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Abstract

Let C C P? be a smooth plane curve of degree d > 4. We re-
gard pairs (P?, C) as stable log surfaces, higher-dimensional analogs to
pointed stable curves. Using the log minimal model program, Kollar,
Shepherd-Barron, and Alexeev have constructed projective moduli
spaces for stable log surfaces. Unfortunately, few explicit examples
of these moduli spaces are known. The purpose of this paper is to
give a concrete description of these spaces for plane curves of small
degree. In particular, we show that the moduli space of stable log sur-
faces corresponding to quartic plane curves coincides with the moduli
space of stable curves of genus three.

1 Introduction

Stable log surfaces are pairs (S,C') consisting of a surface S and a curve
C C S satisfying the following properties:

1. (S,C) has semi-log canonical singularities;

2. Kg+ C is ample.
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The notion of an allowable family (S,C) — B of stable log surfaces is a
bit subtle and will be explained in section 3.1. In this paper, we gener-
ally consider smoothable stable log surfaces, i.e. those possessing allowable
deformations to smooth pairs.

The construction of projective moduli spaces for stable surfaces may be
found in the book [25] and the papers [20], [16], and [1]; the construction
for stable log surfaces is given in [2]. Unfortunately, even in the simplest
cases we have no good description for the stable log surfaces arising in a
given compactification. Indeed, there are very few examples of moduli spaces
where the boundary components have been worked out explicitly (however,
there is work of Alexeev and Nakamura on degenerations of polarized abelian
varieties [4] [3].)

In this paper, we apply these ideas to degenerations of plane curves of
degree d > 4. Let P(Sym%(C?)) be the linear system of degree d plane
curves and U the open subset parametrizing smooth curves. The orbit space
Py = U/ PGL;3 is a quasi-projective variety (by Geometric Invariant Theory),
and is a coarse moduli space for smooth plane curves of degree d. We have
a morphism j : Py — M), where Mgy is the moduli space of genus
g(d) = 1(d—1)(d — 2) curves. Elements of the closure of j(P,) in M) are
called limiting plane curves. Determining which stable curves are limiting
plane curves seems to be a difficult open problem (but see [10], [11], [6], and
13].)

If C' is a smooth plane curve of degree d > 4, then (P2, C) is a stable log
surface. Let M be the corresponding connected moduli scheme of smoothable
stable log surfaces. We use P4 to denote the closure of P; in this moduli
space. There exists a forgetting morphism 7 : M — ﬂg(d) extending the
morphism defined above. Essentially, j exists because C' is nodal, Kg + C' is
ample, and (K¢ + C)|C = K¢ in our situation.

Thus each limiting plane curve comes imbedded in some limiting plane
with semi-log canonical singularities. We shall see in the final section that
this representation is not always unique. Nevertheless, understanding the
boundary components of the moduli space of stable log surfaces should shed
light on the geometry of limiting plane curves. Some systematic results of
this type may be found in [13]. Here we focus on the case of quartic plane
curves, where we can get a clear picture of all the boundary components.
Our main result is:

Theorem 1.1 (Main Theorem) j : Py — Ms is an isomorphism. Fur-



thermore, the space M coincides with Py.

In particular, every stable curve of genus three sits naturally in a unique
limiting plane. Does this limiting plane have a natural, uniform, synthetic
construction?

This paper is organized as follows. In section two, we prove some general
results about plane curves and stable log surfaces. In the next section, we re-
call some basic results from deformation theory and some facts about surface
singularities. In the fourth section, we enumerate the limiting planes con-
taining various stable curves of genus three. Much of this is a case-by-case
analysis, but a conceptual explanation is given at the end of section four.
In section five, we give a brief application of our results to degenerations of
degree-two Del Pezzo surfaces. The final section includes some observations
on higher degree plane curves.

Throughout this paper, we work over C. Alessio Corti has informed
me that he and his students independently discovered some of the results
discussed here. Pyung-Lyun Kang has independently computed stable limits
arising from certain smoothings of singular plane quartics [14] [15].

2 General results on plane curves

Our first task is to understand j over the stable curves that can be represented
as nodal plane curves. The following result generalizes the classical fact
that smooth plane curves are abstractly isomorphic iff they are projectively
equivalent [5] pp. 56.

Proposition 2.1 Any nodal plane curve C of degree d > 4 is stable and the
corresponding pair (P*,C) is a stable log surface. If Cy and Cy are nodal
plane curves of degree d > 4, then C; = Cy as stable curves iff Cy and
Cy are projectively equivalent. Thus j maps the locus of nodal plane curves
bijectively onto its image.

Proof. Let C' C P? be a nodal plane curve of degree d > 4. The pair (P?,C)
is log canonical and Kp: + C is ample, so (P?, C) is a stable log surface. The
adjunction formula we = O¢(Kp:2 + C) implies that we is ample, thus C is
stable.

Now assume that C has two distinct planar representations C; and Cl.
An easy cohomology computation shows that any linear series imbedding C



as a plane curve is complete, so it suffices to prove that the corresponding
imbedding line bundles are equal. Let p;+py+...+pg be a generic hyperplane
section of (', regarded as a Cartier divisor on Cy C P?. By Serre duality,
P1, ... ,pqg impose just d — 2 linearly independent conditions on the linear
series |we,| = |O¢,(d — 3)|. This forces the points to be collinear on Cy, so
that 002(1) = 002 (p1 + ... -I-pd) = 001(1) O

The next proposition shows that M is well-behaved over the nodal plane
curves.

Proposition 2.2 Let C € ﬂg(d) be a curve imbedded as a nodal plane curve
of degree d > 4. Then M is smooth (as a stack) at (P?,C) and the derivative
of j 1s injective.

Proof. Represent C' C P? as a nodal plane curve; this representation is unique
by the last proposition. First, since P? is rigid, the tangent space Tip2,cyM
equals the cokernel of r : H(Tp2) — H®(O¢(C)) (see section 3.1 for exact
sequences computing these tangent spaces). We have H°(Tp2(—C)) = 0 and
Home(Q4, Oc) = 0, so r is injective. Since H'(O¢(C)) = 0 the cokernel of
r has dimension 3(d +2)(d+ 1) — 9. This is the dimension of M at (P2, C),
so M is smooth.

The map of tangent spaces dj : T(p>, )M — Tcﬂg(d) is induced by the
connecting homomorphism H°(O¢(C)) — Exty (%, Oc), which has kernel
Home (Q4,]C, O¢). However, since H' (Tp2(—C)) = 0 the restriction map

H(Tp>) — H(Tp>|C) = Hom(Qp|C, O¢)

is surjective, so dj is injective. [

By definition, the dual graph of a stable curve is the graph with vertices
corresponding to its irreducible components and edges corresponding to in-
tersections of these components. A graph is n-connected if n edges must be
removed to disconnect it. The following general fact was pointed out by Joe
Harris:

Proposition 2.3 Let C be a stable curve of arithmetic genus g. Then |we|
is basepoint free (resp. wvery ample) if and only if the dual graph of C is
two-connected (resp. three-connected and C' is not in the closure of the hy-
perelliptic locus). Furthermore, |wg?| is very ample if and only if g > 2 and C
has no irreducible component of arithmetic genus one intersecting the other
components in one point.



Proof. This is clear if C' is smooth. If C' is singular, we reinterpret sections
of we as meromorphic differentials on the normalization satisfying certain
compatibility relations.

In this paper, we apply Proposition 2.3 only to stable curves of genus
three. It yields a stratification of Mj and provides a framework for our
computations. In particular, using the characterization of the curves with
planar representations, Proposition 2.2, and the fact that Mj is smooth (as
a stack) of dimension six, we obtain:

Corollary 2.4 Let C be a stable curve of genus three. Assume that C' is
three-connected and not contained in the closure of the hyperelliptic locus.
Then C may be canonically imbedded as a plane quartic so that the log surface
(P%, C) is stable. Furthermore, j is an isomorphism at these points.

3 Deformation theory and singularities

3.1 Deformations of pairs

First we consider infinitesimal deformations of pairs (S, ), using the for-
malism of Ran [23] for deformations of maps f : C — S. The corresponding
cohomology groups Té,c sit in the following exact sequence

0= T3, —Tp&T¢— Homs(Qg, Oc) — Ty
= Ti®Th — Exth(Q),00) = T2e — T2 ® T2 — Ext3(Q%, 0¢)

where Ext’}(Q}g, O¢) is computed by the spectral sequences
Ext?(L1f*QL, Oc)  and  Exti(QL, RI£.00).

Proposition 3.1 If C C S then the second spectral sequence degenerates,
i.e. Bxt}(Qg, Oc) = Exts(Qg, Oc). We obtain the long exact sequence

0 — Homg(Qy, Os(—C)) = T4 — T — Extg(Q, 0s(=C)) = Ts ¢
— T} — Bxt%(Q%, 0s(—C)) — TS — T¢

where Og(—C) denotes the ideal sheaf of C.



If C is Cartier and Q% has no torsion with support in C then the first spectral
sequence also degenerates, i.e. Ext’(Qy, Oc) = Exty(f*Qy, Oc). We obtain
the long exact sequence

0 = T¢p—Tg— H(C.Oc(C)) = Tg, —Tg— H'(C,0c(C))
— Téo — T3

Proof. To prove the first statement, we observe that f is a closed imbedding
and thus a finite morphism. Hence the higher direct images R’ f, O vanish.
The long exact sequence comes from applying Ext’y(Q5, —) to

0— Os(—C) - Og — Oc — 0.

As for the second statement, since C'is Cartier this short exact sequence is
a resolution of O by invertible sheaves. This implies that Tor? (Qk, O¢) =
L' f*Q% = 0 for i > 1. On the other hand, L' f*QL is simply the kernel of

Qs ® 0g(—0) — QO

which coincides with the sections of Qf with support along C'. [

Next, we recall the definition of allowable families of semi-log canonical
log surfaces. Let 7 : (S§,C) — B be a family of such surfaces; this means
that 7 and 7|C are flat and the fibers are semi-log canonical. We say 7 is
allowable if each reflexive power of w,(C) commutes with base extensions and
some such power is locally free (see [16] and [18] for details). It follows that
(Ks + C)?% is locally constant in allowable families. Geometrically, allowable
deformations of (S, C') are precisely those lifting locally to index-one covers.
Remark: For a semi-log canonical pair (S, C) with C' Cartier, any defor-
mation of the pair restricting to an allowable deformation of S is also an
allowable deformation of (S,C'). In particular, when C is Cartier and S is
Gorenstein any deformation of (S, C) is allowable.

We now develop results on infinitesimal allowable deformations. First
assume that C' = (). Consider the cohomology groups T%: = Ext’s (L, Og)
and the analytic sheaves T¢ = Ext'g(Q, Og) fori = 0,1,2. These are related
by the local-global spectral sequence

HP(ExtL(Q, Os))

abutting to Ext% (), Og). We introduce certain subsheaves Ti C Té cap-
turing the infinitesimal properties of allowable deformations. Let U C S be
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an analytic neighborhood with index-one cover V; U is a cyclic quotient of
V. We define T&(U) as the invariant part of Ti:. Evidently T¢ C T and we
claim that 70 = 79. Elements of T9(U) and T2 are derivations on U and V,
so it suffices to check that each derivation on U arises from an invariant one
on V. Indeed, every function on V' can be written as a sum of terms f; with
fI € Oy, where r is the degree of the cover. Given a derivation D € Td(U),
we set

r

pf =20

rfi
to obtain an invariant derivation on V. By definition T¢ ¢ T4. Using the
local-global spectral sequence, we define 79 = T2 and T4 as the elements of
T mapped to H°(T3).

Now assume that C' is a nonempty Cartier divisor on S. We define
Tg,c = Tg,c- Using the remark and Proposition 3.1, we define Tgc as

the elements of Té,c mapping to T&. This clearly parametrizes first order
allowable deformations of (S,C'). We obtain the following corollary from
Proposition 3.1:

Corollary 3.2 Let (S,C) be a semi-log canonical log surface with C Cartier.
First order allowable deformations are computed by the exact sequence

0= Toc—T3— H(C,00(C)) = Tip — Ts — H'(C,0c(C)).
We also establish the following smoothness criterion:

Proposition 3.3 Let (S, C) be a semi-log canonical log surface such that C
is Cartier. Assume that H'(Oc(C)) = 0 and the space of allowable defor-
mations of S is smooth. Then the space of allowable deformations of (S, C)
15 smooth as well.

Proof. Assume we are given a tangent vector v € Tgc We know that

the corresponding element in Tg comes from some allowable family & —
SpecC|[[t]]. C is Cartier, so if it deforms to C C S then the resulting (S,C)
is allowable. The obstruction to extending a Cartier divisor from order n to
order n + 1 lies in H'(O¢(C)), which is zero by hypothesis. [J
We write o
Ext3(Q4, 0s(~C)) = Ext3(2k, Os(—C)

and ~EX‘LIS(Q}Q, Og(—C)) for the elements of Extg (L, Os(—C)) mapped to
H°(TJ). Again applying Proposition 3.1 we obtain
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Corollary 3.4 Let (S, C) be a semi-log canonical log surface with C Cartier.
First order allowable deformations are computed by the exact sequence

—_~

0 — Homg(QY, Os(—C)) = T4 — T¢ — Extg(Q, Os(—C)) = To o — T¢.

Assume further that S is Gorenstein along C, i.e. T4 and T4 coincide
along C. Then T4 (—=C) = T4 NT4(—C) and

HO(’Nfsl(—C)) - H“(Jsl)
HYTg(=C)) — HTy)

is a pull-back diagram. It follows that

P

Extg(Qg, Os(=C)) C Extg(Qg, Os(—C))

consists of the elements mapped to H°(T4(—C)) € H°(TZ). The local-global
spectral sequence gives the exact sequence

0 — H'(Homg(Ql, Os(—C))) — Exth(Q}, Og(—C))
—  ker[H(T(—C)) = H*(T2(—C))] — 0.
Applying Proposition 3.1 in this context, we obtain

Proposition 3.5 Let (S,C) be a semi-log canonical log surface such that C
is Cartier and S is Gorenstein near C. Assume that H'(Tg(—C)) = 0 and
HO(T4(=C)) = 0 or injects into H*(T$(=C)). Then T§ o injects into T¢,.

3.2 Some surface singularities

Consider the singularity arising from the group action
(x,2) = (“x, €2)

where € is a primitive rth root of unity, 1 < a < r, and (a,r) = 1. Its minimal
resolution can be described quite explicitly. It consists of a chain of rational

curves Fy, By, ..., E,, with self-intersections E? = —b;
- b
0O —+++— O



The b; are computed from the continued fraction representation

r 1
e ———
a bg - ba— ..

The proper transforms of z = 0 and z = 0 meet the first and last exceptional
curves of this chain. (See [9] §2.6 for a good exposition of this subject.)
We shall label these singularities 1(a,1). For instance, the singularity A,
corresponds to gi—l(g, 1).

Basic results on semi-log canonical singularities may be found in [20] §3-
5 and [19] chapters 3 and 12. The simplest non-normal semi-log canonical

singularity is the quotient of xy = 0 by the cyclic group action
(x,y,2) = ("z, € "y, e2)

where € is a primitive rth root of unity, 1 < a < r, and (a,r) = 1. This will
be denoted X, ,; it is the union of two cyclic quotient singularities of types
L(a,1) and (r — a,1). The index-one cover of %, , consists of two smooth
surfaces meeting in normal crossings. By definition, allowable infinitesimal
deformations of ¥, , correspond to deformations of its index-one cover that
are fixed under the cyclic group action.

To analyze these deformations, we generalize some of Friedman’s results
on deformations of normal crossings varieties [8]. Let S = S; Ug Sy be the
union of two smooth surfaces meeting in normal crossings along a smooth
curve B. Then the sheaf T¢ is equal to Og, (B)|B ® Os,(B)|B, the product
of the corresponding normal bundles [8] 2.3. Each infinitesimal deformation
of S yields a section in H°(7¢), which is nonzero iff the deformation is
topologically nontrivial along B (i.e. it smooths the singularities supported
on B.) Furthermore, if H%(7J) = 0 then each such section is realized by an
infinitesimal deformation of S.

Analogous results apply to allowable infinitesimal deformations of surfaces
with singularities of type ¥, ,:

Proposition 3.6 Let S = S; Ug Sy be a surface with singularities of type
Y along a curve B. Then the product

is a well-defined integral Cartier divisor on B. FEach allowable infinitesi-
mal deformations of S yields a section in H°(TJ), which is nonzero iff the
deformation is topologically nontrivial along B.



Proof. The notation Og,(B)|B denotes the Q-linear combination of Cartier
divisors obtained as follows: pick a minimal resolution of S;, compute the
numerical pull-back of B to this resolution, and restrict it to the proper
transform of B. In our situation, the fractional parts coming from S; and S,
cancel each other, so the resulting product is integral.

So let s € S be a singularity of type X, ,, and let U be an analytic open
neighborhood of s in S. The index-one cover V' — U is a cyclic cover of degree
r ramified only at s. Let B’ be the primage of B; B’ — B is also ramified
only at s. As we have seen, V = V; U V; has ordinary double points along
B'. Using Friedman'’s results, we find that 7} = Oy, (B')|B’' ® O, (B')|B'.
Furthermore, Og, (B)|B ® Og,(B)|B pulls back to 7;* on B’, and its sections
coincide with the invariant sections of T;}. O

4 Limiting plane quartic curves

We outline the strategy for completing the proof of the main theorem. Let
C be a stable curve of genus three. Using the stratification arising from
Proposition 2.3, we may assume (' is either hyperelliptic and three-connected,
two-connected but not three-connected, or just one-connected. The key steps
are:

1. Describe a surface S containing C' such that (S, C) is a stable log sur-
face. It will turn out that C' is Cartier and S is smooth or satisfies
xy = 0 at points of C.

2. Show that (S, C) has an allowable deformation to a plane quartic.

3. Show that j is an isomorphism at (S, C'), using two possible approaches.
One approach is to apply Corollary 3.5 to prove that dj is injective at
(S,C). The other is to prove that M is smooth (using Corollary 3.3)
and j is injective.

4.1 Three-connected hyperelliptic curves

Let C' be a smooth hyperelliptic curve of genus 3, with double cover r : C' —
P'. We have that r,Oc = Op1 @ Opi(—4), so that we can regard C as a
bisection of the rational ruled surface P(Op1 @ Op1(+4)) = Fy. C is disjoint
from the zero section (i.e. the section with self-intersection —4). Blowing

10



down this (—4)-curve, we obtain a surface S isomorphic to the weighted
projective plane P(1,1,4) (see [9] pp. 35 for definitions of weighted projective
spaces). S has a cyclic quotient singularity of type %(1, 1). The pair (S, C) is
semi-log canonical, because S has log terminal singularities and C' is smooth
and disjoint from the singularities of S. Since K¢+ C' is ample, we conclude
that (S,C) is a stable log surface.

We can picture S C P® as the cone over a rational normal quartic curve in
P*; C'is a quadric hypersurface section of this cone. Indeed, this description
applies to all three-connected hyperelliptic stable curves. We claim S has
an allowable deformation to a Veronese surface isomorphic to P?. Indeed,
the cone over a Veronese surface has a terminal singularity of index two at
the vertex. A generic hyperplane section of this cone is a Veronese, whereas
a generic hyperplane section through the vertex is the cone over a rational
quartic curve.

Now we analyze the deformation spaces of the pairs (S,C). We claim
the deformation space of S is smooth of dimension one. It suffices to show
its tangent space is one-dimensional. We have that H'(Hom(Q}, Os)) =
H?(Hom(QL, Og)) = 0 by a straightforward cohomology computation (e.g.
[7] §2.3). Local deformations of the vertex of S coincide with invariant de-
formations of its index-one cover, which has an A; singularity. Therefore,
Té = HY(TJ) = C, which proves the claim. Since O¢(C) = wS?! has no
higher cohomology, M is smooth of dimension six at (S, C') (Proposition 3.3).

Now we show that j is injective. The imbedding C' — S is rigid (modulo
automorphisms of S) because H'(Ts(—C)) = 0 [7] §2.3. Hence the restric-
tion of j to the locus where S = IP(1,1,4) has injective derivative. Second,
any nontrivial allowable deformation of P(1,1,4) is to a Veronese surface,
and such deformations force C' to deform to a nonhyperelliptic curve. Con-
sequently, j : M — Mj is injective (and thus an isomorphism) over the
three-connected hyperelliptic curves.

4.2 Two-connected curves

Let C be a curve which is two-connected but not three-connected; it is the
union of two curves C'; and Cy which are two-connected, meet in two points,
and have arithmetic genus one. Each C; is either a smooth elliptic curve, an
irreducible nodal curve of arithmetic genus one, or the union of two rational
curves meeting at two points (with one point of C; NC; on each component).
Let L be the union of two distinct lines in P2. By Proposition 2.3, |w¢| yields
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a double cover r : C' — L, with C; and Cy dominating the components of L.
This allows us to imbed C naturally into the union S” of two ruled surfaces
Fy, glued along a ruling B. (' is disjoint from the zero sections of these
surfaces. Let S be the surface obtained by blowing down these zero sections;
its irreducible components S; and Sy each have cyclic quotient singularities
of type %(1, 1) and S has semi-log canonical singularities of type X,;. We
can check that K¢+ C is ample, hence (S, C) is stable.

We can represent S C P° as the cone over the union of two conic curves
meeting in a single point but otherwise in linearly general position. The
allowable deformations of S may be analyzed using Proposition 3.6. It has
no topologically trivial deformations and 7? = O]pl(% + %) which has two
sections. Thus dim Tg < 2, and we have equality since S admits allowable
deformations to the Veronese and P(1,1,4).

We apply Proposition 3.5 to show that dj is injective. First, we have
that H(Td(—C)) = H°(Opi(—1)) = 0. On the other hand, H'(T2(-C))
parametrizes first-order deformations of the imbedding C' — S (or, equiva-
lently, of C' — S’) modulo automorphisms. Setting C; N Cy = {p1,p2}, this
is the same as first order deformations of the pair of imbeddings

(Ciapl +p2) — (]F‘Qa BZ)

modulo automorphisms of Fy stabilizing the ruling B;. It is straightforward
to check there are no such first order deformations.

4.3 Local stable reduction of cusps

The concept of local stable reduction for germs of cuspidal curves is developed
systematically in [13]. Let

C C SpecC[[z,y]] x A — A

be a family of plane curve germs, such that the central fiber Cj is cuspidal
and C; is smooth for ¢ # 0. Set Sy = SpecC[[z,y]] and S = Sy x A. We
consider (§,C) — A as a family of germs of log surfaces. Applying local
stable reduction, we obtain a family of log surfaces with semi-log canonical
singularities (S¢,C¢) — A and a birational morphism ¢ : (S¢,C¢) — (S xa
A,C XAA) such that Kg.+C¢is ample relative to ¢. The following proposition
details the local stable reductions for smoothings of a cusp Cj.
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Figure 1: Local stable reduction of a cusp

Proposition 4.1 Let Cy C SpecCl[z, y|] be a cusp with local analytic equa-
tion y* = 23, C — A a smoothing of Cy. Then the local stable limits (S, Cf)
are precisely the following:

1. Sy is the toriodal blow-up of Sy along the ideal {y*, z*,yz*}. It has two
singularities of types 3(1,1) and 3(1,1) along the exceptional divisor
Bq. C; is the proper transform of Cy.

2. Sy is the weighted projective space P(1,2,3) and By is the effective
curve generating its divisor class group. It has two singularities of
types £(1,1) and %(2, 1) along By. Cy is a nodal curve generating the

Picard group of Ss.

3. S§ is obtained by gluing S and Sy along B, and B, so that it has
singularities of types Yo, and X3, and C§ = C; U, Cy ts connected.

These stable limits are naturally parametrized by M, ;.

Proof. See figure 1 for a schematic picture using our notational conventions
for quotient singularities; the numbers in parentheses are self-intersections of
the curves in the minimal resolution. See figure 2 for the imbedded resolution
of a cusp.

Much of this is contained in Main Theorem 1 of [13], which implies that
all of these surfaces do actually occur as local stable limits. (See also [22]
§12 and 13 for a proof that most of these stable limits appear.) It remains
to show that each stable limit has the form given in the proposition. By the
Main Component Theorem of [13], it suffices to show that the moduli space
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containing the (non-smoothable) stable log surfaces (S, = P(1,2,3), By +C5)
is isomorphic to M, ;. We claim first that each (Cy,p) C My, sits as a
Cartier divisor on P(1,2,3) with p = By N Cy. Indeed, the linear series
Oc,(2p) yields a natural imbedding Cy — Fy with a ruling R tangent at
p. Blowing up twice to separate this tangency and then blowing down all
the (—2)-curves, we obtain an imbedding Cy — P(1,2,3) with the desired
property.

We next claim (P(1,2,3), By) has no nontrivial allowable deformations
(S2, B2). Since

25
(Ks, + By)* = (Kp(23) + By)” = 6

any such deformation still has quotient singularities of types %(1, 1) and
5(2,1). A cohomology computation on the minimal resolution of P(1,2,3)
shows it has no topologically trivial deformations.

Each Weil divisor linearly equivalent to By+C5 contains By [7] 1.4. Hence
it suffices to show the forgetting map (P(1,2,3), By + Cy) — (Cy,p) has
injective derivative. Since H'(Tp(12,3)(—C5)) = 0 [7] 2.3, our assertion follows
from Proposition 3.5. [

4.4 Generic one-connected curves

Let C' be a generic one-connected curve, i.e. C = Cy U, Cy with C; and C,
irreducible of genus two and one respectively, and p not a Weierstrass point
for C';. The limiting plane S occurs as the local stable reduction for quartic
plane curves acquiring a single cusp. Precisely, S = S; Ug Sy where S; is the
toriodal blow-up of P? and Sy = P(1,2,3). C) is the proper transform of a
cuspidal quartic and C, is the elliptic tail. The resulting log surface (S, C')
clearly has semi-log canonical singularities. It is stable because Kg, +C, + B,
is ample by Lemma 4.3; Kg, + By + (5 is ample because the Picard group of
P(1,2,3) is cyclic. To show that every generic one-connected curve actually
sits in such a surface, it suffices to check that an irreducible genus-two curve
O, with distinguished non-Weierstrass point p can be mapped into P? as a
quartic curve with cusp at p. This follows from Lemma 4.4.

We have already seen how S arises as an allowable degeneration of P2
Since H'(O¢(C)) = 0 there are no obstructions to lifting a deformation of S
to a deformation of (S, C), and C' is a limiting plane curve.

Our toroidal blow-up of P? is unique up to isomorphism, so S; has no
topologically trivial deformations. The allowable deformation space of S is
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smooth of dimension one by Proposition 3.6. The vanishing of H'(O¢(C))
implies that M is smooth at (S, C) (by Proposition 3.3).

To show that j is injective over C', we first prove that the imbedding
C' — S'is unique, up to automorphisms of S. By lemma 4.4, (' is represented
as a cuspidal quartic in a unique way, and thus has a unique imbedding into
Si. We have already seen that Cy has a unique imbedding into Sy = P(1, 2, 3).
Since every deformation of S forces C' to deform to a three-connected curve,
there are no nontrivial families of surfaces containing C'.

4.5 Degenerate cases

We now account for the remaining cases. The corresponding stable curves
C may all be disconnected by removing a point p;. Then there is a unique
genus-one irreducible component F; meeting the rest of C' in p;. Let C
denote the closure of the complement of the union of these elliptic tails; note
that C, is connected.

We describe the limiting plane S containing C'. Our notation is explained
in subsection 4.6. Using Lemma 4.4, we obtain a map ¢g : C; — P so that
the g(p;) are cusps on Cy = g(Cy). The limiting plane S is the surface arising
when we apply local stable reduction to the cusps individually. It is the union
of a toroidal blow-up b : S; — P and a number of copies of P(1,2,3), glued
as specified in Proposition 4.1. In particular, there is one copy of P(1, 2, 3)
for each elliptic tail of C' (or for each cusp of Cy.) We obtain C' C S by
imbedding each E; into the corresponding weighted projective plane. (S, C)
is a stable log surface because Kg, + Cy + B is ample by Lemma 4.3.

The surface S is a degeneration of P?. Indeed, given a deformation P — A
of P to P2, we blow up P toroidally at each of the points g(p;). (Such blow-
ups are discussed in §5 of [13].) Hence for each v € H(TJ) there exists a
global deformation of S with tangent vector restricting to v.

For the rest of this section, we assume that Cy is not a plane quartic with
three cusps (or equivalently, that Cy is not of genus zero). We return to the
tricuspidal curves below. Under these assumptions, we analyze the allowable
deformation space of S. By Lemma 4.2 S has no equisingular deformations
and we have already seen that P(1,2,3) has no equisingular deformations.
Hence S also has no such deformations, T¢ = H°(TJ), and the space of
allowable deformations is smooth. Looking component by component, it is
not difficult to check that O¢(C) has no higher cohomology. It follows that
C'is a limiting plane quartic and M is smooth (Proposition 3.3).
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To show that C — S is rigid (modulo automorphisms of S) we look
at each irreducible component of S separately. The map of the (pointed
curve) (C1, p;)i=1,.. x to Sy is unique by Lemma 4.4. On the other hand, each
genus-one tail has a unique imbedding into P(1,2,3) (up to automorphisms).
Any topologically nontrivial deformation of S deforms either one of the com-
ponents of By, or the singularities arising from P. Smoothing one of the
components of By entails smoothing one of the elliptic tails of C'. Deforming
the singularities arising from P entails deforming C' to a curve that is no
longer in the closure of the curves described in sections 4.1 or 4.2. Hence j
is injective.

4.5.1 Tricuspidal curves

There is a unique plane quartic with three cusps, obtained by applying the
standard Cremona transformation P? --» P? to a smooth conic C tangent
to the three distinguished lines. However, assume we are given three lines
L; (i = 1,2,3) and points s; € L;, all chosen generically. Then there is no
smooth conic tangent to the L; at the s;. Hence the position and tangent
directions of the cusps of Cy are not in general position on P2. It follows
that S; — P? is obtained by blowing up along three (nonreduced) points in
special position, and S; has equisingular deformations.

We claim that the equisingular deformations of S; fail to extend to de-
formations of (S, C4), even up to first order. Using the Cremona transfor-
mation, this translates as follows. Assume we are given lines L; and points
s; € L; such that there exists a conic tangent C; to the L; at the s;. Deform
s; (in Lp) to first order, while fixing Li, Ly, L3, s, and s3. Then there is
no first order deformation of C; preserving the tangencies. This follows by a
simple explicit computation, which we omit. Cohomologically, this translates
into saying that

H'(Tg,) = H'(Oc, (C1)) (= H' (Op1(~2)))
and thus also
HY(T§) = H'(Oc(C))
is an isomorphism of one-dimensional spaces. As a consequence, Té —

H'(O¢,(C1)) has one-dimensional image and three-dimensional kernel.
We complete the computation of 7§ . using Corollary 3.2. We know that

dimTS“’C = 0 because (S,C) is stable, dim H°(O¢(C)) = 15 by Riemann-
Roch, and dim 79 = 3(dimTE?(1’2’3) — 1) = 12. It follows that dimféyc =
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3+ 15— 12 = 6. On the other hand, looking at each of the components
individually we find that H'(7(—C)) = 0. Indeed, we have already seen
that imbedding of the elliptic tails into the P(1,2, 3) is rigid (see the proof
of Proposition 4.1); C, < S is also rigid because C? = —2. Proposition 3.6
implies that HO(’E(—C’)) = (), so dj is injective by Proposition 3.5.

We have not shown directly that each (S, C') admits an allowable defor-
mation; a priori this may only be the case for special choices of the elliptic
tails. However, we have shown that the derivative of j is an isomorphism at
each (S, '), which guarantees that j is an isomorphism as well.

This completes the proof of the Main Theorem.

4.6 Technical lemmas

Throughout this subsection P = P?, P(1,1,4), or the union of two copies
of P(1,1,2), glued along rulings so that the vertices coincide. Each of these
surfaces may be imbedded as a quartic surface in P°. Let Cy C P be a
quadric hypersurface section. We assume that C, has only nodes and cusps
and each branch of () intersects the double curve of P transversally.

Lemma 4.2 Fach possible configuration of cusps is one of the following
seven types:

1. P="P? and Cy has a single cusp;

2. P="P(1,1,4) and Cy has one cusp;

3. P the union of two copies of P(1,1,2) and Cy has one cusp;
4. P =T? and Cy has two cusps;

5. P =P(1,1,4) and Cy has two cusps;

6. P the union of two copies of P(1,1,2) and Cy has one cusp on each
component;

7. P =P? and Cy has three cusps (obtained from the Cremona transfor-
mation described above).

Ezcept in the last case, there is a torus action on P (with a dense orbit on
each irreducible component) fixing the positions and tangencies of the cusps.

In each case these positions and tangencies are unique up to automorphisms
of P.
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Proof. We first check the list is complete. It is clear that Cy cannot have more
than three cusps. If P = P(1,1,4) then Cy has at most two cusps; otherwise
we would obtain a rational double cover of P' ramified at three points. A
similar argument applies if P is the union of two copies of P(1, 1, 2).

We construct the torus action case by case. If P = P? and C, has two
cusps, then the boundary of our torus in the union of the line joining the cusps
and the lines tangent to them. These lines are in linearly general position
because Cj has degree four. If P = P(1,1,4) and Cy has two cusps then there
is a smooth hyperplane section tangent to both these cusps. The boundary
is the union of the rulings meeting the cusps and this hyperplane. In the
case where P has two components isomorphic to P(1, 1, 2), the boundary on
each P(1, 1, 2) is the union of the distinguished ruling, the ruling meeting the
cusp, and a smooth hyperplane section tangent to the cusp.

The last assertion follows from the existence of the torus action (except
in the last case, where we use the Cremona transformation description). [J

Lemma 4.3 Retain the hypotheses of Lemma 4.2. Let b : Sy — P be the
toriodal blow-up of the cusps of Cy, By the exceptional locus, and C; the
proper transform of Cy. Then Kg, + Cy + By is ample. Furthermore, if Cy
has at most two cusps then S1 has no equisingular deformations.

Proof. The last statement follows immediately from the previous result. We
first prove the ampleness statement under the assumption that Cy has at
most two cusps, so that b is actually a toric blow-up. Then the boundary
divisors for the torus action generate the effective cone of S, which allows
us to check directly that Kg, + Cy + By is ample.

The only remaining case is where Cy C P? has three cusps. Let D =
Ks, +C, + By and o : P, — S; an imbedded resolution of (P?, Cy) (see
figure 2). Let B,, and C,, be the partial transforms of the corresponding
curves on S;. Each irreducible component of By, is a (—1)-curve on P,,. Let
F and G be the union of the (—2) and (—3)-curves in the exceptional locus,
and H the pull-back of the hyperplane class from P?. Let o*D be pull-back
of D as a Q-Cartier divisor:

1 2 1 1

60* D is integral and corresponds to the proper transforms of the linear series
of sextics in P? with cusps in the same positions as (. It is not hard to see
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Figure 2: Minimal resolution of a cusp

that b : S; — P? blows up the base locus of this series and 6D is very ample
on Sl- L]

Lemma 4.4 Let (Cy,p;)i=1,. x be a pointed stable curve such that g(Cy) +
k = 3. Then there exists a unique map g : Cy — P with the following
properties:

1. g 1s an isomorphism except at the points p;;

2. g(p:;) are cusps on Cy := g(Cy) and smooth points of P.

Proof. This is proved using a case-by-case argument. If the p; are not all fixed
points of a hyperelliptic involution on C;, then the image of ¢ is P2. First,
consider the image of C; under the linear system |we, (2> p;)|. If C; has
genus two, then the image is clearly a quartic with a cusp at p;. Otherwise
the linear system yields an imbedding, but under our hypothesis there is a
unique projection of Cy to a quartic plane curve so that the p; are mapped to
cusps. Now assume the p; are fixed points of a hyperelliptic involution on C}.
If C; is not the union of two rational curves meeting at two points, then we
may represent C; as the ramified double cover of L = P'. Otherwise, O is
the double cover of a curve L isomorphic to two copies of P! joined at a point.
In either case, the map r, : C; — L ramifies at the p;. Now consider the
modified double cover ry : Cy — L, where the support of the branch divisor
is as before, except that it has multiplicity three at the points ro(p;). Cy then
has cusps over these points. Repeating the argument from the hyperelliptic
case, we find that Cy can be imbedded in either the weighted projective plane
P(1,1,4), or the union of two quadric cones glued along two rulings. [J
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4.7 Explanation for the elliptic tails

We have seen that elliptic tails arise from applying local stable reduction
to suitable cuspidal curves. This can be explained using the notion of [og
canonical thresholds [17] §8. Let Cy be the germ of an isolated singularity in
Sy = SpecCl[z, y]]. The log canonical threshold of (S, Cy) is defined as

sup{a : Kg, + aCj is log canonical}.

For instance, if Cy is a cusp then Kg, + aC) is log canonical for a < % so the
threshold equals %

On the other hand, if C' is a smooth quartic plane curve then Kp2+aC' is
ample provided that a > %. This suggests that we try to construct a moduli
spaces of log surfaces M(a) with boundary aC, where % <a< g For this
new moduli problem, the cuspidal curves are stable and the hyperelliptic
and two-connected curves are precisely as described above. Presumably, the
standard moduli space M = M(1) is obtained by suitably blowing up the
locus of cuspidal curves in M(a).

It is very natural to ask how what happens to these moduli spaces as
we vary the parameter a. What are the maps between the various moduli
spaces, and are there wall crossings like those found in Geometric Invariant
Theory by Thaddeus [24]7 Is there a natural stratification of the boudary
components in terms of the log canonical thresholds of the corresponding
plane curve singularities?

5 Limits of degree-two Del Pezzo surfaces

Here we give an application of our results on P, to degree-two Del Pezzo
surfaces. This was suggested by Janos Kollar and aided by discussions with
F. Gallego and B.P. Purnaprajna. Let T be a Del Pezzo surface of degree
two. Then the anticanonical linear series | — Kr| induces a double cover
p : T — P? branched over a smooth quartic plane curve C'. Conversely, given
such a curve, the double cover of P? branched over C is a Del Pezzo surface
of degree two.

We shall use our description of limiting plane quartics to obtain a geomet-
ric compactification Z for the moduli space of degree-two Del Pezzo surfaces.
This compactification has the following properties:
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1. The points of Z parametrize semi-log canonical surfaces T equipped
with a double cover p: T — S.

2. The branch locus of p contains a curve C' C S such that (S,C) € Py.
(It may also include singularities of S not contained in C'.)

3. Each limiting plane quartic (S, C) has a unique such double cover and

Z2P, =~ M,

Given a limiting plane quartic (S,C), we construct a ramified double
cover p: T — S, which is a limit of the double covers of the plane described
above. When C' is two-connected the construction of T is clear. Here the class
[C] is twice a Cartier divisor on S, so we can construct p in the standard
way. The resulting surface 71" occurs naturally as the limit of smooth Del
Pezzos; it is easy to verify that 7" has semi-log canonical singularities. The
construction is more subtle in the case where C' is not two-connected. Here
the class of [C] is only twice a Weil divisor, so constructing p requires more
care. Following ideas of Gallego and Purnaprajna, we find that p ramifies
over C and over each of the Y, ; singularities arising from elliptic tails of
C' (cf. Proposition 4.1). Furthermore, p is the limit of double covers of the
plane branched over smooth quartics. The resulting surface T has semi-log
canonical singularities: it has normal crossings where p ramifies, and it has
essentially the same singularities as S where p is étale.

Using the modified spaces M(a) for 3 < a < % yields an alternate com-
pactification, which perhaps is more natural than Z. As we have seen, cusp-
idal curves are stable for these spaces. The existence of cusps in the branch
locus causes no serious difficulties; the resulting double cover has A; sin-
gularities. This approach has the added advantage that the branch curve
C C S is always twice a Cartier divisor, so constructing the double covers is
technically easier.

6 Observations on curves of higher degree

The map j : Py — ﬂg(d) is not generally an isomorphism, or even a bijection,
onto its image. For instance, consider the case d = 5. The closure of the plane
quintic curves contains all the hyperelliptic curves C' of genus six ([12] 1.11
or [10].) The limiting g2 takes the form 2¢} + p where p is any one of the 14
Weierstrass points of C'. Each of these Weierstrauss points yields an element
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Figure 3: Limiting planes for genus six hyperelliptic curves

at the boundary of P5. These are constructed by the following recipe. Let
C be a hyperelliptic curve of genus 6, and represent C' as a bisection of F;.
Let f be a ruling of F;, tangent to C' at one of the Weierstrauss points p.
Let p : P — F; be obtained by taking the minimal imbedded resolution of
C U f, and then blowing-up the intersection of the proper transfrom of C'
with the exceptional locus. P has three exceptional divisors E;, Ey, and Fjs
with self-intersections —2, —2, and —1 respectively. Let S be obtained by
contracting Fy, Fy, the proper transform of f, and the zero section of F;
(see figure 3). One can show that S deforms to P2, with the plane quintics
specializing to the hyperelliptic curve C' (see [21] for more information on
such degenerations).
The moduli space M generally has irreducible components besides Pg:

Proposition 6.1 Let d = 2n + 1 with n > 1. Then M has at least one
irreducible component besides Py, parametrizing curves of bidegree (n+1,2n)
m IF[] .

For instance, if d = 5 then M contains both the plane quintics and the
trigonal curves of genus six. These components have dimensions 12 and 13
respectively. This example highlights another peculiarity of M: its expected
dimension is not well-defined on connected components, because the formula
for the expected dimension is not invariant under allowable deformations.
Proof. We now prove the proposition. Let C¥ C F; be a smooth curve
of class né + 2f, where £ is the section with €2 = 4 and f is a ruling. The
zero section of [y intersects C' in two points p and ¢. Blow down the zero
section to obtain P(1,1,4), which may be represented as the cone over a
rational normal quartic curve. The image Cy of C* has a node at the vertex
of P(1,1,4), so the pair (P(1,1,4),Cy) has log canonical singularities. There
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exist deformations § — A with Sy = P(1,1,4) and the general fiber equal
to either a Veronese surface or a rational quartic scroll isomorphic to Fy.
The curve Cy deforms to either a plane curve of degree 2n + 1 or to a curve
of bidegree (n + 1,2n) in Fy. In both cases, Ks + C is Q-Cartier so the
deformation of the pair (Sy, Cp) is allowable. Note that for the deformation
to Fy, Ks and C are not individually Q-Cartier. Hence the deformation of
the surface alone is not allowable. [

We close with an open question:

Question 6.2 Does j : Py — Mg(d) ever have positive dimensional fibers?
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