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tWe prove that Viehweg's moduli fun
tor of stable surfa
es is lo
ally
losed. 1. Introdu
tionThe moduli theory of 
urves has been studied extensively in the past fewde
ades. A very important and useful feature of the theory is that the modulispa
e of smooth proje
tive 
urves of genus g admits a geometri
ally mean-ingful 
ompa
ti�
ation as the moduli spa
e of stable 
urves of genus g. Thesu

ess of moduli theory of 
urves leads naturally to a desire for a similartheory for higher dimensional varieties.In re
ent years there has been great progress in the moduli theory of sur-fa
es and higher dimensional varieties by Alexeev, Koll�ar, Shepherd-Barron,and Viehweg [1℄; [11℄; [13℄; [14℄. A

ording to their work, moduli spa
es ex-ist for many moduli problems, in parti
ular for smooth 
anoni
ally polarizedvarieties. More generally it is established that if a moduli problem satis�es
ertain properties, then a 
orresponding (
oarse) moduli spa
e exists. Themost important of these properties are separatedness, boundedness and lo
al
losedness . A

ording to the above authors' work the former two of these holdfor the moduli problem of 
anoni
ally polarized stable surfa
es { the 
andi-date for a geometri
ally meaningful 
ompa
ti�
ation of the moduli spa
e ofsmooth 
anoni
ally polarized surfa
es. Lo
al 
losedness, however, has pre-sented a very stubborn problem.In fa
t, one of the main problems is that it is not entirely 
lear what the\right" de�nition of the moduli fun
tor should be. This is a very deli
ateRe
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2 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSproblem as one would like to make the fun
tor large enough to obtain a
ompa
t moduli spa
e, but enlargening the 
lass too mu
h 
ould lead to aloss of separatedness and/or boundedness.In addition, not only the admissible models have to be de
ided, but also theadmissible families of those models. Experts generally agree on what modelsshould be allowed (the semi log 
anoni
al models). However, the right notionof admissible families is still to be de
ided.Both Koll�ar and Viehweg suggest reasonable de�nitions, but lo
al 
losed-ness has yet to be established for either of their moduli fun
tors. At thistime it is not even 
lear whether their de�nitions di�er. However, we shouldpoint out that Koll�ar's moduli fun
tor is known to satisfy a weak form oflo
al 
losedness. Pre
isely, after passage to a formal or �etale lo
al ring, lo
al
losedness holds provided we restri
t to base 
hange morphisms arising fromlo
al ring homomorphisms [12℄, x14.The goal of this paper is to prove that Viehweg's moduli fun
tor of 
anon-i
ally polarized varieties is lo
ally 
losed.De�nitions and notation. Every s
heme is 
onsidered to be of �nitetype over an algebrai
ally 
losed �eld k unless spe
i�
ally noted otherwise.Let f : X ! S be a morphism. Then Xs denotes the �bre of f over thepoint s 2 S and fs denotes the restri
tion of f to Xs. More generally, for amorphism � : T ! S, let fT : XT = X �S T ! T . In parti
ular one has thefollowing 
ommutative diagram:XT = X �S T �X����! XfT??y ??yfT �����! SFor a 
oherent OX -module F , FT will denote ��XF on XT . Tensor produ
tsof OXT -modules are over OXT . These 
onventions will be used through theentire arti
le.We will write F� for the dual OX -module HomX(F ;OX) when there is norisk of 
onfusion. The double dual F�� is 
alled the re
exive hull of F andthere is a natural OX -module homomorphismF ! F��;F is said to be re
exive if this is an isomorphism. We shall also 
onsiderre
exive powers F [m℄ := (F
m)�� F [�m℄ := (F
m)�for m > 0. In general, there exist natural maps(F��)T ! (FT )�� and (F [m℄)T ! (FT )[m℄
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h need not be isomorphisms, even when F is re
exive. Of 
ourse, thesemaps are isomorphisms when F is lo
ally free.A
knowledgements: We both owe a great debt to J�anos Koll�ar for patientlyanswering our questions about the moduli problems and te
hni
al issues ad-dressed in this paper. We would also like to thank E
kart Viehweg for manyuseful dis
ussions and for inviting the se
ond author to visit Universit�at Es-sen. The �rst author bene�tted from 
onversations with Dan Abramovi
h,David Hyeon, and Rahul Pandharipande.2. Moduli fun
torsDe�nition 2.1. Fix a base s
heme B. The moduli fun
tor of polarizedproper s
hemes is the 
ontravariant fun
torMP : B-s
hemes! Setsgiven by MP(S=B) := 8<: pairs (f : X ! S;L), wheref is a 
at and proper morphism,L is an f -ample line bundle on X9=;� swhere two families (f1 : X1 ! S;L1) and (f2 : X2 ! S;L2) are equivalent[(f1 : X1 ! S;L1) s (f2 : X2 ! S;L2)℄ i� there is an isomorphism h :X1 ! X2 su
h that f1 = f2 Æ h and there is a line bundle M on S su
h thatL1 �= h�L2 
 f�1M. For any morphism of B-s
hemes, � : T ! S, we haveMP(�)(X ! S;L) = (XT ! T; ��XL):In this arti
le we will restri
t to the 
ase of B = k an algebrai
ally 
losed�eld. S
hk will denote the 
ategory of k-s
hemes.Any subfun
tor of this moduli fun
tor will be 
alled a moduli fun
tor ofpolarized proper s
hemes.De�nition 2.2. A subfun
tor F � MP is 
alled lo
ally 
losed i� thefollowing 
ondition is satis�ed:For every (f : X ! S;L) 2 MP(S) there is a lo
ally 
losed subs
hemej : Su ,! S su
h that if � : T ! S is any morphism then(fT : XT ! T; ��XL) 2 F(T ) i� there is a fa
torization T �! Su j! S:We say that F �MP is open i� Su � S is open for every S.For the de�nition of bounded, separated, and 
omplete moduli fun
tors thereader is referred to [14℄, 1.15.



4 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSDe�nition 2.3. Fix a polynomial h 2 Q[t℄ be su
h that h(Z) � Z. Themoduli fun
tor of polarized s
hemes with Hilbert polynomial h is the subfun
torMPh of MP given by:MPh(S) = f(f : X ! S;L) 2MP(S) j �(L�Xs) = h(�) for all � 2 Z and s 2 Sg:This is an open and 
losed subfun
tor.De�nition 2.4. A subfun
tor M[N ℄ � MP is 
alled a moduli fun
tor of
anoni
ally polarized Q-Gorenstein s
hemes of index N if, for ea
h (f : X !S;L) 2M[N ℄(S),(2.4.1) Xs is 
onne
ted, Cohen-Ma
aulay, and Gorenstein outside a 
losedsubs
heme of 
odimension at least two for ea
h s 2 S;(2.4.2) f is equivalent to one of the form (f : X ! S; ![N ℄X=S).Remark 2.5. Assumption 2.4.1 implies the �bers are equidimensional pro-je
tive s
hemes. One 
an show that the relative Cohen-Ma
aulay 
onditionis open (see [5℄ EGAIV3, 12.2.1), as is the lo
us where the relative dualizingsheaf is lo
ally free (the relative Gorenstein lo
us). Sin
e the 
omplement tothe relative Gorenstein lo
us interse
ts the �bers in 
odimension � 2 over anopen subset of the base, it follows that Assumption 2.4.1 is open. Note thatthe singularity assumptions may also be expressed as a 
ondition on the mor-phism f : its relative dualizing 
omplex is supported in degree �dim(X=S)and the resulting dualizing sheaf is lo
ally free over an open subset whose
omplement meets ea
h �ber in 
odimension two. We refer the reader to [3℄for a re
ent a

ount of relative duality.We emphasize that for families of 
anoni
ally polarized Q-Gorenstein s
hemesof index N , ![N ℄X=S is invertible by de�nition. This is a 
ondition on the mor-phism, not just a 
ondition on the �bers. Indeed, ![N ℄X=S may fail to be in-vertible even when ![N ℄Xs is invertible for ea
h s 2 S (see [13℄). Also, it is notentirely obvious that Assumption 2.4.2 a
tually yields a subfun
tor, i.e., thatfamilies of 
anoni
ally polarized s
hemes pull ba
k to families of 
anoni
allypolarized s
hemes. This is proved in the following lemma:Lemma 2.6. Given a family of 
anoni
ally polarized Q-Gorenstein s
hemesof index N , f : X ! S, and a morphism � : T ! S, we have��X![N ℄X=S ' ![N ℄XT =T :Proof. Let U � X be the relative Gorenstein lo
us of f , i.e., the largestopen subset U of X su
h that Us is Gorenstein for all s 2 S or equivalentlythe largest open subset U of X su
h that !X=S jU is a line bundle. Then



REFLEXIVE PULL-BACKS AND BASE EXTENSION 5![N ℄X=S jU ' !NU=S and hen
e��X![N ℄X=S j��1X U ' ��X!NU=S ' !N��1X U=T ' ![N ℄XT =T j��1X U :Now 
odim(Us; Xs) � 2 for all s 2 S, so 
odim((��1X U)t; (XT )t) � 2 for allt 2 T . Finally ��X![N ℄X=S and ![N ℄XT =T are re
exive, so sin
e they are isomorphi
on ��1X U , they are isomorphi
 on XT (
f. 3.6.2). �IfM[N ℄ is a fun
tor of 
anoni
ally polarized Q-Gorenstein s
hemes of indexN then we 
an 
onsiderM[N ℄h as well. An argument using 3.6 (and very similarto Lemma 2.6) impliesM[N ℄h (S) = f(f : X ! S) 2M[N ℄(S) j �(![��N ℄Xs ) = h(�)for all � 2 Z and s 2 S.g:Remark 2.7. Note that we speak of \a" moduli fun
tor and not \the"moduli fun
tor. The reason is that in order to obtain a relatively ni
e modulispa
e one has to restri
t to a smaller 
lass than all the 
anoni
ally polarizedQ-Gorenstein s
hemes of index N . On the other hand one 
ould 
onsider\the" moduli spa
e of smooth varieties, but in that 
ase one would not obtaina 
ompa
t moduli spa
e. The \right" 
lass of s
hemes will be somewherebetween these two and part of the diÆ
ulty is to identify that 
lass.Assumptions 2.8. Assume the following:(2.8.1) M[N ℄h is lo
ally 
losed;(2.8.2) M[N ℄h is bounded;(2.8.3) M[N ℄h is separated;(2.8.4) M[N ℄h is 
omplete;(2.8.5) for all smooth proje
tive 
urves S, and for all (f : X ! S) 2M[N ℄h (S), the sheaf f�![��N ℄X=S is semi-positive for all � suÆ
ientlylarge and divisible.Theorem 2.9. [10℄, 4.2.1; [13℄, 5.7; [11℄, 5.6; [14℄, 9.23, 9.30 Assume thatk has 
hara
teristi
 zero. We retain the notation introdu
ed above and assumethat M[N ℄h sati�es the 
onditions of 2.8. Let � > 0 be a �xed integer su
h that![��N ℄X is very ample and without higher 
ohomology for all X 2M[N ℄h (k).Then there exists a 
oarse algebrai
 moduli spa
e M[N ℄h forM[N ℄h whi
h is aproje
tive s
heme and for all �� 0 there exist a p > 0 and an ample invertiblesheaf �(p)����N on M[N ℄h , su
h that for all (f : X ! S) 2 M[N ℄h (S) and for theindu
ed morphism � : S !M[N ℄h one has ���(p)����N = �det f�![����N ℄X=S �p.



6 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSViehweg's Fun
tor. Property V[N ℄ Consider a family of polarized va-rieties, f : X ! S, satisfying Assumption 2.4.1. It will be said that f satis�esproperty V[N ℄ if ![N ℄X=S is invertible.Note that families of 
anoni
ally polarized Q-Gorenstein s
hemes of indexN automati
ally satisfy property V[N ℄ (by Assumption 2.4.2).De�nition 2.10. LetV[N ℄;dh be the moduli fun
tor of 
anoni
ally polarizedQ-Gorenstein s
hemes of index N and Hilbert polynomial h satisfying thefollowing:(2.10.1) for ea
h s 2 S, Xs is a redu
ed s
heme of dimension d and hassemi log 
anoni
al singularities.We emphasize that we are retaining Assumptions 2.4.1 and 2.4.2. Notethat ea
h �ber Xs automati
ally has index N .Let N 0 = mN be a positive multiple of N and h0(t) = h(mt). There is anatural transformation, V[N ℄;dh ! V[N 0℄;dh0 ;indu
ed by taking the mth power of the 
anoni
al polarization.Koll�ar's Fun
tor. Property K Consider a family of polarized varieties,f : X ! S, satisfying Assumption 2.4.1. It will be said that f satis�esproperty K if ��X![j℄X=S ' ![j℄XT =Tfor any morphism, � : T ! S, and ea
h j 2 Z.For 
anoni
ally polarized Q-Gorenstein s
hemes of index N , it suÆ
es toverify this for j = 1; : : : ; N � 1. Indeed, 3.6 yields![j+�N ℄X=S = ![j℄X=S 
 (![N ℄X=S)� :De�nition 2.11. Let K[N ℄;dh be the moduli fun
tor of 
anoni
ally polarizedQ- Gorenstein s
hemes of index N and Hilbert polynomial h satisfying thefollowing:(2.11.1) for ea
h s 2 S, Xs is a redu
ed s
heme of dimension d and hassemi log 
anoni
al singularities;(2.11.2) ea
h family (f : X ! S; ![N ℄X=S) 2 K[N ℄;dh (S) satis�es property K.If a family satis�es property K, then the family is in K[N ℄;dh if the indi
esof the �bers all divide N . Let N 0 = mN be a positive multiple of N andh0(t) = h(mt). Then the natural transformation,K[N ℄;dh ! K[N 0℄;dh0 ;indu
ed by taking the mth power of the 
anoni
al polarization, is an openimmersion.
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onditions are stronger than those of Viehweg's fun
tor, so there isa natural transformation of moduli fun
tors,K[N ℄;dh ! V[N ℄;dh ;indu
ing a bije
tion between K[N ℄;dh (k) and V[N ℄;dh (k).Moduli of Surfa
es: Smoothability and Boundedness.De�nition 2.12. Let V[N ℄;2h;sm (k) denote the following subset of V[N ℄;2h (k):V[N ℄;2h;sm (k) = fX j X 2 V[N ℄;2h (k); and 9(g : Y ! C) 2 V[N ℄;2h (C); su
h thatC is an irredu
ible 
urve, X ' X
 for some 
 2 C, andXgen is a normal surfa
e with at most rational double points.gWe de�ne K[N ℄;2h;sm (k) analogously.On
e we 
onstru
t the moduli s
hemes V [N ℄;2h and K[N ℄;2h , we may realizeV[N ℄;2h;sm (k) and K[N ℄;2h;sm (k) as the 
losed points of 
ertain subvarieties. The pointssatisfying the smoothability 
ondition form a union of irredu
ible 
omponents,and this union forms a 
losed subvariety. However, this subvariety does notne
essarily admit a natural s
heme stru
ture.Remark 2.13. Assume that k has 
hara
teristi
 zero for the remainder ofthis subse
tion. [1℄, 5.11 implies that there exists an N 2 N su
h thatVh(k) := [m2NV[m℄;2h(mt)(k) = V[N ℄;2h(Nt)(k)and Vh;sm(k) := [m2NV[m℄;2h(mt);sm(k) = V[N ℄;2h(Nt);sm(k):In order to 
onstru
t moduli spa
es for V[N ℄;dh and K[N ℄;dh , one has to verifythe assumptions of 2.8. All the properties listed in 2.8, ex
ept 2.8.1, are thesame for both V[N ℄;dh and K[N ℄;dh .� [10℄, 2.1.2 implies 2.8.2.� [13℄, 5.1 implies 2.8.3 and 2.8.4, at least for the irredu
ible 
ompo-nents satisying the smoothability 
ondition. For the general 
ase,one has to 
onstru
t a unique stable limit for a one-parameterfamily of nonnormal stable surfa
es. Consider its normalizationas a family of stable log surfa
es with boundary equal to the 
on-du
tor. Apply the log minimal model program and the results of[7℄ to obtain a unique limiting stable log surfa
e. We glue ba
ktogether along the 
ondu
tor to re
over the stable limit of ouroriginal family.� [11℄, 4.12 implies 2.8.5.



8 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSThat leaves us to verify 2.8.1, and in the rest of the arti
le we will 
on
en-trate on this property.Proof of Lo
al Closedness. To prove that V[N ℄;dh is lo
ally 
losed, onewould naturally list the properties of the fun
tor and prove one by one thatall of them are lo
ally 
losed. However, this requires spe
ial attention. A po-tentially tri
ky part is that the order of this pro
edure matters. For instan
e,the requirement that ![N ℄X=S be invertible should not be 
onsidered until onlyopen properties are left, be
ause it may very well happen that ![N ℄X=S is notinvertible along an admissible �ber Xs, but ![N ℄XT =T be
omes invertible afterrestri
ting to some lo
ally 
losed T � S 
ontaining s. In parti
ular the lo
uswhere ![N ℄X=S is invertible does not 
oin
ide with the lo
us where ![N ℄Xs is invert-ible. The key problem is: taking re
exive powers does not generally 
ommutewith base extension.The next theorem is the main result of this arti
le. Here we redu
e lo
al
losedness to a rather te
hni
al statement whi
h will be proved in the nextse
tion.Theorem 2.14. The moduli fun
tor of 
anoni
ally polarized Q-Gorensteins
hemes of index N is lo
ally 
losed.Proof. In proving lo
al 
losedness, we address the 
onditions imposed onthe �bers of f : X ! S separately from the 
onditions imposed on the mor-phism f itself. We have already observed in 2.5 that 
ondition 2.4.1 is open.Now we turn to 
ondition 2.4.2, i.e., ![N ℄X=S is lo
ally free. Suppose we are givenan arbitrary family of polarized varieties (f : X ! S;L) with �bers satisfying2.4.1. We apply 3.11 with F = !
NX=S . This sheaf may be terribly singular,perhaps even with torsion along 
ertain �bers. However, !
NX=S does have onesalient property: it 
ommutes with arbitrary base extensions � : T ! S, i.e.,��X!
NX=S = !
NXT =T :By 3.11 there exists a lo
ally 
losed subs
heme Su � S with the followinguniversal property. Given a morphism � : T ! S, there exists an invertiblesheaf N on T and an isomorphism(!
NXT =T )�� '�! LT 
 f�TNif and only if � fa
tors through Su. By de�nition we have![N ℄XT =T = (!
NXT =T )��;so the proof that 
ondition 2.4.2 is 
losed is 
omplete. �Theorem 2.15. If k is a �eld of 
hara
teristi
 zero then V[N ℄;2h is a lo
ally
losed moduli fun
tor. In parti
ular, V[N ℄;2h;sm (k) is lo
ally 
losed.
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ondition 2.10.1 is lo
ally 
losed on
e 
on-ditions 2.4.1 and 2.4.2 are imposed. In parti
ular, we may assume that wehave families of 
anoni
ally polarized Q-Gorenstein varieties of index N .The 
ondition that the geometri
 �bers Xs are redu
ed is open by [5℄EGAIV3, 12.2.1. The lo
us where the �bers have semi log 
anoni
al singular-ities is open by [8℄, 2.6 (see also [13℄,x5). �Remark 2.16. (
hara
teristi
 zero) If one assumes the existen
e of min-imal models in dimension d + 1, the results of [8℄ imply that having semilog 
anoni
al singularities is an open 
ondition for families of 
anoni
ally po-larized Q-Gorenstein varieties of index N . It follows that V[N ℄;dh is lo
ally
losed. 3. Lo
al 
losedness of re
exive pull-ba
ksWe �rst re
all the following result from [5℄ EGAIV, x6.3:Proposition 3.1. Let A and B be noetherian lo
al rings, k the residue�eld of A, � : A ! B a lo
al homomorphism, M an A-module of �nite type,and N a B-module of �nite type. If N is a 
at and nonzero as an A-modulethen depthB(M 
A N) = depthA(M) + depthB
Ak(N 
A k):We shall assume that all s
hemes are noetherian.Let f : X ! S be a 
at morphism of s
hemes and E a 
oherent OX -module
at over S. We shall say E is Sr relative to f if the following holds: for ea
hx 2 X; s = f(x); F = Xs we havedepthOF;x(EjF ) � min(r; dimOX;x � dimOS;s):In other words, the restri
tion of E to ea
h �ber is Sr. By 3.1, this is equivalentto depthOX;x(E) � depthOS;s(OS;s) + min(r; dimOX;x � dimOS;s):Two spe
ial 
ases deserve further attention. If E = OX then our de�nition
oin
ides with the ordinary de�nition of an Sr morphism (see [5℄ EGAIV,x6). If S = Spe
(K), where K is a �eld, then we re
over a notion of an Srsheaf. For example, a sheaf is S1 provided it has no imbedded points. We 
antranslate the de�nition of Sr-sheaves using the 
ohomologi
al interpretationof depth (see [6℄, xIII.3 Ex. 4).Proposition 3.2. Let f : X ! S be a 
at morphism of s
hemes and E a
oherent OX -module 
at over S. Then E is Sr relative to f if and only if, for



10 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSea
h x 2 X; s = f(x), we haveminfi : H ix(E) 6= 0g � depthOS;s(OS;s) + min(r; dimOX;x � dimOS;s):Here H ix(E) denotes 
ohomology on Spe
(OX;x) with support at the 
losedpoint and 
oeÆ
ients in Ex. If Z � X is 
losed, we use HiZ to denote the lo
al
ohomology sheaf asso
iated to 
ohomology on X with support along Z.Proposition 3.3. Let f : X ! S be a 
at morphism of s
hemes and Ea 
oherent OX-module 
at over S and Sr relative to f . Let Z � X be a
losed subs
heme with ideal sheaf IZ . Assume that 
odim(Zs; Xs) � r forea
h s 2 S. Then we have depthOX (IZ ; E) � r, or equivalently,HkZ(E) = 0 for k = 0; : : : ; r � 1Proof. The 
ohomologi
al interpretation of depth gives the equivalen
e ofthe two 
on
lusions.For ea
h point x 2 Z we haveH0x = H0x Æ H0Zwhi
h indu
es a spe
tral sequen
eEp;q2 := Hpx Æ HqZ =) Hp+qx :The proof is by indu
tion on k, starting with k = 0. Assume that H0Z(E) 6= 0and its support 
ontains a point x 2 Z. We have H0x(H0Z(E)) 6= 0 and thusH0x(E) 6= 0. Writing s = f(x), we obtain a 
ontradi
tion of 3.2. Now assumethat HiZ(E) = 0 for i = 0; : : : ; k � 1 where k < r, but that HkZ(E) 6= 0 andits support 
ontains x 2 Z. It follows that Hkx (E) = H0x(HkZ(E)) 6= 0, whi
hagain 
ontradi
ts 3.2. �Corollary 3.4. Let f : X ! S be a 
at Sr morphism, and Z � X asubs
heme su
h that 
odim(Zs; Xs) � r for ea
h s 2 S. Then grade(IZ) � r.Proposition 3.5. Let f : X ! S be a 
at morphism of s
hemes, E a
oherent sheaf 
at over S and S2 relative to f , and j : U ,! X an opensubs
heme with 
omplement Z. Assume that 
odim(Zs; Xs) � 2 for ea
hs 2 S. Then the natural map E ! j�(EjU )is an isomorphism.Proof. The long exa
t sequen
e(3.5.1) 0! H0Z(E)! E ! j�(EjU )! H1Z(E)! 0yields the isomorphism. �Proposition 3.6. Let f : X ! S be a 
at S2 morphism, F a re
exive 
o-herent OX -module. Let Z � X be a 
losed subs
heme so that 
odim(Zs; Xs) �2 for ea
h s 2 S, and let U be the 
omplement of Z.



REFLEXIVE PULL-BACKS AND BASE EXTENSION 11(3.6.1) Then HkZ(F) = 0 for k = 0; 1 and the natural map F ! j�(FjU )is an isomorphism.(3.6.2) Let F 0 be another 
oherent OX-module whi
h is either S2 relativeto f or re
exive. If FjU'F 0jU then F ' F 0.Proof. Consider a presentation of F� by lo
ally free sheavesE2 ! E1 ! F� ! 0:On dualizing we obtain 0! F ! E�1 ! E�2 :Sin
e the E�i are lo
ally free and f is S2, 3.3 yieldsHkZ(Ei) = 0 for k = 0; 1:Taking the asso
iated long exa
t sequen
es, we obtain the desired vanishingfor F . The long exa
t sequen
e in lo
al 
ohomology (
f.3.5.1) yields the �rstisomorphism. The isomorphism between F and F 0 is obtained by pushingforward. �We obtain a 
riterion for when push-forwards of re
exive sheaves are re-
exive:Corollary 3.7. Let f : X ! S be a 
at S2 morphism and j : U ,! Xan open subs
heme with 
omplement Z. Assume that 
odim(Zs; Xs) � 2 forea
h s 2 S. If G is a re
exive 
oherent sheaf on U then j�G is also re
exiveand 
oherent.Proof. Choose a 
oherent subsheaf E � j�G so the indu
ed map EjU ! Gis an isomorphism [6℄, xII.5 Ex.15. The re
exive hull E�� is also 
oherent andwe have E��jU ' G: An appli
ation of 3.6.2 impliesE�� ! j�(E��jU ) ' j�Gis an isomorphism. �We also obtain the following (
f. [2℄, 1.4.1):Corollary 3.8. Let f : X ! S be a 
at S2 morphism, E a 
oherent sheaf
at over S and S2 relative to f , and j : U ,! X an open subs
heme with
omplement Z. Assume that 
odim(Zs; Xs) � 2 for ea
h s 2 S and EjUis re
exive. Then E is re
exive, and furthermore, for ea
h � : T ! S thepull-ba
k ET is re
exive.Proof. We apply 3.6.2 to show that the natural map E ! E�� is an isomor-phism. Our hypotheses are preserved under base extension, so ET is re
exivefor ea
h � : T ! S. �Suppose that f : X ! S is a 
at proje
tive Cohen-Ma
aulay morphism ofrelative dimension d. Then the relative dualizing sheaf !X=S exists, 
ommuteswith base extension, and is Sd relative to f [9℄, x9,21; [3℄, 3.6.1; [4℄, 21.8. In



12 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSlight of our previous results, it is natural to 
ompare the relative dualizingsheaf with the re
exive hull of a 
oherent sheaf.Theorem 3.9. Let f : X ! S be a 
at proje
tive Cohen-Ma
aulay mor-phism of relative dimension d with geometri
ally 
onne
ted �bers. Let G bea 
oherent sheaf on X, and U ,! X an open subset with 
omplement Z sothat 
odim(Zs; Xs) � 2 for ea
h s 2 S. Assume that !X=S and G are lo
allyfree on U . Then there exists a lo
ally 
losed subset Su � S with the followingproperty. Given a morphism � : T ! S, there exists an invertible sheaf N onT and an isomorphism(3.9.1) (GT )�� '�! !XT =T 
 f�TNif and only if � fa
tors through Su.Proof. We produ
e a subset Su � S over whi
h the isomorphism 3.9.1exists. Let W 0 � S denote the subs
heme supporting Rdf�G. Note that W 0has a naturally de�ned s
heme stru
ture. Indeed, let P� ! G be a resolutionof G by lo
ally freeOX -modules. The proof of the 
ohomology and base 
hangetheorem [5℄ EGAIII, x7.7 produ
es a 
omplex of lo
ally free OS-modules,0! E0 ! E1 ! : : :! Ed�1  ! Ed ! 0
omputing the dire
t image sheaves Ri (fT )�P�T for any base extension T ! S.Sin
e the maximal �bre dimension of f is d, Rj(fT )� = 0 for all j > d.Furthermore, G is the highest non-zero 
ohomology sheaf of P�, soRdf�P� ' Rdf�G:In parti
ular, Rdf�G is the 
okernel of  and we de�neW 0 using the rank(Ed)-minors of  . It also follows that the formation of Rdf�G 
ommutes with baseextension, i.e.,(3.9.2) (Rdf�G)s ! Hd(Xs;Gs)is an isomorphism for ea
h s 2 S.LetW �W 0 be the lo
ally 
losed subset obtained by removing points whererank( ) < rank(Ed) � 1 and fW : XW ! W the 
orresponding morphism.Hen
eM := Rd (fW )�GW = (Rdf�G)W is lo
ally free of rank one. The relativeduality theorem of Kleiman [9℄, x10,21 gives an isomorphism of OW -modules(3.9.3) HomfW (GW ; !XW =W 
 f�WM) '�! HomW (M;M) = OW :



REFLEXIVE PULL-BACKS AND BASE EXTENSION 13The identity 1 2 OW gives a natural homomorphism � : GW ! !XW =W 
f�WM whi
h fa
tors GW ��! !XW =W 
 f�WM# k(GW )�� ����! !XW =W 
 f�WMbe
ause !XW =W is re
exive.Let Su � W be the open subset over whi
h �jU is an isomorphism. Themap ��� is an isomorphism over Su by 3.6. For any Su-s
heme T , the map(���)T : ((GW )��)T �! (!XW =W )T 
 f�TMindu
ed by base extension is also an isomorphism. Sin
e (!XW =W )T = !XT =Tis 
at and re
exive, the same holds for ((GW )��)T . Hen
e 3.6 guarantees thatthe natural map ((GW )��)T ! (GT )�� is an isomorphism.It remains to show that Su satis�es the universal property. Let T be anS-s
heme, N an invertible sheaf on T , and(3.9.4) ��� : (GT )�� '�! !XT =T 
 f�TNan isomorphism. For ea
h t 2 T , the natural map Gt ! ((GT )��)t is an iso-morphism over Ut, a subset with 
odimension � 2 
omplement. We thereforeobtain an isomorphism of 
ohomology groupsHd(Xt;Gt) '�! Hd(Xt; ((GT )��)t)and the base-
hange isomorphism 3.9.2 yieldsRd (fT )�GT '�! Rd (fT )�[(GT )��℄:The 
omposed morphism� : GT ! (GT )�� ! !XT =T 
 f�TNindu
es Rd (fT )�GT '�! Rd (fT )�[!XT =T 
 f�TN ℄:Sin
e fT is Cohen-Ma
aulay, relative duality yields an isomorphismRd(fT )�!XT =T ' ExtdfT (OXT ; !XT =T ) '�! HomT ((fT )�OXT ;OT ) ' OT ;where the last isomorphism follows from the fa
t that fT has geometri
ally
onne
ted �bers. It follows thatRd(fT )�GT ' Rd (fT )�[!XT =T 
 f�TN ℄ ' Rd(fT )�!XT =T 
N ' N ;hen
e T ! S fa
tors as T ! W ,! S and N ' MT . Applying dualityagain, we may regard � as an element of HomT (N ;N ) ' (HomW (M;M))Tand 
ompare � and �T over T . The identi�
ation in the isomorphism 3.9.3 is
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torial, hen
e �T 
orresponds to 1 2 HomT (N ;N ), � 
orresponds to somer 2 OT , and � = r�T .To 
omplete the proof it suÆ
es to 
he
k that r 2 O�T . Consider therestri
tion of the isomorphism 3.9.4 to the open subset UT where the sheavesare all lo
ally free�jUT = ���jUT : (GT )jUT '�! (!XT =T 
 f�TN )jUT :If r were not invertible at some t 2 T then �jUT would have nontrivial 
okernelover t, a 
ontradi
tion. �Corollary 3.10. Retain all the notation and hypotheses of 3.9. Assumein addition that G is S2-relative to f . Then there exists a lo
ally 
losed subsetSu � S with the following property. Given a morphism � : T ! S, thereexists an invertible sheaf N on T and an isomorphismGT '�! !XT =T 
 f�TNif and only if � fa
tors through Su.Proof. This follows from 3.9 and 3.8. �Theorem 3.11. Let f : X ! S be a 
at proje
tive Cohen-Ma
aulay mor-phism of relative dimension d with geometri
ally 
onne
ted �bers. Let L be aninvertible sheaf on X, F a 
oherent sheaf on X, and U ,! X an open subsetwith 
omplement Z so that 
odim(Zs; Xs) � 2 for ea
h s 2 S. Assume that!X=S and F are lo
ally free on U . Then there exists a lo
ally 
losed subsetSu � S with the following property. Given a morphism � : T ! S, thereexists an invertible sheaf N on T and an isomorphism(FT )�� '�! LT 
 f�TNif and only if � fa
tors through Su.Proof. Without loss of generality we may assume that L is trivial (repla
eFby F 
L�1). Apply 3.9 with G = F 
 !X=S , so that (GT )�� ' !XT =T 
 f�TNi� T fa
tors through Su. On the other hand, (GT )�� ' !XT =T 
 f�TN ifand only if GT jUT ' (!XT =T 
 f�TN )jUT , whi
h is the 
ase exa
tly whenFT jUT ' f�TNjUT , or equivalently, when (FT )�� ' f�TN (by 3.6). �Remark 3.12. It is natural to try to generalize this result for more generalsheaves L. The above argument is still valid provided L satis�es the following:(3.12.1) L is S2 relative to f ;(3.12.2) LjU is invertible.Proof. We apply 3.9, with G = F 
L� 
 !X=S . We obtain a lo
ally 
losedsubset Su � S su
h that (GT )�� ' !XT =T 
 f�TN i� T fa
tors through Su.Again, this is the 
ase if and only if(F 
 L� 
 !XT =T )T jUT ' f�TNjUT ;
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h by Assumption 3.12.2 is equivalent toFjUT ' L 
 f�TNjUT ;whi
h in turn is equivalent to (FT )�� ' (LT )�� 
 f�TN . Applying 3.8 alongwith Assumptions 3.12.1 and 3.12.2 yields that LT is re
exive for ea
h T , sothe last isomorphism exists i� (FT )�� ' LT 
 f�TN . �Referen
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