threefolds? 11



6 Potential density on S[n]In this section we exhibit K3 surfaces S de�ned over a number �eld K andsatisfying the assumptions of Theorem 5.1.Theorem 6.1 Let S be a K3 surface de�ned over a number �eld K. Letg be a big line bundle on S of degree 2(n � 1). Assume that jgj containsthe class of an irreducible elliptic curve. Then there exists a �nite extensionL=K such that L-rational points on S [n] are Zariski dense.Proof. Under our hypothesis g is basepoint free; the base locus of anylinear series on a K3 surface has pure dimension one (see [29]). We obtaina morphism S!Pn which is generically �nite onto its image. Furthermore,the generic member of jgj is smooth of genus n.There is an abelian �bration over B � Pn, where B corresponds to thelocus of smooth curves in jgj. Indeed, T !B is the degree n component ofthe relative Picard �bration. We claim that S [n] is birational to T . Givengeneric points s1; :::; sn on S there is a smooth curve C 2 jgj passing throughthose points. The line bundle OC(s1+ :::+ sn) is a generic point of Picn(C),and such a line bundle has a unique representation as an e�ective divisor.We are using the fact that C [n] is birational to Picn(C). (This idea can alsobe found in the work of Yau-Zaslow [32] and Beauville [4].)To apply Theorem 5.1 we must verify that (the proper transform of)E1 � ::: � En is a multisection for T . A generic curve C 2 jgj intersects theunion of the Ei transversally in n(2n� 2) points. Under these assumptions,every subscheme parametrized by C [n] \ (E1 � ::: � En) is reduced and thereare �nitely many such subschemes. It particular, C [n] intersects E1 � ::: �Enin �nitely many points. �Theorem 6.2 Let S be a K3 surface de�ned over a number �eld K andadmitting a polarization f of degree 2(N � 1). Then there exist a positiveinteger n � N and a �nite extension L=K such that the L-rational points ofS[n] are Zariski dense.Proof. By Theorem 4.1 S is dominated by an elliptic �bration E!B,with hEb; Ebi � hf; fi = 2(N�1). Theorem 6.1 gives the result when g = [Eb]is big. If the class of the �ber is not big it has self-intersection zero, whichimplies that S is an elliptic K3 surface. In this case, the main theorem of [6]proves our claim with n = 1. � 12



Example 6.3 Let S be a K3 surface of degree 2. Then rational points onS[2] are potentially dense.7 Potential density on S[2]Given a �xed K3 surface it is a natural problem to determine the smallestpossible n for which the theorem holds. (Of course, we expect that we canalways take n = 1!) As we have seen, the key to proving potential density isthe existence of abelian �brations on S [n].The intersection form on the Picard group of S is an integer-valued non-degenerate quadratic form, denoted h; i. We recall that the Picard group ofS[n] is also equipped with a natural integer-valued nondegenerate quadraticform (; ), the Beauville form [2]. With respect to this form, we have anorthogonal direct sum decompositionPic(S [n]) = Pic(S)�? Ze;where (e; e) = �2(n� 1) and 2e is the class of the diagonal (more precisely,the nonreduced subchemes in S [n].)On the K3 surface S, the Picard group together with the quadratic formcontrol much of the geometry of S. For example, if the quadratic formrepresents zero, then S admits an elliptic �bration over P1. A naive questionwould be whether the analog holds for S [n] with n � 2. More precisely, if theBeauville form represents zero, is S [n] birational to an abelian �bration overPn (see [13])? Note that the Beauville form of S [2] represents zero if and onlyif the intersection form on Pic(S) represents 2m2 for some m 2 Z.Proposition 7.1 Let S be a generic K3 surface of degree 2m2 with m > 1.Then S [2] is isomorphic to an abelian surface �bration over P2.Proof. We �rst consider the casem = 2. We asssume that the polarizationon S is very ample and that S does not contain a line or a cubic plane curve.Then S can be represented as a complete intersection of a three-dimensionalspace IS(2) of quadrics in P5. An element of S [2] spans a line ` 2 P5 anda two dimensional subspace of IS(2) contains `. In this way, we obtain amorphism a : S [2]!P2 ' P(IS(2)�):The generic �ber of a is an abelian surface; the variety of lines on a smoothcomplete intersection of two quadrics in P5 is a principally polarized abelian13



surface (see [11], p. 779). Notice that a is induced by the sections of f8� 2e,where f8 is the polarization of degree 8.When m > 2 the proof consists of three steps:1. construct special K3 surfaces S so that S [2] admits a natural involution;2. show directly that some of these special K3 surfaces admit an abeliansurface �bration and a polarization of degree 2m2;3. verify that this abelian surface �bration deforms to the Hilbert schemeof a generic K3 surface of degree 2m2.We begin with a construction of Beauville and Debarre [8]. Let S �P3 be a smooth quartic hypersurface; in particular, S is a K3 surface andthe corresponding polarization is denoted f4. Then there is a birationalinvolution j : S [2] 9 9 KS [2]de�ned on an open subset of S [2] by the rule j(p1 + p2) = p3 + p4, wherep1; p2; p3; and p4 are collinear points on S. This is a morphism provided thatS does not contain a line. The action of j on the Picard group of S [2] is givenby j�x = �x + (f4 � e; x) (f4 � e):Next, we consider some special quartic K3 surfaces. Let S be a K3 surfacewith Picard group generated by the ample class f4 and a second class f8satisfying f4 f8f4 4 kf8 k 8where k > 7. Such K3 surfaces are parametrized by a nonempty analyticopen subset of an irreducible variety of dimension 18. This follows from theTorelli theorem, surjectivity of Torelli, and the structure of the cohomologylattice of K3 surfaces (see [17] Theorem 2.4 and [3]). Note that f4 is veryample and that the image is a smooth quartic surface not containing a line[29]; here we are using the fact that k 6= 6. Furthermore, the same reasoningshows that f8 is very ample and the image does not contain a line, providedthat f8 is ample. (Here we are using the fact that k 6= 7.) If f8 were not amplethen hf8; Ci � 0 for some (�2)-curve C (see [17] 1.6). Clearly hf8; Ci 6= 0and if hf8; Ci < 0 then the Picard-Lefschetz re
ection �(f8) = f8 + hf8; CiC14



and f4 generate a sublattice with discriminant greater than 32 � k2, whichis impossible. Our argument in the m = 2 case shows that the S [2] admitsan abelian surface �bration, induced by the line bundle f8 � 2e. Composingwith the involution j, we obtain a second abelian �bration, induced byj�(f8 � 2e) = 2e� f8 + (f8 � 2e; f4 � e) (f4 � e) = (k � 4)f4 � f8 � (k � 6)e:Let g = (k � 4)f4 � f8 and m = k � 6 so that hg; gi = 2(k � 6)2 = 2m2 andj�(f8 � 2e) = g �me. Note that g is e�ective on S.We turn to the last step. Let S!� be a general deformation of S forwhich g remains algebraic. The class g restricts to a polarization on thegeneric �ber, since it has Picard group of rank one. The class g � me isalgebraic (and nef) on the generic �ber of S [2]!�. Using deformation theory(see [13] and [27] Cor. 3.4), we �nd that the generic �ber also admits anabelian �bration with base P2, induced by the sections of the line bundleg � me. We are using the fact that the abelian surface �bration on S [2] isLagrangian; see [13] for the fourfold case and [20] more generally. �Remark 7.2 Unfortunately, our argument gives little information abouthow the abelian �bration degenerates for nongeneric K3 surfaces of degree2m2 with m > 2. A more precise description would follow from the conjec-tures of [13].Remark 7.3 Proposition 7.1 gives a counterexample to the theorem in Sec-tion 2, p. 463 of [18]. There it is claimed that S [2] of a K3 surface S admitsa (Lagrangian) abelian surface �bration if and only if S is elliptic.Remark 7.4 We expect the arguments of Proposition 7.1 to generalize tohigher symmetric products. More precisely, if S is generic of degree 2nm2then S [n+1] should be birational to an abelian �bration over Pn+1. As K.O'Grady pointed out, this is best understood as an application of the Fourier-Mukai transform (see [24]). Essentially, S is isogenous to a K3 surface Ŝ ofdegree 2n, i.e., Ŝ may be interpretted as a moduli space of vector bundles onS. Applying the Fourier-Mukai transform to ideal sheaves of length (n + 1)subschemes of S, one should obtain sheaves supported on hyperplane sectionsof Ŝ which are invertible along their support. We have already seen that therelative Jacobian of Ŝ is birational to an abelian �bration over Pn+1.15



Theorem 7.5 Let S8 be a K3 surface of degree 8, de�ned over a number �eldK, embedded in projective space P5 as a complete intersection of 3 quadricsand not containing a line. Then rational points on S [2]8 are potentially dense.The same result holds for a generic K3 surface of degree 2m2.Proof. We apply Theorem 5.1, using the �rst set of assumptions. We usethe abelian �brations constructed in Proposition 7.1.Let g be the homology class of an irreducible elliptic curve (see Theorem4.1). We verify that g � g intersects the class of a �ber positively.We need to compute the intersection on S [2] of (f�me) � (f�me) � (g�g),where f and g are divisor classes on S. Let � be the class of subschemescontaining a �xed point p 2 S; note that these subschemes are parametrizedby the blow-up of S at p. In particular, (f �me) � (f �me) �� = hf; fi�m2(because e restricts to the exceptional divisor of the blown-up K3 surface).We also have g � g = g � g � hg; gi�;f � f � g � g = hf; fihg; gi+ 2hf; gi2;f � e � g � g = 0;e � e � g � g = �2hg; gi:Finally, we obtain(f �me) � (f �me) � (g � g) = 2hf; gi2 �m2hg; gi:In our case, f = f2m2 , g is the class of the elliptic curve. To verify the hy-pothesis of the Theorem 5.1, we need 2hf2m2 ; gi2 > m2hg; gi. Since hg; gi > 0we are done by the Hodge index theorem, which implies that the determinantof the matrix � 2m2 hf2m2 ; gihf2m2 ; gi hg; gi �is negative. �References[1] D. Arapura and S. Archava, Kodaira dimensions of symmetric powers,alg-geom 0006107, (2000). 16
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