
J. ALGEBRAIC GEOMETRY00 (XXXX) 000{000S 1056-3911(XX)0000-0REFLEXIVE PULL-BACKS AND BASEEXTENSIONBRENDAN HASSETT AND S�ANDOR J. KOV�ACSAbstratWe prove that Viehweg's moduli funtor of stable surfaes is loallylosed. 1. IntrodutionThe moduli theory of urves has been studied extensively in the past fewdeades. A very important and useful feature of the theory is that the modulispae of smooth projetive urves of genus g admits a geometrially mean-ingful ompati�ation as the moduli spae of stable urves of genus g. Thesuess of moduli theory of urves leads naturally to a desire for a similartheory for higher dimensional varieties.In reent years there has been great progress in the moduli theory of sur-faes and higher dimensional varieties by Alexeev, Koll�ar, Shepherd-Barron,and Viehweg [1℄; [11℄; [13℄; [14℄. Aording to their work, moduli spaes ex-ist for many moduli problems, in partiular for smooth anonially polarizedvarieties. More generally it is established that if a moduli problem satis�esertain properties, then a orresponding (oarse) moduli spae exists. Themost important of these properties are separatedness, boundedness and loallosedness . Aording to the above authors' work the former two of these holdfor the moduli problem of anonially polarized stable surfaes { the andi-date for a geometrially meaningful ompati�ation of the moduli spae ofsmooth anonially polarized surfaes. Loal losedness, however, has pre-sented a very stubborn problem.In fat, one of the main problems is that it is not entirely lear what the\right" de�nition of the moduli funtor should be. This is a very deliateReeived Marh 30, 2001. The �rst author was supported in part by an NSF Postdo-toral Fellowship, NSF Grant DMS-0070537, and the Institute of Mathematial Sienes ofthe Chinese University of Hong Kong. The seond author was supported in part by NSFGrants DMS-019607 and DMS-0092165. 1



2 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSproblem as one would like to make the funtor large enough to obtain aompat moduli spae, but enlargening the lass too muh ould lead to aloss of separatedness and/or boundedness.In addition, not only the admissible models have to be deided, but also theadmissible families of those models. Experts generally agree on what modelsshould be allowed (the semi log anonial models). However, the right notionof admissible families is still to be deided.Both Koll�ar and Viehweg suggest reasonable de�nitions, but loal losed-ness has yet to be established for either of their moduli funtors. At thistime it is not even lear whether their de�nitions di�er. However, we shouldpoint out that Koll�ar's moduli funtor is known to satisfy a weak form ofloal losedness. Preisely, after passage to a formal or �etale loal ring, loallosedness holds provided we restrit to base hange morphisms arising fromloal ring homomorphisms [12℄, x14.The goal of this paper is to prove that Viehweg's moduli funtor of anon-ially polarized varieties is loally losed.De�nitions and notation. Every sheme is onsidered to be of �nitetype over an algebraially losed �eld k unless spei�ally noted otherwise.Let f : X ! S be a morphism. Then Xs denotes the �bre of f over thepoint s 2 S and fs denotes the restrition of f to Xs. More generally, for amorphism � : T ! S, let fT : XT = X �S T ! T . In partiular one has thefollowing ommutative diagram:XT = X �S T �X����! XfT??y ??yfT �����! SFor a oherent OX -module F , FT will denote ��XF on XT . Tensor produtsof OXT -modules are over OXT . These onventions will be used through theentire artile.We will write F� for the dual OX -module HomX(F ;OX) when there is norisk of onfusion. The double dual F�� is alled the reexive hull of F andthere is a natural OX -module homomorphismF ! F��;F is said to be reexive if this is an isomorphism. We shall also onsiderreexive powers F [m℄ := (F
m)�� F [�m℄ := (F
m)�for m > 0. In general, there exist natural maps(F��)T ! (FT )�� and (F [m℄)T ! (FT )[m℄



REFLEXIVE PULL-BACKS AND BASE EXTENSION 3whih need not be isomorphisms, even when F is reexive. Of ourse, thesemaps are isomorphisms when F is loally free.Aknowledgements: We both owe a great debt to J�anos Koll�ar for patientlyanswering our questions about the moduli problems and tehnial issues ad-dressed in this paper. We would also like to thank Ekart Viehweg for manyuseful disussions and for inviting the seond author to visit Universit�at Es-sen. The �rst author bene�tted from onversations with Dan Abramovih,David Hyeon, and Rahul Pandharipande.2. Moduli funtorsDe�nition 2.1. Fix a base sheme B. The moduli funtor of polarizedproper shemes is the ontravariant funtorMP : B-shemes! Setsgiven by MP(S=B) := 8<: pairs (f : X ! S;L), wheref is a at and proper morphism,L is an f -ample line bundle on X9=;� swhere two families (f1 : X1 ! S;L1) and (f2 : X2 ! S;L2) are equivalent[(f1 : X1 ! S;L1) s (f2 : X2 ! S;L2)℄ i� there is an isomorphism h :X1 ! X2 suh that f1 = f2 Æ h and there is a line bundle M on S suh thatL1 �= h�L2 
 f�1M. For any morphism of B-shemes, � : T ! S, we haveMP(�)(X ! S;L) = (XT ! T; ��XL):In this artile we will restrit to the ase of B = k an algebraially losed�eld. Shk will denote the ategory of k-shemes.Any subfuntor of this moduli funtor will be alled a moduli funtor ofpolarized proper shemes.De�nition 2.2. A subfuntor F � MP is alled loally losed i� thefollowing ondition is satis�ed:For every (f : X ! S;L) 2 MP(S) there is a loally losed subshemej : Su ,! S suh that if � : T ! S is any morphism then(fT : XT ! T; ��XL) 2 F(T ) i� there is a fatorization T �! Su j! S:We say that F �MP is open i� Su � S is open for every S.For the de�nition of bounded, separated, and omplete moduli funtors thereader is referred to [14℄, 1.15.



4 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSDe�nition 2.3. Fix a polynomial h 2 Q[t℄ be suh that h(Z) � Z. Themoduli funtor of polarized shemes with Hilbert polynomial h is the subfuntorMPh of MP given by:MPh(S) = f(f : X ! S;L) 2MP(S) j �(L�Xs) = h(�) for all � 2 Z and s 2 Sg:This is an open and losed subfuntor.De�nition 2.4. A subfuntor M[N ℄ � MP is alled a moduli funtor ofanonially polarized Q-Gorenstein shemes of index N if, for eah (f : X !S;L) 2M[N ℄(S),(2.4.1) Xs is onneted, Cohen-Maaulay, and Gorenstein outside a losedsubsheme of odimension at least two for eah s 2 S;(2.4.2) f is equivalent to one of the form (f : X ! S; ![N ℄X=S).Remark 2.5. Assumption 2.4.1 implies the �bers are equidimensional pro-jetive shemes. One an show that the relative Cohen-Maaulay onditionis open (see [5℄ EGAIV3, 12.2.1), as is the lous where the relative dualizingsheaf is loally free (the relative Gorenstein lous). Sine the omplement tothe relative Gorenstein lous intersets the �bers in odimension � 2 over anopen subset of the base, it follows that Assumption 2.4.1 is open. Note thatthe singularity assumptions may also be expressed as a ondition on the mor-phism f : its relative dualizing omplex is supported in degree �dim(X=S)and the resulting dualizing sheaf is loally free over an open subset whoseomplement meets eah �ber in odimension two. We refer the reader to [3℄for a reent aount of relative duality.We emphasize that for families of anonially polarized Q-Gorenstein shemesof index N , ![N ℄X=S is invertible by de�nition. This is a ondition on the mor-phism, not just a ondition on the �bers. Indeed, ![N ℄X=S may fail to be in-vertible even when ![N ℄Xs is invertible for eah s 2 S (see [13℄). Also, it is notentirely obvious that Assumption 2.4.2 atually yields a subfuntor, i.e., thatfamilies of anonially polarized shemes pull bak to families of anoniallypolarized shemes. This is proved in the following lemma:Lemma 2.6. Given a family of anonially polarized Q-Gorenstein shemesof index N , f : X ! S, and a morphism � : T ! S, we have��X![N ℄X=S ' ![N ℄XT =T :Proof. Let U � X be the relative Gorenstein lous of f , i.e., the largestopen subset U of X suh that Us is Gorenstein for all s 2 S or equivalentlythe largest open subset U of X suh that !X=S jU is a line bundle. Then



REFLEXIVE PULL-BACKS AND BASE EXTENSION 5![N ℄X=S jU ' !NU=S and hene��X![N ℄X=S j��1X U ' ��X!NU=S ' !N��1X U=T ' ![N ℄XT =T j��1X U :Now odim(Us; Xs) � 2 for all s 2 S, so odim((��1X U)t; (XT )t) � 2 for allt 2 T . Finally ��X![N ℄X=S and ![N ℄XT =T are reexive, so sine they are isomorphion ��1X U , they are isomorphi on XT (f. 3.6.2). �IfM[N ℄ is a funtor of anonially polarized Q-Gorenstein shemes of indexN then we an onsiderM[N ℄h as well. An argument using 3.6 (and very similarto Lemma 2.6) impliesM[N ℄h (S) = f(f : X ! S) 2M[N ℄(S) j �(![��N ℄Xs ) = h(�)for all � 2 Z and s 2 S.g:Remark 2.7. Note that we speak of \a" moduli funtor and not \the"moduli funtor. The reason is that in order to obtain a relatively nie modulispae one has to restrit to a smaller lass than all the anonially polarizedQ-Gorenstein shemes of index N . On the other hand one ould onsider\the" moduli spae of smooth varieties, but in that ase one would not obtaina ompat moduli spae. The \right" lass of shemes will be somewherebetween these two and part of the diÆulty is to identify that lass.Assumptions 2.8. Assume the following:(2.8.1) M[N ℄h is loally losed;(2.8.2) M[N ℄h is bounded;(2.8.3) M[N ℄h is separated;(2.8.4) M[N ℄h is omplete;(2.8.5) for all smooth projetive urves S, and for all (f : X ! S) 2M[N ℄h (S), the sheaf f�![��N ℄X=S is semi-positive for all � suÆientlylarge and divisible.Theorem 2.9. [10℄, 4.2.1; [13℄, 5.7; [11℄, 5.6; [14℄, 9.23, 9.30 Assume thatk has harateristi zero. We retain the notation introdued above and assumethat M[N ℄h sati�es the onditions of 2.8. Let � > 0 be a �xed integer suh that![��N ℄X is very ample and without higher ohomology for all X 2M[N ℄h (k).Then there exists a oarse algebrai moduli spae M[N ℄h forM[N ℄h whih is aprojetive sheme and for all �� 0 there exist a p > 0 and an ample invertiblesheaf �(p)����N on M[N ℄h , suh that for all (f : X ! S) 2 M[N ℄h (S) and for theindued morphism � : S !M[N ℄h one has ���(p)����N = �det f�![����N ℄X=S �p.



6 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSViehweg's Funtor. Property V[N ℄ Consider a family of polarized va-rieties, f : X ! S, satisfying Assumption 2.4.1. It will be said that f satis�esproperty V[N ℄ if ![N ℄X=S is invertible.Note that families of anonially polarized Q-Gorenstein shemes of indexN automatially satisfy property V[N ℄ (by Assumption 2.4.2).De�nition 2.10. LetV[N ℄;dh be the moduli funtor of anonially polarizedQ-Gorenstein shemes of index N and Hilbert polynomial h satisfying thefollowing:(2.10.1) for eah s 2 S, Xs is a redued sheme of dimension d and hassemi log anonial singularities.We emphasize that we are retaining Assumptions 2.4.1 and 2.4.2. Notethat eah �ber Xs automatially has index N .Let N 0 = mN be a positive multiple of N and h0(t) = h(mt). There is anatural transformation, V[N ℄;dh ! V[N 0℄;dh0 ;indued by taking the mth power of the anonial polarization.Koll�ar's Funtor. Property K Consider a family of polarized varieties,f : X ! S, satisfying Assumption 2.4.1. It will be said that f satis�esproperty K if ��X![j℄X=S ' ![j℄XT =Tfor any morphism, � : T ! S, and eah j 2 Z.For anonially polarized Q-Gorenstein shemes of index N , it suÆes toverify this for j = 1; : : : ; N � 1. Indeed, 3.6 yields![j+�N ℄X=S = ![j℄X=S 
 (![N ℄X=S)� :De�nition 2.11. Let K[N ℄;dh be the moduli funtor of anonially polarizedQ- Gorenstein shemes of index N and Hilbert polynomial h satisfying thefollowing:(2.11.1) for eah s 2 S, Xs is a redued sheme of dimension d and hassemi log anonial singularities;(2.11.2) eah family (f : X ! S; ![N ℄X=S) 2 K[N ℄;dh (S) satis�es property K.If a family satis�es property K, then the family is in K[N ℄;dh if the indiesof the �bers all divide N . Let N 0 = mN be a positive multiple of N andh0(t) = h(mt). Then the natural transformation,K[N ℄;dh ! K[N 0℄;dh0 ;indued by taking the mth power of the anonial polarization, is an openimmersion.



REFLEXIVE PULL-BACKS AND BASE EXTENSION 7These onditions are stronger than those of Viehweg's funtor, so there isa natural transformation of moduli funtors,K[N ℄;dh ! V[N ℄;dh ;induing a bijetion between K[N ℄;dh (k) and V[N ℄;dh (k).Moduli of Surfaes: Smoothability and Boundedness.De�nition 2.12. Let V[N ℄;2h;sm (k) denote the following subset of V[N ℄;2h (k):V[N ℄;2h;sm (k) = fX j X 2 V[N ℄;2h (k); and 9(g : Y ! C) 2 V[N ℄;2h (C); suh thatC is an irreduible urve, X ' X for some  2 C, andXgen is a normal surfae with at most rational double points.gWe de�ne K[N ℄;2h;sm (k) analogously.One we onstrut the moduli shemes V [N ℄;2h and K[N ℄;2h , we may realizeV[N ℄;2h;sm (k) and K[N ℄;2h;sm (k) as the losed points of ertain subvarieties. The pointssatisfying the smoothability ondition form a union of irreduible omponents,and this union forms a losed subvariety. However, this subvariety does notneessarily admit a natural sheme struture.Remark 2.13. Assume that k has harateristi zero for the remainder ofthis subsetion. [1℄, 5.11 implies that there exists an N 2 N suh thatVh(k) := [m2NV[m℄;2h(mt)(k) = V[N ℄;2h(Nt)(k)and Vh;sm(k) := [m2NV[m℄;2h(mt);sm(k) = V[N ℄;2h(Nt);sm(k):In order to onstrut moduli spaes for V[N ℄;dh and K[N ℄;dh , one has to verifythe assumptions of 2.8. All the properties listed in 2.8, exept 2.8.1, are thesame for both V[N ℄;dh and K[N ℄;dh .� [10℄, 2.1.2 implies 2.8.2.� [13℄, 5.1 implies 2.8.3 and 2.8.4, at least for the irreduible ompo-nents satisying the smoothability ondition. For the general ase,one has to onstrut a unique stable limit for a one-parameterfamily of nonnormal stable surfaes. Consider its normalizationas a family of stable log surfaes with boundary equal to the on-dutor. Apply the log minimal model program and the results of[7℄ to obtain a unique limiting stable log surfae. We glue baktogether along the ondutor to reover the stable limit of ouroriginal family.� [11℄, 4.12 implies 2.8.5.



8 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSThat leaves us to verify 2.8.1, and in the rest of the artile we will onen-trate on this property.Proof of Loal Closedness. To prove that V[N ℄;dh is loally losed, onewould naturally list the properties of the funtor and prove one by one thatall of them are loally losed. However, this requires speial attention. A po-tentially triky part is that the order of this proedure matters. For instane,the requirement that ![N ℄X=S be invertible should not be onsidered until onlyopen properties are left, beause it may very well happen that ![N ℄X=S is notinvertible along an admissible �ber Xs, but ![N ℄XT =T beomes invertible afterrestriting to some loally losed T � S ontaining s. In partiular the louswhere ![N ℄X=S is invertible does not oinide with the lous where ![N ℄Xs is invert-ible. The key problem is: taking reexive powers does not generally ommutewith base extension.The next theorem is the main result of this artile. Here we redue loallosedness to a rather tehnial statement whih will be proved in the nextsetion.Theorem 2.14. The moduli funtor of anonially polarized Q-Gorensteinshemes of index N is loally losed.Proof. In proving loal losedness, we address the onditions imposed onthe �bers of f : X ! S separately from the onditions imposed on the mor-phism f itself. We have already observed in 2.5 that ondition 2.4.1 is open.Now we turn to ondition 2.4.2, i.e., ![N ℄X=S is loally free. Suppose we are givenan arbitrary family of polarized varieties (f : X ! S;L) with �bers satisfying2.4.1. We apply 3.11 with F = !
NX=S . This sheaf may be terribly singular,perhaps even with torsion along ertain �bers. However, !
NX=S does have onesalient property: it ommutes with arbitrary base extensions � : T ! S, i.e.,��X!
NX=S = !
NXT =T :By 3.11 there exists a loally losed subsheme Su � S with the followinguniversal property. Given a morphism � : T ! S, there exists an invertiblesheaf N on T and an isomorphism(!
NXT =T )�� '�! LT 
 f�TNif and only if � fators through Su. By de�nition we have![N ℄XT =T = (!
NXT =T )��;so the proof that ondition 2.4.2 is losed is omplete. �Theorem 2.15. If k is a �eld of harateristi zero then V[N ℄;2h is a loallylosed moduli funtor. In partiular, V[N ℄;2h;sm (k) is loally losed.



REFLEXIVE PULL-BACKS AND BASE EXTENSION 9Proof. It remains to verify that ondition 2.10.1 is loally losed one on-ditions 2.4.1 and 2.4.2 are imposed. In partiular, we may assume that wehave families of anonially polarized Q-Gorenstein varieties of index N .The ondition that the geometri �bers Xs are redued is open by [5℄EGAIV3, 12.2.1. The lous where the �bers have semi log anonial singular-ities is open by [8℄, 2.6 (see also [13℄,x5). �Remark 2.16. (harateristi zero) If one assumes the existene of min-imal models in dimension d + 1, the results of [8℄ imply that having semilog anonial singularities is an open ondition for families of anonially po-larized Q-Gorenstein varieties of index N . It follows that V[N ℄;dh is loallylosed. 3. Loal losedness of reexive pull-baksWe �rst reall the following result from [5℄ EGAIV, x6.3:Proposition 3.1. Let A and B be noetherian loal rings, k the residue�eld of A, � : A ! B a loal homomorphism, M an A-module of �nite type,and N a B-module of �nite type. If N is a at and nonzero as an A-modulethen depthB(M 
A N) = depthA(M) + depthB
Ak(N 
A k):We shall assume that all shemes are noetherian.Let f : X ! S be a at morphism of shemes and E a oherent OX -moduleat over S. We shall say E is Sr relative to f if the following holds: for eahx 2 X; s = f(x); F = Xs we havedepthOF;x(EjF ) � min(r; dimOX;x � dimOS;s):In other words, the restrition of E to eah �ber is Sr. By 3.1, this is equivalentto depthOX;x(E) � depthOS;s(OS;s) + min(r; dimOX;x � dimOS;s):Two speial ases deserve further attention. If E = OX then our de�nitionoinides with the ordinary de�nition of an Sr morphism (see [5℄ EGAIV,x6). If S = Spe(K), where K is a �eld, then we reover a notion of an Srsheaf. For example, a sheaf is S1 provided it has no imbedded points. We antranslate the de�nition of Sr-sheaves using the ohomologial interpretationof depth (see [6℄, xIII.3 Ex. 4).Proposition 3.2. Let f : X ! S be a at morphism of shemes and E aoherent OX -module at over S. Then E is Sr relative to f if and only if, for



10 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSeah x 2 X; s = f(x), we haveminfi : H ix(E) 6= 0g � depthOS;s(OS;s) + min(r; dimOX;x � dimOS;s):Here H ix(E) denotes ohomology on Spe(OX;x) with support at the losedpoint and oeÆients in Ex. If Z � X is losed, we use HiZ to denote the loalohomology sheaf assoiated to ohomology on X with support along Z.Proposition 3.3. Let f : X ! S be a at morphism of shemes and Ea oherent OX-module at over S and Sr relative to f . Let Z � X be alosed subsheme with ideal sheaf IZ . Assume that odim(Zs; Xs) � r foreah s 2 S. Then we have depthOX (IZ ; E) � r, or equivalently,HkZ(E) = 0 for k = 0; : : : ; r � 1Proof. The ohomologial interpretation of depth gives the equivalene ofthe two onlusions.For eah point x 2 Z we haveH0x = H0x Æ H0Zwhih indues a spetral sequeneEp;q2 := Hpx Æ HqZ =) Hp+qx :The proof is by indution on k, starting with k = 0. Assume that H0Z(E) 6= 0and its support ontains a point x 2 Z. We have H0x(H0Z(E)) 6= 0 and thusH0x(E) 6= 0. Writing s = f(x), we obtain a ontradition of 3.2. Now assumethat HiZ(E) = 0 for i = 0; : : : ; k � 1 where k < r, but that HkZ(E) 6= 0 andits support ontains x 2 Z. It follows that Hkx (E) = H0x(HkZ(E)) 6= 0, whihagain ontradits 3.2. �Corollary 3.4. Let f : X ! S be a at Sr morphism, and Z � X asubsheme suh that odim(Zs; Xs) � r for eah s 2 S. Then grade(IZ) � r.Proposition 3.5. Let f : X ! S be a at morphism of shemes, E aoherent sheaf at over S and S2 relative to f , and j : U ,! X an opensubsheme with omplement Z. Assume that odim(Zs; Xs) � 2 for eahs 2 S. Then the natural map E ! j�(EjU )is an isomorphism.Proof. The long exat sequene(3.5.1) 0! H0Z(E)! E ! j�(EjU )! H1Z(E)! 0yields the isomorphism. �Proposition 3.6. Let f : X ! S be a at S2 morphism, F a reexive o-herent OX -module. Let Z � X be a losed subsheme so that odim(Zs; Xs) �2 for eah s 2 S, and let U be the omplement of Z.



REFLEXIVE PULL-BACKS AND BASE EXTENSION 11(3.6.1) Then HkZ(F) = 0 for k = 0; 1 and the natural map F ! j�(FjU )is an isomorphism.(3.6.2) Let F 0 be another oherent OX-module whih is either S2 relativeto f or reexive. If FjU'F 0jU then F ' F 0.Proof. Consider a presentation of F� by loally free sheavesE2 ! E1 ! F� ! 0:On dualizing we obtain 0! F ! E�1 ! E�2 :Sine the E�i are loally free and f is S2, 3.3 yieldsHkZ(Ei) = 0 for k = 0; 1:Taking the assoiated long exat sequenes, we obtain the desired vanishingfor F . The long exat sequene in loal ohomology (f.3.5.1) yields the �rstisomorphism. The isomorphism between F and F 0 is obtained by pushingforward. �We obtain a riterion for when push-forwards of reexive sheaves are re-exive:Corollary 3.7. Let f : X ! S be a at S2 morphism and j : U ,! Xan open subsheme with omplement Z. Assume that odim(Zs; Xs) � 2 foreah s 2 S. If G is a reexive oherent sheaf on U then j�G is also reexiveand oherent.Proof. Choose a oherent subsheaf E � j�G so the indued map EjU ! Gis an isomorphism [6℄, xII.5 Ex.15. The reexive hull E�� is also oherent andwe have E��jU ' G: An appliation of 3.6.2 impliesE�� ! j�(E��jU ) ' j�Gis an isomorphism. �We also obtain the following (f. [2℄, 1.4.1):Corollary 3.8. Let f : X ! S be a at S2 morphism, E a oherent sheafat over S and S2 relative to f , and j : U ,! X an open subsheme withomplement Z. Assume that odim(Zs; Xs) � 2 for eah s 2 S and EjUis reexive. Then E is reexive, and furthermore, for eah � : T ! S thepull-bak ET is reexive.Proof. We apply 3.6.2 to show that the natural map E ! E�� is an isomor-phism. Our hypotheses are preserved under base extension, so ET is reexivefor eah � : T ! S. �Suppose that f : X ! S is a at projetive Cohen-Maaulay morphism ofrelative dimension d. Then the relative dualizing sheaf !X=S exists, ommuteswith base extension, and is Sd relative to f [9℄, x9,21; [3℄, 3.6.1; [4℄, 21.8. In



12 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSlight of our previous results, it is natural to ompare the relative dualizingsheaf with the reexive hull of a oherent sheaf.Theorem 3.9. Let f : X ! S be a at projetive Cohen-Maaulay mor-phism of relative dimension d with geometrially onneted �bers. Let G bea oherent sheaf on X, and U ,! X an open subset with omplement Z sothat odim(Zs; Xs) � 2 for eah s 2 S. Assume that !X=S and G are loallyfree on U . Then there exists a loally losed subset Su � S with the followingproperty. Given a morphism � : T ! S, there exists an invertible sheaf N onT and an isomorphism(3.9.1) (GT )�� '�! !XT =T 
 f�TNif and only if � fators through Su.Proof. We produe a subset Su � S over whih the isomorphism 3.9.1exists. Let W 0 � S denote the subsheme supporting Rdf�G. Note that W 0has a naturally de�ned sheme struture. Indeed, let P� ! G be a resolutionof G by loally freeOX -modules. The proof of the ohomology and base hangetheorem [5℄ EGAIII, x7.7 produes a omplex of loally free OS-modules,0! E0 ! E1 ! : : :! Ed�1  ! Ed ! 0omputing the diret image sheaves Ri (fT )�P�T for any base extension T ! S.Sine the maximal �bre dimension of f is d, Rj(fT )� = 0 for all j > d.Furthermore, G is the highest non-zero ohomology sheaf of P�, soRdf�P� ' Rdf�G:In partiular, Rdf�G is the okernel of  and we de�neW 0 using the rank(Ed)-minors of  . It also follows that the formation of Rdf�G ommutes with baseextension, i.e.,(3.9.2) (Rdf�G)s ! Hd(Xs;Gs)is an isomorphism for eah s 2 S.LetW �W 0 be the loally losed subset obtained by removing points whererank( ) < rank(Ed) � 1 and fW : XW ! W the orresponding morphism.HeneM := Rd (fW )�GW = (Rdf�G)W is loally free of rank one. The relativeduality theorem of Kleiman [9℄, x10,21 gives an isomorphism of OW -modules(3.9.3) HomfW (GW ; !XW =W 
 f�WM) '�! HomW (M;M) = OW :



REFLEXIVE PULL-BACKS AND BASE EXTENSION 13The identity 1 2 OW gives a natural homomorphism � : GW ! !XW =W 
f�WM whih fators GW ��! !XW =W 
 f�WM# k(GW )�� ����! !XW =W 
 f�WMbeause !XW =W is reexive.Let Su � W be the open subset over whih �jU is an isomorphism. Themap ��� is an isomorphism over Su by 3.6. For any Su-sheme T , the map(���)T : ((GW )��)T �! (!XW =W )T 
 f�TMindued by base extension is also an isomorphism. Sine (!XW =W )T = !XT =Tis at and reexive, the same holds for ((GW )��)T . Hene 3.6 guarantees thatthe natural map ((GW )��)T ! (GT )�� is an isomorphism.It remains to show that Su satis�es the universal property. Let T be anS-sheme, N an invertible sheaf on T , and(3.9.4) ��� : (GT )�� '�! !XT =T 
 f�TNan isomorphism. For eah t 2 T , the natural map Gt ! ((GT )��)t is an iso-morphism over Ut, a subset with odimension � 2 omplement. We thereforeobtain an isomorphism of ohomology groupsHd(Xt;Gt) '�! Hd(Xt; ((GT )��)t)and the base-hange isomorphism 3.9.2 yieldsRd (fT )�GT '�! Rd (fT )�[(GT )��℄:The omposed morphism� : GT ! (GT )�� ! !XT =T 
 f�TNindues Rd (fT )�GT '�! Rd (fT )�[!XT =T 
 f�TN ℄:Sine fT is Cohen-Maaulay, relative duality yields an isomorphismRd(fT )�!XT =T ' ExtdfT (OXT ; !XT =T ) '�! HomT ((fT )�OXT ;OT ) ' OT ;where the last isomorphism follows from the fat that fT has geometriallyonneted �bers. It follows thatRd(fT )�GT ' Rd (fT )�[!XT =T 
 f�TN ℄ ' Rd(fT )�!XT =T 
N ' N ;hene T ! S fators as T ! W ,! S and N ' MT . Applying dualityagain, we may regard � as an element of HomT (N ;N ) ' (HomW (M;M))Tand ompare � and �T over T . The identi�ation in the isomorphism 3.9.3 is



14 BRENDAN HASSETT AND S�ANDOR J. KOV�ACSfuntorial, hene �T orresponds to 1 2 HomT (N ;N ), � orresponds to somer 2 OT , and � = r�T .To omplete the proof it suÆes to hek that r 2 O�T . Consider therestrition of the isomorphism 3.9.4 to the open subset UT where the sheavesare all loally free�jUT = ���jUT : (GT )jUT '�! (!XT =T 
 f�TN )jUT :If r were not invertible at some t 2 T then �jUT would have nontrivial okernelover t, a ontradition. �Corollary 3.10. Retain all the notation and hypotheses of 3.9. Assumein addition that G is S2-relative to f . Then there exists a loally losed subsetSu � S with the following property. Given a morphism � : T ! S, thereexists an invertible sheaf N on T and an isomorphismGT '�! !XT =T 
 f�TNif and only if � fators through Su.Proof. This follows from 3.9 and 3.8. �Theorem 3.11. Let f : X ! S be a at projetive Cohen-Maaulay mor-phism of relative dimension d with geometrially onneted �bers. Let L be aninvertible sheaf on X, F a oherent sheaf on X, and U ,! X an open subsetwith omplement Z so that odim(Zs; Xs) � 2 for eah s 2 S. Assume that!X=S and F are loally free on U . Then there exists a loally losed subsetSu � S with the following property. Given a morphism � : T ! S, thereexists an invertible sheaf N on T and an isomorphism(FT )�� '�! LT 
 f�TNif and only if � fators through Su.Proof. Without loss of generality we may assume that L is trivial (replaeFby F 
L�1). Apply 3.9 with G = F 
 !X=S , so that (GT )�� ' !XT =T 
 f�TNi� T fators through Su. On the other hand, (GT )�� ' !XT =T 
 f�TN ifand only if GT jUT ' (!XT =T 
 f�TN )jUT , whih is the ase exatly whenFT jUT ' f�TNjUT , or equivalently, when (FT )�� ' f�TN (by 3.6). �Remark 3.12. It is natural to try to generalize this result for more generalsheaves L. The above argument is still valid provided L satis�es the following:(3.12.1) L is S2 relative to f ;(3.12.2) LjU is invertible.Proof. We apply 3.9, with G = F 
L� 
 !X=S . We obtain a loally losedsubset Su � S suh that (GT )�� ' !XT =T 
 f�TN i� T fators through Su.Again, this is the ase if and only if(F 
 L� 
 !XT =T )T jUT ' f�TNjUT ;



REFLEXIVE PULL-BACKS AND BASE EXTENSION 15whih by Assumption 3.12.2 is equivalent toFjUT ' L 
 f�TNjUT ;whih in turn is equivalent to (FT )�� ' (LT )�� 
 f�TN . Applying 3.8 alongwith Assumptions 3.12.1 and 3.12.2 yields that LT is reexive for eah T , sothe last isomorphism exists i� (FT )�� ' LT 
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