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The notion of an allowable family (S; C) ! B of stable log surfaes is abit subtle and will be explained in setion 3.1. In this paper, we gener-ally onsider smoothable stable log surfaes, i.e. those possessing allowabledeformations to smooth pairs.The onstrution of projetive moduli spaes for stable surfaes may befound in the book [25℄ and the papers [20℄, [16℄, and [1℄; the onstrutionfor stable log surfaes is given in [2℄. Unfortunately, even in the simplestases we have no good desription for the stable log surfaes arising in agiven ompati�ation. Indeed, there are very few examples of moduli spaeswhere the boundary omponents have been worked out expliitly (however,there is work of Alexeev and Nakamura on degenerations of polarized abelianvarieties [4℄ [3℄.)In this paper, we apply these ideas to degenerations of plane urves ofdegree d � 4. Let P(Symd(C 3)) be the linear system of degree d planeurves and U the open subset parametrizing smooth urves. The orbit spaePd = U=PGL3 is a quasi-projetive variety (by Geometri Invariant Theory),and is a oarse moduli spae for smooth plane urves of degree d. We havea morphism j : Pd ! Mg(d), where Mg(d) is the moduli spae of genusg(d) = 12(d� 1)(d� 2) urves. Elements of the losure of j(Pd) in Mg(d) arealled limiting plane urves. Determining whih stable urves are limitingplane urves seems to be a diÆult open problem (but see [10℄, [11℄, [6℄, and[13℄.)If C is a smooth plane urve of degree d � 4, then (P2; C) is a stable logsurfae. LetM be the orresponding onneted moduli sheme of smoothablestable log surfaes. We use Pd to denote the losure of Pd in this modulispae. There exists a forgetting morphism j : M ! Mg(d) extending themorphism de�ned above. Essentially, j exists beause C is nodal, KS +C isample, and (KS + C)jC = KC in our situation.Thus eah limiting plane urve omes imbedded in some limiting planewith semi-log anonial singularities. We shall see in the �nal setion thatthis representation is not always unique. Nevertheless, understanding theboundary omponents of the moduli spae of stable log surfaes should shedlight on the geometry of limiting plane urves. Some systemati results ofthis type may be found in [13℄. Here we fous on the ase of quarti planeurves, where we an get a lear piture of all the boundary omponents.Our main result is:Theorem 1.1 (Main Theorem) j : P4 ! M3 is an isomorphism. Fur-2



thermore, the spae M oinides with P4.In partiular, every stable urve of genus three sits naturally in a uniquelimiting plane. Does this limiting plane have a natural, uniform, synthetionstrution?This paper is organized as follows. In setion two, we prove some generalresults about plane urves and stable log surfaes. In the next setion, we re-all some basi results from deformation theory and some fats about surfaesingularities. In the fourth setion, we enumerate the limiting planes on-taining various stable urves of genus three. Muh of this is a ase-by-aseanalysis, but a oneptual explanation is given at the end of setion four.In setion �ve, we give a brief appliation of our results to degenerations ofdegree-two Del Pezzo surfaes. The �nal setion inludes some observationson higher degree plane urves.Throughout this paper, we work over C . Alessio Corti has informedme that he and his students independently disovered some of the resultsdisussed here. Pyung-Lyun Kang has independently omputed stable limitsarising from ertain smoothings of singular plane quartis [14℄ [15℄.2 General results on plane urvesOur �rst task is to understand j over the stable urves that an be representedas nodal plane urves. The following result generalizes the lassial fatthat smooth plane urves are abstratly isomorphi i� they are projetivelyequivalent [5℄ pp. 56.Proposition 2.1 Any nodal plane urve C of degree d � 4 is stable and theorresponding pair (P2; C) is a stable log surfae. If C1 and C2 are nodalplane urves of degree d � 4, then C1 �= C2 as stable urves i� C1 andC2 are projetively equivalent. Thus j maps the lous of nodal plane urvesbijetively onto its image.Proof. Let C � P2 be a nodal plane urve of degree d � 4. The pair (P2; C)is log anonial and KP2+C is ample, so (P2; C) is a stable log surfae. Theadjuntion formula !C = OC(KP2 + C) implies that !C is ample, thus C isstable.Now assume that C has two distint planar representations C1 and C2.An easy ohomology omputation shows that any linear series imbedding C3



as a plane urve is omplete, so it suÆes to prove that the orrespondingimbedding line bundles are equal. Let p1+p2+: : :+pd be a generi hyperplanesetion of C1, regarded as a Cartier divisor on C2 � P2. By Serre duality,p1; : : : ; pd impose just d � 2 linearly independent onditions on the linearseries j!C2 j = jOC2(d � 3)j. This fores the points to be ollinear on C2, sothat OC2(1) = OC2(p1 + : : :+ pd) = OC1(1). �The next proposition shows thatM is well-behaved over the nodal planeurves.Proposition 2.2 Let C 2 Mg(d) be a urve imbedded as a nodal plane urveof degree d � 4. ThenM is smooth (as a stak) at (P2; C) and the derivativeof j is injetive.Proof. Represent C � P2 as a nodal plane urve; this representation is uniqueby the last proposition. First, sine P2 is rigid, the tangent spae T(P2;C)Mequals the okernel of r : H0(TP2) ! H0(OC(C)) (see setion 3.1 for exatsequenes omputing these tangent spaes). We have H0(TP2(�C)) = 0 andHomC(
1C ;OC) = 0, so r is injetive. Sine H1(OC(C)) = 0 the okernel ofr has dimension 12(d+ 2)(d+ 1)� 9. This is the dimension of M at (P2; C),so M is smooth.The map of tangent spaes dj : T(P2;C)M ! TCMg(d) is indued by theonneting homomorphism H0(OC(C)) ! Ext1C(
1C ;OC), whih has kernelHomC(
1P2jC;OC). However, sine H1(TP2(�C)) = 0 the restrition mapH0(TP2)! H0(TP2jC) = Hom(
1P2jC;OC)is surjetive, so dj is injetive. �By de�nition, the dual graph of a stable urve is the graph with vertiesorresponding to its irreduible omponents and edges orresponding to in-tersetions of these omponents. A graph is n-onneted if n edges must beremoved to disonnet it. The following general fat was pointed out by JoeHarris:Proposition 2.3 Let C be a stable urve of arithmeti genus g. Then j!C jis basepoint free (resp. very ample) if and only if the dual graph of C istwo-onneted (resp. three-onneted and C is not in the losure of the hy-perellipti lous). Furthermore, j!
2C j is very ample if and only if g > 2 and Chas no irreduible omponent of arithmeti genus one interseting the otheromponents in one point. 4



Proof. This is lear if C is smooth. If C is singular, we reinterpret setionsof !C as meromorphi di�erentials on the normalization satisfying ertainompatibility relations.In this paper, we apply Proposition 2.3 only to stable urves of genusthree. It yields a strati�ation of M3 and provides a framework for ouromputations. In partiular, using the haraterization of the urves withplanar representations, Proposition 2.2, and the fat that M3 is smooth (asa stak) of dimension six, we obtain:Corollary 2.4 Let C be a stable urve of genus three. Assume that C isthree-onneted and not ontained in the losure of the hyperellipti lous.Then C may be anonially imbedded as a plane quarti so that the log surfae(P2; C) is stable. Furthermore, j is an isomorphism at these points.3 Deformation theory and singularities3.1 Deformations of pairsFirst we onsider in�nitesimal deformations of pairs (S;C), using the for-malism of Ran [23℄ for deformations of maps f : C ! S. The orrespondingohomology groups T iS;C sit in the following exat sequene0! T 0S;C ! T 0C � T 0S ! Homf(
1S;OC)! T 1S;C! T 1S � T 1C ! Ext1f (
1S;OC)! T 2S;C ! T 2S � T 2C ! Ext2f (
1S;OC)where Extif (
1S;OC) is omputed by the spetral sequenesExtpC(Lqf �
1S;OC) and ExtpS(
1S;Rqf�OC):Proposition 3.1 If C � S then the seond spetral sequene degenerates,i.e. Extif(
1S;OC) = ExtiS(
1S ;OC): We obtain the long exat sequene0 ! HomS(
1S;OS(�C))! T 0S;C ! T 0C ! Ext1S(
1S ;OS(�C))! T 1S;C! T 1C ! Ext2S(
1S;OS(�C))! T 2S;C ! T 2Cwhere OS(�C) denotes the ideal sheaf of C.5



If C is Cartier and 
1S has no torsion with support in C then the �rst spetralsequene also degenerates, i.e. Extif (
1S;OC) = ExtiC(f �
1S;OC): We obtainthe long exat sequene0 ! T 0S;C ! T 0S ! H0(C;OC(C))! T 1S;C ! T 1S ! H1(C;OC(C))! T 2S;C ! T 2S :Proof. To prove the �rst statement, we observe that f is a losed imbeddingand thus a �nite morphism. Hene the higher diret images Rif�OC vanish.The long exat sequene omes from applying ExtiS(
1S ;�) to0! OS(�C)! OS ! OC ! 0:As for the seond statement, sine C is Cartier this short exat sequene isa resolution of OC by invertible sheaves. This implies that T orSi (
1S;OC) =Lif �
1S = 0 for i > 1. On the other hand, L1f �
1S is simply the kernel of
1S 
OS(�C)! 
1Swhih oinides with the setions of 
1S with support along C. �Next, we reall the de�nition of allowable families of semi-log anoniallog surfaes. Let � : (S; C) ! B be a family of suh surfaes; this meansthat � and �jC are at and the �bers are semi-log anonial. We say � isallowable if eah reexive power of !�(C) ommutes with base extensions andsome suh power is loally free (see [16℄ and [18℄ for details). It follows that(KS +C)2 is loally onstant in allowable families. Geometrially, allowabledeformations of (S;C) are preisely those lifting loally to index-one overs.Remark: For a semi-log anonial pair (S;C) with C Cartier, any defor-mation of the pair restriting to an allowable deformation of S is also anallowable deformation of (S;C). In partiular, when C is Cartier and S isGorenstein any deformation of (S;C) is allowable.We now develop results on in�nitesimal allowable deformations. Firstassume that C = ;. Consider the ohomology groups T iS = ExtiS(
1S;OS)and the analyti sheaves T iS = ExtiS(
1S;OS) for i = 0; 1; 2. These are relatedby the loal-global spetral sequeneHp(ExtqS(
1S;OS))abutting to Extp+qS (
1S;OS). We introdue ertain subsheaves ~T iS � T iS ap-turing the in�nitesimal properties of allowable deformations. Let U � S be6



an analyti neighborhood with index-one over V ; U is a yli quotient ofV . We de�ne ~T iS(U) as the invariant part of T iV . Evidently ~T 1S � T 1S and welaim that ~T 0S = T 0S . Elements of T 0S (U) and T 0V are derivations on U and V ,so it suÆes to hek that eah derivation on U arises from an invariant oneon V . Indeed, every funtion on V an be written as a sum of terms fi withf ri 2 OU , where r is the degree of the over. Given a derivation D 2 T 0S (U),we set Dfi = Df rirf r�1ito obtain an invariant derivation on V . By de�nition ~T 1S � T 1S . Using theloal-global spetral sequene, we de�ne ~T 0S = T 0S and ~T 1S as the elements ofT 1S mapped to H0( ~T 1S ).Now assume that C is a nonempty Cartier divisor on S. We de�ne~T 0S;C = T 0S;C. Using the remark and Proposition 3.1, we de�ne ~T 1S;C asthe elements of T 1S;C mapping to ~T 1S . This learly parametrizes �rst orderallowable deformations of (S;C). We obtain the following orollary fromProposition 3.1:Corollary 3.2 Let (S;C) be a semi-log anonial log surfae with C Cartier.First order allowable deformations are omputed by the exat sequene0! ~T 0S;C ! ~T 0S ! H0(C;OC(C))! ~T 1S;C ! ~T 1S ! H1(C;OC(C)):We also establish the following smoothness riterion:Proposition 3.3 Let (S;C) be a semi-log anonial log surfae suh that Cis Cartier. Assume that H1(OC(C)) = 0 and the spae of allowable defor-mations of S is smooth. Then the spae of allowable deformations of (S;C)is smooth as well.Proof. Assume we are given a tangent vetor v 2 ~T 1S;C . We know thatthe orresponding element in ~T 1S omes from some allowable family S !SpeC [[t℄℄. C is Cartier, so if it deforms to C � S then the resulting (S; C)is allowable. The obstrution to extending a Cartier divisor from order n toorder n + 1 lies in H1(OC(C)), whih is zero by hypothesis. �We write ℄Ext0S(
1S;OS(�C)) = Ext0S(
1S;OS(�C))and ℄Ext1S(
1S ;OS(�C)) for the elements of Ext1S(
1S;OS(�C)) mapped toH0( ~T 1S ). Again applying Proposition 3.1 we obtain7



Corollary 3.4 Let (S;C) be a semi-log anonial log surfae with C Cartier.First order allowable deformations are omputed by the exat sequene0! HomS(
1S;OS(�C))! ~T 0S;C ! T 0C ! ℄Ext1S(
1S;OS(�C))! ~T 1S;C ! T 1C :Assume further that S is Gorenstein along C, i.e. ~T 1S and T 1S oinidealong C. Then ~T 1S (�C) = ~T 1S \ T 1S (�C) andH0( ~T 1S (�C)) ! H0( ~T 1S )# #H0(T 1S (�C)) ! H0(T 1S )is a pull-bak diagram. It follows that℄Ext1S(
1S;OS(�C)) � Ext1S(
1S;OS(�C))onsists of the elements mapped to H0( ~T 1S (�C)) � H0(T 1S ). The loal-globalspetral sequene gives the exat sequene0 ! H1(HomS(
1S;OS(�C)))! ℄Ext1S(
1S;OS(�C))! ker[H0( ~T 1S (�C))! H2(T 0S (�C))℄! 0:Applying Proposition 3.1 in this ontext, we obtainProposition 3.5 Let (S;C) be a semi-log anonial log surfae suh that Cis Cartier and S is Gorenstein near C. Assume that H1(T 0S (�C)) = 0 andH0( ~T 1S (�C)) = 0 or injets into H2(T 0S (�C)). Then ~T 1S;C injets into T 1C .3.2 Some surfae singularitiesConsider the singularity arising from the group ation(x; z)! (�ax; �z)where � is a primitive rth root of unity, 1 � a < r, and (a; r) = 1. Its minimalresolution an be desribed quite expliitly. It onsists of a hain of rationalurves E1; E2; : : : ; Em with self-intersetions E2i = �bi�b1Æ � � � �� �bmÆ :8



The bi are omputed from the ontinued fration representationra = b1 � 1b2 � 1b3�::: :The proper transforms of x = 0 and z = 0 meet the �rst and last exeptionalurves of this hain. (See [9℄ x2.6 for a good exposition of this subjet.)We shall label these singularities 1r (a; 1). For instane, the singularity Agorresponds to 1g+1(g; 1).Basi results on semi-log anonial singularities may be found in [20℄ x3-5 and [19℄ hapters 3 and 12. The simplest non-normal semi-log anonialsingularity is the quotient of xy = 0 by the yli group ation(x; y; z)! (�ax; �r�ay; �z)where � is a primitive rth root of unity, 1 � a < r, and (a; r) = 1. This willbe denoted �r;a; it is the union of two yli quotient singularities of types1r (a; 1) and 1r (r � a; 1). The index-one over of �r;a onsists of two smoothsurfaes meeting in normal rossings. By de�nition, allowable in�nitesimaldeformations of �r;a orrespond to deformations of its index-one over thatare �xed under the yli group ation.To analyze these deformations, we generalize some of Friedman's resultson deformations of normal rossings varieties [8℄. Let S = S1 [B S2 be theunion of two smooth surfaes meeting in normal rossings along a smoothurve B. Then the sheaf T 1S is equal to OS1(B)jB 
OS2(B)jB, the produtof the orresponding normal bundles [8℄ 2.3. Eah in�nitesimal deformationof S yields a setion in H0(T 1S ), whih is nonzero i� the deformation istopologially nontrivial along B (i.e. it smooths the singularities supportedon B.) Furthermore, if H2(T 0S ) = 0 then eah suh setion is realized by anin�nitesimal deformation of S.Analogous results apply to allowable in�nitesimal deformations of surfaeswith singularities of type �r;a:Proposition 3.6 Let S = S1 [B S2 be a surfae with singularities of type�r;a along a urve B. Then the produt~T 1S = OS1(B)jB 
OS2(B)jBis a well-de�ned integral Cartier divisor on B. Eah allowable in�nitesi-mal deformations of S yields a setion in H0( ~T 1S ), whih is nonzero i� thedeformation is topologially nontrivial along B.9



Proof. The notation OSi(B)jB denotes the Q -linear ombination of Cartierdivisors obtained as follows: pik a minimal resolution of Si, ompute thenumerial pull-bak of B to this resolution, and restrit it to the propertransform of B. In our situation, the frational parts oming from S1 and S2anel eah other, so the resulting produt is integral.So let s 2 S be a singularity of type �r;a, and let U be an analyti openneighborhood of s in S. The index-one over V ! U is a yli over of degreer rami�ed only at s. Let B0 be the primage of B; B0 ! B is also rami�edonly at s. As we have seen, V = V1 [ V2 has ordinary double points alongB0. Using Friedman's results, we �nd that T 1V = OV1(B0)jB0 
 OV2(B0)jB0.Furthermore, OS1(B)jB
OS2(B)jB pulls bak to T 1V on B0, and its setionsoinide with the invariant setions of T 1V . �4 Limiting plane quarti urvesWe outline the strategy for ompleting the proof of the main theorem. LetC be a stable urve of genus three. Using the strati�ation arising fromProposition 2.3, we may assume C is either hyperellipti and three-onneted,two-onneted but not three-onneted, or just one-onneted. The key stepsare:1. Desribe a surfae S ontaining C suh that (S;C) is a stable log sur-fae. It will turn out that C is Cartier and S is smooth or satis�esxy = 0 at points of C.2. Show that (S;C) has an allowable deformation to a plane quarti.3. Show that j is an isomorphism at (S;C), using two possible approahes.One approah is to apply Corollary 3.5 to prove that dj is injetive at(S;C). The other is to prove that M is smooth (using Corollary 3.3)and j is injetive.4.1 Three-onneted hyperellipti urvesLet C be a smooth hyperellipti urve of genus 3, with double over r : C !P1. We have that r�OC = OP1 � OP1(�4), so that we an regard C as abisetion of the rational ruled surfae P(OP1 �OP1(+4)) = F4 . C is disjointfrom the zero setion (i.e. the setion with self-intersetion �4). Blowing10



down this (�4)-urve, we obtain a surfae S isomorphi to the weightedprojetive plane P(1; 1; 4) (see [9℄ pp. 35 for de�nitions of weighted projetivespaes). S has a yli quotient singularity of type 14(1; 1). The pair (S;C) issemi-log anonial, beause S has log terminal singularities and C is smoothand disjoint from the singularities of S. Sine KS +C is ample, we onludethat (S;C) is a stable log surfae.We an piture S � P5 as the one over a rational normal quarti urve inP4; C is a quadri hypersurfae setion of this one. Indeed, this desriptionapplies to all three-onneted hyperellipti stable urves. We laim S hasan allowable deformation to a Veronese surfae isomorphi to P2. Indeed,the one over a Veronese surfae has a terminal singularity of index two atthe vertex. A generi hyperplane setion of this one is a Veronese, whereasa generi hyperplane setion through the vertex is the one over a rationalquarti urve.Now we analyze the deformation spaes of the pairs (S;C). We laimthe deformation spae of S is smooth of dimension one. It suÆes to showits tangent spae is one-dimensional. We have that H1(Hom(
1S;OS)) =H2(Hom(
1S;OS)) = 0 by a straightforward ohomology omputation (e.g.[7℄ x2.3). Loal deformations of the vertex of S oinide with invariant de-formations of its index-one over, whih has an A1 singularity. Therefore,~T 1S = H0( ~T 1S ) = C , whih proves the laim. Sine OC(C) = !
4C has nohigher ohomology,M is smooth of dimension six at (S;C) (Proposition 3.3).Now we show that j is injetive. The imbedding C ,! S is rigid (moduloautomorphisms of S) beause H1(TS(�C)) = 0 [7℄ x2.3. Hene the restri-tion of j to the lous where S = P(1; 1; 4) has injetive derivative. Seond,any nontrivial allowable deformation of P(1; 1; 4) is to a Veronese surfae,and suh deformations fore C to deform to a nonhyperellipti urve. Con-sequently, j : M ! M3 is injetive (and thus an isomorphism) over thethree-onneted hyperellipti urves.4.2 Two-onneted urvesLet C be a urve whih is two-onneted but not three-onneted; it is theunion of two urves C1 and C2 whih are two-onneted, meet in two points,and have arithmeti genus one. Eah Ci is either a smooth ellipti urve, anirreduible nodal urve of arithmeti genus one, or the union of two rationalurves meeting at two points (with one point of C1\C2 on eah omponent).Let L be the union of two distint lines in P2. By Proposition 2.3, j!C j yields11



a double over r : C ! L, with C1 and C2 dominating the omponents of L.This allows us to imbed C naturally into the union S 0 of two ruled surfaesF2 , glued along a ruling B. C is disjoint from the zero setions of thesesurfaes. Let S be the surfae obtained by blowing down these zero setions;its irreduible omponents S1 and S2 eah have yli quotient singularitiesof type 12(1; 1) and S has semi-log anonial singularities of type �2;1. Wean hek that KS + C is ample, hene (S;C) is stable.We an represent S � P5 as the one over the union of two oni urvesmeeting in a single point but otherwise in linearly general position. Theallowable deformations of S may be analyzed using Proposition 3.6. It hasno topologially trivial deformations and ~T 1S = OP1(12 + 12) whih has twosetions. Thus dim ~T 1S � 2, and we have equality sine S admits allowabledeformations to the Veronese and P(1; 1; 4).We apply Proposition 3.5 to show that dj is injetive. First, we havethat H0( ~T 1S (�C)) = H0(OP1(�1)) = 0. On the other hand, H1(T 0S (�C))parametrizes �rst-order deformations of the imbedding C ,! S (or, equiva-lently, of C ,! S 0) modulo automorphisms. Setting C1 \ C2 = fp1; p2g, thisis the same as �rst order deformations of the pair of imbeddings(Ci; p1 + p2) ,! (F2 ; Bi)modulo automorphisms of F2 stabilizing the ruling Bi. It is straightforwardto hek there are no suh �rst order deformations.4.3 Loal stable redution of uspsThe onept of loal stable redution for germs of uspidal urves is developedsystematially in [13℄. LetC � SpeC [[x; y℄℄ ��! �be a family of plane urve germs, suh that the entral �ber C0 is uspidaland Ct is smooth for t 6= 0. Set S0 = SpeC [[x; y℄℄ and S = S0 � �. Weonsider (S; C) ! � as a family of germs of log surfaes. Applying loalstable redution, we obtain a family of log surfaes with semi-log anonialsingularities (S; C) ! ~� and a birational morphism � : (S; C) ! (S ��~�; C�� ~�) suh thatKS+C is ample relative to �. The following propositiondetails the loal stable redutions for smoothings of a usp C0.12
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Figure 1: Loal stable redution of a uspProposition 4.1 Let C0 � SpeC [[x; y℄℄ be a usp with loal analyti equa-tion y2 = x3, C ! � a smoothing of C0. Then the loal stable limits (S0; C0)are preisely the following:1. S1 is the toriodal blow-up of S0 along the ideal fy2; x3; yx2g. It has twosingularities of types 12(1; 1) and 13(1; 1) along the exeptional divisorB1. C1 is the proper transform of C0.2. S2 is the weighted projetive spae P(1; 2; 3) and B2 is the e�etiveurve generating its divisor lass group. It has two singularities oftypes 12(1; 1) and 13(2; 1) along B2. C2 is a nodal urve generating thePiard group of S2.3. S0 is obtained by gluing S1 and S2 along B1 and B2 so that it hassingularities of types �2;1 and �3;1, and C0 = C1 [p C2 is onneted.These stable limits are naturally parametrized by M1;1.Proof. See �gure 1 for a shemati piture using our notational onventionsfor quotient singularities; the numbers in parentheses are self-intersetions ofthe urves in the minimal resolution. See �gure 2 for the imbedded resolutionof a usp.Muh of this is ontained in Main Theorem 1 of [13℄, whih implies thatall of these surfaes do atually our as loal stable limits. (See also [22℄x12 and 13 for a proof that most of these stable limits appear.) It remainsto show that eah stable limit has the form given in the proposition. By theMain Component Theorem of [13℄, it suÆes to show that the moduli spae13



ontaining the (non-smoothable) stable log surfaes (S2 = P(1; 2; 3); B2+C2)is isomorphi to M1;1. We laim �rst that eah (C2; p) � M1;1 sits as aCartier divisor on P(1; 2; 3) with p = B2 \ C2. Indeed, the linear seriesOC2(2p) yields a natural imbedding C2 ,! F2 with a ruling R tangent atp. Blowing up twie to separate this tangeny and then blowing down allthe (�2)-urves, we obtain an imbedding C2 ,! P(1; 2; 3) with the desiredproperty.We next laim (P(1; 2; 3); B2) has no nontrivial allowable deformations(S2; B2). Sine (KS2 +B2)2 = (KP(1;2;3)+B2)2 = 256any suh deformation still has quotient singularities of types 12(1; 1) and13(2; 1). A ohomology omputation on the minimal resolution of P(1; 2; 3)shows it has no topologially trivial deformations.Eah Weil divisor linearly equivalent to B2+C2 ontains B2 [7℄ 1.4. Heneit suÆes to show the forgetting map (P(1; 2; 3); B2 + C2) ! (C2; p) hasinjetive derivative. Sine H1(TP(1;2;3)(�C2)) = 0 [7℄ 2.3, our assertion followsfrom Proposition 3.5. �4.4 Generi one-onneted urvesLet C be a generi one-onneted urve, i.e. C = C1 [p C2 with C1 and C2irreduible of genus two and one respetively, and p not a Weierstrass pointfor C1. The limiting plane S ours as the loal stable redution for quartiplane urves aquiring a single usp. Preisely, S = S1 [B S2 where S1 is thetoriodal blow-up of P2 and S2 = P(1; 2; 3). C1 is the proper transform of auspidal quarti and C2 is the ellipti tail. The resulting log surfae (S;C)learly has semi-log anonial singularities. It is stable beause KS1+C1+B1is ample by Lemma 4.3; KS2 +B2+C2 is ample beause the Piard group ofP(1; 2; 3) is yli. To show that every generi one-onneted urve atuallysits in suh a surfae, it suÆes to hek that an irreduible genus-two urveC1 with distinguished non-Weierstrass point p an be mapped into P2 as aquarti urve with usp at p. This follows from Lemma 4.4.We have already seen how S arises as an allowable degeneration of P2.Sine H1(OC(C)) = 0 there are no obstrutions to lifting a deformation of Sto a deformation of (S;C), and C is a limiting plane urve.Our toroidal blow-up of P2 is unique up to isomorphism, so S1 has notopologially trivial deformations. The allowable deformation spae of S is14



smooth of dimension one by Proposition 3.6. The vanishing of H1(OC(C))implies that M is smooth at (S;C) (by Proposition 3.3).To show that j is injetive over C, we �rst prove that the imbeddingC ,! S is unique, up to automorphisms of S. By lemma 4.4, C1 is representedas a uspidal quarti in a unique way, and thus has a unique imbedding intoS1. We have already seen that C2 has a unique imbedding into S2 = P(1; 2; 3).Sine every deformation of S fores C to deform to a three-onneted urve,there are no nontrivial families of surfaes ontaining C.4.5 Degenerate asesWe now aount for the remaining ases. The orresponding stable urvesC may all be disonneted by removing a point pi. Then there is a uniquegenus-one irreduible omponent Ei meeting the rest of C in pi. Let C1denote the losure of the omplement of the union of these ellipti tails; notethat C1 is onneted.We desribe the limiting plane S ontaining C. Our notation is explainedin subsetion 4.6. Using Lemma 4.4, we obtain a map g : C1 ! P so thatthe g(pi) are usps on C0 = g(C1). The limiting plane S is the surfae arisingwhen we apply loal stable redution to the usps individually. It is the unionof a toroidal blow-up b : S1 ! P and a number of opies of P(1; 2; 3), gluedas spei�ed in Proposition 4.1. In partiular, there is one opy of P(1; 2; 3)for eah ellipti tail of C (or for eah usp of C0.) We obtain C � S byimbedding eah Ei into the orresponding weighted projetive plane. (S;C)is a stable log surfae beause KS1 + C1 +B1 is ample by Lemma 4.3.The surfae S is a degeneration of P2. Indeed, given a deformation P ! �of P to P2, we blow up P toroidally at eah of the points g(pi). (Suh blow-ups are disussed in x5 of [13℄.) Hene for eah v 2 H0( ~T 1S ) there exists aglobal deformation of S with tangent vetor restriting to v.For the rest of this setion, we assume that C0 is not a plane quarti withthree usps (or equivalently, that C1 is not of genus zero). We return to thetriuspidal urves below. Under these assumptions, we analyze the allowabledeformation spae of S. By Lemma 4.2 S1 has no equisingular deformationsand we have already seen that P(1; 2; 3) has no equisingular deformations.Hene S also has no suh deformations, ~T 1S = H0( ~T 1S ), and the spae ofallowable deformations is smooth. Looking omponent by omponent, it isnot diÆult to hek that OC(C) has no higher ohomology. It follows thatC is a limiting plane quarti and M is smooth (Proposition 3.3).15



To show that C ,! S is rigid (modulo automorphisms of S) we lookat eah irreduible omponent of S separately. The map of the (pointedurve) (C1; pi)i=1;::: ;k to S1 is unique by Lemma 4.4. On the other hand, eahgenus-one tail has a unique imbedding into P(1; 2; 3) (up to automorphisms).Any topologially nontrivial deformation of S deforms either one of the om-ponents of B1, or the singularities arising from P . Smoothing one of theomponents of B1 entails smoothing one of the ellipti tails of C. Deformingthe singularities arising from P entails deforming C to a urve that is nolonger in the losure of the urves desribed in setions 4.1 or 4.2. Hene jis injetive.4.5.1 Triuspidal urvesThere is a unique plane quarti with three usps, obtained by applying thestandard Cremona transformation P2 9 9 KP2 to a smooth oni C1 tangentto the three distinguished lines. However, assume we are given three linesLi (i = 1; 2; 3) and points si 2 Li, all hosen generially. Then there is nosmooth oni tangent to the Li at the si. Hene the position and tangentdiretions of the usps of C0 are not in general position on P2. It followsthat S1 ! P2 is obtained by blowing up along three (nonredued) points inspeial position, and S1 has equisingular deformations.We laim that the equisingular deformations of S1 fail to extend to de-formations of (S1; C1), even up to �rst order. Using the Cremona transfor-mation, this translates as follows. Assume we are given lines Li and pointssi 2 Li suh that there exists a oni tangent C1 to the Li at the si. Deforms1 (in L1) to �rst order, while �xing L1; L2; L3; s2; and s3. Then there isno �rst order deformation of C1 preserving the tangenies. This follows by asimple expliit omputation, whih we omit. Cohomologially, this translatesinto saying that H1(T 0S1)! H1(OC1(C1))(= H1(OP1(�2)))and thus also H1(T 0S )! H1(OC(C))is an isomorphism of one-dimensional spaes. As a onsequene, ~T 1S !H1(OC1(C1)) has one-dimensional image and three-dimensional kernel.We omplete the omputation of ~T 1S;C using Corollary 3.2. We know thatdim ~T 0S;C = 0 beause (S;C) is stable, dimH0(OC(C)) = 15 by Riemann-Roh, and dim ~T 0S = 3(dimT 0P(1;2;3) � 1) = 12. It follows that dim ~T 1S;C =16



3 + 15 � 12 = 6. On the other hand, looking at eah of the omponentsindividually we �nd that H1(T 0S (�C)) = 0. Indeed, we have already seenthat imbedding of the ellipti tails into the P(1; 2; 3) is rigid (see the proofof Proposition 4.1); C1 ,! S1 is also rigid beause C21 = �2. Proposition 3.6implies that H0( ~T 1S (�C)) = 0, so dj is injetive by Proposition 3.5.We have not shown diretly that eah (S;C) admits an allowable defor-mation; a priori this may only be the ase for speial hoies of the elliptitails. However, we have shown that the derivative of j is an isomorphism ateah (S;C), whih guarantees that j is an isomorphism as well.This ompletes the proof of the Main Theorem.4.6 Tehnial lemmasThroughout this subsetion P = P2, P(1; 1; 4), or the union of two opiesof P(1; 1; 2), glued along rulings so that the verties oinide. Eah of thesesurfaes may be imbedded as a quarti surfae in P5. Let C0 � P be aquadri hypersurfae setion. We assume that C0 has only nodes and uspsand eah branh of C0 intersets the double urve of P transversally.Lemma 4.2 Eah possible on�guration of usps is one of the followingseven types:1. P = P2 and C0 has a single usp;2. P = P(1; 1; 4) and C0 has one usp;3. P the union of two opies of P(1; 1; 2) and C0 has one usp;4. P = P2 and C0 has two usps;5. P = P(1; 1; 4) and C0 has two usps;6. P the union of two opies of P(1; 1; 2) and C0 has one usp on eahomponent;7. P = P2 and C0 has three usps (obtained from the Cremona transfor-mation desribed above).Exept in the last ase, there is a torus ation on P (with a dense orbit oneah irreduible omponent) �xing the positions and tangenies of the usps.In eah ase these positions and tangenies are unique up to automorphismsof P . 17



Proof. We �rst hek the list is omplete. It is lear that C0 annot have morethan three usps. If P = P(1; 1; 4) then C0 has at most two usps; otherwisewe would obtain a rational double over of P1 rami�ed at three points. Asimilar argument applies if P is the union of two opies of P(1; 1; 2).We onstrut the torus ation ase by ase. If P = P2 and C0 has twousps, then the boundary of our torus in the union of the line joining the uspsand the lines tangent to them. These lines are in linearly general positionbeause C0 has degree four. If P = P(1; 1; 4) and C0 has two usps then thereis a smooth hyperplane setion tangent to both these usps. The boundaryis the union of the rulings meeting the usps and this hyperplane. In thease where P has two omponents isomorphi to P(1; 1; 2), the boundary oneah P(1; 1; 2) is the union of the distinguished ruling, the ruling meeting theusp, and a smooth hyperplane setion tangent to the usp.The last assertion follows from the existene of the torus ation (exeptin the last ase, where we use the Cremona transformation desription). �Lemma 4.3 Retain the hypotheses of Lemma 4.2. Let b : S1 ! P be thetoriodal blow-up of the usps of C0, B1 the exeptional lous, and C1 theproper transform of C0. Then KS1 + C1 + B1 is ample. Furthermore, if C0has at most two usps then S1 has no equisingular deformations.Proof. The last statement follows immediately from the previous result. We�rst prove the ampleness statement under the assumption that C0 has atmost two usps, so that b is atually a tori blow-up. Then the boundarydivisors for the torus ation generate the e�etive one of S1, whih allowsus to hek diretly that KS1 + C1 +B1 is ample.The only remaining ase is where C0 � P2 has three usps. Let D =KS1 + C1 + B1 and � : Pm ! S1 an imbedded resolution of (P2; C0) (see�gure 2). Let Bm and Cm be the partial transforms of the orrespondingurves on S1. Eah irreduible omponent of Bm is a (�1)-urve on Pm. LetF and G be the union of the (�2) and (�3)-urves in the exeptional lous,and H the pull-bak of the hyperplane lass from P2. Let ��D be pull-bakof D as a Q -Cartier divisor:��D � KPm + Cm +Bm + 12F + 23G = H � 12F � 13G� B:6��D is integral and orresponds to the proper transforms of the linear seriesof sextis in P2 with usps in the same positions as C0. It is not hard to see18
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Figure 2: Minimal resolution of a uspthat b : S1 ! P2 blows up the base lous of this series and 6D is very ampleon S1. �Lemma 4.4 Let (C1; pi)i=1;::: ;k be a pointed stable urve suh that g(C1) +k = 3. Then there exists a unique map g : C1 ! P with the followingproperties:1. g is an isomorphism exept at the points pi;2. g(pi) are usps on C0 := g(C1) and smooth points of P .Proof. This is proved using a ase-by-ase argument. If the pi are not all �xedpoints of a hyperellipti involution on C1, then the image of g is P2. First,onsider the image of C1 under the linear system j!C1(2P pi)j. If C1 hasgenus two, then the image is learly a quarti with a usp at p1. Otherwisethe linear system yields an imbedding, but under our hypothesis there is aunique projetion of C1 to a quarti plane urve so that the pi are mapped tousps. Now assume the pi are �xed points of a hyperellipti involution on C1.If C1 is not the union of two rational urves meeting at two points, then wemay represent C1 as the rami�ed double over of L = P1. Otherwise, C1 isthe double over of a urve L isomorphi to two opies of P1 joined at a point.In either ase, the map r1 : C1 ! L rami�es at the pi. Now onsider themodi�ed double over r0 : C0 ! L, where the support of the branh divisoris as before, exept that it has multipliity three at the points r0(pi). C0 thenhas usps over these points. Repeating the argument from the hyperelliptiase, we �nd that C0 an be imbedded in either the weighted projetive planeP(1; 1; 4), or the union of two quadri ones glued along two rulings. �
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4.7 Explanation for the ellipti tailsWe have seen that ellipti tails arise from applying loal stable redutionto suitable uspidal urves. This an be explained using the notion of loganonial thresholds [17℄ x8. Let C0 be the germ of an isolated singularity inS0 = SpeC [[x; y℄℄. The log anonial threshold of (S0; C0) is de�ned assupfa : KS0 + aC0 is log anonialg:For instane, if C0 is a usp then KS0 + aC0 is log anonial for a � 56 so thethreshold equals 56 .On the other hand, if C is a smooth quarti plane urve then KP2+aC isample provided that a > 34 . This suggests that we try to onstrut a modulispaes of log surfaes M(a) with boundary aC, where 34 < a � 56 . For thisnew moduli problem, the uspidal urves are stable and the hyperelliptiand two-onneted urves are preisely as desribed above. Presumably, thestandard moduli spae M = M(1) is obtained by suitably blowing up thelous of uspidal urves in M(a).It is very natural to ask how what happens to these moduli spaes aswe vary the parameter a. What are the maps between the various modulispaes, and are there wall rossings like those found in Geometri InvariantTheory by Thaddeus [24℄? Is there a natural strati�ation of the boudaryomponents in terms of the log anonial thresholds of the orrespondingplane urve singularities?5 Limits of degree-two Del Pezzo surfaesHere we give an appliation of our results on P4 to degree-two Del Pezzosurfaes. This was suggested by J�anos Koll�ar and aided by disussions withF. Gallego and B.P. Purnaprajna. Let T be a Del Pezzo surfae of degreetwo. Then the antianonial linear series j � KT j indues a double over� : T ! P2 branhed over a smooth quarti plane urve C. Conversely, givensuh a urve, the double over of P2 branhed over C is a Del Pezzo surfaeof degree two.We shall use our desription of limiting plane quartis to obtain a geomet-ri ompati�ation Z for the moduli spae of degree-two Del Pezzo surfaes.This ompati�ation has the following properties:20



1. The points of Z parametrize semi-log anonial surfaes T equippedwith a double over � : T ! S.2. The branh lous of � ontains a urve C � S suh that (S;C) 2 P4.(It may also inlude singularities of S not ontained in C.)3. Eah limiting plane quarti (S;C) has a unique suh double over andZ �= P4 �=M3.Given a limiting plane quarti (S;C), we onstrut a rami�ed doubleover � : T ! S; whih is a limit of the double overs of the plane desribedabove. When C is two-onneted the onstrution of T is lear. Here the lass[C℄ is twie a Cartier divisor on S, so we an onstrut � in the standardway. The resulting surfae T ours naturally as the limit of smooth DelPezzos; it is easy to verify that T has semi-log anonial singularities. Theonstrution is more subtle in the ase where C is not two-onneted. Herethe lass of [C℄ is only twie a Weil divisor, so onstruting � requires moreare. Following ideas of Gallego and Purnaprajna, we �nd that � rami�esover C and over eah of the �2;1 singularities arising from ellipti tails ofC (f. Proposition 4.1). Furthermore, � is the limit of double overs of theplane branhed over smooth quartis. The resulting surfae T has semi-loganonial singularities: it has normal rossings where � rami�es, and it hasessentially the same singularities as S where � is �etale.Using the modi�ed spaes M(a) for 34 < a � 56 yields an alternate om-pati�ation, whih perhaps is more natural than Z. As we have seen, usp-idal urves are stable for these spaes. The existene of usps in the branhlous auses no serious diÆulties; the resulting double over has A2 sin-gularities. This approah has the added advantage that the branh urveC � S is always twie a Cartier divisor, so onstruting the double overs istehnially easier.6 Observations on urves of higher degreeThe map j : Pd !Mg(d) is not generally an isomorphism, or even a bijetion,onto its image. For instane, onsider the ase d = 5. The losure of the planequinti urves ontains all the hyperellipti urves C of genus six ([12℄ 1.11or [10℄.) The limiting g2d takes the form 2g12 + p where p is any one of the 14Weierstrass points of C. Eah of these Weierstrauss points yields an element21



f

(-7)

C
p

F7

(0)

(-7)

C

P

C
.

S

(-2)

E2

E3
(-1)

E1 (-2)
(-2)

f

1/25(4,1)

Figure 3: Limiting planes for genus six hyperellipti urvesat the boundary of P5. These are onstruted by the following reipe. LetC be a hyperellipti urve of genus 6, and represent C as a bisetion of F7 .Let f be a ruling of F7 , tangent to C at one of the Weierstrauss points p.Let � : P ! F7 be obtained by taking the minimal imbedded resolution ofC [ f , and then blowing-up the intersetion of the proper transfrom of Cwith the exeptional lous. P has three exeptional divisors E1; E2; and E3with self-intersetions �2;�2; and �1 respetively. Let S be obtained byontrating E1, E2, the proper transform of f , and the zero setion of F7(see �gure 3). One an show that S deforms to P2, with the plane quintisspeializing to the hyperellipti urve C (see [21℄ for more information onsuh degenerations).The moduli spae M generally has irreduible omponents besides Pd:Proposition 6.1 Let d = 2n + 1 with n > 1. Then M has at least oneirreduible omponent besides Pd, parametrizing urves of bidegree (n+1; 2n)in F0 .For instane, if d = 5 then M ontains both the plane quintis and thetrigonal urves of genus six. These omponents have dimensions 12 and 13respetively. This example highlights another peuliarity of M: its expeteddimension is not well-de�ned on onneted omponents, beause the formulafor the expeted dimension is not invariant under allowable deformations.Proof. We now prove the proposition. Let C� � F4 be a smooth urveof lass n� + 2f , where � is the setion with �2 = 4 and f is a ruling. Thezero setion of F4 intersets C� in two points p and q. Blow down the zerosetion to obtain P(1; 1; 4), whih may be represented as the one over arational normal quarti urve. The image C0 of C� has a node at the vertexof P(1; 1; 4), so the pair (P(1; 1; 4); C0) has log anonial singularities. There22
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