
SOME RATIONAL CUBIC FOURFOLDSBRENDAN HASSETT
1. IntroductionThe purpose of this paper is to give new examples of rational cubic fourfolds. LetC denote the moduli space of cubic fourfolds, a twenty-dimensional quasi-projectivevariety. The cubic fourfolds containing a plane form a divisor C8 � C. We provethe following theorem:Main Theorem (Theorem 4.2) There is a countably in�nite collection ofdivisors in C8 which parametrize rational cubic fourfolds. Each of theseis a codimension two subvariety in the moduli space of cubic fourfoldsC.Experimental evidence strongly suggests that the general cubic fourfold containinga plane is not rational, but no smooth cubic fourfold has yet been proven to beirrational.The key to our construction is the following observation: a cubic fourfold contain-ing a plane is birational to a smooth quadric surface over k(P2). Indeed, projectingfrom the plane gives a rational map to P2 whose �bers are quadric surfaces. Thecubic fourfold is rational if the quadric surface over k(P2) is rational. Using Hodgetheory, we prove that the rational quadric surfaces correspond to a countably in�-nite union of divisors in C8. This is quite natural from an arithmetic point of view.Over Q, the rational quadric surfaces form a countably in�nite union of divisors inthe Hilbert scheme of quadric surfaces in P3.We conclude this introduction by listing the cubic fourfolds known to be rational.There is an irreducible divisor C14 � C parametrizing rational cubic fourfolds. Thisdivisor has many geometric characterizations. For example, it is the closure of thecubic fourfolds containing rational normal scrolls of degree four [Fa] [Tr1] [Ha1]and of the locus of Pfa�an cubic fourfolds [BD]. All the examples of rational cubicfourfolds known to the author are contained in C14 or one of the subvarieties of C8.Furthermore, the birational map from P4 involves blowing up a surface birationalto a K3 surface (see x5 for details).We work over the complex numbers C unless mentioned otherwise. Here genericmeans `in the complement of a Zariski closed proper subset' and general means `inthe complement of a countable union of Zariski closed proper subsets'. A lattice is a�nitely generated free Z-module equipped with a nondegenerate integral quadraticform.Part of this work was done while the author was visiting the Institut Mittag-Le�er. Thispaper was revised while the author was supported by a National Science Foundation PostdoctoralFellowship. 1



2 BRENDAN HASSETT
C
14

C

C

8

Figure 1. Known Rational Cubic Fourfolds2. Geometry of quadric surface bundlesFor our purposes, a quadric surface bundle is a 
at projective morphism q : Q!B of regular connected schemes, such that the generic �ber is a smooth quadricsurface. The relative Fano scheme F ! B of a quadric surface bundle parametrizesthe lines contained in the �bers of q. For a smooth quadric surface over a �eld, thisconsists of two disjoint smooth genus zero curves, corresponding to the rulings ofthe surface.Proposition 2.1. Let q : Q ! Spec(k) be a smooth quadric surface over a �eld k.Then the following are equivalent:1. Q is rational over k2. The Fano scheme F of Q has a divisor de�ned over k, with degree one oneach component3. Q has a zero-cycle of odd degree de�ned over kProof. Let Z denote the universal line over F , so that we have a correspondencep Z q. &Q Fand an induced Abel-Jacobi map� = q�p� : Ch2(Q)! Pic(F)where Ch2(Q) denotes the Chow group of zero-cycles on Q.The quadric Q is rational if and only if it has a point over k. This point ismapped by � to a pair of points de�ned over k, one on each component of F .Conversely, given such a pair of points, the intersection of the corresponding linesgives a k-point of Q. This proves the equivalence of the �rst two conditions.Clearly either of the �rst two conditions implies the third; we prove the converse.Let z be a cycle of odd degree 2n+1 on Q and de�ned over k. The cycle �(z) hasdegree 2n + 1 on each component of F . The canonical class KF is de�ned over kand has degree �2 on each component of F . Consequently, nKF +�(z) has degreeone on each component of F . Given a nonzero section s 2 H0(F ; nKF +�(z)), thelocus s = 0 consists of a pair of points on F , one on each component.The proposition has the following consequence:



SOME RATIONAL CUBIC FOURFOLDS 3Corollary 2.2. Let q : Q ! B be a quadric surface bundle and assume B isrational over the base �eld. Let Q denote the class of the generic �ber of q andassume there is a cycle T 2 Ch2(Q), de�ned over the base �eld, such that hT;Qi isodd. Then Q is rational over the base �eld.We apply the proposition to k = k(B), the function �eld of B. Note that h; idenotes the intersection product on Q.In our analysis of cubic fourfolds, we shall use a transcendental version of thisresult:Proposition 2.3. Let q : Q ! B be a quadric surface bundle over a rationalprojective variety. Assume there is a class T 2 H4(Q;Z) \ H2;2(Q) such thathT;Qi is odd. Then X is rational over C .Proof. By the previous proposition, it su�ces to construct a divisor on the relativeFano scheme F ! B intersecting the components of the generic �ber in hQ;T ipoints. We may discard any components of F that fail to dominate B. Choose aresolution of singularities � : ~F ! F and set ~Z = ~F �F Z . We again obtain acorrespondence of smooth varieties ~p ~Z ~q. &Q ~F :and an induced map on cohomology~� = ~q�~p� : H4(Q;Z) \H2;2(Q)! H2( ~F ;Z)\H1;1( ~F):By the Lefschetz Theorem on (1; 1) classes, ~�(T ) is a divisor on ~F . The image ofthis divisor in F has the desired properties.3. Cubic fourfolds containing a planeFirst we �x some notation. The Hilbert scheme of cubic hypersurfaces in P5 is aprojective space P55. The smooth hypersurfaces form an open subset U � P55 andare called cubic fourfolds. Two cubic fourfolds are isomorphic if and only if theyare equivalent under the action of SL6. Consequently, the isomorphism classes ofcubic fourfolds correspond to elements of the orbit spaceC := U== SL6 :Applying Geometric Invariant Theory [GIT] x4.2, one may prove that C has thestructure of a twenty-dimensional quasi-projective variety; C is called the modulispace of cubic fourfolds.Now consider a cubic fourfold X containing a plane P . A dimension countshows the isomorphism classes of such cubic fourfolds form a divisor C8 � C. Weshall restrict our attention to these special cubic fourfolds; for more details see [V],[Ha1], or [Ha2]. Let h denote the hyperplane class of X , and let Q denote theclass of a quadric surface residual to P in a three-dimensional linear space, so thath2 = P + Q. Let ~X denote the blow-up of X along P . Projecting from the planeP , we obtain a morphism q : ~X ! P2:The �bers of this morphism correspond to quadric surfaces in the class Q. Inparticular, a cubic fourfold containing a plane is birational to a quadric surface



4 BRENDAN HASSETTbundle over P2. Applying the results of the previous section, we obtain the followingtheorem:Theorem 3.1. Let X be a cubic fourfold containing a plane P , and let Q be theclass of a quadric surface residual to P . Assume there is a class T 2 H4(X;Z)\H2;2(X) such that hQ;T i is odd. Then X is rational over C .4. Analysis of the periodsOur next goal is to determine when the hypotheses of the theorem are satis�ed.We retain the terminology of the previous section. The methods we use are ex-plained in more detail in [Ha1] x2 and [Ha2]; [V] also contains a detailed discussionof the periods of cubic fourfolds containing a plane. Let K8 � H4(X;Z) denote thesublattice spanned by h2 and Q. The intersection form on H4(X;Z) restricts toh2 Qh2 3 2Q 2 4 :Let K?8 denote the orthogonal complement to K8 in H4(X;Z).We now recall some results about the periods of cubic fourfolds containing aplane. More general statements are proved in [Ha1] x1,2 and [Ha2]. Let L be alattice isomorphic to the middle cohomology of a cubic fourfold; L has signature(21; 2). Fix distinguished elements h2 and P in L, corresponding to the hyperplaneclass squared and a plane contained in some cubic fourfold. Let X be a cubicfourfold containing a plane P , and let � : H4(X;Z)! L be a complete marking ofits cohomology preserving the classes h2 and P . This induces a map� : H4(X; C ) ! L
 C :Now the Hodge structure on the middle cohomology of X is entirely determinedby the one-dimensional subspace �(H3;1(X)) � K?8 
 C , which is isotropic withrespect to the intersection form. Consequently, each completely marked cubic four-fold containing a plane yields a point on the quadric hypersurface of P(K?8 
 C )where the intersection form is zero. The local period domain for cubic fourfoldscontaining a plane is a topologically open subset of this hypersurface, consisting ofone of the connected components of the open set where the Hermitian form �hu; �viis positive. This manifold has the structure of a nineteen-dimensional boundedsymmetric domain of type IV [Sa] (x6 of the appendix); it is denoted D08.Let �+8 denote the automorphisms of L which preserve the intersection form, acttrivially on K8, and respect the orientation on the negative de�nite part of K?8 .The group �+8 acts from the left on D08 � P(K?8 
C ). The quotient �+8 nD08 is calledthe global period domain for cubic fourfolds containing a plane. This is the quotientof a bounded symmetric domain by an arithmetic group and so is a normal quasi-projective variety[BB]. Let Cmar8 be the variety parametrizing the pairs (X;P ),where X is a cubic fourfold and P is plane contained in X . The period map�8 : Cmar8 ! �+8 nD08is an algebraic open immersion of quasi-projective varieties. This follows from theTorelli theorem for cubic fourfolds [V] and the Borel extension theorem [Bo].We now state our main technical result:



SOME RATIONAL CUBIC FOURFOLDS 5Proposition 4.1. Consider the Hodge structures in the global period domain�+8 nD08 for which there exists some T 2 L \ H2;2 such that hT;Qi is odd. TheseHodge structures form a countable union of divisors, indexed by the discriminantof the saturation of K8 + ZT . This discriminant may be any positive integern � 5(mod 8).Here the discriminant of a lattice means the determinant of its intersection form.Later we shall introduce a more re�ned notion.We are interested in the restriction of these divisors to the Zariski open subsetCmar8 of the period domain. These are also irreducible divisors and only �nitelymany of them are contained in the complement to Cmar8 . By Theorem 3.1, thesedivisors parametrize rational cubic fourfolds. Thus we obtain our main theorem:Theorem 4.2 (Main Theorem). There is a countably in�nite collection of divisorsin C8 which parametrize rational cubic fourfolds. Each of these is a codimensiontwo subvariety in the moduli space of cubic fourfolds C.Remark 4.3. 1)There are rational cubic fourfolds X containing a plane such thatthe quadric surface bundle ~X ! P2 does not have a rational section. For example,certain components of C8 \ C14 are of this type.2)It seems likely that the only discriminants corresponding to divisors in the bound-ary (�+8 nD08)nCmar8 are n = 5 and 13.The remainder of this section is the proof of Proposition 4.1. We �rst establishthe following lemma:Lemma 4.4. Let x be a Hodge structure in D08. Then the following conditions areequivalent.1. There exists a cohomology class T 2 L \H2;2(x) with hT;Qi odd.2. There exists a saturated rank one sublattice S � K?8 \H2;2(x) such that theorthogonal complement to S in K?8 has odd discriminant.Furthermore, the discriminant n of the saturation of K8 + ZT is congruent to 5modulo 8. This is equal to the discriminant of the orthogonal complement to S inK?8 .Proof. The key ingredient of this lemma is the following fact: let K be a saturatednondegenerate sublattice of a unimodular lattice and let K? be its orthogonalcomplement. Then K and K? have the same discriminant (up to sign). This isproved in [Ni] x1.6.Assume the �rst condition holds. We may �nd an element T1 in the saturationof K8 + ZT so that K8 + ZT1 is saturated and hQ;T1i = 1. The intersection formon K8 +ZT1 takes the form h2 Q T1h2 3 2 aQ 2 4 1T1 a 1 bwith discriminant n = �3 + 4(a� a2) + 8b, which is congruent to 5 modulo 8. LetS be the intersection of K8 + ZT1 with K?8 . By construction S is saturated andcontained in H2;2(x). The orthogonal complement to S in K?8 coincides with theorthogonal complement to K8 + ZT1 in the full cohomology lattice. In particular,this lattice has discriminant n, which is odd.



6 BRENDAN HASSETTNow assume the second condition holds. Again, the saturation of K8+S has thesame discriminant as the orthogonal complement to S in K?8 . If the discriminantof the saturation of K8 + S is odd, then it contains a class T with hT;Qi odd.Otherwise, the intersection form could be writtenh2 Q T1h2 3 2 aQ 2 4 0T1 a 0 bfor some T1 in the saturation of K8+S. But the discriminant would then be even,a contradiction.We now analyze the geometry of these Hodge structures in the global perioddomain. Suppose we are given a positive de�nite rank one saturated sublatticeS � K?8 , such that the orthogonal complement has odd discriminant. These areprecisely the sublattices arising from the lemma, since the Hodge-Riemann bilinearrelations imply that the intersection form on L \ H2;2(x) is positive de�nite. Wedetermine the x 2 D08 for which S � H2;2(x). Because x corresponds to H3;1, it isnecessary and su�cient that x be orthogonal to S with respect to the intersectionform. The locus of such x forms a hyperplane section of D08 with respect to itsimbedding in P(K?8 
C ). It is not di�cult to see that this is a nonempty irreducibledivisor in the period domain. Like D08, it is a bounded symmetric domain of typeIV (see the appendix of [Sa], x6 for more details). Its image in �+8 nD08 parametrizesthose periods with algebraic classes of type S. This subvariety is an algebraicdivisor in the global period domain, because both the global period domain andthe normalization of the subvariety are arithmetic quotients of bounded symmetricdomains [BB] [Bo].As we choose various S satisfying the conditions stipulated above, we obtaindivisors in the global period domain. Now S1 and S2 determine the same divisor ifand only if S2 = 
(S1) for some 
 2 �+8 ; we then say that S1 and S2 are equivalentmodulo �+8 . Hence we obtain a bijective correspondence between the following twotypes of data1. irreducible divisors in �+8 nD08 parametrizing Hodge structures x satisfying theconditions of Lemma 4.42. �+8 equivalence classes of rank one positive de�nite saturated sublattices S �K?8 , such that the orthogonal complement has odd discriminantWe shall prove that these equivalence classes are classi�ed by the discriminants oftheir orthogonal complements. Our argument relies heavily on ideas of Nikulin [Ni].If K is a lattice then the bilinear form induces an inclusion K ,! K� = Hom(K;Z).The discriminant group of K is de�ned as the quotientd(K) := K�=K:The order of d(K) is equal to the absolute value of the discriminant of K, so d(K)is trivial i� K is unimodular. For exampled(K8) = 18(2h2 +Q)Z=(2h2+Q)Z�= Z=8Z:The bilinear form on K extends to a Q-valued bilinear form on K�, which inducesa Q=Z-valued bilinear form on d(K). Furthermore, if K is even then the quadratic



SOME RATIONAL CUBIC FOURFOLDS 7form induces a Q=2Z-valued quadratic form on d(K), denoted qK . We use �K todenote the automorphisms of K acting trivially on d(K).Under certain conditions, imbeddings of lattices with compatible signatures areclassi�ed by homomorphisms of the corresponding discriminant groups. The fol-lowing special case of results from [Ni] x1.15 illustrates this principle:Assume K is an even lattice of signature (19; 2) and S is a rank onepositive de�nite lattice. A saturated imbedding of S intoK correspondsto the following data:1. A subgroup HS � d(S)2. A subgroup HK � d(K)3. An isomorphism h : qS jHS ! qK jHK4. An even lattice S? of signature (18; 2) and an isomorphism � :d(S?) ! �� of discriminant quadratic forms. Here � := ((qS ��qK)jH?)=H where H is the graph of h in d(S)� d(K).Two such imbeddings (denoted S1 and S2) are conjugate under theaction of �K if the following conditions are satis�ed1. HS1 = HS22. h1(HS1) = h2(HS2)3. There exist isomorphisms  : S?1 ! S?2 and � : d(K)! d(K) suchthat � � �1 = �2 � . Here  : d(S?1 )! d(S?2 ) and � : � ! � are themaps induced by  and � respectively.In the same spirit, we can often construct isomorphisms between lattices by con-structing isomorphisms between their discriminant groups. The following statementis a special case of results from [Ni] x1.14:Let M be an even inde�nite lattice. Let ` be the minimal number ofgenerators of the discriminant group d(M) and assume that the rankof M is greater than ` + 2. Let M 0 be another even lattice with thesame signature and assume there is an isomorphism  : d(M)! d(M 0)respecting the discriminant quadratic forms qM and qM 0 . Then  isinduced by an isomorphism  :M !M 0:We use these results to prove the following lemma, which completes the proof ofPropostion 4.1:Lemma 4.5. Let S1 and S2 be rank one positive de�nite saturated sublattices ofK?8 , and assume that their orthogonal complements have the same odd discriminantn. Then S1 and S2 are equivalent modulo �+8 . Moreover, such lattices exist foreach positive integer n � 5(mod 8).Proof. Set K = K?8 , which is even by the results of [Ha1] x1.3 or [Ha2]. For animbedding i : S ,! K?8 of the type we are considering, H �= d(K?8 ) is a cyclicgroup of order eight and d(S) is cyclic of order 8n. Let �8 denote the group �K?8 ,which contains �+8 as an index two subgroup. We �rst claim that for any saturatedimbeddings i1; i2 : S ! K?8 there exists a 
 2 �8 such that i1(S) = 
(i2(S)). Thisis a consequence of the �rst result of Nikulin quoted above. The existence of thedesired isomorphism  follows from the second result.This result also implies thatK?8 �= 0@�2 �1 �1�1 2 1�1 1 2 1A� U �E8 �E8



8 BRENDAN HASSETTwhere U is the unique even unimodular quadratic form of signature (1; 1) andE8 is the positive de�nite quadratic form associated to the corresponding Dynkindiagram. For each positive integer a there exists a saturated Zv � E8 with hv; vi =2a [Se] xVII.6.6. Consider elements of0@�2 �1 �1�1 2 1�1 1 2 1A�E8of the form (3; 1; 1) + 8v (respectively (1; 3; 3) + 8v); let S0 denote the sublatticegenerated by such an element. The discriminant of S0 is 8(�3+ 16a) (respectively8(5 + 16a)), and by the �rst result of Nikulin the orthogonal complement to S0in K?8 has discriminant �3 + 16a (respectively 5 + 16a). Thus for each positiveinteger n � 5(mod 8) there is a rank one saturated sublattice of K?8 such that theorthogonal complement has discriminant n. Moreover, this sublattice is equivalentmodulo �8 to one of the sublattices S0.Now consider 
 2 �8 acting by multiplication by �1 on U and trivially on theother components. We �nd that 
jS0 = 1 and 
 62 �+8 , so we conclude that S isalso �+8 -equivalent to S0. In particular, the arguments of the �rst paragraph arestill valid if we replace �8 by �+8 . This completes the proof of the lemma and theproposition. 5. Geometry of the rational mapsOur �rst goal is to prove the following result about the geometry of our rationalparametrizations:Proposition 5.1. Let X be a cubic fourfold containing a plane P such that thequadric surface bundle q : ~X ! P2 has a rational section, and let  : ~X 9 9 KP4denote the birational map obtained by projecting from this section. Then  blowsdown a family of lines parametrized by a surface birational to a degree two K3surface.Proof. Recall that the discriminant curve C � P2 is de�ned as the locus over whichq fails to be smooth. In our case, C is a sextic plane curve such that the doublecover of P2 branched over C is birational to a K3 surface [V] x1.Let T � ~X be a closed integral subscheme meeting the generic �ber of q in asingle reduced point. The induced map T ! P2 is an isomorphism except overa codimension two subset of the base. Let R denote the lines in the �bers of qincident to T (or the irreducible component of this locus dominating the base).The induced map from R to P2 is generically �nite of degree two and is rami�edover the discriminant curve. In particular, R is birational to a degree two K3surface.IfQ is a smooth quadric surface and t 2 Q, then projecting from t blows down thetwo lines incident to t. In particular, the birational map from ~X to P4 constructedfrom T blows down a family of lines birational to R.To conclude this section, we suggest constructions of explicit linear series forsome of the rational maps constructed above. Consider a K3 surface S such that



SOME RATIONAL CUBIC FOURFOLDS 9Pic(S) is generated by two ample divisors h1 and h2 with intersection matrixh1 h2h1 2 2k + 1h2 2k + 1 2where k > 1. Set n = �4+ (2k+1)2 = 4k2+4k� 3, which is positive and satis�esn � 5(mod 8). The sections of OS(hi) give branched double covers si : S ! P2.The pair (s1; s2) induces a map s : S ! P2�P2 and the image S0 has 2k2� 7k+6double points [Fu] x9.3. We assume that the double points of S0 are analyticallyequivalent to the transverse intersection of two smooth surfaces.Let H1 and H2 be the divisors on P2 � P2 such that hi = s�Hi. Let Y be theblow up of P2�P2 along the surface S0 with exceptional divisor E. Our assumptionon the singularities of S0 implies that Y is smooth. We setL = 2H1 + kH2 �Eand consider the linear series H0(Y;OY (L)). We compute that L4 = 3 and adimension count suggests that dim jLj = 5. We assume this linear series de�nes amorphism � : Y ! P5so that the image X = �(Y ) is a smooth cubic fourfold.Under these assumptions, we can compute numerical invariants for some of thesurfaces contained in X . Set F1 = 2H1+(k�1)H2�E and F2 = H1+2(k�1)�Eso that L3F1 = L3F2 = 0:A dimension count suggests that F1 and F2 are e�ective, and we assume they areexceptional divisors for � obtained by blowing up surfaces P and T in X . Underthese assumptions, we �nd that h2; P; T span a rank three sublattice of H4(X;Z)with discriminant n = 4k2 + 4k � 3, and also that P has degree one and so is aplane. Since n � 5(mod 8), the intersection 
T; h2 � P � is necessarily odd.To lend some credibility to this numerology, we should point out the geometry ofthese examples is understood in the cases k = 2; 3. The case k = 2 corresponds tothe cubic fourfolds containing two disjoint planes. The assumptions above are easilyveri�ed in this case. The case k = 3 corresponds to the cubic fourfolds containinga plane P and Veronese surface T such that hP; T i = 3. This example has beenworked out by Tregub [Tr2]. References[BB] W.L. Baily, Jr. and A. Borel, Compacti�cations of arithmetic quotients of bounded sym-metric domains, Ann. of Math. 84 (1966), 442-528.[BD] A. Beauville and R. Donagi, La vari�et�e des droites d'une hypersurface cubique de dimension4, C.R. Acad. Sc. Paris, S�erie I, 301 (1985), 703-706.[Bo] A. Borel, Some metric propertes of arithmetic quotients of symmetric spaces and an ex-tension theorem, J. Di�erential Geom. 6 (1972), 543-560.[Fa] G. Fano, Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate rationalide 4� ordine, Comment. Math. Helv. 15 (1943), 71-80.[Fu] W. Fulton, Intersection Theory, Springer-Verlag, Berlin, Heidelberg, 1984.[GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Springer-Verlag,Berlin, Heidelberg, 1994.[Ha1] B. Hassett, Special Cubic Hypersurfaces of Dimension Four, Harvard University Thesis,1996.[Ha2] B. Hassett, Special cubic fourfolds, Preprint, 1997.
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