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0 Introdu
tionIn this paper, we 
ompute the Sn-invariant 
one of e�e
tive divisors of theFulton-Ma
Pherson 
on�guration spa
e of n points on P1. This spa
e isisomorphi
 to the moduli spa
e M0;n(P1; 1) of stable maps of degree onefrom genus zero 
urves with n marked points to P1. We also 
ompute thee�e
tive 
one of the generi
 �ber of the natural mapM0;n(P1; 1)=Sn !M0;n=Sn:Our motivation is to provide a geometri
 explanation of a formula, obtainedby Duke, Rudni
k and Sarnak, giving the asymptoti
 behavior of the numberof binary forms of degree n with �xed dis
riminant and bounded integral
oeÆ
ients. This �ts into a larger program to predi
t and prove asymptoti
formulas for the number of rational and integral points of bounded height onalgebrai
 varieties.We introdu
e a 
ounting fun
tion for integral points on an algebrai
 va-riety as follows: given a variety U over a ring of integers o and fun
tionsg1; :::; gn, regular on U , de�neN(U;B) := fx 2 U(o) j maxj (kgj(x)k) � Bg;where k � k is a valuation on o. This is �nite only when the fun
tions gj givean embedding of U .It is most natural to interpret the fun
tions gj as se
tions of a line bundleL on a proje
tive 
ompa
ti�
ation X � U de�ned over the fra
tion �eldF of o. The fa
t that the se
tions embed U implies that L is big, i.e., is
ontained in the interior of the e�e
tive 
one �e�(X) of X. Therefore, inorder to des
ribe all natural 
ounting fun
tions on open subsets of X weneed to 
ompute its e�e
tive 
one. Furthermore, in many 
ases it 
an beproved that the asymptoti
 properties of N(U;B) are intimately related tothe stru
ture of this 
one.Let P (x) = P (x0; :::; xr) be a homogeneous polynomial of degree n in r+1variables. A standard heuristi
 in number theory predi
ts that the numberNP (B) := �x j max(jxjj) � B; P (x) = 0; and x 2 Zr+1	2



of integral solutions of the equation P (x) = 0 of \height" � B grows asymp-toti
ally like Br+1�n as B ! 1. When the number of variables is � 2n,the aÆne variety VP de�ned by P = 0 is smooth and there are no lo
al ob-stru
tions, an asymptoti
 formula 
an be established using the 
lassi
al 
ir
lemethod in analyti
 number theory (see [3℄, [25℄ and the referen
es therein).Of 
ourse, there may be diÆ
ulties when the number of variables is small orthe variety VP is singular.The following example appeared in the paper by Duke, Rudni
k andSarnak [6℄. Consider the ve
tor spa
e of binary forms of degree nxnzn + xn�1zn�1w + : : :+ x0wn:The algebrai
 group SL2 a
ts on this spa
e by 
oordinate substitutions. Whenn = 3, the dis
riminant formdis
(x0; :::; x3) := 27x20x23 � 18x0x1x2x3 + 4x0x32 + 4x31x3 � x21x22generates the ring of SL2-invariants. Then there exists a 
onstant 
 > 0 sothat Ndis
�1(B) = 
B2=3(1 + o(1))as B !1. Note that the exponent 2=3 is larger than what is predi
ted bythe standard heuristi
.More generally, one has theTheorem 0.1 [6℄ Fix a generi
 binary form f of degree n � 3 with integral
oeÆ
ients. Let N(B) be the number of binary forms SL2(Z)-equivalent to fwith 
oeÆ
ients bounded by B. Then there exists a 
 > 0 su
h thatN(B) = 
B2=n(1 + o(1));as B !1.We give a geometri
 interpretation of the exponent 2=n in Theorem 0.1.To this end, we re�ne the heuristi
s for 
ounting integral points to take intoa

ount singularities of the relevant varieties (see Conje
ture 1.6). We verifythat Conje
ture 1.6 is 
onsistent with Theorem 0.1 in Theorem 2.1. Its proofinvolves the 
omputations of e�e
tive 
ones alluded to above.A
knowledgments: We are grateful to the Alfr�ed R�enyi Institute of theHungarian A
ademy of S
ien
es for organizing the 
onferen
e at whi
h mu
hof this work was done. 3



1 Generalities1.1 Singularities of pairs and e�e
tive 
onesWe work over a �eld of 
hara
teristi
 zero. Let X be a normal proje
tivevariety with 
anoni
al 
lass KX and let D be a redu
ed e�e
tive Weil divisorof X.De�nition 1.1 A good pair (X;D) 
onsists of a smooth proje
tive variety Xand a stri
t normal 
rossings divisor D in X. This means that all irredu
ible
omponents of D are smooth and interse
t transversally.Let (X;D) be a good pair and let �e�(X) denote the 
losed 
one ofe�e
tive divisors 
lasses of X; a divisor is big exa
tly when its 
lass is in theinterior of this 
one. De�nea(L;D) := inffa 2 R j aL + (KX +D) 2 �e�(X)g;where we identify line bundles and their divisor 
lasses. Note that a(L;D) isa positive real number whenever �(KX +D) is big. The 
onstant �a(L;D)is 
alled the log-Kodaira energy of L (see [10℄).If (X;D) is not good then resolution of singularities implies the existen
eof a good resolution � : ( ~X; ~D) ! (X;D). Pre
isely, ( ~X; ~D) is a good pair,� a birational proje
tive morphism, and ~D is the union of the ex
eptionaldivisors of � and the proper transform of D. Re
all that (X;D) is log-
anoni
al if KX +D is Q -Cartier andK ~X + ~D �Q ��(KX +D) +X djEj;where the Ej are the ex
eptional divisors of � and dj � 0 for all j.Example 1.2 When X is a smooth surfa
e, (X;D) is log-
anoni
al onlywhen the 
urve D is smooth or nodal. If X is smooth of arbitrary dimension,D must have at worse nodes in 
odimension one.If L is a line bundle on X puta(L;D) := a(��L;Dt);where Dt � ~X is the total transform of D. Note that a(L;D) is 
omputedon ~X. 4



Proposition 1.3 Let (X;D) be a log-
anoni
al pair and assume that X�Dhas 
anoni
al singularities. If L is a big line bundle on X thena(L;D) = inffa 2 R j aL + (KX +D) 2 �e�(X)g:In parti
ular, a(L;D) does not depend on the 
hoi
e of a desingularization.Proof. Choose a good resolution � : ( ~X; ~D)! (X;D), so thatK ~X + ~D �X djEj = ��(KX +D)where dj � 0, and dj � 1 if �(Ej) 6� D. In parti
ular, ea
h ex
eptionaldivisor not 
ontained in the total transform Dt has log dis
repan
y � 1.Therefore, we have���(L) +K ~X +Dt �X d0jEj = ��(KX +D + �L);with ea
h d0j � 0. For any Q -Cartier divisor M on X and e�e
tive di-visor P d0jEj supported in the ex
eptional lo
us of �, M is e�e
tive i���(M) +P d0jEj is e�e
tive. �Proposition 1.4 Let (X1; D1) and (X2; D2) be log-
anoni
al pairs, so thatX1�D1 and X2�D2 have 
anoni
al singularities. Assume that � : X1 ! X2is a �nite dominant morphism so that��(KX2 +D2) = KX1 +D1:Let L be a big divisor on X2. Then a(L;D2) = a(��(L); D1).In fa
t, it suÆ
es to assume that either (X1; D1) or (X2; D2) satis�es thesingularity 
ondition [17, Se
t. 20.3℄.Proof. Given a �nite dominant morphism � : X1 ! X2 and a Q -Cartierdivisor M on X2, M is e�e
tive i� ��(M) is e�e
tive. Indeed, the divisor����M is de�ned and equal to deg(�)M . Combining this with Proposition1.3 gives the result. �Remark 1.5 Let (X;D) be a log terminal pair so that X � D has singu-larities whi
h are not 
anoni
al. Then our de�nition of the Kodaira energy5



di�ers slightly from Fujita's [10℄. In appli
ations to integral points, we areinterested in invariants of the open variety X �D. In Fujita's de�nition, onpassing from (X;D) to a good resolution, any ex
eptional divisors over X�Dwith negative dis
repan
y must be added to the boundary. This 
hanges theopen variety.1.2 Integral pointsRetain the notation from the previous se
tion and assume that X and D arede�ned over a number �eld F . Let oS denote the ring of integers of F , whereS is a �nite set of nonar
himedean pla
es of F . Fix models X and D 
at andproper over the ring of integers oS. A (D;S)-integral point is an oS-point of(X � D). In parti
ular, if D = ; an integral point is the same as a rationalpoint on X.Let L be a very ample metrized line bundle on X, U � X a Zariski opensubset and U a model of U over oS. Let S be a �nite set of pla
es in F ,in
luding the ar
himedean pla
es. LetN(U ;L; B) := #fx 2 U(oS) jHL(x) � Bgdenote the number of (D;S) integral points on U of L-height bounded byB. A natural extrapolation of Vojta's 
onje
ture about integral and rationalpoints on varieties of (log-)general type [27℄ and Batyrev-Manin 
onje
turesabout rational points of bounded height on Fano varieties [9, 1℄ would be:Conje
ture 1.6 For any � > 0, there exists a dense Zariski open subsetU � X su
h that N(U ;L; B)� Ba(L;D)+�as B !1. If �(KX +D) is big thenN(U ;L; B)� Ba(L;D)��;as B !1, at least after a suitable �nite extension of F and S.The statement is independent of the 
hoi
e of S and the 
hoi
e of ametrization on L.Many pre
ise results about asymptoti
s of rational and integral pointsare 
urrently available (see, for example, [9, 2, 4, 21, 22, 6, 7, 8℄ and the ref-eren
es therein). As far as we know, Conje
ture 1.6 is 
ompatible with all of6



them. However, to a
tually 
he
k this 
ompatibility one has to 
ompute thegeometri
 invariants of (some resolution of) the pair (X;D). In parti
ular,one has to determine the e�e
tive 
one. This 
an be a formidable task evenfor rational varieties, e.g., like the moduli spa
e of pointed rational 
urvesM0;n (see [14℄).1.3 Computing e�e
tive 
onesLet X be a nonsingular proje
tive variety, perhaps with an a
tion by a �nitegroup G. We review strategies for 
omputing the G-invariant e�e
tive 
one�e�(X)G and thus the e�e
tive 
one of the quotient X=G (
f. [16℄).A 
urve 
lass [C℄ 2 N1(X) is said to be nef if [C℄:D � 0 for ea
hD 2 �e�(X). A family of 
urves passing through the generi
 point of Xis automati
ally nef. Indeed, 
onsider a family C ! B of integral proje
tive
urves in X and an irredu
ible 
odimension-one subvariety D � X. If, forgeneri
 b 2 B, the �ber Cb 6� D, we have [Cb℄:D � 0.Fix a 
olle
tion of e�e
tive divisors� = fA1; : : : ; Amgwhi
h we expe
t to generate �e�(X)G. To prove that � generates the (G-invariant) e�e
tive 
one, it suÆ
es to �nd a 
olle
tion of nef (G-invariant)
urve 
lasses � = fC1; : : : ; C`gso that the 
one generated by � 
ontains the dual to the 
one generated by�. In se
tion 4, we shall use a re�nement of this method (see [5℄, [24℄). Adivisor D 2 �e�(X) is moving relative to � if some multiple of D 
ontainsno element of � as a �xed 
omponent. Every e�e
tive divisor is a sumM + mXi=1 Aidi; di � 0where M is moving relative to �. To prove that � generates the e�e
tive
one, it suÆ
es to show that M is an e�e
tive sum of the Ai.A 
urve 
lass is nef relative to � if [C℄:M � 0 for ea
hM whi
h is movingrelative to �. Any family of 
urves passing through the generi
 point of some7



Ai is nef relative to �. Consequently, to show that � generates the e�e
tive
one, it suÆ
es to �nd a 
olle
tion � of 
urve 
lasses, nef relative to �, sothat the 
one generated by � 
ontains the dual to the 
one generated by �.2 Constru
tion of resolutions2.1 Binary forms and SL2-orbit 
losuresLet V be a two-dimensional ve
tor spa
e with 
oordinates z and w, equippedwith the standard SL2-a
tion. Let SymnV � be the spa
e of binary forms ofdegree n f = x0zn + x1zn�1w + : : :+ xnwn:It 
arries an indu
ed a
tion of SL2 by substitution.Asso
iating to ea
h form f 6= 0 its roots �1; : : : ; �n yields a map(SymnV � � 0)! P(V )n=Snand an identi�
ation P(SymnV �) ' P(V )n=Sn. The dis
riminant of a poly-nomial f is a homogeneous form in its 
oeÆ
ients x0; : : : ; xn and de�nes adivisor D � X = P(SymnV �).Now we may state our main result:Theorem 2.1 (Computation of Kodaira Energy) Let f be a generi
 bi-linear form of degree n, Xf � P(SymnV �) the 
losure of the SL2-orbit throughf , Df the interse
tion of the dis
riminant with Xf , and L the restri
tion ofthe standard polarization to Xf . Then we havea(L;Df) = 2=n:In parti
ular, Conje
ture 1.6 is 
onsistent with Theorem 0.1.To prove this, we require a resolution (i.e., a partial desingularization) of(Xf ; Df) on whi
h we may evaluate a(L;Df ) using Proposition 1.3. Thisresolution will be indu
ed by a natural resolution of (X;D).Remark 2.2 Example 1.2 shows that (X;D) is far from being log-
anoni
al.When n = 3, the dis
riminant has 
usps in 
odimension one: a transversesli
e z3 + bzw2 + 
w38



interse
ts the dis
riminant in the 
uspidal 
urve4b3 + 27
2 = 0:Our resolution of (X;D) will be a Sn-quotient of a natural desingulariza-tion for (P(V )n;�), where � is the diagonal, i.e., the points lying over thedis
riminant. Both admit interpretations as moduli spa
es of stable maps.2.2 Moduli spa
esFix an integer n � 3. Let M0;n denote the Knudsen-Mumford moduli spa
eof stable 
urves of genus zero with n marked points [18℄(C; p1; : : : ; pn):LetM0;n(P1; 1) denote the Kontsevi
h moduli spa
e of stable maps of degreeone from genus-zero 
urves with n marked points to P1 [19, 20, 12℄(C; p1; : : : ; pn; � : C ! P1):This is naturally isomorphi
 to the Fulton-Ma
Pherson [11℄ 
on�gurationspa
e P1[n℄ for n points in P1 (see [12℄ x0). However, for our purposes it is
onvenient to use the moduli spa
e notation.We have the following natural maps:1. the evaluation mapM0;n(P1; 1) �! (P1)n;(C; p1; : : : ; pn; �) 7! (�(p1); : : : �(pn));2. forgetting the point pj�j :M0;n �! M0;n�1; (n � 4)(C; p1; : : : ; pn) 7! (C 0; p1; : : : ; p̂j; : : : ; pn);�j :M0;n(P1; 1) �! M0;n�1(P1; 1)(C; p1; : : : ; pn; �) 7! (C 0; p1; : : : ; p̂j; : : : ; pn; �0):3. taking proje
tive equivalen
e 
lasses :M0;n(P1; 1) �! M0;n(C; p1; : : : ; pn; �) 7! (C 0; p1; : : : ; pn):9



C 0 is obtained from C by `
ollapsing' the irredu
ible 
omponents whi
h aredestabilized when pj (resp., the polarization) is removed.Finally, we enumerate the boundary divisors of these moduli spa
es. Forea
h partition f1; : : : ; ng = S [ S 0; 2 � jSj � jS 0j � n� 2;
onsider stable 
urvesC = (P1; pj; j 2 S) [ (P1; pj; j 2 S 0);whi
h form a divisor ÆS;S0 � M0;n. The union of these is denoted Æ. Notethat the Sn-orbits of fÆS;S0g 
orrespond to the integersjSj = 2; : : : ; bn=2
:For ea
h subset S � f1; : : : ; ng; 2 � S
onsider stable maps� : C = (P1; pj; j 2 S) [ (P1; pj; j 2 S 0) �! P1
ollapsing the �rst 
omponent and mapping the se
ond isomorphi
ally ontoP1. These form a divisor BS � M0;n(P1; 1). The Sn-orbits of fBSg 
orre-spond to integers s = jSj = 2; : : : ; nand we de�ne B[s℄ := XjSj=sBS and B := nXs=2 B[s℄Theorem 2.3 The moduli spa
es M0;n(P1; 1) and M0;n are smooth proje
-tive algebrai
 varieties. Moreover, the boundary is a divisor with stri
t nor-mal 
rossings.Remark 2.4 In parti
ular, the pair (M0;n(P1; 1); B) is log-
anoni
al.
10



2.3 Resolution for the full moduli spa
eWe obtain a good resolution ( ~X; ~D) of (X;D) using the above formalism.Consider the quotient mapq : M0;n(P1; 1)! ~X :=M0;n(P1; 1)=Sn:Let ~D[s℄ and ~D be the images of B[s℄ and B under this map.Proposition 2.5 The map q is rami�ed only along the boundary B. At thegeneri
 points of B[2℄ the rami�
ation has order 2. For all s = 3; ::; n, themap q is unrami�ed at the generi
 points of B[s℄. We have the formulaq�(K ~X + ~D) = KM0;n(P1;1) +Band ( ~X; ~D) is log-
anoni
al.Proof. The map q rami�es at points 
orresponding to stable maps(C; p1; :::; pn; �)that admit an automorphism permuting the marked points. The rami�
ationorder is the order of this automorphism group. If the images of the n pointsunder � are distin
t then there is no automorphism of � permuting them.This proves the �rst assertion. If marked points 
oin
ide there is an irre-du
ible 
omponent P1 � C whi
h is 
ollapsed by � and whi
h 
ontains thesepoints. If there are two su
h points this 
omponent admits an automorphismof order two ex
hanging the points and �xing the point of interse
tion withthe rest of C. This proves the se
ond assertion. If there are more than twomarked points then there is generally no su
h automorphism. This provesthe third assertion.The rami�
ation formula and the fa
t that the pair ( ~X; ~D) is log-
anoni
alfollow from an easy lo
al 
omputation 
ombined with Remark 2.4 (see Propo-sitions 20.2 and 20.3 of [17℄). �Take Sn-quotients of the point map to obtain a birational map% : ~X ! P(SymnV �);assigning to p1; :::; pn 2 P1 a polynomial vanishing at these points. Theboundary divisor ~D[2℄ is the proper transform of the dis
riminant D under%. The boundary divisors ~D[s℄ (for s � 3) are the ex
eptional divisors for %.11



2.4 Resolution of the generi
 orbitLet � := (�1; :::; �n) be a set of distin
t 
omplex numbers and f = f� thebinary form of degree n with roots �j. Let C� 2 M0;n be the 
orrespondingpointed rational 
urve and �� 2 M0;n(P1) the 
orresponding map. The �berY� :=  �1(C�) �M0;n(P1; 1)
ontains ��. Let ~Xf be the image of Y� under the quotient map q and ~Dfits interse
tion with the boundary ~D. This 
oin
ides with the general �berof the map  0 : ~X =M0;n(P1; 1)!M0;n=Sn:The map % indu
es a resolution%f : ~Xf ! Xf ;with %f ( ~Df) = Df .To des
ribe the Y� expli
itly, we use the towerM0;n(P1; 1)�n
��

 
// M0;n�n

��M0;n�1(P1; 1)  // M0;n�1�4
��

�4
��M0;3(P1; 1)  

// M0;3:When n = 3, M0;3 = point and Y� ' M0;3(P1; 1), whi
h is isomorphi
 tothe produ
t (P1)3 blown up along the small diagonal �small. The boundarydivisors 
orrespond to the following stable mapsB[2℄ =
k

j ; B[3℄ = :In the above pi
tures the 
ollapsed 
omponents are represented by verti
allines. Note that the normal bundleN� �= O(2)�O(2);12



so that the ex
eptional divisor E = B[3℄ ' P1 � P1. Let�1 : E ! P1be the proje
tion to the 
ross ratio of the marked points and the node and�2 : E ! P1the proje
tion onto the image of the 
ollapsed 
urve.The divisor B[2℄ is the proper transform of �, the large diagonal.For the arbitrary degree 
ase, we analyze the failure of the blo
k squaresin the tower to be �ber produ
ts. Given a generi
C� = (P1; �1; : : : ; �n) 2 M0;n; �i 6= �j;we 
ompare the �bersY�1;:::;�n =  �1(C�) and Y�1;:::;�n�1 =  �1(�n(C�)) =  �1(P1; �1; : : : ; �n�1)using the forgetting map�n : M0;n(P1; 1)!M0;n�1(P1; 1):Given a stable map (C; �1; : : : ; �n; �) 2  �1(C�);there are three 
ases to 
onsider:1. C = P1;2. C = P1 [ P1 with the 
ollapsed 
omponent 
ontaining �1; :::; �n;3. C = P1 [ P1 with the 
ollapsed 
omponent 
ontaining �1; :::; �n�1 butnot �n.Case 1: 1 n
 �! 1

n13



Case 2: 1

n

 �! 1

nCase 3: 1

n

n-1

 �! 1

nOver the open subset of Y�1;:::;�n 
orresponding to the �rst two 
ases, �nindu
es an isomorphism between Y�1;:::;�n and Y�1;:::;�n�1. In the third 
ase,we forget the image of the n-th marked point. The map �n blows up thelo
us in Y�1;:::;�n�1 where �1; :::; �n�1 are on the 
ollapsed 
omponent and�n 
oin
ides with the node (of atta
hment). This is a 
urve isomorphi
 toP1 � (B[n� 1℄ \ Y�1;:::;�n�1): The generi
 map takes the form:
n

1

n-1We summarize the above dis
ussion in the followingProposition 2.6 Let �1; :::�n be distin
t 
omplex numbers. The forgettingmaps indu
e a sequen
e of birational morphismsY�1;:::;�n �n�! Y�1;:::;�n�1 : : : �4�! Y�1;�2;�3 'M0;3(P1; 1):The moduli spa
e of stable maps M0;3(P1; 1) is isomorphi
 to (P1)3 blown upalong the small diagonal with ex
eptional divisor E ' P1 � P1. The map �jblows up the proper transform of ��11 (�j). In parti
ular, Y�1;:::;�n is smoothand its boundary has stri
t normal 
rossings, 
ontained in B[n� 1℄ [B[n℄.Remark 2.7 We are blowing up along disjoint 
urves, so the order of theblow-up does not matter. 14



Proposition 2.8 Let f be a generi
 binary form of degree n � 3 with roots�1; :::; �n. Then the restri
tion of q to Xf is rami�ed only along the boundaryB \ Xf . At generi
 points of (B[n℄ [ B[n � 1℄) \ Y�, the restri
tion of q isunrami�ed. We have the formulaq�(K ~Xf + ~Df ) = KY� + [Y� \B℄and ( ~Xf ; ~Df) is log-
anoni
al.Proof. The argument is similar to the one in Proposition 2.5, and is omitted.�
3 Veri�
ation of exponents3.1 Expli
it basis of Pi
(Y�)Write Pi
((P1)3) = Zg1 + Zg2 + Zg3; gi = pr�i (
1(OP1(+1)));with large diagonals�ij = gi + gj � E; B[2℄ = 2(g1 + g2 + g3)� 3E:By Proposition 2.6, Y� is obtained by blowing up the (n� 3) se
tions of�2 : B[3℄! P1:Let F4; :::; Fn denote the 
orresponding ex
eptional divisors and identify Eand its proper transform. RelabelFk = �ij; fi; j; kg = [1; 2; 3℄= gi + gj � E � F4 � � � � � Fn;so that Sn a
ts on the Fk, k = 1; :::; n, in the obvious way. Note that E andthe Fk generate Pi
(Y�).Proposition 3.1 The Sn-stable boundary divisorsA[n� 1℄ = F1 + � � �+ FnA[n℄ = E;15



generate the Sn-invariant Pi
ard group of Y�, and A[j℄ = B[j℄ \ Y�. The
anoni
al 
lass of Y� isK = �2(g1 + g2 + g3) + E + 2(F4 + � � �+ Fn)= �A[n� 1℄� 2A[n℄3.2 Computation of the e�e
tive 
oneLemma 3.2 TheSn-invariant e�e
tive 
one of Y� is generated by the 
lassesA[n℄ and A[n� 1℄.Proof. We apply the method of x1.3. The 
lass A[n℄ is ex
eptional and thus agenerator of the e�e
tive 
one. To show that A[n�1℄ is the se
ond generator,we exhibit a nef 
urve not interse
ting A[n� 1℄. Consider the G m -a
tion onP1: �t : (z; w) 7! (tz; w):We may assume that the points �1; :::; �n are not 
ontained in the �xed pointlo
us of �t. Any singular element in the orbit 
losure is:
1

nwhere the point of atta
hment is 0 (or 1) and the other labelled point is1(resp. 0). This is disjoint from A[n� 1℄. �3.3 Proof of Theorem 2.1Proof. The Kodaira energy for (Xf ; Df) 
an be 
omputed on ( ~Xf ; ~Df), byPropositions 1.3 and 2.8. By Propositions 1.4 and 2.6, it suÆ
es to 
omputethe Kodaira energy for (Y�; A[n℄ + A[n � 1℄). Re
all there is a 
omposedmorphism � : Y� q! Xf ,! P(SymnV �) ' Pn:Lemma 3.3 The pull-ba
k of the hyperplane 
lass takes the formL =: [��OPn(+1)℄ = 12 ((n� 2)A[n� 1℄ + nA[n℄) :16



Proof. Let R be the 
lass of a 
urve in A[n℄ 
orresponding to
1

nwith varying point of atta
hment on the 
ollapsed 
omponent. This is theproper transform of the generi
 �ber of the map �1 : E ! P1. ThenA[n� 1℄jR = n = #8<: j

1,...,j-1,j+1,...,n ; j = 1; : : : ; n9=;A[n℄jR = �1� (n� 3) = 2� n:For the se
ond interse
tion number, note that A[n℄ = E and apply the blow-up des
ription of Proposition 2.6. In M0;3(P1; 1) we haveE = P(N�small) = P1 � P1and NE = O(�1). After blowing up (n� 3) further se
tions ofE ! �smallthe normal bundle is redu
ed to O(�1� (n� 3)).We know that A[n℄ = B[n℄ \ Y� is 
ollapsed by the map �, so��O(1) = 
 ((n� 2)A[n� 1℄ + nA[n℄)for some 
 2 N . Sin
e(n� 2)A[n� 1℄ + nA[n℄= 2 ((n� 2)(g1 + g2 + g3)� (n� 3)E � (n� 2)(F4 + � � �+ Fn)) :the 
laim follows. �We have KY� + [Y� \ B℄ = KY� + A[n℄ + A[n� 1℄ = �A[n℄KY� + [Y� \B℄ + �L = �n� 22 A[n� 1℄ + (�n2 � 1)A[n℄;17



and by de�nitiona(��L) := inff� j���L +KY� + [Y� \ B℄ 2 �e�(Y�)g:Hen
e Lemma 3.2 yields a(L; [Y� \B℄) = 2=n:Thus a(L;Df) = 2=n, as desired! �4 The Sn-invariant e�e
tive 
one of the fullmoduli spa
eIn this se
tion, we 
ompute the Sn-invariant part of the e�e
tive 
one ofM0;n(P1; 1), its 
anoni
al 
lass, and the Kodaira energy of the line bundleL := ��OPn(+1), where� = � Æ q : M0;n(P1; 1) q! ~X �! Pn:We will also 
ompute the Kodaira energy of H := ��OPn(+1).We �rst re
all some basi
 fa
ts aboutM0;n(P1; 1) ' P1[n℄, following [11℄.In addition to the divisor 
lasses BS introdu
ed above, we shall also 
onsiderLa := f(C; p1; : : : ; pn; �) 2 M0;n(P1; 1) : �(pa) = 0 2 P1g; a = 1; : : : ; n:The 
ohomology H�(M0;n(P1; 1)) is generated by the 
lasses La and BS ,subje
t to the relations1. L2a = 0;2. BS �BS0 = 0 for S \ S 0 6= ;;3. (La � La0)BS = 0 for a; a0 2 S;4. (PS�fa;a0gBS) = La + La0 , for 1 � a < a0 � n.
18



The generators of the Sn-invariant subspa
e areL := nXa=1 La; B[s℄ = XjSj=sBS; 2 � s � n:After averaging over Sn(n� 1)L = nXs=2 s(s� 1)2 B[s℄: (1)Theorem 4.1 The 
lasses D[2℄; :::; D[n℄ generate the e�e
tive 
one of Y .The 
lasses B[2℄; :::; B[n℄ generate the Sn-invariant e�e
tive 
one of the mod-uli spa
e M0;n(P1; 1).Proof. We implement the strategy of x1.3 with� = fB[2℄; : : : ; B[n℄g:This entails �nding 
urve 
lasses that are nef relative to �. LetM = nXj=2 djB[j℄denote an Sn-invariant divisor 
lass with no boundary divisors as �xed 
om-ponents.Re
all the des
ription of the boundary divisor BS:BS ' M0;n+1�s(P1; 1)�M0;s+1; s = jSj > 2;' M0;n�1(P1; 1); s = 2:Take s � 3 and let Cs � BS be the 
lass of the generi
 �ber of the mapM0;n+1�s(P1; 1)�M0;s+1 !M0;n+1�s(P1; 1)�M0;sforgetting the atta
hing point. Sin
e Cs passes through the generi
 point ofBS, averaging Cs over Sn yields a 
urve 
lass whi
h is nef relative to �. Inparti
ular, for ea
h Sn-invariant divisor M = Pnj=2 djB[j℄, moving relativeto �, we have Cs �M � 0: 19



We 
ompute interse
tions of Cs with the various elements of �. First, themap � blows down the divisors BS for jSj 6= 2; the data of the 
ollapsed 
om-ponent is lost 
ompletely. It follows that L �Cs = 0. A simple 
ombinatorialanalysis gives Cs �BT = � 1 if T = S � f�g;0 otherwise, unless T = S:whi
h means that Cs �B[s� 1℄ = s. Relation 1 gives0 = BS �Cs s(s� 1)2 + s(s� 1)(s� 2)2so BS �Cs = �(s� 2). To summarize, we haveCs �B[j℄ = 8<: s if j = s� 1;�(s� 2) if j = s;0 otherwise.Using this information, we extra
t inequalities on the 
oeÆ
ients of M .The 
ondition M � Cs � 0 yieldssds�1 � (s� 2)ds;so we get a 
hain of inequalities:dn � nn� 2dn�1 � n(n� 1)(n� 2)(n� 3)dn�2 � : : : � n(n� 1)2 d2: (2)If some ds < 0 then dj < 0 for ea
h j � s.We 
onsider another 
urve 
lass in BS to get inequalities in the reversedire
tion. Fix s � 2 and let Rs denote the 
lass of the generi
 �ber ofM0;n+1�s(P1; 1)�M0;s+1 !M0;n�s(P1; 1)�M0;s+1indu
ed by forgetting � , one of the n+1�s points not 
ontained in S. Again,Rs passes through the generi
 point of BS, so averaging overSn yields a 
urve
lass su
h that Rs �M � 0: 20



We 
ompute interse
tions as before. The map � sends Rs to a line in Pn,i.e., the linear forms with n� 1 �xed roots and one varying root. It followsthat L �Rs = 1. The line Rs interse
ts BT properly in the following 
asesRs �BT = 8<: 1 if T = S [ f�g;1 if T = f�; �g; � 62 S;0 otherwise, unless T = S:Summing over Sn-orbits givesRs �B[j℄ = 8<: 1 if j = s+ 1;n� s� 1 if j = 2;0 otherwise, unless j = s:Applying Relation 1, we �nd(n� 1) = s(s� 1)=2Rs �B[s℄ + (s+ 1)s=2 + (n� s� 1);so RS �BS = Rs �B[s℄ = �1:We extra
t the inequalitiesds+1 � ds � (n� s� 1)d2;in parti
ular, if d2 > 0 then ea
h dj > 0. Adding together the inequalitiesdn � dn�1 � 0dn�1 � dn�2 � d2: : :d4 � d3 � (n� 4)d2d3 � (n� 2)d2:gives dn � n2 � 5n+ 82 d2:Combining with inequality 2, we obtain(n2 � 1)d2 � (n2 � 5n + 8)d2;hen
e d2 > 0. �21



Theorem 4.2 On the moduli spa
e of stable maps (M0;n(P1; 1); B) and itsSn-quotient (Y;D), we havea(B;L) = a(D;H) = 2=n:Proof. We pro
eed to 
al
ulate the 
anoni
al 
lass:KM0;n(P1;1) = �2L + nXs=3 B[s℄(s� 2)This follows from the expli
it blowup realization of the Fulton-Ma
Pherson
on�guration spa
e P1[n℄ = M0;n(P1; 1) [11℄. The ex
eptional divisors BS(for s = jSj � 3) arise from blowing up 
enters in 
odimension s� 1.We 
ompute the log-Kodaira energy of L on M0;n(P1; 1) with respe
t tothe boundary B. We haveK +B + aL = (a� 2)L+ nXs=2(s� 1)B[s℄= (a� 2) nXs=2 s(s� 1)2(n� 1)B[s℄!+ nXs=2(s� 1)B[s℄= nXs=2(s� 1)� s(a� 2)2(n� 1) + 1�B[s℄whi
h is e�e
tive if and only ifa � 2(s� n+ 1)s ; s = 2; : : : ; n:The most restri
tive inequality o

urs when s = n, where we obtain a � 2=n.Consequently, a(L;B) = 2=n, as expe
ted.The Kodaira energy for (X;D) 
an be 
omputed on ( ~X; ~D), by Propo-sitions 1.3 and 2.5. By Proposition 1.4 and Theorem 2.3, it is equal to theKodaira energy for (M0;n(P1; 1); B). �
22



5 Final remarksA) The orbit 
losure Xf depends on the form [f ℄. We get equivariant 
om-pa
ti�
ations of PGL2 depending on moduli. This dependen
e is made abun-dantly 
lear in the blow-up des
ription of Proposition 2.6.B) The pair (M0;n; Æ) is of log general type: KM0;n + Æ is ample and log
anoni
al (see, for example, x7.1 of [13℄). The map : M0;n(P1; 1)!M0;nis a log-Fano �bration onto a log-variety of general type (or the point, whenn = 3).C) The pair (M0;n; Æ) satis�es Vojta's 
onje
ture. We realize M0;n as anopen subset of an algebrai
 torus with expli
it 
omplement. Fix n� 1 pointsin Pn�3 in general position. Consider the set H of 12(n�1)(n�2) hyperplanesspanned by n� 3 of the �xed points. Kapranov [15℄ has shown that M0;n 'Pn�3 � [H2HH. The torus is obtained by ex
ising the n � 2 hyperplanesspanned by subsets of the �rst n� 2 of the points.D) We therefore expe
t that the asymptoti
 behavior of integral points ofM0;n(P1; 1) with respe
t to the boundary is obtained by summing the 
on-tributions of the integral points on the �bers of  . This explains why theKodaira energies for the moduli spa
e of stable maps (Theorem 4.2) and the�bers of  (Theorem 2.1) should 
oin
ide (for the 
ase of rational points, see[2℄).Referen
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