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Spaces of sections of quadric surface fibrations over curves

Brendan Hassett and Yuri Tschinkel

ABSTRACT. We consider quadric surface fibrations over curves, defined over
algebraically closed and finite fields. Our goal is to understand, in geometric
terms, spaces of sections for such fibrations. We analyze varieties of maximal
isotropic subspaces in the fibers as P!-bundles over the discriminant double
cover. When the Pl-bundle is suitably stable, we deduce effective estimates
for the heights of sections over finite fields satisfying various approximation
conditions. We also discuss the behavior of the spaces of sections as the base
of the fibration acquires singularities.

1. Introduction

Let k be a field of characteristic not equal to two, B a smooth projective curve
of genus g(B) over k, and F its function field. A quadric hypersurface fibration is
a flat projective morphism 7 : X — B such that each geometric fiber is a quadric
hypersurface with at worst an isolated singularity and the generic fiber is smooth.
Sections o : B — X of 7 are in bijection with rational points X (F').

Our study is motivated by arithmetic applications and analogies between func-
tion fields of curves and number fields. When k is a finite field, the following
problems have been studied by various research groups:

(1) existence of rational points, see, e.g., [CTK11], [CTSD10];

(2) bounding the smallest height of a rational point;

(3) weak approximation [Har68] and its effective versions;

(4) asymptotic distribution of rational points with respect to heights, e.g.,
[LYO02], [Pey05], [Bou03].

All of these questions ultimately rely on algebro-geometric properties of spaces
of sections. In this paper we study in detail these spaces. We relate computable
invariants of quadric surfaces over function fields of curves, like the discriminant, to
geometric invariants of spaces of sections such as the maximally rationally connected
quotients of the section spaces.

In general, spaces of rational curves on rationally connected threefolds have in-
tricate geometry, even for cubic threefolds or complete intersections of two quadrics
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in P (see e.g., [Cas04], [HRS05, HRS02]). Rational surface fibrations over P!
appear to be much easier. In our case, the spaces of sections turn out to be projec-
tive bundles over the Jacobian of the discriminant curve. This allows us to answer
the questions above.

The geometry of the degenerations of spaces of sections serves as a prototype
for investigations of sections of more complicated rational surface fibrations over
curves. However, even in the case of quadric surfaces, our inductive approach has
implications for enumerative geometry, e.g., the Gromov-Witten invariants associ-
ated with sections of height passing through prescribed points and curves in the
fibers. We expect an inductive formula for this, expressed in terms of the numerical
invariants of the fibration.

We summarize the contents of this paper. Section 2 develops general notions of
height and discriminant for quadric hypersurface fibrations. Section 3 presents the
key construction of reduction to the discriminant. This is fundamental and well-
known in the algebraic study of quadratic forms, but here we recast it in geometric
terms. We also include numerical estimates on the dimension of spaces of sections,
from various points of view. In Section 4, we show how our classification tech-
niques apply over P! and offer explicit equations for the quadric surface fibrations
in each case. Quadric surface fibrations admit numerous birational modifications;
the structure of these is indicated in Section 5. We review some general facts about
stability of bundles in Section 6. Sections 7 and 8 demonstrate how spaces of sec-
tions of quadric fibrations specialize as the discriminant curve acquires nodes. We
expect there exists a compactification for the space of quadric surface fibrations
with square-free discriminant over the moduli space of admissible discriminant cov-
ers (cf. [HM82]), sharing many properties with Pandharipande’s compactification
of the moduli space of vector bundles over moduli space of stable curves [Pan96).
The theory of Néron models in the context of limiting mixed Hodge structures of-
fers a useful framework for the analysis of components of the space of sections as
the discriminant breaks. Section 9 and 10 are devoted to arithmetic applications,
e.g., effective weak approximation, which entail effective estimates of vanishing of
cohomology.

Acknowledgments: We are grateful to A. Auel, M. Kerr, J. Starr, and Yi
Zhu for helpful conversations, and to N. Hoffmann for comments on a draft of this
manuscript.

2. Quadratic forms, discriminants, and heights

Let 7 : X — B be a quadric hypersurface fibration of relative dimension n, as
defined in the introduction. Let w, denote the relative dualizing sheaf, an invertible
sheaf that commutes with basechange. The height of X is defined as

B(X) = — deg(er(w; )" ).

s

Note that
e If X — B is trivial, i.e., X ~ A} x B for some smooth quadric A}, then
h(X) =0.

e If B’ — B is a finite morphism of smooth projective curves then
h(X xp B') = deg(B'/B)h(X).



SPACES OF SECTIONS 3

e Every smooth quadric fibration X — B also has h(X) = 0.
To deduce the last statement, it suffices to observe that a smooth quadric fibration
may be trivialized after a finite flat base change B’ — B.
We define the height of a section 0 : B — X of 7 to be
h,-1(0) = deg(c*w1).
If X is smooth then this equals the degree of the normal bundle N,. We are
interested in spaces of sections
Sect(X/B,h) ={0: B — X :h,-1(0) = h}.

If k is algebraically closed then the Brauer group of k(B) for any smooth curve
B is trivial, thus there exists a line bundle H on X restricting to the hyperplane
class on each fiber of . The sheaf 7, H is locally free of rank n + 2 and we have
an embedding X — P((m,H)V). The defining equation is given by a section
q € Sym*((m.H)) ® I,

where [ is an invertible sheaf of B. Note that H and I can be rescaled; for each
invertible sheaf L on B, we may replace H by H ® L and I by I @ L®? without
altering q. Therefore, we will often normalize H so that deg(I) = 0 or 1; when
using this convention, we write E = (m.H)". The parity
e(m) :=deg(I) (mod 2)
is an invariant of the fibration 7 : X — B.
We may interpret the defining quadratic form ¢ as a homomorphism
¢g:E—E'Q®I,
self-dual under the application of Hom(—, I). The discriminant 0 is defined as the
divisor where ¢ drops rank, which gives [HT84]
A = deg(d) = deg(EY ® I) — deg(E) = —2deg(E) + (n + 2) deg([),

so in particular
_ J—2deg(E) (mod 2(n +2)) if e(m) =0 (mod 2)
| —2deg(E)+n+2 (mod2(n+2)) ife(r)=1 (mod 2).

The fibration 7 : X — B has square-free discriminant if the divisor 0 is reduced; a
local computation shows this is equivalent to the total space X being smooth.

PRrROPOSITION 1. If 7 : X — B is a quadric hypersurface fibration of relative
dimension n with square-free discriminant then

h(X) = n"A.

PRrROOF. Let C — B be a simply branched double cover whose branch locus
contains the discriminant. As we have seen, pulling back to C' increases the height:

WX x5 C) = 2h(X).

Let x1,...,zA denote the singularities of the fibers of X xg C — C. We have
a modification

Y - Y
l
XXBC
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obtained by blowing up the z; and then blowing down the proper transforms of the
fibers of X xp C' — C containing these points. The resulting J — C is a smooth
quadric fibration.

Let E, ..., Ea be the exceptional divisors of 3 : Y — X x 5C over the ordinary
singularities x1,...,2a; in particular, E; is a smooth quadric of dimension n and
E]’-LJrl = (—1)"2. The discrepancy formula

A
wy = Bwrxyzc +(n—1) ZEj
j=1
implies
c1(Wy0)" T = cllwaxpo/0)™ T+ Aln = 1) (=1)"2,

On the other hand, let F}, ..., Fa denote the exceptional divisors of  : Y=Y
F; ~P(Og @& Og(1)), where Q is a smooth quadric of dimension n —1 (two points
when n = 1). It follows that

verwyse) FpHTT = (1) "2,

forr=0,...,n — 1; we get zero when r > n. Here the discrepancy formula is
A
wy = 'Y*Wy + ZFj.
j=1
Thus we find
er(wyse)™ = enloye) T A (M) (-1 2
= cr(wyye)" =200 (T (<)
= cal(wy/e)" = 2A[(1 = n)" " — ((=n)" " + (n + 1)(-n)")]
= alwye)" = 28(1 —n)" " = (-n)")

Note that ¢1(wy;c)"™ = 0as Y — C is smooth. Combining the results of our
discrepancy computations, we obtain

a(@rxzo/e)™ = 28((n - )" (=) = (1= n)" T 4 (—n)")
= 2A(—n)",

which yields our formula. O

3. Reduction to the discriminant for quadric surface fibrations

We recall the standard argument of ‘reduction to the discriminant’; in geometric
terms. Let X — B be a quadric surface fibration with square-free discriminant and
generic fiber X. These fibrations were studied by Bhosle [BD84], especially when
B =P

The basic construction. Let F := F(X) — B denote the space of lines in
fibers of 7; its Stein factorization

F-Cc%B

is the composition of a smooth P'-bundle and a double cover branched along the
discriminant divisor 9. Let + : C'— C denote the covering involution.

Each section of 7 : X — B yields a section of F — C' and vice versa. Indeed,
for 0 : B — X consider the pair of lines containing o(B), which is a section of



SPACES OF SECTIONS 5

F — (. Conversely, for each section 7 : C — F we can take the intersection of
lines

rie) N r(ue)) € Xg(o)
which is a section. Note that the universal line over F is a double cover of X.

Reversing the construction. Suppose that g : C' — B is a flat morphism of
smooth projective curves of degree two; we assumed the characteristic is different
from two, so g is tamely ramified over a divisor 8 C B. Fix a P!-bundle F — C,
which can be expressed as the projectivization of a vector bundle. Restriction of
scalars (Weil restriction) gives a projective morphism

@ : Resc/p(F) — B;

this can be interpreted as the Hilbert scheme of length-two punctual subschemes
of fibers of F — C'. Thus for b € (B\ 0)(k) we have

w H(b) = Fo, x Foy 2P x P, g71b) = {c1, 2},

,
geometrically a smooth quadric surface.

Over points of the branch divisor b € 0 C B, the fiber =1 (b) is set-theoretically
Sym?(F,) ~ P2, but non-reduced of multiplicity two. However, the restriction of
scalars can be modified as follows:

X
B ¥
/ N
ResC/B(f) X
N e
B

where the arrows have the following definitions:
e (3 is obtained by blowing up the diagonal in Sym?(F;) over each point
bev;
e 1 is obtained by blowing down the proper transform of w=!(b) in X over
each point b € ?;
e 7 is the induced morphism back to B.
A local computation over each b € ? shows that the fiber A} is isomorphic to a
quadric surface with isolated singularity.

Riemann-Roch computations. Regard the space of sections Sect(X /B, h)
as an open subscheme of the Hilbert scheme of X. Its tangent space at 0 : B — X
is

T[U]Sect(X/B, h) =T(Ny).
The Riemann-Roch formula gives
X(No) = hy-1(0) +2(1 — g(B)),
which implies
dim, Sect(X /B, h) < dim T,Sect(X /B, h) = h°(N,) > h + 2(1 — g(B)),

with equality when N, has no higher cohomology. It is possible for h w;l(U) <0,
but such sections are typically confined to subvarieties of X (see Remark 16). In

characteristic zero, sections with deformations dominating X have normal bundles
that are globally generated at the generic point, and thus have positive degree.
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The discriminant construction gives an alternate approach. When k is alge-
braically closed or finite, we may interpret F ~ P(V) for a rank-two vector bundle
V — C. We are using the fact that the Brauer group of a projective curve over a
finite field is trivial, essentially by class field theory. Let Op(y)(1) denote the result-
ing polarization. Let Sect(F/C') denote the space of sections 7 : C' — F ~ P(V),
again regarded as an open subscheme of the Hilbert scheme of . We have a
morphism

a : Sect(F/C

—
T —

Pic(C)
T Opvy(1)
with fibers corresponding to extensions

0— N — VY —=1°0py)(1) = 0.

These yield elements of

2
Hom(N,VY) =N"@VY=N"o AVYaV =70 (1) @ V.

Given L € Pic(C), the sections with 7*Op(y)(1) = L lie in the projectivization
P(I'(V®L)). Thus for d := deg(L) sufficiently large, the sections form a Zariski-open
dense subset of a projective bundle over Picd(C). The boundary points correspond
to unions of sections with fibers of P(V) — C, reflecting homomorphisms V'V —
7*Op(y)(1) with non-vanishing cokernel. The Riemann-Roch formula implies

X(V®L)=2d+deg(V) +2(1 —g(C)) = 2d + deg(V) — 2g(C) + 2.
We summarize this as follows:

PROPOSITION 2. Retain the notation introduced above, including the choice of
a vector bundle V' such that F ~P(V'). For each h € Z, there exists a d € Z and a
morphism

v : Sect(X /B, h) — Pic?(C).

For h > 0 this is the composition of an open immersion with a projective bundle
of relative dimension

(3.1) 2d + deg(V) — 4g(B) — A + 3.

The morphism v, and the integer d are not canonical, but depend on the
choice of V. Nevertheless, comparing the expected dimensions for Sect(X/B) and
Sect(F/C) we find

h+2(1 —g(B)) = 2d + deg(V) — 4g(B) — A 4 3 + dim Pic?(C),

which yields the relation
A
(3.2) h =2d+ deg(V) — ok

REMARK 3. Recently, Yi Zhu has developed a general approach to Abel-Jacobi
maps of homogeneous space fibrations over curves [Zhull].
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A useful congruence. Assume k is algebraically closed. Recall the set-up in
the proof of Proposition 1: We have the base-changed family X xg C' — C, the

singularities z1,...,zaA € X xpg C, and the modification:
y =Y
!
X XB C

Consider the elementary transformation of g*m, H associated with the ordinary
double points [Mar82]

(3.3) 0—-W —g*m.H—Q — 0,
where @ is a skyscraper sheaf supported at {z1,...,za} with length one at each
point. We can compute
deg(W) = deg(g™m.H) — deg(Q) = —2deg(E) — A
0 ife(mr) =0 (mod 2)
—4 ife(r)=1 (mod 2).
The geometric interpretation of the elementary transformation gives an embed-
ding
Y —PWY).
The Fano variety of lines is a disjoint union
F/C)=FU/SF=PWV)UPL*V).

Indeed, F xp C is non-normal over the discriminant, reflecting the fact that the
two rulings of a smooth quadric surface both specialize to the rulings of the quadric
cone (see [HVAV11, §3] for further details). In particular, Y — C is the Segre em-
bedding of a product of two copies of P!, isomorphic to P(V) and P(:*V). Rescaling
V' by tensoring with a suitable line bundle L, we can express

(VoL @ (VeL) ~WY,
i.e., deg(V ® L) =0 or 1 depending on the parity of e(m):

(3.4) deg(V® L) =¢(m) (mod 2).
Eliminating e(7) from the expressions for deg(F) and deg(V'), we find
(3.5) 4deg(V) = A —2deg(m.H) = A +2deg(F) (mod 8)

This is true regardless of how we normalize H or V.

REMARK 4. The key here is the coincidence of Lie theory

s0(4,C) = s1(2,C) @ s1(2,C),
reflecting the equivalence of Dynkin diagrams
D2 = A1 U Al.

Bichsel and Knus [BK94| compute Clifford algebras for rank-four quadratic
forms taking values in invertible sheaves. This gives an alternate approach to the
varieties of maximal isotropic subspaces of 7 : X — B. Knus, Parimala, and
Sridharan [KPS86] develop the dictionary discussed here using the language of

quadratic forms over an affine base. Auel [Auell, §5.3] and Auel-Bernardara-
Bolognesi [ABB11, Thm. 2.24] address this over more general base schemes.
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4. Census of quadric fibrations over P!

Our approach here has connections to the work of Ramanan and Bhosle on
vector bundles over hyperelliptic curves [DR77, Bho84, Bho98, Bho02, Bho10).
It would be very interesting to work out a complete dictionary between their work
and our approach, with particular attention to degenerations of the hyperelliptic
curves.

We assume B ~ P! and the discriminant curve C has genus g. Equation 3.5 is
equivalent to

(4.1) deg(m H) =g+ 1 —2deg(V) (mod 4).

The expected dimension of the space of sections over a fixed L € Pic(C) (Equa-
tion 3.1) can be written

(4.2) XV®L)—1=deg(V®L)—2g+1.

The normalized bundle E ~ (7. H)" satisfies

—-g—1 if =0 d 2
dog) _ [ &L Hem=0 (mod2)
—g+1 ife(m)=1
We can decompose
T H = Op1(—a1) ® Op1(—az) ® Op1(—az) ® Op1(—ay),
a1 < az < az < aq;
for simplicity, from now on assume this is as ‘balanced’ as possible, i.e., as —a; < 1.

We refer the reader to Section 1 of [LPS97] for a more thorough classification.

REMARK 5. Any vector bundle Fy on P! admits a small deformation to a
balanced vector bundle E, i.e., E >~ &%_; Op:(—m;) where [m; —m;| <1 for each
i,j =1,...,r. Indeed, the splitting Ey ~ ©%_, Op1 (—n;) can be deformed to a non-
trivial extension that is balanced [Sha78]. If Sym?(Ey) ® I is globally generated
(here I is invertible of degree 0 or 1, as in Section 2) then H'(Sym?(EY)® I) = 0.
Cohomology-and-base-change implies that sections in I'(P*, Symz(E(\)/ )®I) arise as
specializations of sections in I'(P', Sym?(EY) ® I). Thus the balanced bundles we
consider are generic for large classes of quadric surface fibrations.

Case 1. Here we have a1 = a9 = a3 = a4 so that
P((m.H)Y) ~P(O5Y)) ~ P! x P2

The equation of X is a form of bidegree (n,2), thus h(X) = 16n, A = 4n, and
g = 2n — 1. The normalized rank-four bundle is

~JOpi(—m)®* ifn=2m+1 odd

| Op(=m)®*  if n = 2m even.
Equation 4.1 implies that deg(V) = n (mod 2). In light of (4.2), we take
dn—-3=2g—1 ifnodd
dn —2 =2g if n even.

deg(V) = {

A form of bidegree (n,2) depends on (n+1)-10 — 1 = 10n + 9 parameters;
taking into account the automorphisms of P x P3| we are left with 10n —9 = 5g—4
free parameters.
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Case 2. Here we have a1 +1 = as = a3 = a4 so that
P((mH)Y) = P(Op (—1) & OF?)) — P! x P*.

The P3-bundle is given by a form of degree (1, 1), and the second equation defining
X has bidegree (n,2). We have wy/p1 = Ox(n + 1,-2) and h(X) = 16n + 8; then
A =4n + 2 and g = 2n. The normalized twist of (7. H)" is:
£ Op1(—=m — 1) ® Op1 (—m)®3  if n=2m + 1 odd
| Opi(—m — 1) @ Op (—m)®®  if n = 2m even.

Formula (4.1) implies deg(V) = n (mod 2). In light of (4.2), we take

deg(V) = dn—1=2g—1 ifnodd
&  l4n=2g if n even.

Note that X is cut out by a form of bidegree (1,1) and a form of bidegree
(n,2), determined modulo multiples of the first form. The former depends on
nine parameters, the latter on 10n + 14 parameters (even when n = 0). Taking
automorphisms of P! x P* into account, we are left with a total of

10n —4=5g—4
free parameters. When n = 0, this should be understood to mean that the families
admit positive-dimensional automorphism groups.
Case 3. Here we have a1 +1 = as + 1 = a3 = a4 hence
P((mH)Y) = P(Op: (—1)%2 & OF?)) — P x PP,

The P3-bundle is given by two forms of degree (1,1), with X defined by one ad-
ditional equation of bidegree (n,2). The dualizing sheaf wy/p = Ox(n + 2,-2),
A=4n+4,g=2n+1, and

h(X) = 161 + 16.
Here we have
B Op1 (—m — 1)®2 3 Op1 (—m)®?  if n =2m + 1 odd
) Opi(—m — 1)®2 @ Opi (—m)®2 if n = 2m even.

Formula (4.1) implies deg(V) = n (mod 2). To get smallest possible non-negative
dimensions in (4.2), we take
4 1=2g—1 ifnodd
deg(v) =4 " BT Y
dn+2=2g if n even.
We compute the number of free parameters: The forms of bidegree (1,1) corre-
spond to a point of Gr(2,T'(Opixps(1,1))), which has dimension 20. When n > 0,

the form of bidegree (n, 2) modulo the first two forms depends on (n+1)21—2(n)6+
(n—1)—1=10n+ 19 parameters. Taking automorphisms into account, we obtain

20+ (10n+19) —38 =10n+1=5(2n+1) -4 =5g — 4

parameters. When n = 0 and g = 1, the construction depends on two parameters.
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Case 4. In this case a1 = as = a3 = a4 — 1 hence
P((mH)Y) ~ P(O52(=1) @ Opa1)) < P* x PO,
The P3-bundle is given by three forms of degree (1,1), with X defined by one

additional equation of bidegree (n,2). The dualizing sheaf wy /p1 = Ox(n+3, —2),
A=4n+6,g=2n+ 2, and

h(X) = 16n + 24.
In this case
£ {O]pl(—m—l)@S@O]pl(—m) if n =2m+1 odd
Opi (—m — )3 @ Op1 (—m)  if n = 2m even.
Formula (4.1) implies deg(V) = n (mod 2). In light of (4.2), we take
deg(v):{4n+32gl if n odd
dn+4=2g if n even.

We compute free parameters: The forms of bidegree (1,1) correspond to a
point of Gr(3,I'(Op1«ps(1,1))), which has dimension 33. The form of bidegree
(n,2), modulo the first three forms, depends on

(n+1)28—-3(n)7T+3(n—1)—1=10n+24
parameters. Taking automorphisms into account, we obtain
334+ (10n+24) =51 =10n+6=5(2n+2) —4=5g — 4
parameters.

REMARK 6. In our analysis the case where the discriminant curve has genus

zero stands out; we have yet to exhibit an example where g = 0 and deg(V) is odd.

This may be interpreted as the n = —1 instance of Case 4 above.
Specifically, there are quadric surface fibrations

X CP((m.H)Y) ~P(O5?(—1) & Op1)
that do not arise as restrictions of hypersurfaces in P! x P6. These correspond to
global sections of
Symz(ﬂ*H) (9 O]pl (—1) = Opl (1)@6 D O];‘?lg (5) Opl (—1),
which necessarily contain the distinguished section o : P! — P((m,.H)"). Projecting
from o, we obtain

Bl, (p1)(X) ;
/ N\
X P2 x P!
N\ /
Pl

where 3 blows up a genus-zero bisection Z C P2 x P! — P!. The bisection Z is
a complete intersection of hypersurfaces of bidegrees (1,0) and (2,1) in P? x P!,
The former takes the form ¢ x P!, where ¢ C P2 is a line, and coincides with the
proper transform of the exceptional divisor of Bl,p1) (&) — X. Constant sections
of P2 x P! — P! induce sections of 7 : X — P!; points of ¢ give rise to reducible
curves, consisting of the union of o(P!) and a line in a fiber of 7 incident to o (P!).

The families constructed here admit positive-dimensional automorphism groups.
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We summarize our computations in the following table:

Case | A (mod 8) | n =deg(V) (mod 2) | g (mod 4)
1 0 0 -1
4 1 1
2 2 0 0
6 1 2
3 4 0 1
0 1 -1
4 6 0 2
2 1 0

Parameter counts and relations to moduli spaces of bundles. When
V is a rank-two vector bundle over C, we have

x(End(V)) = 4(1 - g).

When V is simple, the moduli space has dimension 4g — 3; fixing the determinant
gives a moduli space of dimension 3g — 3. Taking into account the fact that P(V ®
L) ~ P(V) for each L € Pic(C), the corresponding moduli space of P!-bundles
over C' also depends on 3g — 3 parameters. Hyperelliptic curves depend on 2g — 1
parameters so the total number of free parameters is

3g—3+2g—1=>5g—4,

the number of free parameters we observed in each case.

5. Hecke correspondences and elementary transformations

The data tabulated above exhibit an involution preserving A (mod 8) and g
(mod 4) but reversing the parity of deg(V') and altering deg(w.H) (mod 4) by two.
This can be explained geometrically via elementary transformations.

Fix a smooth fiber &}, of 7 and a line ¢ C A},. Applying an elementary transfor-
mation along ¢ converts P(O%?) to P(Op: (—1)2 ® OF?) (resp. P(Op: (—1) @ O5?)
to P(Op1 (—1)%3 @ Op1)). The proper transform 7 : X — P! of X is still a quadric
surface fibration with the same degenerate fibers. This also induces an elementary
transformation of F(X) = P(V) — C at the point £, which is F(X); this changes
the parity of the degree of this rank-two bundle.

This process does change the heights of sections of 7 : X — P!. Suppose that
o : P! — X is a section disjoint from ¢, with proper transform & : P! — X. The
birational map X --» X factors

Bl,(X)
% N
X X

9

where the right arrow blows down the proper transform of ¢. Thus we find
deg(d"wyg p1) = deg(o wx p1) — 1

and
hwjl(é) = hw;1(0') + 1.

Thus taking elementary transformations along lines incident to a section reduces
the height of that section.
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If we apply two elementary transformations to X — P!, the resulting quadric
fibration has the same numerical invariants and discriminant curve C — B. And
of course, the resulting fibrations are birational over P! but not isomorphic, as the
corresponding vector bundles are related by an elementary transformation. This is
an instance of a Hecke correspondence on the moduli space of vector bundles over
C; these have been studied by many authors, e.g., [NR78|.

6. Stable bundles and cohomology

In Section 3, we saw how to translate the existence of sections of quadric surface
bundles X — B to the existence of sections of a ruled surface F ~ P(V)) — C, where
C is the discriminant double cover of B and V is a rank-two vector bundle over
C. The behavior of the sections of a ruled surface depends on the characteristics of
this vector bundle; in general, there is little we can say uniformly without making
some assumptions on the vector bundle.

Throughout this section, C'is a smooth projective curve of genus g over an alge-
braically closed field. Recall that a locally-free sheaf V' over C'is stable (resp. semi-
stable) if, for every locally-free quotient

V-W-=0
we have
deg(W)/rank(W) > ( resp. >) deg(V')/rank(V).
A vector bundle is stable if the associated locally-free sheaf of sections is stable.

The stability of a vector bundle is not affected by tensoring it by a line bundle, or
by taking its dual.

General facts on rank-two bundles. Here we collect more refined vanishing
results for stable bundles of rank two, which will be useful for effective estimates
for the numbers of sections with prescribed properties.

Let V' be a rank-two vector bundle over a C and M C V an invertible subsheaf
of maximal degree. Recall that V/M is invertible and

N(VeM™) =0
for all invertible My with deg(M;) > deg(M) [Har77, V.2]. This implies that
dimT(VeM™1) <2

PROPOSITION 7. Let V' be a vector bundle on C of rank two.

o An invertible subsheaf of mazximal degree M C V satisfies [NagT70]

% < deg(M).

If V is semistable then deg(M) < deg(V)/2.
o [fV is semistable then for a generic line bundle L on C of degree zero we
have [Ray82, Prop. 1.6.2]

R (V ® L) = max(0, x(V)).

REMARK 8. The original formulation of Nagata’s theorem referenced above is
worth mentioning: Let P(V) — C, where V is a rank-two vector bundle over C
(not necessarily semistable). Then there exists a section 7 : C' — P(V) such that

7(C)-7(C) < g.
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COROLLARY 9. Let V be a semistable vector bundle of rank two over C. If
deg(V) > 3g+2 then V® L is globally generated with vanishing higher cohomology
for generic L € Pic®(C). When deg(V) > 4g — 1 then V itself is globally generated
with vanishing higher cohomology.

PROOF. For the first assertion, Proposition 7 implies we may express V as an
extension of invertible sheaves

0—-M-—->V —>V/M— D0,

where deg(M) > g+ 1 and deg(V/M) > 3g+1 if deg(V') > 3g + 2. For generic L,
M ® L and (V/M) ® L are globally generated with vanishing higher cohomology,
so the same is true for V ® L.

We are grateful to N. Hoffmann for suggesting improvements on the bound for
the second assertion. To prove that V is globally generated, it suffices to show that
for each expression

0—-U—->V—-Q—0

with @ a torsion sheaf of length one, we have I'(U) C I'(V). If we can show that
HY(U) = 0, it will follow that H*(V) = 0 and

dimIT'(U) = x(U) =x(V) =1 < dim (V).

However, if H!(U) were non-vanishing then I'(we ® UY) # 0 by Serre duality.
Let N C we ® UY denote the saturation of some non-vanishing section, whence
deg(N) > 0; consider the resulting extension

0= N—=weaU'¥ —-wia N edet(U)" — 0.
On dualizing, we obtain
0= Nedet(U)®ws' - U — N'®@we — 0.
We may regard the first term as a subsheaf of V', so semistability implies
deg(N @ det(U) ® wg') < deg(V)/2
and
deg(N) +deg(V) — 1 — (2g — 2) < deg(V)/2.

Thus we conclude

—deg(V)
2

a contradiction. O

deg(N) < +2g-1<0,

7. Projective bundles over limits of hyperelliptic curves

The purpose of this and the subsequent section is to analyze how sections
of quadric surface fibrations specialize as the base of the fibration degenerates to
a nodal curve. Essentially, the excellent a priori control we have for sections of
quadric surface fibrations gives structure to how sections ‘break’ as the fibration
breaks into a union of two fibrations of smaller height. We carry out this analysis
with a view toward understanding the behavior of sections of del Pezzo fibrations
of smaller degree over P!.
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Sections of projective bundles over nodal curves. Let C' be a nodal
projective curve of arithmetic genus g over an algebraically closed field.

LEMMA 10. If P — C' is a projective bundle then there exists a vector bundle
V over C such that P = P(V'). Sections t : C — P with t*Op(1) ~ L correspond
to short exact sequences

0—-N—->VY—>L-—0,
or equivalently, elements of
P(T'(C,V & L))

such that the induced VV — L is surjective.

PRrROOF. The obstruction to lifting a cocycle in PGL,. to GL;. lies in the Brauer

group, which is trivial on a curve. This gives the first assertion. The second
assertion is the standard characterization of morphisms into projective space. [

Let e denote an integer-valued function from the set of irreducible components
of C and |e| the sum of this function over these components. Consider the irre-
ducible component of the Hilbert scheme Sect(P/C,e) containing the sections

{7:C — P:deg(7"Opvy(1)) = e}.
We have a rational map
ae : Sect(P/C,e) --» Pic®(C)
T = 7(Opa(1)).

We are interested in those e such that «, is dominant. By Lemma 10, these include
all e such that, for generic L € Pic®(C), we have

(7.1) NVeI®L)CIN(VeL)
for each ideal sheaf I C O¢. Indeed, if VV — L fails to be surjective then its image

is isomorphic to L ® I for some ideal sheaf I.

Applications to degenerate quadric fibrations. Here, a degenerate quadric
surface fibration consists of

e a connected nodal curve
B = Bl Up Bg

with a single node p;
e a flat morphism from a projective scheme

m: X — B,
such that the restrictions
WjZ:W‘Xj:XXBBj—)Bj, j:1,2,

are quadric surface fibrations smooth over p with square-free discriminant
elsewhere.

Let g : C' — B denote the discriminant curve; note that
Czcl Uq,r C27 g(qar) =Pp

where g|C; : C; — B; is a double cover. The Fano variety F of lines on X’ remains a
Pl-bundle over C. We can express F = P(V), where V is a rank-two vector bundle
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on C by Lemma 10. The argument of Section 3 still yields a natural identification
between Sect(X'/B) and Sect(F/C). As before, we define

e(m) =deg(V) (mod 2),

so that e(m) = e(m1) + €(m2). This is invariant under deformations of 7, including
smoothings to quadric surface fibrations over smooth curves.

PROPOSITION 11. Let m: X — B be a degenerate quadric surface fibration as
described above, over a curve of genus zero. Assume that the discriminant curve
C = C1UCy — B has genus g and admits a component C; ~ P'. Set

b= g—1 ife(x)=0 (mod 2)
g—2 ife(r)=1 (mod 2)

and consider
Y : Sect(X /B, h) — Pic(C).
(1) If e(m) = e(ma) = 0 then vy, dominates two components of the Picard
variety, over which the generic fiber ~ PL.
(2) If e(m1) = e(me) = 1 then v, dominates three components of the Picard
variety, over which the generic fiber ~ PL.

(3) If e(m) £ e(ma) then vy, dominates two components of the Picard variety,
over which it is birational.

PROOF. In light of the analysis in Section 4, we normalize

)2 €(m) =0 (mod 2)
deg(V) = {Qg —1 e(n)=1 (mod 2)

which means that x(V) = 2 in the even case and 1 in the odd case. Note that a
generic vector bundle of this degree on a smooth projective curve of genus g has no
higher cohomology (see Proposition 7).

Odd case. Our first subcase is
deg(V|C1) =0 (mod 2), deg(V|C3)=1 (mod 2).

The possibilities compatible with (7.1) are:

o deg(V@L|Cy) =2, deg(V®L|Cy)=2g—3

o deg(V®L|C1) =0, deg(V®L|C:)=2g—1
In the first case, V @ L|Cy ~ Op1(1)®2 and T'(V @ L|Cs) admits a unique non-zero
section, up to scalar. On gluing we see that V' ® L admits a unique section as well.
Otherwise, V ® L|C; =~ Oﬂ?f which is globally generated by two sections. Since
V ® L|Cs has a three-dimensional space of sections, after gluing we have a unique

section up to scalar.
The other subcase is

deg(VIC1) =1 (mod 2), deg(V|C2)=0 (mod 2),

which leads to the possibilities:

e deg(V®L|C) =1, deg(V®L|Cy) =2g—2
o deg(V®L|Cy) =—1, deg(V®L|Cy) =2g
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In the first instance, V ® L|Cy ~ Op: @ Op:(1) which admits three sections, and
V ® L|Cy generally has a two-dimensional space of sections. In the second instance,
VQL|Cy ~ Op1 ®Op: (—1) which admits a single section and V ® L|Cs generally has
a four-dimensional space of sections. In both instances, we have a unique section
up to scalar.

Even case. Our first subcase is
deg(V|C1) = deg(V|C3) =0 (mod 2).
The possibilities consistent with (7.1) are limited to:
e deg(V@L|Cy) =2, deg(V®L|Cy)=2(g—1)
e deg(V@L|Cy) =0, deg(V® L|Cs) = 2g.
In the former case, we have V @ L|Cy ~ Op1 (1)®2, which is globally generated with
four sections. For generic L, we find that V ® L|C2 admits a two-dimensional space
of sections. Overall, we find that V' ® L has a two-dimensional space of sections.
In the latter case, we have V ® L|Cy ~ OI?IQ which is globally generated with two
sections. For generic L, V ® L|Cy admits a four-dimensional space of sections. After
gluing we find that I'(V ® L) is two-dimensional.
Our second subcase is

(7.2) deg(V|C1) =deg(V|C3) =1 (mod 2).
Condition (7.1) allows the following three possibilities:
e deg(VQLIC)) =1, deg(V®L|Cy)=2g—1
o deg(VQL|Cy) =—1, deg(V®L|Cy)=2g+1
e deg(V®L|Cy) =3, deg(V®L|Cy)=2g—3
Again, in each case we find that T'(V ® L) is two-dimensional. O

8. Limits of sections and Néron models of intermediate Jacobians

We retain the notation of Section 7. Let
D={teC:0<t<1}

denote a complex disc, X(t) a family of quadric surface fibrations specializing to
X = X(0) over D, and C(t) the corresponding family of discriminant curves spe-
cializing to C. Note that this family is not stable, as the component C; ~ P! ¢ C
must be contracted in a stable reduction.

The intermediate Jacobian IJ(X'(t)) is isomorphic to the Jacobian J(C(t)) of
the discriminant curve C(t). Here we compute the special fiber J.(0) of the Néron
model

J e — D
of the intermediate Jacobians IJ(X(t)), following the exposition of [GGK10, pp.313-
314], which draws on previous work of I. Nakamura [Nak77].
There is a basis for the homology of C(¢) such that the monodromy matrix

takes the form
Ing_o 0 (1 2
(57 1) =0 1)

where Ip,_5 is the identity matrix of the indicated size. The logarithm of this

matrix takes the form
0 0 N — 0 2
0 N)J° —\0 0/
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Applying formula I1.C.1 of [GGK10], we obtain an exact sequence
0— J(C) = J.(0) = G — 0,

where G = Z /27 is the group of connected components. Note that J(C) is itself an
extension
0—G,, — J(C)— J(Cy) — 0.

This extension is important because it is the target of the cycle class map for
limits of one-cycles homologous to zero. Let X(t) be a family of quadric fibra-
tions with X ~ X(0) and X(t) non-singular for ¢t # 0. Let Z2?(X(t)) denote the
codimension-two cycles of X' (t) homologous to zero, e.g., differences of two sections
of m(t) : X(t) — PL. Let Z(t) denote a family of such cycles in X (t), with Z(t)
homologous to zero for ¢ # 0. Note however that Z(0) need not be homologous to
zero, e.g., when it is a difference of two sections of

m: X — B =D U, By
whose heights are equal but are allocated differently between the components of X'.
Nevertheless, the Abel-Jacobi images of the Z(t) yield a section of
J e — D
and thus an element y(Z(0)) € J.(0).

This is visibly consistent with the description in Section 7, except in the case
(7.2) where there are three kinds of sections of the projective bundle but only two
components of the Néron model. We explain the geometry of the induced mapping

7 : Sect(X /B, h) — J.(0),
where the height is chosen so that the sections correspond to elements of I'(V ® L)
with deg(V ® L) = 2g.

PROPOSITION 12. Recall the notation and assertions of Proposition 11. For
assertions 1 and 8, the two components of Pic(C') dominated by ~y;, correspond to
the two components of J.(0). For assertion 2, sections corresponding to the cases

deg(V®@ L|ICy) = -1, deg(V®L|Cy) =2g+1
and
deg(V® L|Cy) =3, deg(V®L|Cy) =2g—3
are mapped onto the same connected component of je(O).

PrOOF. Only the last statement requires proof. Indeed, the fact that these are

related by an involution can be seen by tensoring L in the first case by O(Cs)|Ca,

where C5 is regarded as a Cartier divisor on the total space of C;. This increases
the degree of the vector bundle on C; (and decreases the degree on Cs) by four. O

The functorial properties of Néron-models allow us to compactify
Je(0) € Je(0),

where the latter is a g-dimensional toroidal compactification over the (g — 1)-
dimensional abelian variety J(Cs). Thus its fibers consist of pairs of P1’s meeting
in two nodes. The fibers of

Sect(X /B, h) --» J.(0) — J(C2),

from the irreducible component of the Hilbert scheme compactifying Sect(X /B, h),
do have three components corresponding to the three cases of (7.2).
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REMARK 13. The analysis of limiting intermediate Jacobians here is also remi-
niscent of Caporaso’s compactification of the relative Picard scheme over the moduli
space of stable curves [Cap94], especially Section 7.3 which addresses curves with
two components. The two cases of (7.2) identified to the same component of je(O)
correspond to strictly semistable line bundles that are identified by the Geometric
Invariant Theory.

REMARK 14. An alternative approach to limits of intermediate Jacobians via
log geometry can be found in [KNU10].

9. Stability and discriminant curves

Let m : X — B be a quadric surface fibration with square-free discriminant.
Let F — C % B be the Fano variety of lines, realized as a P!-bundle over the
discriminant, and ¢ : C — C the covering involution over B. Consider a section
0 : B — X of m and the corresponding section 7 : C' — F described in Section 3.

If 7 is smooth then the restriction of scalars w : Res¢/p(F) — B is isomorphic
to X — B; this yields an isomorphism of normal bundles

g*NT = N,.

Furthermore, expressing F as the projectivization P(V') of a vector bundle on C,
we can write

g (mH)Y) =V @'V
for a suitable normalization of H. This reflects the fact that X — P((m,H)") is
the Segre embedding of Resc /g (F).
We extend these formulas to quadric surface fibrations with square-free dis-
criminant, with a view toward comparing various notions of stability and applying

the results of Section 6. As in Section 3, there exists a vector bundle W on C' such
that

e WV ~V ®*V, which yields an involution

wy LW
! 1
c 4 C

given by i(ve ® v;(.y) = v} () © Ve.
e W arises as an extension (see 3.3))

0—-W —g'mH—Q — 0,

where @ is a skyscraper sheaf supported at the singularities of the fibers
of X xgC — C.

The extension above dualizes to
0— g*(ﬂ'*H)v WY - Q' — 0,

where @’ is also a skyscraper sheaf supported where the fibration fails to be smooth.

Now V is stable provided WV is stable, or even if (IWV,1) is stable as a bundle
with involution, i.e., we only test against quotient bundles compatible with the
action of i. Bhosle [BD&84, §1] shows that this is equivalent to the following form
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of parabolic semistability for (m.H)Y: For every isotropic subbundle F' C (m.H)Y

we have

deg(m. H)V + 1A - deg(F) + 1#{z; € P(F)}
4 - r
where r = rank(F'). For stability, we impose strict inequality. (There appears to be
a notational inconsistency between Definition 1.1 and Proposition 1.2 of [BD84];
here we rely on the proof of the proposition.)

If the covering C' — B is non-trivial then 7 — B has no sections, i.e., there are
no isotropic subbundles or rank two. Thus isotropic subbundles F' # 0 have rank
one, so P(F') = o(B) for some section o : B — X. And if 7 : X — B has square-free
discriminant, sections avoid singularities in the fibers. Then the condition takes the
form

(9.1) deg((m. H)") + %A > 4deg(F).

We can express this in terms of the heights of the fibrations, using the formulas
of Section 2. We may normalize (7.H)" = E where

= -aa) +tat, o= OZY
)

Let ¢ : P(E) — B be the structure map and £ = ¢1(Op(g)(1)) the relative hyper-
plane class; it follows that

c1(Tepy/B) = a1 (E) +4€.
The quadratic form defining X is a symmetric homomorphism ¢ : £ — EY ® I, so
[X] =28+ 1 ().
The standard exact sequence
0— Tx/p — Tpg)/B|X — Nxjpm) — 0
implies
ci(Tx/p) = c1(E) + 28 — 1 (I).
Pulling back via o, we obtain
1 1
h,-1(c) = deg(E) + 2deg(c"§) — deg(I) = fZA +3 deg(E) + 2deg(c*€).
On the other hand, we can express
F = O'*O]p(E)(fl),
as the latter is the tautological subbundle for P(E). Thus Equation 9.1 translates
into 1 1
deg(E) + EA > —4dego’§ = —2h -1(0) - §A + deg(E)
which simplifies to
A
hw;l (J) 2 _5
We summarize this computation:

PROPOSITION 15. Let m : X — B be a quadric surface fibration with square-free
discriminant of degree A. Assume that

e the discriminant double cover C — B is non-trivial;
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e all sections o : B — X satisfy the inequality

A
hw;l (U) Z 75
Then the Fano variety of lines F — C' is the projectivization of a semistable vector

bundle.

Note that the first condition holds provided Pic(X) ~ Z, i.e., the monodromy
(or Galois) action exchanges the two rulings of the geometric generic fiber of .

REMARK 16. The inequality can be verified effectively. Since w_ ! is ample

relative to , there exists a line bundle A on B such that w;! ® A is ample on X.
The sections violating this condition have degree less than deg(A) — %, and thus
are bounded.

10. Arithmetic applications

From now on, we assume k is a finite field of odd characteristic and B ~ P'.
We retain the notation of Sections 3 and 4, so X — P! is a quadric surface fibration
with square-free discriminant of degree A = 2g + 2. Let C be the discriminant
curve and F — C the Fano variety of lines. The geometric analysis of Section 3
applies, giving a bijection between sections o : P! — X and sections 7 : C' — F.

Effective existence results.

PROPOSITION 17. There exists a section o : P! — X defined over k with

{% -2 dfe(r)=0 (mod 2)
1

2 - ife(r) =1 (mod 2).

(10.1) h,1(0) <

PRroOOF. Recall Equations 3.4 and 3.2
deg(V) =e(r) (mod2), h,-1(0)=deg(V®@L)—-A/2.

The morphism \ : Sect(F/C) — Pic(C) is dominant over Pic?(C) provided I'(V ®
L) # 0 for generic L of degree d. This is guaranteed to be the case if x(V® L) > 0;
our hypothesis implies deg(V ® L) > 2g — 1, which yields the necessary positivity.

The generic fiber of A consists of a non-empty open subspace of the projec-
tive space P(I'(V ® L)). Let Sect(F/C') denote the closure of Sect(F/C) in the
Hilbert scheme parametrizing divisors in F; A extends to Sect(F/C). Its fibers
are projective spaces P(T'(V ® L)) parametrizing linear series on F = P(V'), whose
members are ‘broken sections’, consisting of one section of 7 — C' together with a
configuration of fibers.

Since Picd(C’) is a principal homogeneous space over an abelian variety, Lang’s
Theorem implies Pic?(C)(k) # 0. Consequently

Sect(F/C) (k) # 0

corresponding to a broken section of height bounded by (10.1); the (unique) hori-
zontal component satisfies the same inequality. ([
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Effective weak approximation.

THEOREM 18. Let m: X — P! be a quadric surface fibration with square-free
discriminant of degree A, defined over a finite field k. Assume that

e the discriminant double cover C — P! is non-trivial over k;
o all sections o : P! — X owver k satisfy

hyi(0) = —A/2.

Fiz a positive integer N, distinct geometric points by,...,by € PP\ 0 and z; €
Xy, = 7 1(b;) for j =1,...,N, such that {x1,...,xn} is defined over k. Then
there exists a section o : P' — X satisfying

o o(bj)==x; forj=1,...,N;

o h-1(0) < 3A+2N.

PROOF. Let g : C — P! denote the discriminant cover and write g=1(b;) =
{cj,cl}; let RS C Ver and R} C Ve denote the one-dimensional subspaces corre-
sponding to the lines of A}, containing z;. We seek a section 7 : C'— F such that
7(c}) € P(R}) and 7(c}) € P(R/). This imposes 2N independent linear conditions
on the sections of V', which together are defined over k.

Proposition 15 implies F = P(V) for V semistable. Corollary 9 gives the

existence of t € I'(C, V) satisfying
0#t(cj) € R}, 0#t(c]) € R}

provided
deg(V) >4g— 1+ (2N —1).
Since
h,-1(0) =deg(V) — A/2 = deg(V) — (g + 1)
we obtain

W

3
hy-1(0) =3g =3+ 2N = SA+2N.
O

REMARK 19. Our argument yields two variants:

e we can approximate any collection of jet data over places of good reduc-
tion, defined over k, with lengths summing to IV;
e if the ground field £ is algebraically closed we can improve the bound to

h,-1(0) <A+2N -2
by tensoring V' with a generic L € Pic(C).

References

[ABB11] A. Auel, B. Bernardara, and M. Bolognesi, Fibrations in complete intersections
of quadrics, Clifford algebras, derived categories, and rationality problems, 2011,
arXiv:1109.6938.

[Auell]  A. Auel, Clifford invariants of line bundle-valued quadratic forms, 2011, Max Planck
Institute for Mathematics preprint.

[BD&4] U. N. Bhosle-Desale, Degenerate symplectic and orthogonal bundles on P', Math. Ann.
267 (1984), no. 3, 347-364. MR 738257 (85j:14025)

[Bho84]  U. N. Bhosle, Moduli of orthogonal and spin bundles over hyperelliptic curves, Com-
positio Math. 51 (1984), no. 1, 15-40. MR 734782 (85j:14024)



22

[Bhoos]

[Bho02]

[Bho10]

[BK94]

[Bou03]
[Cap94]
[Cas04]
[CTK11]
[CTSD10]
[DR77]
[GGK10]
[Har68]
[Har77]

[HM82]

[HRS02]
[HRS05]
[HT84]
[HVAV11]
[KNU10]
[KPS86]
[LPS97]
[LY02]

[Mar82]

[Nag70]

[Nak77]

BRENDAN HASSETT AND YURI TSCHINKEL

, Vector bundles of rank 2, degree 0 on a modal hyperelliptic curve, Algebraic
geometry (Catania, 1993 /Barcelona, 1994), Lecture Notes in Pure and Appl. Math.,
vol. 200, Dekker, New York, 1998, pp. 271-281. MR 1651100 (99k:14054)

, The compactified Jacobian of a reducible hyperelliptic curve, J. London Math.
Soc. (2) 65 (2002), no. 1, 55-67. MR 1875135 (2002j:14036)

, On the moduli of orthogonal bundles on a nodal hyperelliptic curve, Vector
bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Provi-
dence, RI, 2010, pp. 43-52. MR 2681731

W. Bichsel and M.-A. Knus, Quadratic forms with values in line bundles, Recent
advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991;
San Francisco, CA, 1991), Contemp. Math., vol. 155, Amer. Math. Soc., Providence,
RI, 1994, pp. 293-306. MR 1260714 (95c:11053)

D. Bourqui, Fonction zéta des hauteurs des variétés toriques déployées dans le cas
fonctionnel, J. Reine Angew. Math. 562 (2003), 171-199. MR 2011335 (2004g:11051)
L. Caporaso, A compactification of the universal Picard variety over the moduli space
of stable curves, J. Amer. Math. Soc. 7 (1994), no. 3, 589-660. MR 1254134 (95d:14014)
A.-M. Castravet, Rational families of vector bundles on curves, Internat. J. Math. 15
(2004), no. 1, 13-45. MR 2039210 (2005i:14038)

J.-L. Colliot-Théleéne and B. Kahn, Cycles de codimension 2 et H® non ramifié pour
les variétés sur les corps finis, 2011, arXiv:1104.3350.

J.-L. Colliot-Théléne and P. Swinnerton-Dyer, Zero-cycles and rational points on some
surfaces over a global function field, 2010, arXiv:1004.2797.

U. V. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic
curves, Invent. Math. 38 (1976/77), no. 2, 161-185. MR 0429897 (55 #2906)

M. Green, Ph. Griffiths, and M. Kerr, Néron models and limits of Abel-Jacobi map-
pings, Compos. Math. 146 (2010), no. 2, 288-366. MR 2601630 (2011c:14016)

G. Harder, FEine Bemerkung zum schwachen Approximationssatz, Arch. Math. (Basel)
19 (1968), 465-471. MR 0241427 (39 #2767)

R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts
in Mathematics, No. 52. MR 0463157 (57 #3116)

J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, In-
vent. Math. 67 (1982), no. 1, 23-88, With an appendix by William Fulton. MR 664324
(831:14018)

J. Harris, M. Roth, and J. Starr, Abel-Jacobi maps associated to smooth cubic three-
folds, 2002, arXiv:0202080v1.

, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35
(2005), no. 3, 761-817. MR 2150309 (2007a:14011)

J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties,
Topology 23 (1984), no. 1, 71-84. MR 721453 (85¢:14032)

B. Hassett, A. Vérilly-Alvarado, and P. Varilly, Transcendental obstructions to weak
approzimation on general K3 surfaces, Adv. Math. 228 (2011), no. 3, 1377-1404.

K. Kato, Ch. Nakayama, and S. Usui, Log intermediate Jacobians, Proc. Japan Acad.
Ser. A Math. Sci. 86 (2010), no. 4, 73-78. MR 2657330 (2011f:14013)

M.-A. Knus, R. Parimala, and R. Sridharan, On rank 4 quadratic spaces with given Arf
and Witt invariants, Math. Ann. 274 (1986), no. 2, 181-198. MR 838464 (88a:11039)
A. Lanteri, M. Palleschi, and A. J. Sommese, Del Pezzo surfaces as hyperplane sections,
J. Math. Soc. Japan 49 (1997), no. 3, 501-529. MR 1452700 (98d:14053)

K. F. Lai and K. M. Yeung, Rational points in flag varieties over function fields, J.
Number Theory 95 (2002), no. 2, 142-149. MR 1924094 (2003i:11089)

M. Maruyama, Elementary transformations in the theory of algebraic vector bundles,
Algebraic geometry (La Rébida, 1981), Lecture Notes in Math., vol. 961, Springer,
Berlin, 1982, pp. 241-266. MR 708337 (85b:14020)

M. Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math.
J. 87 (1970), 191-196. MR 0258829 (41 #3475)

I. Nakamura, Relative compactification of the Néron model and its application, Com-
plex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 207-225.
MR 0457435 (56 #15640)




[NR78

[Pan96]

[Pey05]

[Ray82]
[Sha78]

[Zhul1]

SPACES OF SECTIONS 23

M. S. Narasimhan and S. Ramanan, Geometry of Hecke cycles. I, C. P. Ramanujam—a
tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin, 1978, pp. 291—
345. MR 541029 (81b:14003)

R. Pandharipande, A compactification over Mg of the universal moduli space of slope-
semistable vector bundles, J. Amer. Math. Soc. 9 (1996), no. 2, 425-471. MR 1308406
(96£:14014)

E. Peyre, Obstructions au principe de Hasse et a 'approximation faible, Astérisque
(2005), no. 299, Exp. No. 931, viii, 165-193, Séminaire Bourbaki. Vol. 2003/2004.
MR 2167206 (2007b:14041)

M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France
110 (1982), no. 1, 103-125. MR 662131 (84a:14009)

S. S. Shatz, On subbundles of vector bundles over P!, J. Pure Appl. Algebra 10
(1977/78), no. 3, 315-322. MR 0469920 (57 #9700)

Y. Zhu, Homogeneous fibrations over surfaces, 2011, arXiv:1111.2963.

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, MS 136, HOUSTON, TEXAS 77251-1892,

USA

E-mail address: hassett@rice.edu

COURANT INSTITUTE, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA
E-mail address: tschinkel@cims.nyu.edu



