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REFLEXIVE PULL-BACKS AND BASE
EXTENSION

BRENDAN HASSETT AND SANDOR J. KOVACS

Abstract

We prove that Viehweg’s moduli functor of stable surfaces is locally
closed.

1. Introduction

The moduli theory of curves has been studied extensively in the past few
decades. A very important and useful feature of the theory is that the moduli
space of smooth projective curves of genus g admits a geometrically mean-
ingful compactification as the moduli space of stable curves of genus g. The
success of moduli theory of curves leads naturally to a desire for a similar
theory for higher dimensional varieties.

In recent years there has been great progress in the moduli theory of sur-
faces and higher dimensional varieties by Alexeev, Kollar, Shepherd-Barron,
and Viehweg [1]; [11]; [13]; [14]. According to their work, moduli spaces ex-
ist for many moduli problems, in particular for smooth canonically polarized
varieties. More generally it is established that if a moduli problem satisfies
certain properties, then a corresponding (coarse) moduli space exists. The
most important of these properties are separatedness, boundedness and local
closedness. According to the above authors’ work the former two of these hold
for the moduli problem of canonically polarized stable surfaces the candi-
date for a geometrically meaningful compactification of the moduli space of
smooth canonically polarized surfaces. Local closedness, however, has pre-
sented a very stubborn problem.

In fact, one of the main problems is that it is not entirely clear what the
“right” definition of the moduli functor should be. This is a very delicate
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problem as one would like to make the functor large enough to obtain a
compact moduli space, but enlargening the class too much could lead to a
loss of separatedness and/or boundedness.

In addition, not only the admissible models have to be decided, but also the
admissible families of those models. Experts generally agree on what models
should be allowed (the semi log canonical models). However, the right notion
of admissible families is still to be decided.

Both Kollar and Viehweg suggest reasonable definitions, but local closed-
ness has yet to be established for either of their moduli functors. At this
time it is not even clear whether their definitions differ. However, we should
point out that Kollar’'s moduli functor is known to satisfy a weak form of
local closedness. Precisely, after passage to a formal or étale local ring, local
closedness holds provided we restrict to base change morphisms arising from
local ring homomorphisms [12], §14.

The goal of this paper is to prove that Viehweg’s moduli functor of canon-
ically polarized varieties is locally closed.

Definitions and notation. Every scheme is considered to be of finite
type over an algebraically closed field &k unless specifically noted otherwise.

Let f: X — S be a morphism. Then X, denotes the fibre of f over the
point s € S and fs; denotes the restriction of f to X,. More generally, for a
morphism a : T'— S, let frr: X = X xgT — T. In particular one has the
following commutative diagram:

Xr=XxgT 2% X

| s

T —t S
For a coherent Ox-module F, Fr will denote a% F on Xr. Tensor products
of Ox,-modules are over Ox,. These conventions will be used through the
entire article.
We will write F* for the dual Ox-module Homx (F,Ox) when there is no
risk of confusion. The double dual F** is called the reflezive hull of F and
there is a natural Ox-module homomorphism

F — F*

F is said to be reflexive if this is an isomorphism. We shall also consider
reflexive powers

f[m] — (]:®m)** f[fm] — (]:@m)*
for m > 0. In general, there exist natural maps

(F*)p = (Fr)**  and  (F"p — (Fp)lm
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which need not be isomorphisms, even when F is reflexive. Of course, these
maps are isomorphisms when F is locally free.

Acknowledgements: We both owe a great debt to Jdnos Kollar for patiently
answering our questions about the moduli problems and technical issues ad-
dressed in this paper. We would also like to thank Eckart Viehweg for many
useful discussions and for inviting the second author to visit Universitit Es-
sen. The first author benefitted from conversations with Dan Abramovich,
David Hyeon, and Rahul Pandharipande.

2. Moduli functors

Definition 2.1. Fix a base scheme B. The moduli functor of polarized
proper schemes is the contravariant functor

MY : B-schemes — Sets
given by
pairs (f : X = S, L), where

MP(S/B) := ¢ fis a flat and proper morphism, / ~
L is an f-ample line bundle on X

where two families (f; : X1 — S,£1) and (fy : Xo — S, L2) are equivalent
[(fi : X1 = S, L1) ~ (f2 : Xo = S, Ly)] iff there is an isomorphism A :
X1 — X5 such that f; = fs o h and there is a line bundle M on S such that
L1 = h* Ly ® fy M. For any morphism of B-schemes, a: 7' — S, we have

MP(a)(X = S, L) = (Xp — T, o’y L).

In this article we will restrict to the case of B = k an algebraically closed
field. Schy, will denote the category of k-schemes.

Any subfunctor of this moduli functor will be called a moduli functor of
polarized proper schemes.

Definition 2.2. A subfunctor § C P is called locally closed iff the
following condition is satisfied:

For every (f : X — S, L) € MP(S) there is a locally closed subscheme
j:S% < S such that if a: T — S is any morphism then

(fr: Xo = T,a% L) € F(T) iff there is a factorization T o gu g

We say that § C 9P is open iff S* C S is open for every S.
For the definition of bounded, separated, and complete moduli functors the
reader is referred to [14], 1.15.
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Definition 2.3. Fix a polynomial h € Q[t] be such that h(Z) C Z. The
moduli functor of polarized schemes with Hilbert polynomial h is the subfunctor
MY, of MP given by:

MPL(S) ={(f: X = 5,L) e MP(S) | x(L%,) = h(v) for all v € Z and s € S}.

This is an open and closed subfunctor.

Definition 2.4. A subfunctor 9N  IMMP is called a moduli functor of
canonically polarized Q-Gorenstein schemes of index N if, for each (f : X —
S, L) € mN(S)

(2.4.1) X, is connected, Cohen-Macaulay, and Gorenstein outside a closed

subscheme of codimension at least two for each s € S;

(2.4.2) f is equivalent to one of the form (f : X — S| w[)?;]s).

Remark 2.5. Assumption 2.4.1 implies the fibers are equidimensional pro-
jective schemes. One can show that the relative Cohen-Macaulay condition
is open (see [5] EGAIV3, 12.2.1), as is the locus where the relative dualizing
sheaf is locally free (the relative Gorenstein locus). Since the complement to
the relative Gorenstein locus intersects the fibers in codimension < 2 over an
open subset of the base, it follows that Assumption 2.4.1 is open. Note that
the singularity assumptions may also be expressed as a condition on the mor-
phism f: its relative dualizing complex is supported in degree —dim(X/S)
and the resulting dualizing sheaf is locally free over an open subset whose
complement meets each fiber in codimension two. We refer the reader to [3]
for a recent account of relative duality.

We emphasize that for families of canonically polarized Q-Gorenstein schemes

[)J(\;]S is invertible by definition. This is a condition on the mor-

phism, not just a condition on the fibers. Indeed, W[)J(\;]s may fail to be in-

of index N, w

vertible even when w[)?? is invertible for each s € S (see [13]). Also, it is not
entirely obvious that Assumption 2.4.2 actually yields a subfunctor, i.e., that
families of canonically polarized schemes pull back to families of canonically
polarized schemes. This is proved in the following lemma:

Lemma 2.6. Given a family of canonically polarized Q- Gorenstein schemes
of index N, f : X — S, and a morphism o : T — S, we have

« INT o IN
CxWx/s = Yxo /T

Proof. Let U C X be the relative Gorenstein locus of f, i.e., the largest
open subset U of X such that U, is Gorenstein for all s € S or equivalently
the largest open subset U of X such that wx,s|y is a line bundle. Then
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(V] ~ N
wX/S|U ~wy)s and hence

atw) | ~ akwh, e ~ wh ~ ] |
X%x/slax'U = UX%U/s = ¥otuyr = Y X /Tl U

Now codim(Us, X4) > 2 for all s € S, so codim((ayx'U), (X7):) > 2 for all

t € T. Finally a}w[)?;]s and w[)?;]/T are reflexive, so since they are isomorphic
on ayx'U, they are isomorphic on X7 (cf. 3.6.2). O

If MV is a functor of canonically polarized Q-Gorenstein schemes of index
N then we can consider 9)?[hN]
to Lemma 2.6) implies

as well. An argument using 3.6 (and very similar

M) = {(f: X = 8) e mMN(S) | x(wy ) = hv)
forallv € Z and s € S.}.

Remark 2.7. Note that we speak of “a” moduli functor and not “the”
moduli functor. The reason is that in order to obtain a relatively nice moduli
space one has to restrict to a smaller class than all the canonically polarized
@Q-Gorenstein schemes of index N. On the other hand one could consider
“the” moduli space of smooth varieties, but in that case one would not obtain
a compact moduli space. The “right” class of schemes will be somewhere
between these two and part of the difficulty is to identify that class.

Assumptions 2.8. Assume the following:

(2.8.1) EDYEZN] is locally closed;
(2.8.2) MM is bounded;
(2.8.3) sm&j‘” is separated;
( ) szLM is complete;
( ) for all smooth projective curves S, and for all (f : X — 5) €
9)?[hN](S), the sheaf f*w[X”/;] is semi-positive for all v sufficiently
large and divisible.

Theorem 2.9. [10], 4.2.1; [13], 5.7; [11], 5.6; [14], 9.23, 9.30 Assume that
k has characteristic zero. We retain the notation introduced above and assume
that WTElN] satifies the conditions of 2.8. Let v > 0 be a fized integer such that
w[;'N] is very ample and without higher cohomology for all X € Em[hN](k).
Vwhich is a
projective scheme and for all y > 0 there exist a p > 0 and an ample invertible
sheaf /\Efz,_N on M%N], such that for oll (f : X — S) € mTElN](S) and for the

P
induced morphism ¢ : S — MElN] one has QS*AL’?/.N = (det f*w[;(t/";N]) .

Then there exists a coarse algebraic moduli space ./\/lglN] for smLN
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Viehweg’s Functor. Property VIV Consider a family of polarized va-
rieties, f : X — S, satisfying Assumption 2.4.1. It will be said that f satisfies
[NV]
X/S
Note that families of canonically polarized (3>Gorenstein schemes of index

N automatically satisfy property VIV (by Assumption 2.4.2).

property VIV if w is invertible.

Definition 2.10. Let ‘B%N]’d be the moduli functor of canonically polarized
@ Gorenstein schemes of index N and Hilbert polynomial h satisfying the
following;:

(2.10.1) for each s € S, X, is a reduced scheme of dimension d and has
semi log canonical singularities.

We emphasize that we are retaining Assumptions 2.4.1 and 2.4.2. Note
that each fiber X, automatically has index V.

Let N’ = mN be a positive multiple of N and h'(t) = h(mt). There is a
natural transformation,

piNd gl

induced by taking the mth power of the canonical polarization.

Kollar’s Functor. Property K Consider a family of polarized varieties,
f X — S, satisfying Assumption 2.4.1. It will be said that f satisfies
property K if

« il ]
OxWx/s = Wx, /T

for any morphism, o : T — S, and each j € Z.

For canonically polarized Gorenstein schemes of index N, it suffices to
verify this for j =1,..., N — 1. Indeed, 3.6 yields

[i+vN] _ 1] [N] \v
Wy/s | =Wx/s® (Wys)

Definition 2.11. Let R%N]’d be the moduli functor of canonically polarized
@ Gorenstein schemes of index N and Hilbert polynomial h satisfying the
following;:

(2.11.1) for each s € S, X, is a reduced scheme of dimension d and has
semi log canonical singularities;
(2.11.2) each family (f : X — S, w[)](\;}s) € R%N]’d(S) satisfies property K.

If a family satisfies property K, then the family is in ﬁElN]’d if the indices

of the fibers all divide N. Let N' = mN be a positive multiple of N and
h'(t) = h(mt). Then the natural transformation,

iy gy

induced by taking the mth power of the canonical polarization, is an open
immersion.
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These conditions are stronger than those of Viehweg’s functor, so there is
a natural transformation of moduli functors,

ﬁ[hN],d N Q][hN],d7

inducing a bijection between R%N]’d(k) and ‘B%N]’d(k).
Moduli of Surfaces: Smoothability and Boundedness.

Definition 2.12. Let ?BEZ\;]Ij(k) denote the following subset of ?BLN]J(k):
T2 (k) = {X | X e T A(k), and 3(g: Y - C) € B *(0), such that

C is an irreducible curve, X ~ X, for some ¢ € C, and

Xgen is @ normal surface with at most rational double points.}

[N],2
h,sm

We define &

Once we construct the moduli schemes V,[lN]’2 and IC&LN]’{ we may realize

?BEZ\;]Ij(k) and Rgvs]rf(k) as the closed points of certain subvarieties. The points

satisfying the smoothability condition form a union of irreducible components,

(k) analogously.

and this union forms a closed subvariety. However, this subvariety does not
necessarily admit a natural scheme structure.

Remark 2.13. Assume that k has characteristic zero for the remainder of
this subsection. [1], 5.11 implies that there exists an N € N such that

(k) = U By (k) = TN ()

meN
and
Broom () = U Bty o (K) = (N (K):
meN
In order to construct moduli spaces for Q][hN]’d and ﬁELN]’d, one has to verify

the assumptions of 2.8. All the properties listed in 2.8, except 2.8.1, are the
same for both ‘U%N]’d and ﬁElN]’d.

e [10], 2.1.2 implies 2.8.2.

e [13], 5.1 implies 2.8.3 and 2.8.4, at least for the irreducible compo-
nents satisying the smoothability condition. For the general case,
one has to construct a unique stable limit for a one-parameter
family of nonnormal stable surfaces. Consider its normalization
as a family of stable log surfaces with boundary equal to the con-
ductor. Apply the log minimal model program and the results of
[7] to obtain a unique limiting stable log surface. We glue back
together along the conductor to recover the stable limit of our
original family.

e [11], 4.12 implies 2.8.5.
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That leaves us to verify 2.8.1, and in the rest of the article we will concen-
trate on this property.

Proof of Local Closedness. To prove that ?BLN]’d is locally closed, one
would naturally list the properties of the functor and prove one by one that
all of them are locally closed. However, this requires special attention. A po-
tentially tricky part is that the order of this procedure matters. For instance,

the requirement that w[)](\;]s be invertible should not be considered until only

open properties are left, because it may very well happen that W[)J(\;]s is not

invertible along an admissible fiber X, but w[)](\;]/T becomes invertible after

restricting to some locally closed T' C S containing s. In particular the locus
where W[)J(\;]s is invertible does not coincide with the locus where w[)](i] is invert-
ible. The key problem is: taking reflexive powers does not generally commute
with base extension.

The next theorem is the main result of this article. Here we reduce local
closedness to a rather technical statement which will be proved in the next
section.

Theorem 2.14. The moduli functor of canonically polarized Q-Gorenstein
schemes of index N is locally closed.

Proof. In proving local closedness, we address the conditions imposed on
the fibers of f : X — S separately from the conditions imposed on the mor-

phism f itself. We have already observed in 2.5 that condition 2.4.1 is open.
[V]

X/S
an arbitrary family of polarized varieties (f : X — S, £) with fibers satistying

2.4.1. We apply 3.11 with F = w}e};\g. This sheaf may be terribly singular,

Now we turn to condition 2.4.2, i.e., w is locally free. Suppose we are given

perhaps even with torsion along certain fibers. However, w%vs does have one
salient property: it commutes with arbitrary base extensions a : T — S, i.e.,

* QN _ QN
anX/S = wXT/T'

By 3.11 there exists a locally closed subscheme S* C S with the following
universal property. Given a morphism a : T — S, there exists an invertible
sheaf N on T and an isomorphism

@EN,) S Ly ® fjN

if and only if a factors through S“. By definition we have

[N] _ RN * %

Wy = (wa/T) )
so the proof that condition 2.4.2 is closed is complete. |
Theorem 2.15. If k is a field of characteristic zero then Q]%Nm s a locally

[N],2

closed moduli functor. In particular, G, .-

(k) is locally closed.
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Proof. It remains to verify that condition 2.10.1 is locally closed once con-
ditions 2.4.1 and 2.4.2 are imposed. In particular, we may assume that we
have families of canonically polarized Gorenstein varieties of index N.

The condition that the geometric fibers X, are reduced is open by [5]
EGAIVj3, 12.2.1. The locus where the fibers have semi log canonical singular-
ities is open by [8], 2.6 (see also [13],85). O

Remark 2.16. (characteristic zero) If one assumes the existence of min-
imal models in dimension d + 1, the results of [8] imply that having semi
log canonical singularities is an open condition for families of canonically po-
larized Q-Gorenstein varieties of index N. It follows that Q][hN]’d is locally
closed.

3. Local closedness of reflexive pull-backs

We first recall the following result from [5] EGAIV, §6.3:

Proposition 3.1. Let A and B be noetherian local rings, k the residue
field of A, ¢ : A — B a local homomorphism, M an A-module of finite type,
and N a B-module of finite type. If N is a flat and nonzero as an A-module
then

depthg(M ®4 N) = depth 4 (M) + depthgg (N ®4 k).

We shall assume that all schemes are noetherian.

Let f : X — S be a flat morphism of schemes and £ a coherent O x-module
flat over S. We shall say € is S, relative to f if the following holds: for each
z € X,s=f(z),F =X, we have

depth, . (€]r) > min(r,dim Ox , — dim Og;).

In other words, the restriction of £ to each fiber is S,.. By 3.1, this is equivalent
to

depthe,  (£) > depthy,  (Os,s) + min(r,dim Ox ; — dim Og ).

Two special cases deserve further attention. If £ = Ox then our definition
coincides with the ordinary definition of an S, morphism (see [5] EGAIV,
§6). If S = Spec(K), where K is a field, then we recover a notion of an S,
sheaf. For example, a sheaf is S; provided it has no imbedded points. We can
translate the definition of S,-sheaves using the cohomological interpretation
of depth (see [6], §111.3 Ex. 4).

Proposition 3.2. Let f : X — S be a flat morphism of schemes and £ a
coherent O x -module flat over S. Then £ is S, relative to f if and only if, for
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each x € X, s = f(x), we have
min{i : H:(£) # 0} > depthy,  (Os,s) + min(r,dim Ox , — dim Og,s).

Here H! () denotes cohomology on Spec(Ox ;) with support at the closed
point and coefficients in &,. If Z C X is closed, we use H?, to denote the local
cohomology sheaf associated to cohomology on X with support along Z.

Proposition 3.3. Let f : X — S be a flat morphism of schemes and £
a coherent Ox-module flat over S and S, relative to f. Let Z C X be a
closed subscheme with ideal sheaf T;. Assume that codim(Zs, X) > r for
each s € S. Then we have depthy (Zz7,£) > r, or equivalently,

HEE)=0fork=0,....,r—1

Proof. The cohomological interpretation of depth gives the equivalence of
the two conclusions.

For each point x € Z we have

Hg = Hg ) HOZ
which induces a spectral sequence
EY%:= HP o H}, = HP'.

The proof is by induction on k, starting with k = 0. Assume that H%(£) # 0
and its support contains a point z € Z. We have H?(HY%(€)) # 0 and thus
HY(E) # 0. Writing s = f(z), we obtain a contradiction of 3.2. Now assume
that H,, () = 0 for i = 0,...,k — 1 where k < r, but that H% (&) # 0 and
its support contains # € Z. It follows that H*(&) = H(H%(£)) # 0, which
again contradicts 3.2. d

Corollary 3.4. Let f : X — S be a flat S, morphism, and Z C X a
subscheme such that codim(Zs, X¢) > r for each s € S. Then grade(Zz) > r.

Proposition 3.5. Let f : X — S be a flat morphism of schemes, £ a
coherent sheaf flat over S and Sy relative to f, and j : U — X an open

subscheme with complement Z. Assume that codim(Zs, X;) > 2 for each
s € S. Then the natural map

£ _)j*(E|U)

s an isomorphism.
Proof. The long exact sequence

(3.5.1) 0= HLE) = &= ju&ly) = HLE) =0
yields the isomorphism. O
Proposition 3.6. Let f : X — S be a flat Sy morphism, F a reflexive co-

herent O x -module. Let Z C X be a closed subscheme so that codim(Z,, X,) >
2 for each s € S, and let U be the complement of Z.
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(3.6.1) Then HE(F) =0 for k = 0,1 and the natural map F — j.(F|v)
is am isomorphism.

(3.6.2) Let F' be another coherent Ox -module which is either Sy relative
to f or reflexive. If Fly~F'|y then F ~ F'.

Proof. Consider a presentation of F* by locally free sheaves
E =& = F = 0.
On dualizing we obtain
0=>F =& =&
Since the £ are locally free and f is Sy, 3.3 yields
HE (&) =0 for k=0,1.

Taking the associated long exact sequences, we obtain the desired vanishing
for F. The long exact sequence in local cohomology (cf.3.5.1) yields the first
isomorphism. The isomorphism between F and F' is obtained by pushing
forward. O

We obtain a criterion for when push-forwards of reflexive sheaves are re-
flexive:

Corollary 3.7. Let f : X — S be a flat So morphism and j : U — X
an open subscheme with complement Z. Assume that codim(Zs, X5) > 2 for
each s € S. If G is a reflexive coherent sheaf on U then j.G is also reflexive
and coherent.

Proof. Choose a coherent subsheaf £ C j.G so the induced map &|y — G
is an isomorphism [6], §I1.5 Ex.15. The reflexive hull £** is also coherent and
we have £**|y ~ G. An application of 3.6.2 implies

E** _>j*(5**|U) :]*g

is an isomorphism. O

We also obtain the following (cf. [2], 1.4.1):

Corollary 3.8. Let f: X — S be a flat So morphism, £ a coherent sheaf
flat over S and Ss relative to f, and j : U — X an open subscheme with
complement Z. Assume that codim(Zs, Xy) > 2 for each s € S and |y
is reflexive. Then & is reflexive, and furthermore, for each a : T — S the
pull-back Er is reflexive.

Proof. We apply 3.6.2 to show that the natural map & — £** is an isomor-
phism. Our hypotheses are preserved under base extension, so £r is reflexive
foreacha: T — S. |

Suppose that f: X — S is a flat projective Cohen-Macaulay morphism of
relative dimension d. Then the relative dualizing sheaf wy /g exists, commutes
with base extension, and is Sy relative to f [9], §9,21; [3], 3.6.1; [4], 21.8. In
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light of our previous results, it is natural to compare the relative dualizing
sheaf with the reflexive hull of a coherent sheaf.

Theorem 3.9. Let f : X — S be a flat projective Cohen-Macaulay mor-
phism of relative dimension d with geometrically connected fibers. Let G be
a coherent sheaf on X, and U — X an open subset with complement Z so
that codim(Z,, X;) > 2 for each s € S. Assume that wx,s and G are locally
free on U. Then there exists a locally closed subset S* C S with the following
property. Given a morphism o : T — S, there exists an invertible sheaf N on
T and an isomorphism

(3.9.1) (Gr)™ = w1 ® fIN

if and only if a factors through S*“.

Proof. We produce a subset S* C S over which the isomorphism 3.9.1
exists. Let W' C S denote the subscheme supporting R? f,G. Note that W'
has a naturally defined scheme structure. Indeed, let P* — G be a resolution
of G by locally free O x-modules. The proof of the cohomology and base change
theorem [5] EGAIII, §7.7 produces a complex of locally free Og-modules,

0—>EO—>51—>...—>Ed,1£>5d—>0

computing the direct image sheaves R’ (f7). P4 for any base extension 7' — S.
Since the maximal fibre dimension of f is d, R(fr). = 0 for all j > d.
Furthermore, G is the highest non-zero cohomology sheaf of P*, so

R? f,P* ~ R £,G.

In particular, R? .G is the cokernel of ¢ and we define W' using the rank(&,)-
minors of 1. It also follows that the formation of R? f,G commutes with base
extension, i.e.,

(3.9.2) (R*£.G)s = HY(X,,Gy)

is an isomorphism for each s € S.

Let W C W' be the locally closed subset obtained by removing points where
rank(¢) < rank(&q) — 1 and fw : Xy — W the corresponding morphism.
Hence M := R?(fw).Gw = (R f.G)w is locally free of rank one. The relative
duality theorem of Kleiman [9], §10,21 gives an isomorphism of Ow-modules

(3.9.3) Homy,, (Gw,wxy ;w @ fiy M) — Homw (M, M) = Oy .
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The identity 1 € Ow gives a natural homomorphism ¢ : Gw — wx,, /w ®
fiy M which factors

gW i) wXW/W ® f{tVM

! |

(Gw)* L Wxy /w @ fiy M

because wx,, yw is reflexive.
Let S* C W be the open subset over which ¢|y is an isomorphism. The
map ¢** is an isomorphism over S* by 3.6. For any S“-scheme T', the map

(&™) (Gw)™ )T — (Wxy w)T @ f7M

induced by base extension is also an isomorphism. Since (Wx, /w)7 = Wx, /T
is flat and reflexive, the same holds for ((Gw )**)r. Hence 3.6 guarantees that
the natural map ((Gw )**)r — (Gr)** is an isomorphism.

It remains to show that S“ satisfies the universal property. Let T be an
S-scheme, N an invertible sheaf on T, and

(3.9.4) P (Gr)™ == wx,r © [N

an isomorphism. For each ¢ € T', the natural map G, — ((Gr)**); is an iso-
morphism over Uy, a subset with codimension > 2 complement. We therefore
obtain an isomorphism of cohomology groups

HY(Xy,G1) — H(Xy, ((Gr)™)1)
and the base-change isomorphism 3.9.2 yields
RY(fr)«Gr — R (f).[(Gr)™"].
The composed morphism
p: Ggr — (QT)** — Wx7/T (9 f;v./\/
induces
R (f1)eGr — R (fr)s[wxp 7 @ frN].
Since fr is Cohen-Macaulay, relative duality yields an isomorphism
RY(fr)swx,r = Extf, (Oxyp,wx, 1) ~—— Homy((fr)«Ox,, Or) ~ Or,
where the last isomorphism follows from the fact that fr has geometrically
connected fibers. It follows that
RY(fr)«Gr ~ R (fr)u|wx, 7 ® FyN] = R (fr)swx, 7 @ N = N,

hence T — S factors as T — W < S and N ~ Mr. Applying duality
again, we may regard p as an element of Homy (N, N) ~ (Homw (M, M))r
and compare p and ¢ over T'. The identification in the isomorphism 3.9.3 is
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functorial, hence ¢ corresponds to 1 € Homy (N, N), p corresponds to some
r € Or, and p = ror.

To complete the proof it suffices to check that » € OJ. Consider the
restriction of the isomorphism 3.9.4 to the open subset Ur where the sheaves
are all locally free

plur = p™ oz (Gr)lvr — Wxp 1 @ F7N) U2

If r were not invertible at some ¢ € T' then p|y, would have nontrivial cokernel
over t, a contradiction. O

Corollary 3.10. Retain all the notation and hypotheses of 3.9. Assume
in addition that G is So-relative to f. Then there exists a locally closed subset
S C S with the following property. Given a morphism o« : T — S, there
exists an invertible sheaf N' on T and an isomorphism

Gr — wxp 7 ® f1N

if and only if a factors through S“.

Proof. This follows from 3.9 and 3.8. (|

Theorem 3.11. Let f: X — S be a flat projective Cohen-Macaulay mor-
phism of relative dimension d with geometrically connected fibers. Let L be an
invertible sheaf on X, F a coherent sheaf on X, and U — X an open subset
with complement Z so that codim(Zs, X;) > 2 for each s € S. Assume that
wx/s and F are locally free on U. Then there exists a locally closed subset
S C S with the following property. Given a morphism o« : T — S, there
exists an invertible sheaf N on T and an isomorphism

(.7:7“)** i> L1 ® f},/\/

if and only if a factors through S*™.

Proof. Without loss of generality we may assume that £ is trivial (replace F
by F@ L), Apply 3.9 with § = F ® wy/s, so that (Gr)*™* ~ wy, /7 @ f7N
iff T' factors through S*. On the other hand, (G7)** ~ wx,,r ® f;N if
and only if Grly, ~ (wx,/r ® f7N)|vy, which is the case exactly when
Frluy = f+Nuy, or equivalently, when (Fr)** ~ fxN (by 3.6). O

Remark 3.12. It is natural to try to generalize this result for more general
sheaves £. The above argument is still valid provided £ satisfies the following;:

(3.12.1) L is S, relative to f;
(3.12.2) L|y is invertible.

Proof. We apply 3.9, with G = F ® L* ® wx,s. We obtain a locally closed
subset S* C S such that (G7)** ~ wx, v ® fpN iff T factors through S*.
Again, this is the case if and only if

(F® L @wxyr)rlve = f7N v,
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which by Assumption 3.12.2 is equivalent to
Flur = L& fiNlug,

which in turn is equivalent to (Fr)** ~ (Ly)** @ f+N. Applying 3.8 along
with Assumptions 3.12.1 and 3.12.2 yields that Ly is reflexive for each T, so
the last isomorphism exists iff (Fr)** ~ Lo @ fFN. O
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