SOME RATIONAL CUBIC FOURFOLDS

BRENDAN HASSETT

1. INTRODUCTION

The purpose of this paper is to give new examples of rational cubic fourfolds. Let
C denote the moduli space of cubic fourfolds, a twenty-dimensional quasi-projective
variety. The cubic fourfolds containing a plane form a divisor Cg C C. We prove
the following theorem:

Main Theorem (Theorem 4.2) There is a countably infinite collection of
divisors in Cg which parametrize rational cubic fourfolds. Each of these
is a codimension two subvariety in the moduli space of cubic fourfolds

C.

Experimental evidence strongly suggests that the general cubic fourfold containing
a plane is not rational, but no smooth cubic fourfold has yet been proven to be
irrational.

The key to our construction is the following observation: a cubic fourfold contain-
ing a plane is birational to a smooth quadric surface over k(P?). Indeed, projecting
from the plane gives a rational map to P? whose fibers are quadric surfaces. The
cubic fourfold is rational if the quadric surface over k(IP?) is rational. Using Hodge
theory, we prove that the rational quadric surfaces correspond to a countably infi-
nite union of divisors in Cg. This is quite natural from an arithmetic point of view.
Over Q, the rational quadric surfaces form a countably infinite union of divisors in
the Hilbert scheme of quadric surfaces in P3.

We conclude this introduction by listing the cubic fourfolds known to be rational.
There is an irreducible divisor C14 C C parametrizing rational cubic fourfolds. This
divisor has many geometric characterizations. For example, it is the closure of the
cubic fourfolds containing rational normal scrolls of degree four [Fa] [Trl] [Hal]
and of the locus of Pfaffian cubic fourfolds [BD]. All the examples of rational cubic
fourfolds known to the author are contained in C14 or one of the subvarieties of Cg.
Furthermore, the birational map from P* involves blowing up a surface birational
to a K3 surface (see §5 for details).

We work over the complex numbers C unless mentioned otherwise. Here generic
means ‘in the complement of a Zariski closed proper subset’ and general means ‘in
the complement of a countable union of Zariski closed proper subsets’. A lattice is a
finitely generated free Z-module equipped with a nondegenerate integral quadratic
form.

Part of this work was done while the author was visiting the Institut Mittag-Leffler. This
paper was revised while the author was supported by a National Science Foundation Postdoctoral
Fellowship.
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FiGure 1. Known Rational Cubic Fourfolds

2. GEOMETRY OF QUADRIC SURFACE BUNDLES

For our purposes, a quadric surface bundle is a flat projective morphism ¢ : @ —
B of regular connected schemes, such that the generic fiber is a smooth quadric
surface. The relative Fano scheme F — B of a quadric surface bundle parametrizes
the lines contained in the fibers of ¢q. For a smooth quadric surface over a field, this
consists of two disjoint smooth genus zero curves, corresponding to the rulings of
the surface.

Proposition 2.1. Let ¢ : Q — Spec(k) be a smooth quadric surface over a field k.
Then the following are equivalent:

1. Q is rational over k

2. The Fano scheme F of Q has a divisor defined over k, with degree one on
each component

3. Q has a zero-cycle of odd degree defined over k

Proof. Let Z denote the universal line over F, so that we have a correspondence

p Z q
N N\
Q F

and an induced Abel-Jacobi map
a = q.p* : Ch*(Q) = Pic(F)

where Ch?(Q) denotes the Chow group of zero-cycles on Q.

The quadric Q is rational if and only if it has a point over k. This point is
mapped by « to a pair of points defined over k, one on each component of F.
Conversely, given such a pair of points, the intersection of the corresponding lines
gives a k-point of Q. This proves the equivalence of the first two conditions.

Clearly either of the first two conditions implies the third; we prove the converse.
Let z be a cycle of odd degree 2n + 1 on Q and defined over k. The cycle a(z) has
degree 2n + 1 on each component of F. The canonical class K is defined over &k
and has degree —2 on each component of F. Consequently, nK r + a(z) has degree
one on each component of F. Given a nonzero section s € H*(F,nKr + a(z)), the
locus s = 0 consists of a pair of points on F, one on each component.

The proposition has the following consequence:
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Corollary 2.2. Let ¢ : @ — B be a quadric surface bundle and assume B is
rational over the base field. Let @) denote the class of the generic fiber of ¢ and
assume there is a cycle T € Ch?(Q), defined over the base field, such that (7', Q) is
odd. Then Q is rational over the base field.

We apply the proposition to k& = k(B), the function field of B. Note that (,)
denotes the intersection product on Q.

In our analysis of cubic fourfolds, we shall use a transcendental version of this
result:

Proposition 2.3. Let ¢ : @ — B be a quadric surface bundle over a rational
projective variety. Assume there is a class T € H*(Q,Z) N H?*2(Q) such that
(T, Q) is odd. Then X is rational over C.

Proof. By the previous proposition, it suffices to construct a divisor on the relative
Fano scheme F — B intersecting the components of the generic fiber in (Q,T)
points. We may discard any components of F that fail to dominate B. Choose a
resolution of singularities o : F — F and set Z = F x» Z. We again obtain a
correspondence of smooth varieties
Z g
N
Q F.

and an induced map on cohomology

a=qp": HY(QZ)NH**(Q) - H*(F,Z)n H"(F).

’\"Bz

By the Lefschetz Theorem on (1,1) classes, @(T) is a divisor on F. The image of
this divisor in F has the desired properties. O

3. CUBIC FOURFOLDS CONTAINING A PLANE

First we fix some notation. The Hilbert scheme of cubic hypersurfaces in P° is a
projective space P55, The smooth hypersurfaces form an open subset & C P% and
are called cubic fourfolds. Two cubic fourfolds are isomorphic if and only if they
are equivalent under the action of SLg. Consequently, the isomorphism classes of
cubic fourfolds correspond to elements of the orbit space

Applying Geometric Invariant Theory [GIT] §4.2, one may prove that C has the
structure of a twenty-dimensional quasi-projective variety; C is called the moduli
space of cubic fourfolds.

Now consider a cubic fourfold X containing a plane P. A dimension count
shows the isomorphism classes of such cubic fourfolds form a divisor Cg C C. We
shall restrict our attention to these special cubic fourfolds; for more details see [V],
[Hal], or [Ha2]. Let h denote the hyperplane class of X, and let () denote the
class of a quadric surface residual to P in a three-dimensional linear space, so that
h?> = P + Q. Let X denote the blow-up of X along P. Projecting from the plane
P, we obtain a morphism

q: X = P2
The fibers of this morphism correspond to quadric surfaces in the class ). In
particular, a cubic fourfold containing a plane is birational to a quadric surface
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bundle over P2. Applying the results of the previous section, we obtain the following
theorem:

Theorem 3.1. Let X be a cubic fourfold containing a plane P, and let () be the
class of a quadric surface residual to P. Assume there is a class T € H*(X,Z) N
H?2(X) such that (Q,T) is odd. Then X is rational over C.

4. ANALYSIS OF THE PERIODS

Our next goal is to determine when the hypotheses of the theorem are satisfied.
We retain the terminology of the previous section. The methods we use are ex-
plained in more detail in [Hal] §2 and [Ha2]; [V] also contains a detailed discussion
of the periods of cubic fourfolds containing a plane. Let Ky C H*(X,7Z) denote the
sublattice spanned by h? and Q. The intersection form on H*(X,Z) restricts to

h2 Q
l3 2.
Q|2 4

Let K¢ denote the orthogonal complement to Ky in H*(X,7Z).

We now recall some results about the periods of cubic fourfolds containing a
plane. More general statements are proved in [Hal] §1,2 and [Ha2]. Let L be a
lattice isomorphic to the middle cohomology of a cubic fourfold; L has signature
(21,2). Fix distinguished elements h% and P in L, corresponding to the hyperplane
class squared and a plane contained in some cubic fourfold. Let X be a cubic
fourfold containing a plane P, and let ¢ : H*(X,Z) — L be a complete marking of
its cohomology preserving the classes h? and P. This induces a map

¢:H*(X,C) - L®C.

Now the Hodge structure on the middle cohomology of X is entirely determined
by the one-dimensional subspace ¢(H*!(X)) C Kz ® C, which is isotropic with
respect to the intersection form. Consequently, each completely marked cubic four-
fold containing a plane yields a point on the quadric hypersurface of P(Kg ® C)
where the intersection form is zero. The local period domain for cubic fourfolds
containing a plane is a topologically open subset of this hypersurface, consisting of
one of the connected components of the open set where the Hermitian form — (u, v)
is positive. This manifold has the structure of a nineteen-dimensional bounded
symmetric domain of type IV [Sa] (§6 of the appendix); it is denoted Dj.

Let I'f denote the automorphisms of L which preserve the intersection form, act
trivially on Kg, and respect the orientation on the negative definite part of Kg .
The group I'y acts from the left on Dy C P(Kg ®C). The quotient I's \Dj is called
the global period domain for cubic fourfolds containing a plane. This is the quotient
of a bounded symmetric domain by an arithmetic group and so is a normal quasi-
projective variety[BB]. Let C§*" be the variety parametrizing the pairs (X, P),
where X is a cubic fourfold and P is plane contained in X. The period map

T8 : Cg'¥" — F;\Dg

is an algebraic open immersion of quasi-projective varieties. This follows from the
Torelli theorem for cubic fourfolds [V] and the Borel extension theorem [Bo].
We now state our main technical result:
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Proposition 4.1. Consider the Hodge structures in the global period domain
I \Dj for which there exists some T € L N H*? such that (T, Q) is odd. These
Hodge structures form a countable union of divisors, indexed by the discriminant
of the saturation of Kg + ZT. This discriminant may be any positive integer
n = 5(mod 8).

Here the discriminant of a lattice means the determinant of its intersection form.
Later we shall introduce a more refined notion.

We are interested in the restriction of these divisors to the Zariski open subset
Cg'®" of the period domain. These are also irreducible divisors and only finitely
many of them are contained in the complement to Cg'*". By Theorem 3.1, these
divisors parametrize rational cubic fourfolds. Thus we obtain our main theorem:

Theorem 4.2 (Main Theorem). There is a countably infinite collection of divisors
in Cg which parametrize rational cubic fourfolds. Each of these is a codimension
two subvariety in the moduli space of cubic fourfolds C.

Remark 4.3. 1)There are rational cubic fourfolds X containing a plane such that
the quadric surface bundle X — P2 does not have a rational section. For example,
certain components of Cg N Cy4 are of this type.

2)It seems likely that the only discriminants corresponding to divisors in the bound-
ary (Tg \D§)\Cia™ are n = 5 and 13.

The remainder of this section is the proof of Proposition 4.1. We first establish
the following lemma:

Lemma 4.4. Let z be a Hodge structure in D§. Then the following conditions are
equivalent.
1. There exists a cohomology class T € L N H??(z) with (T, Q) odd.
2. There exists a saturated rank one sublattice S C Kg N H??(z) such that the
orthogonal complement to S in Kg has odd discriminant.

Furthermore, the discriminant n of the saturation of Kg + ZT is congruent to 5
modulo 8. This is equal to the discriminant of the orthogonal complement to S in
K.

Proof. The key ingredient of this lemma is the following fact: let K be a saturated
nondegenerate sublattice of a unimodular lattice and let K+ be its orthogonal
complement. Then K and K+ have the same discriminant (up to sign). This is
proved in [Ni] §1.6.

Assume the first condition holds. We may find an element 7 in the saturation
of Kg + ZT so that Kg + ZT; is saturated and (Q),T1) = 1. The intersection form
on Kg + ZT; takes the form

|h* Q Ty
h*| 3 2 a
Ol2 4 1
T1 a 1 b
with discriminant n = —3 + 4(a — a?) + 8b, which is congruent to 5 modulo 8. Let

S be the intersection of Kg + ZT; with KSL. By construction S is saturated and
contained in H?2(z). The orthogonal complement to S in Kg- coincides with the
orthogonal complement to Kg + ZT} in the full cohomology lattice. In particular,
this lattice has discriminant n, which is odd.
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Now assume the second condition holds. Again, the saturation of Kg+ S has the
same discriminant as the orthogonal complement to S in Kg-. If the discriminant
of the saturation of Kg + S is odd, then it contains a class T with (T, Q) odd.
Otherwise, the intersection form could be written

|h* Q Ty
|13 2 a
Ql2 4 0
T1 a 0 b

for some T in the saturation of Kg + S. But the discriminant would then be even,
a contradiction. O

We now analyze the geometry of these Hodge structures in the global period
domain. Suppose we are given a positive definite rank one saturated sublattice
S C Kg, such that the orthogonal complement has odd discriminant. These are
precisely the sublattices arising from the lemma, since the Hodge-Riemann bilinear
relations imply that the intersection form on L N H?2(z) is positive definite. We
determine the x € Dj for which S C H*?(z). Because z corresponds to H>', it is
necessary and sufficient that = be orthogonal to S with respect to the intersection
form. The locus of such z forms a hyperplane section of Dy with respect to its
imbedding in P(Kz ®C). It is not difficult to see that this is a nonempty irreducible
divisor in the period domain. Like D, it is a bounded symmetric domain of type
IV (see the appendix of [Sa], §6 for more details). Its image in I's \ Dy parametrizes
those periods with algebraic classes of type S. This subvariety is an algebraic
divisor in the global period domain, because both the global period domain and
the normalization of the subvariety are arithmetic quotients of bounded symmetric
domains [BB] [Bo].

As we choose various S satisfying the conditions stipulated above, we obtain
divisors in the global period domain. Now S; and S determine the same divisor if
and only if Sy = y(S;) for some v € Fé"; we then say that S; and S are equivalent
modulo Fé". Hence we obtain a bijective correspondence between the following two
types of data

1. irreducible divisors in F;\Dg parametrizing Hodge structures z satisfying the

conditions of Lemma 4.4
2. T'§ equivalence classes of rank one positive definite saturated sublattices S C
K¢, such that the orthogonal complement has odd discriminant

We shall prove that these equivalence classes are classified by the discriminants of
their orthogonal complements. Qur argument relies heavily on ideas of Nikulin [Ni].
If K is a lattice then the bilinear form induces an inclusion K — K* = Hom(K, Z).
The discriminant group of K is defined as the quotient

d(K) = K*/K.

The order of d(K) is equal to the absolute value of the discriminant of K, so d(K)
is trivial iff K is unimodular. For example

d(Kg) = %(2112 +Q)Z/(2h* + Q)Z = 7. /8.

The bilinear form on K extends to a Xvalued bilinear form on K*, which induces
a Q/Z-valued bilinear form on d(K). Furthermore, if K is even then the quadratic
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form induces a Q/2Z-valued quadratic form on d(K), denoted qx. We use ' to
denote the automorphisms of K acting trivially on d(K).

Under certain conditions, imbeddings of lattices with compatible signatures are
classified by homomorphisms of the corresponding discriminant groups. The fol-
lowing special case of results from [Ni] §1.15 illustrates this principle:

Assume K is an even lattice of signature (19,2) and S is a rank one
positive definite lattice. A saturated imbedding of S into K corresponds
to the following data:
1. A subgroup Hg C d(S)
2. A subgroup Hx C d(K)
3. An isomorphism h : qs|Hs — qx|Hk
4. An even lattice S* of signature (18,2) and an isomorphism 7 :
d(S*) — —0 of discriminant quadratic forms. Here 6 := ((gs @
—qgK)|n+)/H where H is the graph of h in d(S) & d(K).
Two such imbeddings (denoted S; and S) are conjugate under the
action of 'k if the following conditions are satisfied
1. Hg, = Hg,
2. hl(HS1) = h2(H52)
3. There exist isomorphisms ¢ : S{ — Si- and ¢ : d(K) — d(K) such
that Eom = my 01p. Here ¢ : d(Sit) — d(S5-) and € : § — § are the
maps induced by ¢ and £ respectively.
In the same spirit, we can often construct isomorphisms between lattices by con-
structing isomorphisms between their discriminant groups. The following statement
is a special case of results from [Ni] §1.14:

Let M be an even indefinite lattice. Let ¢ be the minimal number of
generators of the discriminant group d(M) and assume that the rank
of M is greater than £ + 2. Let M' be another even lattice with the
same signature and assume there is an isomorphism 1 : d(M) — d(M")
respecting the discriminant quadratic forms ¢p; and gpr. Then o is
induced by an isomorphism v : M — M’.
We use these results to prove the following lemma, which completes the proof of
Propostion 4.1:

Lemma 4.5. Let S; and S be rank one positive definite saturated sublattices of
K4, and assume that their orthogonal complements have the same odd discriminant
n. Then S; and Sy are equivalent modulo I'y. Moreover, such lattices exist for
each positive integer n = 5(mod 8).

Proof. Set K = Kg, which is even by the results of [Hal] §1.3 or [Ha2]. For an
imbedding i : S < K3 of the type we are considering, H = d(Kg ) is a cyclic
group of order eight and d(S) is cyclic of order 8n. Let I's denote the group FK8L7
which contains F8+ as an index two subgroup. We first claim that for any saturated
imbeddings iy, : S — Kj there exists a 7 € I's such that i1(S) = y(i2(S)). This
is a consequence of the first result of Nikulin quoted above. The existence of the
desired isomorphism ) follows from the second result.
This result also implies that
-2 -1 -1
Kiy=|-1 2 1 |eUsEsaE;s
-1 1 2
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where U is the unique even unimodular quadratic form of signature (1,1) and
Eyg is the positive definite quadratic form associated to the corresponding Dynkin
diagram. For each positive integer a there exists a saturated Zv C Eg with (v,v) =
2a [Se] §VIL.6.6. Consider elements of

-2 -1 -1
-1 2 1 | ®Eg
-1 1 2

of the form (3,1,1) + 8v (respectively (1,3,3) + 8v); let S’ denote the sublattice
generated by such an element. The discriminant of S’ is 8(—3 + 16a) (respectively
8(5 + 16a)), and by the first result of Nikulin the orthogonal complement to S’
in Kg has discriminant —3 + 16a (respectively 5 4+ 16a). Thus for each positive
integer n = 5(mod 8) there is a rank one saturated sublattice of Kg- such that the
orthogonal complement has discriminant n. Moreover, this sublattice is equivalent
modulo I's to one of the sublattices S’.

Now consider v € T's acting by multiplication by —1 on U and trivially on the
other components. We find that |S’ = 1 and v ¢ T's, so we conclude that S is
also F;—equivalent to S'. In particular, the arguments of the first paragraph are
still valid if we replace I's by F8+. This completes the proof of the lemma and the
proposition. ([l

5. GEOMETRY OF THE RATIONAL MAPS

Our first goal is to prove the following result about the geometry of our rational
parametrizations:

Proposition 5.1. Let X be a cubic fourfold containing a plane P such that the
quadric surface bundle ¢ : X — P? has a rational section, and let ¢ : X --» P*
denote the birational map obtained by projecting from this section. Then 3 blows
down a family of lines parametrized by a surface birational to a degree two K3
surface.

Proof. Recall that the discriminant curve C C P? is defined as the locus over which
g fails to be smooth. In our case, C is a sextic plane curve such that the double
cover of P? branched over C'is birational to a K3 surface [V] §1.

Let T C X be a closed integral subscheme meeting the generic fiber of ¢ in a
single reduced point. The induced map 7" — P? is an isomorphism except over
a codimension two subset of the base. Let R denote the lines in the fibers of ¢
incident to T' (or the irreducible component of this locus dominating the base).
The induced map from R to P? is generically finite of degree two and is ramified
over the discriminant curve. In particular, R is birational to a degree two K3
surface.

If Q is a smooth quadric surface and ¢t € Q, then projecting from ¢ blows down the
two lines incident to ¢. In particular, the birational map from X to P?* constructed
from T blows down a family of lines birational to R. O

To conclude this section, we suggest constructions of explicit linear series for
some of the rational maps constructed above. Consider a K3 surface S such that
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Pic(S) is generated by two ample divisors h; and hs with intersection matrix

| I h
| 2 2k+1
hy | 2k+1 2

where k > 1. Set n = —4 + (2k + 1)? = 4k? + 4k — 3, which is positive and satisfies
n = 5(mod 8). The sections of Og(h;) give branched double covers s; : S — P2
The pair (s1, 52) induces a map s : S — P2 x P2 and the image S’ has 2k® — 7k + 6
double points [Fu] §9.3. We assume that the double points of S’ are analytically
equivalent to the transverse intersection of two smooth surfaces.

Let H; and H, be the divisors on P2 x P2 such that h; = s*H;. Let Y be the
blow up of P2 x P? along the surface S’ with exceptional divisor E. OQur assumption
on the singularities of S’ implies that Y is smooth. We set

L=2H,+kHy — E

and consider the linear series H°(Y, Oy (L)). We compute that L? = 3 and a
dimension count suggests that dim |L| = 5. We assume this linear series defines a
morphism

¢:Y — P
so that the image X = ¢(Y") is a smooth cubic fourfold.

Under these assumptions, we can compute numerical invariants for some of the
surfaces contained in X. Set Fy =2H, +(k—1)Hy— E and F, = Hi+2(k—1)—E
so that

L3F, = L’F, = 0.
A dimension count suggests that F; and Fy are effective, and we assume they are
exceptional divisors for ¢ obtained by blowing up surfaces P and T in X. Under
these assumptions, we find that h%, P,T span a rank three sublattice of H*(X,Z)
with discriminant n = 4k? + 4k — 3, and also that P has degree one and so is a
plane. Since n = 5(mod 8), the intersection <T, h? — P> is necessarily odd.

To lend some credibility to this numerology, we should point out the geometry of
these examples is understood in the cases £k = 2,3. The case k = 2 corresponds to
the cubic fourfolds containing two disjoint planes. The assumptions above are easily
verified in this case. The case k = 3 corresponds to the cubic fourfolds containing
a plane P and Veronese surface T' such that (P,T) = 3. This example has been
worked out by Tregub [Tr2].
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