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urvesBrendan Hassett �November 5, 1999Abstra
tLet C � P2 be a smooth plane 
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The notion of an allowable family (S; C) ! B of stable log surfa
es is abit subtle and will be explained in se
tion 3.1. In this paper, we gener-ally 
onsider smoothable stable log surfa
es, i.e. those possessing allowabledeformations to smooth pairs.The 
onstru
tion of proje
tive moduli spa
es for stable surfa
es may befound in the book [25℄ and the papers [20℄, [16℄, and [1℄; the 
onstru
tionfor stable log surfa
es is given in [2℄. Unfortunately, even in the simplest
ases we have no good des
ription for the stable log surfa
es arising in agiven 
ompa
ti�
ation. Indeed, there are very few examples of moduli spa
eswhere the boundary 
omponents have been worked out expli
itly (however,there is work of Alexeev and Nakamura on degenerations of polarized abelianvarieties [4℄ [3℄.)In this paper, we apply these ideas to degenerations of plane 
urves ofdegree d � 4. Let P(Symd(C 3)) be the linear system of degree d plane
urves and U the open subset parametrizing smooth 
urves. The orbit spa
ePd = U=PGL3 is a quasi-proje
tive variety (by Geometri
 Invariant Theory),and is a 
oarse moduli spa
e for smooth plane 
urves of degree d. We havea morphism j : Pd ! Mg(d), where Mg(d) is the moduli spa
e of genusg(d) = 12(d� 1)(d� 2) 
urves. Elements of the 
losure of j(Pd) in Mg(d) are
alled limiting plane 
urves. Determining whi
h stable 
urves are limitingplane 
urves seems to be a diÆ
ult open problem (but see [10℄, [11℄, [6℄, and[13℄.)If C is a smooth plane 
urve of degree d � 4, then (P2; C) is a stable logsurfa
e. LetM be the 
orresponding 
onne
ted moduli s
heme of smoothablestable log surfa
es. We use Pd to denote the 
losure of Pd in this modulispa
e. There exists a forgetting morphism j : M ! Mg(d) extending themorphism de�ned above. Essentially, j exists be
ause C is nodal, KS +C isample, and (KS + C)jC = KC in our situation.Thus ea
h limiting plane 
urve 
omes imbedded in some limiting planewith semi-log 
anoni
al singularities. We shall see in the �nal se
tion thatthis representation is not always unique. Nevertheless, understanding theboundary 
omponents of the moduli spa
e of stable log surfa
es should shedlight on the geometry of limiting plane 
urves. Some systemati
 results ofthis type may be found in [13℄. Here we fo
us on the 
ase of quarti
 plane
urves, where we 
an get a 
lear pi
ture of all the boundary 
omponents.Our main result is:Theorem 1.1 (Main Theorem) j : P4 ! M3 is an isomorphism. Fur-2



thermore, the spa
e M 
oin
ides with P4.In parti
ular, every stable 
urve of genus three sits naturally in a uniquelimiting plane. Does this limiting plane have a natural, uniform, syntheti

onstru
tion?This paper is organized as follows. In se
tion two, we prove some generalresults about plane 
urves and stable log surfa
es. In the next se
tion, we re-
all some basi
 results from deformation theory and some fa
ts about surfa
esingularities. In the fourth se
tion, we enumerate the limiting planes 
on-taining various stable 
urves of genus three. Mu
h of this is a 
ase-by-
aseanalysis, but a 
on
eptual explanation is given at the end of se
tion four.In se
tion �ve, we give a brief appli
ation of our results to degenerations ofdegree-two Del Pezzo surfa
es. The �nal se
tion in
ludes some observationson higher degree plane 
urves.Throughout this paper, we work over C . Alessio Corti has informedme that he and his students independently dis
overed some of the resultsdis
ussed here. Pyung-Lyun Kang has independently 
omputed stable limitsarising from 
ertain smoothings of singular plane quarti
s [14℄ [15℄.2 General results on plane 
urvesOur �rst task is to understand j over the stable 
urves that 
an be representedas nodal plane 
urves. The following result generalizes the 
lassi
al fa
tthat smooth plane 
urves are abstra
tly isomorphi
 i� they are proje
tivelyequivalent [5℄ pp. 56.Proposition 2.1 Any nodal plane 
urve C of degree d � 4 is stable and the
orresponding pair (P2; C) is a stable log surfa
e. If C1 and C2 are nodalplane 
urves of degree d � 4, then C1 �= C2 as stable 
urves i� C1 andC2 are proje
tively equivalent. Thus j maps the lo
us of nodal plane 
urvesbije
tively onto its image.Proof. Let C � P2 be a nodal plane 
urve of degree d � 4. The pair (P2; C)is log 
anoni
al and KP2+C is ample, so (P2; C) is a stable log surfa
e. Theadjun
tion formula !C = OC(KP2 + C) implies that !C is ample, thus C isstable.Now assume that C has two distin
t planar representations C1 and C2.An easy 
ohomology 
omputation shows that any linear series imbedding C3



as a plane 
urve is 
omplete, so it suÆ
es to prove that the 
orrespondingimbedding line bundles are equal. Let p1+p2+: : :+pd be a generi
 hyperplanese
tion of C1, regarded as a Cartier divisor on C2 � P2. By Serre duality,p1; : : : ; pd impose just d � 2 linearly independent 
onditions on the linearseries j!C2 j = jOC2(d � 3)j. This for
es the points to be 
ollinear on C2, sothat OC2(1) = OC2(p1 + : : :+ pd) = OC1(1). �The next proposition shows thatM is well-behaved over the nodal plane
urves.Proposition 2.2 Let C 2 Mg(d) be a 
urve imbedded as a nodal plane 
urveof degree d � 4. ThenM is smooth (as a sta
k) at (P2; C) and the derivativeof j is inje
tive.Proof. Represent C � P2 as a nodal plane 
urve; this representation is uniqueby the last proposition. First, sin
e P2 is rigid, the tangent spa
e T(P2;C)Mequals the 
okernel of r : H0(TP2) ! H0(OC(C)) (see se
tion 3.1 for exa
tsequen
es 
omputing these tangent spa
es). We have H0(TP2(�C)) = 0 andHomC(
1C ;OC) = 0, so r is inje
tive. Sin
e H1(OC(C)) = 0 the 
okernel ofr has dimension 12(d+ 2)(d+ 1)� 9. This is the dimension of M at (P2; C),so M is smooth.The map of tangent spa
es dj : T(P2;C)M ! TCMg(d) is indu
ed by the
onne
ting homomorphism H0(OC(C)) ! Ext1C(
1C ;OC), whi
h has kernelHomC(
1P2jC;OC). However, sin
e H1(TP2(�C)) = 0 the restri
tion mapH0(TP2)! H0(TP2jC) = Hom(
1P2jC;OC)is surje
tive, so dj is inje
tive. �By de�nition, the dual graph of a stable 
urve is the graph with verti
es
orresponding to its irredu
ible 
omponents and edges 
orresponding to in-terse
tions of these 
omponents. A graph is n-
onne
ted if n edges must beremoved to dis
onne
t it. The following general fa
t was pointed out by JoeHarris:Proposition 2.3 Let C be a stable 
urve of arithmeti
 genus g. Then j!C jis basepoint free (resp. very ample) if and only if the dual graph of C istwo-
onne
ted (resp. three-
onne
ted and C is not in the 
losure of the hy-perellipti
 lo
us). Furthermore, j!
2C j is very ample if and only if g > 2 and Chas no irredu
ible 
omponent of arithmeti
 genus one interse
ting the other
omponents in one point. 4



Proof. This is 
lear if C is smooth. If C is singular, we reinterpret se
tionsof !C as meromorphi
 di�erentials on the normalization satisfying 
ertain
ompatibility relations.In this paper, we apply Proposition 2.3 only to stable 
urves of genusthree. It yields a strati�
ation of M3 and provides a framework for our
omputations. In parti
ular, using the 
hara
terization of the 
urves withplanar representations, Proposition 2.2, and the fa
t that M3 is smooth (asa sta
k) of dimension six, we obtain:Corollary 2.4 Let C be a stable 
urve of genus three. Assume that C isthree-
onne
ted and not 
ontained in the 
losure of the hyperellipti
 lo
us.Then C may be 
anoni
ally imbedded as a plane quarti
 so that the log surfa
e(P2; C) is stable. Furthermore, j is an isomorphism at these points.3 Deformation theory and singularities3.1 Deformations of pairsFirst we 
onsider in�nitesimal deformations of pairs (S;C), using the for-malism of Ran [23℄ for deformations of maps f : C ! S. The 
orresponding
ohomology groups T iS;C sit in the following exa
t sequen
e0! T 0S;C ! T 0C � T 0S ! Homf(
1S;OC)! T 1S;C! T 1S � T 1C ! Ext1f (
1S;OC)! T 2S;C ! T 2S � T 2C ! Ext2f (
1S;OC)where Extif (
1S;OC) is 
omputed by the spe
tral sequen
esExtpC(Lqf �
1S;OC) and ExtpS(
1S;Rqf�OC):Proposition 3.1 If C � S then the se
ond spe
tral sequen
e degenerates,i.e. Extif(
1S;OC) = ExtiS(
1S ;OC): We obtain the long exa
t sequen
e0 ! HomS(
1S;OS(�C))! T 0S;C ! T 0C ! Ext1S(
1S ;OS(�C))! T 1S;C! T 1C ! Ext2S(
1S;OS(�C))! T 2S;C ! T 2Cwhere OS(�C) denotes the ideal sheaf of C.5



If C is Cartier and 
1S has no torsion with support in C then the �rst spe
tralsequen
e also degenerates, i.e. Extif (
1S;OC) = ExtiC(f �
1S;OC): We obtainthe long exa
t sequen
e0 ! T 0S;C ! T 0S ! H0(C;OC(C))! T 1S;C ! T 1S ! H1(C;OC(C))! T 2S;C ! T 2S :Proof. To prove the �rst statement, we observe that f is a 
losed imbeddingand thus a �nite morphism. Hen
e the higher dire
t images Rif�OC vanish.The long exa
t sequen
e 
omes from applying ExtiS(
1S ;�) to0! OS(�C)! OS ! OC ! 0:As for the se
ond statement, sin
e C is Cartier this short exa
t sequen
e isa resolution of OC by invertible sheaves. This implies that T orSi (
1S;OC) =Lif �
1S = 0 for i > 1. On the other hand, L1f �
1S is simply the kernel of
1S 
OS(�C)! 
1Swhi
h 
oin
ides with the se
tions of 
1S with support along C. �Next, we re
all the de�nition of allowable families of semi-log 
anoni
allog surfa
es. Let � : (S; C) ! B be a family of su
h surfa
es; this meansthat � and �jC are 
at and the �bers are semi-log 
anoni
al. We say � isallowable if ea
h re
exive power of !�(C) 
ommutes with base extensions andsome su
h power is lo
ally free (see [16℄ and [18℄ for details). It follows that(KS +C)2 is lo
ally 
onstant in allowable families. Geometri
ally, allowabledeformations of (S;C) are pre
isely those lifting lo
ally to index-one 
overs.Remark: For a semi-log 
anoni
al pair (S;C) with C Cartier, any defor-mation of the pair restri
ting to an allowable deformation of S is also anallowable deformation of (S;C). In parti
ular, when C is Cartier and S isGorenstein any deformation of (S;C) is allowable.We now develop results on in�nitesimal allowable deformations. Firstassume that C = ;. Consider the 
ohomology groups T iS = ExtiS(
1S;OS)and the analyti
 sheaves T iS = ExtiS(
1S;OS) for i = 0; 1; 2. These are relatedby the lo
al-global spe
tral sequen
eHp(ExtqS(
1S;OS))abutting to Extp+qS (
1S;OS). We introdu
e 
ertain subsheaves ~T iS � T iS 
ap-turing the in�nitesimal properties of allowable deformations. Let U � S be6



an analyti
 neighborhood with index-one 
over V ; U is a 
y
li
 quotient ofV . We de�ne ~T iS(U) as the invariant part of T iV . Evidently ~T 1S � T 1S and we
laim that ~T 0S = T 0S . Elements of T 0S (U) and T 0V are derivations on U and V ,so it suÆ
es to 
he
k that ea
h derivation on U arises from an invariant oneon V . Indeed, every fun
tion on V 
an be written as a sum of terms fi withf ri 2 OU , where r is the degree of the 
over. Given a derivation D 2 T 0S (U),we set Dfi = Df rirf r�1ito obtain an invariant derivation on V . By de�nition ~T 1S � T 1S . Using thelo
al-global spe
tral sequen
e, we de�ne ~T 0S = T 0S and ~T 1S as the elements ofT 1S mapped to H0( ~T 1S ).Now assume that C is a nonempty Cartier divisor on S. We de�ne~T 0S;C = T 0S;C. Using the remark and Proposition 3.1, we de�ne ~T 1S;C asthe elements of T 1S;C mapping to ~T 1S . This 
learly parametrizes �rst orderallowable deformations of (S;C). We obtain the following 
orollary fromProposition 3.1:Corollary 3.2 Let (S;C) be a semi-log 
anoni
al log surfa
e with C Cartier.First order allowable deformations are 
omputed by the exa
t sequen
e0! ~T 0S;C ! ~T 0S ! H0(C;OC(C))! ~T 1S;C ! ~T 1S ! H1(C;OC(C)):We also establish the following smoothness 
riterion:Proposition 3.3 Let (S;C) be a semi-log 
anoni
al log surfa
e su
h that Cis Cartier. Assume that H1(OC(C)) = 0 and the spa
e of allowable defor-mations of S is smooth. Then the spa
e of allowable deformations of (S;C)is smooth as well.Proof. Assume we are given a tangent ve
tor v 2 ~T 1S;C . We know thatthe 
orresponding element in ~T 1S 
omes from some allowable family S !Spe
C [[t℄℄. C is Cartier, so if it deforms to C � S then the resulting (S; C)is allowable. The obstru
tion to extending a Cartier divisor from order n toorder n + 1 lies in H1(OC(C)), whi
h is zero by hypothesis. �We write ℄Ext0S(
1S;OS(�C)) = Ext0S(
1S;OS(�C))and ℄Ext1S(
1S ;OS(�C)) for the elements of Ext1S(
1S;OS(�C)) mapped toH0( ~T 1S ). Again applying Proposition 3.1 we obtain7



Corollary 3.4 Let (S;C) be a semi-log 
anoni
al log surfa
e with C Cartier.First order allowable deformations are 
omputed by the exa
t sequen
e0! HomS(
1S;OS(�C))! ~T 0S;C ! T 0C ! ℄Ext1S(
1S;OS(�C))! ~T 1S;C ! T 1C :Assume further that S is Gorenstein along C, i.e. ~T 1S and T 1S 
oin
idealong C. Then ~T 1S (�C) = ~T 1S \ T 1S (�C) andH0( ~T 1S (�C)) ! H0( ~T 1S )# #H0(T 1S (�C)) ! H0(T 1S )is a pull-ba
k diagram. It follows that℄Ext1S(
1S;OS(�C)) � Ext1S(
1S;OS(�C))
onsists of the elements mapped to H0( ~T 1S (�C)) � H0(T 1S ). The lo
al-globalspe
tral sequen
e gives the exa
t sequen
e0 ! H1(HomS(
1S;OS(�C)))! ℄Ext1S(
1S;OS(�C))! ker[H0( ~T 1S (�C))! H2(T 0S (�C))℄! 0:Applying Proposition 3.1 in this 
ontext, we obtainProposition 3.5 Let (S;C) be a semi-log 
anoni
al log surfa
e su
h that Cis Cartier and S is Gorenstein near C. Assume that H1(T 0S (�C)) = 0 andH0( ~T 1S (�C)) = 0 or inje
ts into H2(T 0S (�C)). Then ~T 1S;C inje
ts into T 1C .3.2 Some surfa
e singularitiesConsider the singularity arising from the group a
tion(x; z)! (�ax; �z)where � is a primitive rth root of unity, 1 � a < r, and (a; r) = 1. Its minimalresolution 
an be des
ribed quite expli
itly. It 
onsists of a 
hain of rational
urves E1; E2; : : : ; Em with self-interse
tions E2i = �bi�b1Æ � � � �� �bmÆ :8



The bi are 
omputed from the 
ontinued fra
tion representationra = b1 � 1b2 � 1b3�::: :The proper transforms of x = 0 and z = 0 meet the �rst and last ex
eptional
urves of this 
hain. (See [9℄ x2.6 for a good exposition of this subje
t.)We shall label these singularities 1r (a; 1). For instan
e, the singularity Ag
orresponds to 1g+1(g; 1).Basi
 results on semi-log 
anoni
al singularities may be found in [20℄ x3-5 and [19℄ 
hapters 3 and 12. The simplest non-normal semi-log 
anoni
alsingularity is the quotient of xy = 0 by the 
y
li
 group a
tion(x; y; z)! (�ax; �r�ay; �z)where � is a primitive rth root of unity, 1 � a < r, and (a; r) = 1. This willbe denoted �r;a; it is the union of two 
y
li
 quotient singularities of types1r (a; 1) and 1r (r � a; 1). The index-one 
over of �r;a 
onsists of two smoothsurfa
es meeting in normal 
rossings. By de�nition, allowable in�nitesimaldeformations of �r;a 
orrespond to deformations of its index-one 
over thatare �xed under the 
y
li
 group a
tion.To analyze these deformations, we generalize some of Friedman's resultson deformations of normal 
rossings varieties [8℄. Let S = S1 [B S2 be theunion of two smooth surfa
es meeting in normal 
rossings along a smooth
urve B. Then the sheaf T 1S is equal to OS1(B)jB 
OS2(B)jB, the produ
tof the 
orresponding normal bundles [8℄ 2.3. Ea
h in�nitesimal deformationof S yields a se
tion in H0(T 1S ), whi
h is nonzero i� the deformation istopologi
ally nontrivial along B (i.e. it smooths the singularities supportedon B.) Furthermore, if H2(T 0S ) = 0 then ea
h su
h se
tion is realized by anin�nitesimal deformation of S.Analogous results apply to allowable in�nitesimal deformations of surfa
eswith singularities of type �r;a:Proposition 3.6 Let S = S1 [B S2 be a surfa
e with singularities of type�r;a along a 
urve B. Then the produ
t~T 1S = OS1(B)jB 
OS2(B)jBis a well-de�ned integral Cartier divisor on B. Ea
h allowable in�nitesi-mal deformations of S yields a se
tion in H0( ~T 1S ), whi
h is nonzero i� thedeformation is topologi
ally nontrivial along B.9



Proof. The notation OSi(B)jB denotes the Q -linear 
ombination of Cartierdivisors obtained as follows: pi
k a minimal resolution of Si, 
ompute thenumeri
al pull-ba
k of B to this resolution, and restri
t it to the propertransform of B. In our situation, the fra
tional parts 
oming from S1 and S2
an
el ea
h other, so the resulting produ
t is integral.So let s 2 S be a singularity of type �r;a, and let U be an analyti
 openneighborhood of s in S. The index-one 
over V ! U is a 
y
li
 
over of degreer rami�ed only at s. Let B0 be the primage of B; B0 ! B is also rami�edonly at s. As we have seen, V = V1 [ V2 has ordinary double points alongB0. Using Friedman's results, we �nd that T 1V = OV1(B0)jB0 
 OV2(B0)jB0.Furthermore, OS1(B)jB
OS2(B)jB pulls ba
k to T 1V on B0, and its se
tions
oin
ide with the invariant se
tions of T 1V . �4 Limiting plane quarti
 
urvesWe outline the strategy for 
ompleting the proof of the main theorem. LetC be a stable 
urve of genus three. Using the strati�
ation arising fromProposition 2.3, we may assume C is either hyperellipti
 and three-
onne
ted,two-
onne
ted but not three-
onne
ted, or just one-
onne
ted. The key stepsare:1. Des
ribe a surfa
e S 
ontaining C su
h that (S;C) is a stable log sur-fa
e. It will turn out that C is Cartier and S is smooth or satis�esxy = 0 at points of C.2. Show that (S;C) has an allowable deformation to a plane quarti
.3. Show that j is an isomorphism at (S;C), using two possible approa
hes.One approa
h is to apply Corollary 3.5 to prove that dj is inje
tive at(S;C). The other is to prove that M is smooth (using Corollary 3.3)and j is inje
tive.4.1 Three-
onne
ted hyperellipti
 
urvesLet C be a smooth hyperellipti
 
urve of genus 3, with double 
over r : C !P1. We have that r�OC = OP1 � OP1(�4), so that we 
an regard C as abise
tion of the rational ruled surfa
e P(OP1 �OP1(+4)) = F4 . C is disjointfrom the zero se
tion (i.e. the se
tion with self-interse
tion �4). Blowing10



down this (�4)-
urve, we obtain a surfa
e S isomorphi
 to the weightedproje
tive plane P(1; 1; 4) (see [9℄ pp. 35 for de�nitions of weighted proje
tivespa
es). S has a 
y
li
 quotient singularity of type 14(1; 1). The pair (S;C) issemi-log 
anoni
al, be
ause S has log terminal singularities and C is smoothand disjoint from the singularities of S. Sin
e KS +C is ample, we 
on
ludethat (S;C) is a stable log surfa
e.We 
an pi
ture S � P5 as the 
one over a rational normal quarti
 
urve inP4; C is a quadri
 hypersurfa
e se
tion of this 
one. Indeed, this des
riptionapplies to all three-
onne
ted hyperellipti
 stable 
urves. We 
laim S hasan allowable deformation to a Veronese surfa
e isomorphi
 to P2. Indeed,the 
one over a Veronese surfa
e has a terminal singularity of index two atthe vertex. A generi
 hyperplane se
tion of this 
one is a Veronese, whereasa generi
 hyperplane se
tion through the vertex is the 
one over a rationalquarti
 
urve.Now we analyze the deformation spa
es of the pairs (S;C). We 
laimthe deformation spa
e of S is smooth of dimension one. It suÆ
es to showits tangent spa
e is one-dimensional. We have that H1(Hom(
1S;OS)) =H2(Hom(
1S;OS)) = 0 by a straightforward 
ohomology 
omputation (e.g.[7℄ x2.3). Lo
al deformations of the vertex of S 
oin
ide with invariant de-formations of its index-one 
over, whi
h has an A1 singularity. Therefore,~T 1S = H0( ~T 1S ) = C , whi
h proves the 
laim. Sin
e OC(C) = !
4C has nohigher 
ohomology,M is smooth of dimension six at (S;C) (Proposition 3.3).Now we show that j is inje
tive. The imbedding C ,! S is rigid (moduloautomorphisms of S) be
ause H1(TS(�C)) = 0 [7℄ x2.3. Hen
e the restri
-tion of j to the lo
us where S = P(1; 1; 4) has inje
tive derivative. Se
ond,any nontrivial allowable deformation of P(1; 1; 4) is to a Veronese surfa
e,and su
h deformations for
e C to deform to a nonhyperellipti
 
urve. Con-sequently, j : M ! M3 is inje
tive (and thus an isomorphism) over thethree-
onne
ted hyperellipti
 
urves.4.2 Two-
onne
ted 
urvesLet C be a 
urve whi
h is two-
onne
ted but not three-
onne
ted; it is theunion of two 
urves C1 and C2 whi
h are two-
onne
ted, meet in two points,and have arithmeti
 genus one. Ea
h Ci is either a smooth ellipti
 
urve, anirredu
ible nodal 
urve of arithmeti
 genus one, or the union of two rational
urves meeting at two points (with one point of C1\C2 on ea
h 
omponent).Let L be the union of two distin
t lines in P2. By Proposition 2.3, j!C j yields11



a double 
over r : C ! L, with C1 and C2 dominating the 
omponents of L.This allows us to imbed C naturally into the union S 0 of two ruled surfa
esF2 , glued along a ruling B. C is disjoint from the zero se
tions of thesesurfa
es. Let S be the surfa
e obtained by blowing down these zero se
tions;its irredu
ible 
omponents S1 and S2 ea
h have 
y
li
 quotient singularitiesof type 12(1; 1) and S has semi-log 
anoni
al singularities of type �2;1. We
an 
he
k that KS + C is ample, hen
e (S;C) is stable.We 
an represent S � P5 as the 
one over the union of two 
oni
 
urvesmeeting in a single point but otherwise in linearly general position. Theallowable deformations of S may be analyzed using Proposition 3.6. It hasno topologi
ally trivial deformations and ~T 1S = OP1(12 + 12) whi
h has twose
tions. Thus dim ~T 1S � 2, and we have equality sin
e S admits allowabledeformations to the Veronese and P(1; 1; 4).We apply Proposition 3.5 to show that dj is inje
tive. First, we havethat H0( ~T 1S (�C)) = H0(OP1(�1)) = 0. On the other hand, H1(T 0S (�C))parametrizes �rst-order deformations of the imbedding C ,! S (or, equiva-lently, of C ,! S 0) modulo automorphisms. Setting C1 \ C2 = fp1; p2g, thisis the same as �rst order deformations of the pair of imbeddings(Ci; p1 + p2) ,! (F2 ; Bi)modulo automorphisms of F2 stabilizing the ruling Bi. It is straightforwardto 
he
k there are no su
h �rst order deformations.4.3 Lo
al stable redu
tion of 
uspsThe 
on
ept of lo
al stable redu
tion for germs of 
uspidal 
urves is developedsystemati
ally in [13℄. LetC � Spe
C [[x; y℄℄ ��! �be a family of plane 
urve germs, su
h that the 
entral �ber C0 is 
uspidaland Ct is smooth for t 6= 0. Set S0 = Spe
C [[x; y℄℄ and S = S0 � �. We
onsider (S; C) ! � as a family of germs of log surfa
es. Applying lo
alstable redu
tion, we obtain a family of log surfa
es with semi-log 
anoni
alsingularities (S
; C
) ! ~� and a birational morphism � : (S
; C
) ! (S ��~�; C�� ~�) su
h thatKS
+C
 is ample relative to �. The following propositiondetails the lo
al stable redu
tions for smoothings of a 
usp C0.12
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Figure 1: Lo
al stable redu
tion of a 
uspProposition 4.1 Let C0 � Spe
C [[x; y℄℄ be a 
usp with lo
al analyti
 equa-tion y2 = x3, C ! � a smoothing of C0. Then the lo
al stable limits (S
0; C
0)are pre
isely the following:1. S1 is the toriodal blow-up of S0 along the ideal fy2; x3; yx2g. It has twosingularities of types 12(1; 1) and 13(1; 1) along the ex
eptional divisorB1. C1 is the proper transform of C0.2. S2 is the weighted proje
tive spa
e P(1; 2; 3) and B2 is the e�e
tive
urve generating its divisor 
lass group. It has two singularities oftypes 12(1; 1) and 13(2; 1) along B2. C2 is a nodal 
urve generating thePi
ard group of S2.3. S
0 is obtained by gluing S1 and S2 along B1 and B2 so that it hassingularities of types �2;1 and �3;1, and C
0 = C1 [p C2 is 
onne
ted.These stable limits are naturally parametrized by M1;1.Proof. See �gure 1 for a s
hemati
 pi
ture using our notational 
onventionsfor quotient singularities; the numbers in parentheses are self-interse
tions ofthe 
urves in the minimal resolution. See �gure 2 for the imbedded resolutionof a 
usp.Mu
h of this is 
ontained in Main Theorem 1 of [13℄, whi
h implies thatall of these surfa
es do a
tually o

ur as lo
al stable limits. (See also [22℄x12 and 13 for a proof that most of these stable limits appear.) It remainsto show that ea
h stable limit has the form given in the proposition. By theMain Component Theorem of [13℄, it suÆ
es to show that the moduli spa
e13




ontaining the (non-smoothable) stable log surfa
es (S2 = P(1; 2; 3); B2+C2)is isomorphi
 to M1;1. We 
laim �rst that ea
h (C2; p) � M1;1 sits as aCartier divisor on P(1; 2; 3) with p = B2 \ C2. Indeed, the linear seriesOC2(2p) yields a natural imbedding C2 ,! F2 with a ruling R tangent atp. Blowing up twi
e to separate this tangen
y and then blowing down allthe (�2)-
urves, we obtain an imbedding C2 ,! P(1; 2; 3) with the desiredproperty.We next 
laim (P(1; 2; 3); B2) has no nontrivial allowable deformations(S2; B2). Sin
e (KS2 +B2)2 = (KP(1;2;3)+B2)2 = 256any su
h deformation still has quotient singularities of types 12(1; 1) and13(2; 1). A 
ohomology 
omputation on the minimal resolution of P(1; 2; 3)shows it has no topologi
ally trivial deformations.Ea
h Weil divisor linearly equivalent to B2+C2 
ontains B2 [7℄ 1.4. Hen
eit suÆ
es to show the forgetting map (P(1; 2; 3); B2 + C2) ! (C2; p) hasinje
tive derivative. Sin
e H1(TP(1;2;3)(�C2)) = 0 [7℄ 2.3, our assertion followsfrom Proposition 3.5. �4.4 Generi
 one-
onne
ted 
urvesLet C be a generi
 one-
onne
ted 
urve, i.e. C = C1 [p C2 with C1 and C2irredu
ible of genus two and one respe
tively, and p not a Weierstrass pointfor C1. The limiting plane S o

urs as the lo
al stable redu
tion for quarti
plane 
urves a
quiring a single 
usp. Pre
isely, S = S1 [B S2 where S1 is thetoriodal blow-up of P2 and S2 = P(1; 2; 3). C1 is the proper transform of a
uspidal quarti
 and C2 is the ellipti
 tail. The resulting log surfa
e (S;C)
learly has semi-log 
anoni
al singularities. It is stable be
ause KS1+C1+B1is ample by Lemma 4.3; KS2 +B2+C2 is ample be
ause the Pi
ard group ofP(1; 2; 3) is 
y
li
. To show that every generi
 one-
onne
ted 
urve a
tuallysits in su
h a surfa
e, it suÆ
es to 
he
k that an irredu
ible genus-two 
urveC1 with distinguished non-Weierstrass point p 
an be mapped into P2 as aquarti
 
urve with 
usp at p. This follows from Lemma 4.4.We have already seen how S arises as an allowable degeneration of P2.Sin
e H1(OC(C)) = 0 there are no obstru
tions to lifting a deformation of Sto a deformation of (S;C), and C is a limiting plane 
urve.Our toroidal blow-up of P2 is unique up to isomorphism, so S1 has notopologi
ally trivial deformations. The allowable deformation spa
e of S is14



smooth of dimension one by Proposition 3.6. The vanishing of H1(OC(C))implies that M is smooth at (S;C) (by Proposition 3.3).To show that j is inje
tive over C, we �rst prove that the imbeddingC ,! S is unique, up to automorphisms of S. By lemma 4.4, C1 is representedas a 
uspidal quarti
 in a unique way, and thus has a unique imbedding intoS1. We have already seen that C2 has a unique imbedding into S2 = P(1; 2; 3).Sin
e every deformation of S for
es C to deform to a three-
onne
ted 
urve,there are no nontrivial families of surfa
es 
ontaining C.4.5 Degenerate 
asesWe now a

ount for the remaining 
ases. The 
orresponding stable 
urvesC may all be dis
onne
ted by removing a point pi. Then there is a uniquegenus-one irredu
ible 
omponent Ei meeting the rest of C in pi. Let C1denote the 
losure of the 
omplement of the union of these ellipti
 tails; notethat C1 is 
onne
ted.We des
ribe the limiting plane S 
ontaining C. Our notation is explainedin subse
tion 4.6. Using Lemma 4.4, we obtain a map g : C1 ! P so thatthe g(pi) are 
usps on C0 = g(C1). The limiting plane S is the surfa
e arisingwhen we apply lo
al stable redu
tion to the 
usps individually. It is the unionof a toroidal blow-up b : S1 ! P and a number of 
opies of P(1; 2; 3), gluedas spe
i�ed in Proposition 4.1. In parti
ular, there is one 
opy of P(1; 2; 3)for ea
h ellipti
 tail of C (or for ea
h 
usp of C0.) We obtain C � S byimbedding ea
h Ei into the 
orresponding weighted proje
tive plane. (S;C)is a stable log surfa
e be
ause KS1 + C1 +B1 is ample by Lemma 4.3.The surfa
e S is a degeneration of P2. Indeed, given a deformation P ! �of P to P2, we blow up P toroidally at ea
h of the points g(pi). (Su
h blow-ups are dis
ussed in x5 of [13℄.) Hen
e for ea
h v 2 H0( ~T 1S ) there exists aglobal deformation of S with tangent ve
tor restri
ting to v.For the rest of this se
tion, we assume that C0 is not a plane quarti
 withthree 
usps (or equivalently, that C1 is not of genus zero). We return to thetri
uspidal 
urves below. Under these assumptions, we analyze the allowabledeformation spa
e of S. By Lemma 4.2 S1 has no equisingular deformationsand we have already seen that P(1; 2; 3) has no equisingular deformations.Hen
e S also has no su
h deformations, ~T 1S = H0( ~T 1S ), and the spa
e ofallowable deformations is smooth. Looking 
omponent by 
omponent, it isnot diÆ
ult to 
he
k that OC(C) has no higher 
ohomology. It follows thatC is a limiting plane quarti
 and M is smooth (Proposition 3.3).15



To show that C ,! S is rigid (modulo automorphisms of S) we lookat ea
h irredu
ible 
omponent of S separately. The map of the (pointed
urve) (C1; pi)i=1;::: ;k to S1 is unique by Lemma 4.4. On the other hand, ea
hgenus-one tail has a unique imbedding into P(1; 2; 3) (up to automorphisms).Any topologi
ally nontrivial deformation of S deforms either one of the 
om-ponents of B1, or the singularities arising from P . Smoothing one of the
omponents of B1 entails smoothing one of the ellipti
 tails of C. Deformingthe singularities arising from P entails deforming C to a 
urve that is nolonger in the 
losure of the 
urves des
ribed in se
tions 4.1 or 4.2. Hen
e jis inje
tive.4.5.1 Tri
uspidal 
urvesThere is a unique plane quarti
 with three 
usps, obtained by applying thestandard Cremona transformation P2 9 9 KP2 to a smooth 
oni
 C1 tangentto the three distinguished lines. However, assume we are given three linesLi (i = 1; 2; 3) and points si 2 Li, all 
hosen generi
ally. Then there is nosmooth 
oni
 tangent to the Li at the si. Hen
e the position and tangentdire
tions of the 
usps of C0 are not in general position on P2. It followsthat S1 ! P2 is obtained by blowing up along three (nonredu
ed) points inspe
ial position, and S1 has equisingular deformations.We 
laim that the equisingular deformations of S1 fail to extend to de-formations of (S1; C1), even up to �rst order. Using the Cremona transfor-mation, this translates as follows. Assume we are given lines Li and pointssi 2 Li su
h that there exists a 
oni
 tangent C1 to the Li at the si. Deforms1 (in L1) to �rst order, while �xing L1; L2; L3; s2; and s3. Then there isno �rst order deformation of C1 preserving the tangen
ies. This follows by asimple expli
it 
omputation, whi
h we omit. Cohomologi
ally, this translatesinto saying that H1(T 0S1)! H1(OC1(C1))(= H1(OP1(�2)))and thus also H1(T 0S )! H1(OC(C))is an isomorphism of one-dimensional spa
es. As a 
onsequen
e, ~T 1S !H1(OC1(C1)) has one-dimensional image and three-dimensional kernel.We 
omplete the 
omputation of ~T 1S;C using Corollary 3.2. We know thatdim ~T 0S;C = 0 be
ause (S;C) is stable, dimH0(OC(C)) = 15 by Riemann-Ro
h, and dim ~T 0S = 3(dimT 0P(1;2;3) � 1) = 12. It follows that dim ~T 1S;C =16



3 + 15 � 12 = 6. On the other hand, looking at ea
h of the 
omponentsindividually we �nd that H1(T 0S (�C)) = 0. Indeed, we have already seenthat imbedding of the ellipti
 tails into the P(1; 2; 3) is rigid (see the proofof Proposition 4.1); C1 ,! S1 is also rigid be
ause C21 = �2. Proposition 3.6implies that H0( ~T 1S (�C)) = 0, so dj is inje
tive by Proposition 3.5.We have not shown dire
tly that ea
h (S;C) admits an allowable defor-mation; a priori this may only be the 
ase for spe
ial 
hoi
es of the ellipti
tails. However, we have shown that the derivative of j is an isomorphism atea
h (S;C), whi
h guarantees that j is an isomorphism as well.This 
ompletes the proof of the Main Theorem.4.6 Te
hni
al lemmasThroughout this subse
tion P = P2, P(1; 1; 4), or the union of two 
opiesof P(1; 1; 2), glued along rulings so that the verti
es 
oin
ide. Ea
h of thesesurfa
es may be imbedded as a quarti
 surfa
e in P5. Let C0 � P be aquadri
 hypersurfa
e se
tion. We assume that C0 has only nodes and 
uspsand ea
h bran
h of C0 interse
ts the double 
urve of P transversally.Lemma 4.2 Ea
h possible 
on�guration of 
usps is one of the followingseven types:1. P = P2 and C0 has a single 
usp;2. P = P(1; 1; 4) and C0 has one 
usp;3. P the union of two 
opies of P(1; 1; 2) and C0 has one 
usp;4. P = P2 and C0 has two 
usps;5. P = P(1; 1; 4) and C0 has two 
usps;6. P the union of two 
opies of P(1; 1; 2) and C0 has one 
usp on ea
h
omponent;7. P = P2 and C0 has three 
usps (obtained from the Cremona transfor-mation des
ribed above).Ex
ept in the last 
ase, there is a torus a
tion on P (with a dense orbit onea
h irredu
ible 
omponent) �xing the positions and tangen
ies of the 
usps.In ea
h 
ase these positions and tangen
ies are unique up to automorphismsof P . 17



Proof. We �rst 
he
k the list is 
omplete. It is 
lear that C0 
annot have morethan three 
usps. If P = P(1; 1; 4) then C0 has at most two 
usps; otherwisewe would obtain a rational double 
over of P1 rami�ed at three points. Asimilar argument applies if P is the union of two 
opies of P(1; 1; 2).We 
onstru
t the torus a
tion 
ase by 
ase. If P = P2 and C0 has two
usps, then the boundary of our torus in the union of the line joining the 
uspsand the lines tangent to them. These lines are in linearly general positionbe
ause C0 has degree four. If P = P(1; 1; 4) and C0 has two 
usps then thereis a smooth hyperplane se
tion tangent to both these 
usps. The boundaryis the union of the rulings meeting the 
usps and this hyperplane. In the
ase where P has two 
omponents isomorphi
 to P(1; 1; 2), the boundary onea
h P(1; 1; 2) is the union of the distinguished ruling, the ruling meeting the
usp, and a smooth hyperplane se
tion tangent to the 
usp.The last assertion follows from the existen
e of the torus a
tion (ex
eptin the last 
ase, where we use the Cremona transformation des
ription). �Lemma 4.3 Retain the hypotheses of Lemma 4.2. Let b : S1 ! P be thetoriodal blow-up of the 
usps of C0, B1 the ex
eptional lo
us, and C1 theproper transform of C0. Then KS1 + C1 + B1 is ample. Furthermore, if C0has at most two 
usps then S1 has no equisingular deformations.Proof. The last statement follows immediately from the previous result. We�rst prove the ampleness statement under the assumption that C0 has atmost two 
usps, so that b is a
tually a tori
 blow-up. Then the boundarydivisors for the torus a
tion generate the e�e
tive 
one of S1, whi
h allowsus to 
he
k dire
tly that KS1 + C1 +B1 is ample.The only remaining 
ase is where C0 � P2 has three 
usps. Let D =KS1 + C1 + B1 and � : Pm ! S1 an imbedded resolution of (P2; C0) (see�gure 2). Let Bm and Cm be the partial transforms of the 
orresponding
urves on S1. Ea
h irredu
ible 
omponent of Bm is a (�1)-
urve on Pm. LetF and G be the union of the (�2) and (�3)-
urves in the ex
eptional lo
us,and H the pull-ba
k of the hyperplane 
lass from P2. Let ��D be pull-ba
kof D as a Q -Cartier divisor:��D � KPm + Cm +Bm + 12F + 23G = H � 12F � 13G� B:6��D is integral and 
orresponds to the proper transforms of the linear seriesof sexti
s in P2 with 
usps in the same positions as C0. It is not hard to see18
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Figure 2: Minimal resolution of a 
uspthat b : S1 ! P2 blows up the base lo
us of this series and 6D is very ampleon S1. �Lemma 4.4 Let (C1; pi)i=1;::: ;k be a pointed stable 
urve su
h that g(C1) +k = 3. Then there exists a unique map g : C1 ! P with the followingproperties:1. g is an isomorphism ex
ept at the points pi;2. g(pi) are 
usps on C0 := g(C1) and smooth points of P .Proof. This is proved using a 
ase-by-
ase argument. If the pi are not all �xedpoints of a hyperellipti
 involution on C1, then the image of g is P2. First,
onsider the image of C1 under the linear system j!C1(2P pi)j. If C1 hasgenus two, then the image is 
learly a quarti
 with a 
usp at p1. Otherwisethe linear system yields an imbedding, but under our hypothesis there is aunique proje
tion of C1 to a quarti
 plane 
urve so that the pi are mapped to
usps. Now assume the pi are �xed points of a hyperellipti
 involution on C1.If C1 is not the union of two rational 
urves meeting at two points, then wemay represent C1 as the rami�ed double 
over of L = P1. Otherwise, C1 isthe double 
over of a 
urve L isomorphi
 to two 
opies of P1 joined at a point.In either 
ase, the map r1 : C1 ! L rami�es at the pi. Now 
onsider themodi�ed double 
over r0 : C0 ! L, where the support of the bran
h divisoris as before, ex
ept that it has multipli
ity three at the points r0(pi). C0 thenhas 
usps over these points. Repeating the argument from the hyperellipti

ase, we �nd that C0 
an be imbedded in either the weighted proje
tive planeP(1; 1; 4), or the union of two quadri
 
ones glued along two rulings. �
19



4.7 Explanation for the ellipti
 tailsWe have seen that ellipti
 tails arise from applying lo
al stable redu
tionto suitable 
uspidal 
urves. This 
an be explained using the notion of log
anoni
al thresholds [17℄ x8. Let C0 be the germ of an isolated singularity inS0 = Spe
C [[x; y℄℄. The log 
anoni
al threshold of (S0; C0) is de�ned assupfa : KS0 + aC0 is log 
anoni
alg:For instan
e, if C0 is a 
usp then KS0 + aC0 is log 
anoni
al for a � 56 so thethreshold equals 56 .On the other hand, if C is a smooth quarti
 plane 
urve then KP2+aC isample provided that a > 34 . This suggests that we try to 
onstru
t a modulispa
es of log surfa
es M(a) with boundary aC, where 34 < a � 56 . For thisnew moduli problem, the 
uspidal 
urves are stable and the hyperellipti
and two-
onne
ted 
urves are pre
isely as des
ribed above. Presumably, thestandard moduli spa
e M = M(1) is obtained by suitably blowing up thelo
us of 
uspidal 
urves in M(a).It is very natural to ask how what happens to these moduli spa
es aswe vary the parameter a. What are the maps between the various modulispa
es, and are there wall 
rossings like those found in Geometri
 InvariantTheory by Thaddeus [24℄? Is there a natural strati�
ation of the boudary
omponents in terms of the log 
anoni
al thresholds of the 
orrespondingplane 
urve singularities?5 Limits of degree-two Del Pezzo surfa
esHere we give an appli
ation of our results on P4 to degree-two Del Pezzosurfa
es. This was suggested by J�anos Koll�ar and aided by dis
ussions withF. Gallego and B.P. Purnaprajna. Let T be a Del Pezzo surfa
e of degreetwo. Then the anti
anoni
al linear series j � KT j indu
es a double 
over� : T ! P2 bran
hed over a smooth quarti
 plane 
urve C. Conversely, givensu
h a 
urve, the double 
over of P2 bran
hed over C is a Del Pezzo surfa
eof degree two.We shall use our des
ription of limiting plane quarti
s to obtain a geomet-ri
 
ompa
ti�
ation Z for the moduli spa
e of degree-two Del Pezzo surfa
es.This 
ompa
ti�
ation has the following properties:20



1. The points of Z parametrize semi-log 
anoni
al surfa
es T equippedwith a double 
over � : T ! S.2. The bran
h lo
us of � 
ontains a 
urve C � S su
h that (S;C) 2 P4.(It may also in
lude singularities of S not 
ontained in C.)3. Ea
h limiting plane quarti
 (S;C) has a unique su
h double 
over andZ �= P4 �=M3.Given a limiting plane quarti
 (S;C), we 
onstru
t a rami�ed double
over � : T ! S; whi
h is a limit of the double 
overs of the plane des
ribedabove. When C is two-
onne
ted the 
onstru
tion of T is 
lear. Here the 
lass[C℄ is twi
e a Cartier divisor on S, so we 
an 
onstru
t � in the standardway. The resulting surfa
e T o

urs naturally as the limit of smooth DelPezzos; it is easy to verify that T has semi-log 
anoni
al singularities. The
onstru
tion is more subtle in the 
ase where C is not two-
onne
ted. Herethe 
lass of [C℄ is only twi
e a Weil divisor, so 
onstru
ting � requires more
are. Following ideas of Gallego and Purnaprajna, we �nd that � rami�esover C and over ea
h of the �2;1 singularities arising from ellipti
 tails ofC (
f. Proposition 4.1). Furthermore, � is the limit of double 
overs of theplane bran
hed over smooth quarti
s. The resulting surfa
e T has semi-log
anoni
al singularities: it has normal 
rossings where � rami�es, and it hasessentially the same singularities as S where � is �etale.Using the modi�ed spa
es M(a) for 34 < a � 56 yields an alternate 
om-pa
ti�
ation, whi
h perhaps is more natural than Z. As we have seen, 
usp-idal 
urves are stable for these spa
es. The existen
e of 
usps in the bran
hlo
us 
auses no serious diÆ
ulties; the resulting double 
over has A2 sin-gularities. This approa
h has the added advantage that the bran
h 
urveC � S is always twi
e a Cartier divisor, so 
onstru
ting the double 
overs iste
hni
ally easier.6 Observations on 
urves of higher degreeThe map j : Pd !Mg(d) is not generally an isomorphism, or even a bije
tion,onto its image. For instan
e, 
onsider the 
ase d = 5. The 
losure of the planequinti
 
urves 
ontains all the hyperellipti
 
urves C of genus six ([12℄ 1.11or [10℄.) The limiting g2d takes the form 2g12 + p where p is any one of the 14Weierstrass points of C. Ea
h of these Weierstrauss points yields an element21
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Figure 3: Limiting planes for genus six hyperellipti
 
urvesat the boundary of P5. These are 
onstru
ted by the following re
ipe. LetC be a hyperellipti
 
urve of genus 6, and represent C as a bise
tion of F7 .Let f be a ruling of F7 , tangent to C at one of the Weierstrauss points p.Let � : P ! F7 be obtained by taking the minimal imbedded resolution ofC [ f , and then blowing-up the interse
tion of the proper transfrom of Cwith the ex
eptional lo
us. P has three ex
eptional divisors E1; E2; and E3with self-interse
tions �2;�2; and �1 respe
tively. Let S be obtained by
ontra
ting E1, E2, the proper transform of f , and the zero se
tion of F7(see �gure 3). One 
an show that S deforms to P2, with the plane quinti
sspe
ializing to the hyperellipti
 
urve C (see [21℄ for more information onsu
h degenerations).The moduli spa
e M generally has irredu
ible 
omponents besides Pd:Proposition 6.1 Let d = 2n + 1 with n > 1. Then M has at least oneirredu
ible 
omponent besides Pd, parametrizing 
urves of bidegree (n+1; 2n)in F0 .For instan
e, if d = 5 then M 
ontains both the plane quinti
s and thetrigonal 
urves of genus six. These 
omponents have dimensions 12 and 13respe
tively. This example highlights another pe
uliarity of M: its expe
teddimension is not well-de�ned on 
onne
ted 
omponents, be
ause the formulafor the expe
ted dimension is not invariant under allowable deformations.Proof. We now prove the proposition. Let C� � F4 be a smooth 
urveof 
lass n� + 2f , where � is the se
tion with �2 = 4 and f is a ruling. Thezero se
tion of F4 interse
ts C� in two points p and q. Blow down the zerose
tion to obtain P(1; 1; 4), whi
h may be represented as the 
one over arational normal quarti
 
urve. The image C0 of C� has a node at the vertexof P(1; 1; 4), so the pair (P(1; 1; 4); C0) has log 
anoni
al singularities. There22



exist deformations S ! � with S0 = P(1; 1; 4) and the general �ber equalto either a Veronese surfa
e or a rational quarti
 s
roll isomorphi
 to F0 .The 
urve C0 deforms to either a plane 
urve of degree 2n + 1 or to a 
urveof bidegree (n + 1; 2n) in F0 . In both 
ases, KS + C is Q -Cartier so thedeformation of the pair (S0; C0) is allowable. Note that for the deformationto F0 , KS and C are not individually Q -Cartier. Hen
e the deformation ofthe surfa
e alone is not allowable. �We 
lose with an open question:Question 6.2 Does j : Pd !Mg(d) ever have positive dimensional �bers?A
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