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0 IntrodutionIn this paper, we ompute the Sn-invariant one of e�etive divisors of theFulton-MaPherson on�guration spae of n points on P1. This spae isisomorphi to the moduli spae M0;n(P1; 1) of stable maps of degree onefrom genus zero urves with n marked points to P1. We also ompute thee�etive one of the generi �ber of the natural mapM0;n(P1; 1)=Sn !M0;n=Sn:Our motivation is to provide a geometri explanation of a formula, obtainedby Duke, Rudnik and Sarnak, giving the asymptoti behavior of the numberof binary forms of degree n with �xed disriminant and bounded integraloeÆients. This �ts into a larger program to predit and prove asymptotiformulas for the number of rational and integral points of bounded height onalgebrai varieties.We introdue a ounting funtion for integral points on an algebrai va-riety as follows: given a variety U over a ring of integers o and funtionsg1; :::; gn, regular on U , de�neN(U;B) := fx 2 U(o) j maxj (kgj(x)k) � Bg;where k � k is a valuation on o. This is �nite only when the funtions gj givean embedding of U .It is most natural to interpret the funtions gj as setions of a line bundleL on a projetive ompati�ation X � U de�ned over the fration �eldF of o. The fat that the setions embed U implies that L is big, i.e., isontained in the interior of the e�etive one �e�(X) of X. Therefore, inorder to desribe all natural ounting funtions on open subsets of X weneed to ompute its e�etive one. Furthermore, in many ases it an beproved that the asymptoti properties of N(U;B) are intimately related tothe struture of this one.Let P (x) = P (x0; :::; xr) be a homogeneous polynomial of degree n in r+1variables. A standard heuristi in number theory predits that the numberNP (B) := �x j max(jxjj) � B; P (x) = 0; and x 2 Zr+1	2



of integral solutions of the equation P (x) = 0 of \height" � B grows asymp-totially like Br+1�n as B ! 1. When the number of variables is � 2n,the aÆne variety VP de�ned by P = 0 is smooth and there are no loal ob-strutions, an asymptoti formula an be established using the lassial irlemethod in analyti number theory (see [3℄, [25℄ and the referenes therein).Of ourse, there may be diÆulties when the number of variables is small orthe variety VP is singular.The following example appeared in the paper by Duke, Rudnik andSarnak [6℄. Consider the vetor spae of binary forms of degree nxnzn + xn�1zn�1w + : : :+ x0wn:The algebrai group SL2 ats on this spae by oordinate substitutions. Whenn = 3, the disriminant formdis(x0; :::; x3) := 27x20x23 � 18x0x1x2x3 + 4x0x32 + 4x31x3 � x21x22generates the ring of SL2-invariants. Then there exists a onstant  > 0 sothat Ndis�1(B) = B2=3(1 + o(1))as B !1. Note that the exponent 2=3 is larger than what is predited bythe standard heuristi.More generally, one has theTheorem 0.1 [6℄ Fix a generi binary form f of degree n � 3 with integraloeÆients. Let N(B) be the number of binary forms SL2(Z)-equivalent to fwith oeÆients bounded by B. Then there exists a  > 0 suh thatN(B) = B2=n(1 + o(1));as B !1.We give a geometri interpretation of the exponent 2=n in Theorem 0.1.To this end, we re�ne the heuristis for ounting integral points to take intoaount singularities of the relevant varieties (see Conjeture 1.6). We verifythat Conjeture 1.6 is onsistent with Theorem 0.1 in Theorem 2.1. Its proofinvolves the omputations of e�etive ones alluded to above.Aknowledgments: We are grateful to the Alfr�ed R�enyi Institute of theHungarian Aademy of Sienes for organizing the onferene at whih muhof this work was done. 3



1 Generalities1.1 Singularities of pairs and e�etive onesWe work over a �eld of harateristi zero. Let X be a normal projetivevariety with anonial lass KX and let D be a redued e�etive Weil divisorof X.De�nition 1.1 A good pair (X;D) onsists of a smooth projetive variety Xand a strit normal rossings divisor D in X. This means that all irreduibleomponents of D are smooth and interset transversally.Let (X;D) be a good pair and let �e�(X) denote the losed one ofe�etive divisors lasses of X; a divisor is big exatly when its lass is in theinterior of this one. De�nea(L;D) := inffa 2 R j aL + (KX +D) 2 �e�(X)g;where we identify line bundles and their divisor lasses. Note that a(L;D) isa positive real number whenever �(KX +D) is big. The onstant �a(L;D)is alled the log-Kodaira energy of L (see [10℄).If (X;D) is not good then resolution of singularities implies the existeneof a good resolution � : ( ~X; ~D) ! (X;D). Preisely, ( ~X; ~D) is a good pair,� a birational projetive morphism, and ~D is the union of the exeptionaldivisors of � and the proper transform of D. Reall that (X;D) is log-anonial if KX +D is Q -Cartier andK ~X + ~D �Q ��(KX +D) +X djEj;where the Ej are the exeptional divisors of � and dj � 0 for all j.Example 1.2 When X is a smooth surfae, (X;D) is log-anonial onlywhen the urve D is smooth or nodal. If X is smooth of arbitrary dimension,D must have at worse nodes in odimension one.If L is a line bundle on X puta(L;D) := a(��L;Dt);where Dt � ~X is the total transform of D. Note that a(L;D) is omputedon ~X. 4



Proposition 1.3 Let (X;D) be a log-anonial pair and assume that X�Dhas anonial singularities. If L is a big line bundle on X thena(L;D) = inffa 2 R j aL + (KX +D) 2 �e�(X)g:In partiular, a(L;D) does not depend on the hoie of a desingularization.Proof. Choose a good resolution � : ( ~X; ~D)! (X;D), so thatK ~X + ~D �X djEj = ��(KX +D)where dj � 0, and dj � 1 if �(Ej) 6� D. In partiular, eah exeptionaldivisor not ontained in the total transform Dt has log disrepany � 1.Therefore, we have���(L) +K ~X +Dt �X d0jEj = ��(KX +D + �L);with eah d0j � 0. For any Q -Cartier divisor M on X and e�etive di-visor P d0jEj supported in the exeptional lous of �, M is e�etive i���(M) +P d0jEj is e�etive. �Proposition 1.4 Let (X1; D1) and (X2; D2) be log-anonial pairs, so thatX1�D1 and X2�D2 have anonial singularities. Assume that � : X1 ! X2is a �nite dominant morphism so that��(KX2 +D2) = KX1 +D1:Let L be a big divisor on X2. Then a(L;D2) = a(��(L); D1).In fat, it suÆes to assume that either (X1; D1) or (X2; D2) satis�es thesingularity ondition [17, Set. 20.3℄.Proof. Given a �nite dominant morphism � : X1 ! X2 and a Q -Cartierdivisor M on X2, M is e�etive i� ��(M) is e�etive. Indeed, the divisor����M is de�ned and equal to deg(�)M . Combining this with Proposition1.3 gives the result. �Remark 1.5 Let (X;D) be a log terminal pair so that X � D has singu-larities whih are not anonial. Then our de�nition of the Kodaira energy5



di�ers slightly from Fujita's [10℄. In appliations to integral points, we areinterested in invariants of the open variety X �D. In Fujita's de�nition, onpassing from (X;D) to a good resolution, any exeptional divisors over X�Dwith negative disrepany must be added to the boundary. This hanges theopen variety.1.2 Integral pointsRetain the notation from the previous setion and assume that X and D arede�ned over a number �eld F . Let oS denote the ring of integers of F , whereS is a �nite set of nonarhimedean plaes of F . Fix models X and D at andproper over the ring of integers oS. A (D;S)-integral point is an oS-point of(X � D). In partiular, if D = ; an integral point is the same as a rationalpoint on X.Let L be a very ample metrized line bundle on X, U � X a Zariski opensubset and U a model of U over oS. Let S be a �nite set of plaes in F ,inluding the arhimedean plaes. LetN(U ;L; B) := #fx 2 U(oS) jHL(x) � Bgdenote the number of (D;S) integral points on U of L-height bounded byB. A natural extrapolation of Vojta's onjeture about integral and rationalpoints on varieties of (log-)general type [27℄ and Batyrev-Manin onjeturesabout rational points of bounded height on Fano varieties [9, 1℄ would be:Conjeture 1.6 For any � > 0, there exists a dense Zariski open subsetU � X suh that N(U ;L; B)� Ba(L;D)+�as B !1. If �(KX +D) is big thenN(U ;L; B)� Ba(L;D)��;as B !1, at least after a suitable �nite extension of F and S.The statement is independent of the hoie of S and the hoie of ametrization on L.Many preise results about asymptotis of rational and integral pointsare urrently available (see, for example, [9, 2, 4, 21, 22, 6, 7, 8℄ and the ref-erenes therein). As far as we know, Conjeture 1.6 is ompatible with all of6



them. However, to atually hek this ompatibility one has to ompute thegeometri invariants of (some resolution of) the pair (X;D). In partiular,one has to determine the e�etive one. This an be a formidable task evenfor rational varieties, e.g., like the moduli spae of pointed rational urvesM0;n (see [14℄).1.3 Computing e�etive onesLet X be a nonsingular projetive variety, perhaps with an ation by a �nitegroup G. We review strategies for omputing the G-invariant e�etive one�e�(X)G and thus the e�etive one of the quotient X=G (f. [16℄).A urve lass [C℄ 2 N1(X) is said to be nef if [C℄:D � 0 for eahD 2 �e�(X). A family of urves passing through the generi point of Xis automatially nef. Indeed, onsider a family C ! B of integral projetiveurves in X and an irreduible odimension-one subvariety D � X. If, forgeneri b 2 B, the �ber Cb 6� D, we have [Cb℄:D � 0.Fix a olletion of e�etive divisors� = fA1; : : : ; Amgwhih we expet to generate �e�(X)G. To prove that � generates the (G-invariant) e�etive one, it suÆes to �nd a olletion of nef (G-invariant)urve lasses � = fC1; : : : ; C`gso that the one generated by � ontains the dual to the one generated by�. In setion 4, we shall use a re�nement of this method (see [5℄, [24℄). Adivisor D 2 �e�(X) is moving relative to � if some multiple of D ontainsno element of � as a �xed omponent. Every e�etive divisor is a sumM + mXi=1 Aidi; di � 0where M is moving relative to �. To prove that � generates the e�etiveone, it suÆes to show that M is an e�etive sum of the Ai.A urve lass is nef relative to � if [C℄:M � 0 for eahM whih is movingrelative to �. Any family of urves passing through the generi point of some7



Ai is nef relative to �. Consequently, to show that � generates the e�etiveone, it suÆes to �nd a olletion � of urve lasses, nef relative to �, sothat the one generated by � ontains the dual to the one generated by �.2 Constrution of resolutions2.1 Binary forms and SL2-orbit losuresLet V be a two-dimensional vetor spae with oordinates z and w, equippedwith the standard SL2-ation. Let SymnV � be the spae of binary forms ofdegree n f = x0zn + x1zn�1w + : : :+ xnwn:It arries an indued ation of SL2 by substitution.Assoiating to eah form f 6= 0 its roots �1; : : : ; �n yields a map(SymnV � � 0)! P(V )n=Snand an identi�ation P(SymnV �) ' P(V )n=Sn. The disriminant of a poly-nomial f is a homogeneous form in its oeÆients x0; : : : ; xn and de�nes adivisor D � X = P(SymnV �).Now we may state our main result:Theorem 2.1 (Computation of Kodaira Energy) Let f be a generi bi-linear form of degree n, Xf � P(SymnV �) the losure of the SL2-orbit throughf , Df the intersetion of the disriminant with Xf , and L the restrition ofthe standard polarization to Xf . Then we havea(L;Df) = 2=n:In partiular, Conjeture 1.6 is onsistent with Theorem 0.1.To prove this, we require a resolution (i.e., a partial desingularization) of(Xf ; Df) on whih we may evaluate a(L;Df ) using Proposition 1.3. Thisresolution will be indued by a natural resolution of (X;D).Remark 2.2 Example 1.2 shows that (X;D) is far from being log-anonial.When n = 3, the disriminant has usps in odimension one: a transverseslie z3 + bzw2 + w38



intersets the disriminant in the uspidal urve4b3 + 272 = 0:Our resolution of (X;D) will be a Sn-quotient of a natural desingulariza-tion for (P(V )n;�), where � is the diagonal, i.e., the points lying over thedisriminant. Both admit interpretations as moduli spaes of stable maps.2.2 Moduli spaesFix an integer n � 3. Let M0;n denote the Knudsen-Mumford moduli spaeof stable urves of genus zero with n marked points [18℄(C; p1; : : : ; pn):LetM0;n(P1; 1) denote the Kontsevih moduli spae of stable maps of degreeone from genus-zero urves with n marked points to P1 [19, 20, 12℄(C; p1; : : : ; pn; � : C ! P1):This is naturally isomorphi to the Fulton-MaPherson [11℄ on�gurationspae P1[n℄ for n points in P1 (see [12℄ x0). However, for our purposes it isonvenient to use the moduli spae notation.We have the following natural maps:1. the evaluation mapM0;n(P1; 1) �! (P1)n;(C; p1; : : : ; pn; �) 7! (�(p1); : : : �(pn));2. forgetting the point pj�j :M0;n �! M0;n�1; (n � 4)(C; p1; : : : ; pn) 7! (C 0; p1; : : : ; p̂j; : : : ; pn);�j :M0;n(P1; 1) �! M0;n�1(P1; 1)(C; p1; : : : ; pn; �) 7! (C 0; p1; : : : ; p̂j; : : : ; pn; �0):3. taking projetive equivalene lasses :M0;n(P1; 1) �! M0;n(C; p1; : : : ; pn; �) 7! (C 0; p1; : : : ; pn):9



C 0 is obtained from C by `ollapsing' the irreduible omponents whih aredestabilized when pj (resp., the polarization) is removed.Finally, we enumerate the boundary divisors of these moduli spaes. Foreah partition f1; : : : ; ng = S [ S 0; 2 � jSj � jS 0j � n� 2;onsider stable urvesC = (P1; pj; j 2 S) [ (P1; pj; j 2 S 0);whih form a divisor ÆS;S0 � M0;n. The union of these is denoted Æ. Notethat the Sn-orbits of fÆS;S0g orrespond to the integersjSj = 2; : : : ; bn=2:For eah subset S � f1; : : : ; ng; 2 � Sonsider stable maps� : C = (P1; pj; j 2 S) [ (P1; pj; j 2 S 0) �! P1ollapsing the �rst omponent and mapping the seond isomorphially ontoP1. These form a divisor BS � M0;n(P1; 1). The Sn-orbits of fBSg orre-spond to integers s = jSj = 2; : : : ; nand we de�ne B[s℄ := XjSj=sBS and B := nXs=2 B[s℄Theorem 2.3 The moduli spaes M0;n(P1; 1) and M0;n are smooth proje-tive algebrai varieties. Moreover, the boundary is a divisor with strit nor-mal rossings.Remark 2.4 In partiular, the pair (M0;n(P1; 1); B) is log-anonial.
10



2.3 Resolution for the full moduli spaeWe obtain a good resolution ( ~X; ~D) of (X;D) using the above formalism.Consider the quotient mapq : M0;n(P1; 1)! ~X :=M0;n(P1; 1)=Sn:Let ~D[s℄ and ~D be the images of B[s℄ and B under this map.Proposition 2.5 The map q is rami�ed only along the boundary B. At thegeneri points of B[2℄ the rami�ation has order 2. For all s = 3; ::; n, themap q is unrami�ed at the generi points of B[s℄. We have the formulaq�(K ~X + ~D) = KM0;n(P1;1) +Band ( ~X; ~D) is log-anonial.Proof. The map q rami�es at points orresponding to stable maps(C; p1; :::; pn; �)that admit an automorphism permuting the marked points. The rami�ationorder is the order of this automorphism group. If the images of the n pointsunder � are distint then there is no automorphism of � permuting them.This proves the �rst assertion. If marked points oinide there is an irre-duible omponent P1 � C whih is ollapsed by � and whih ontains thesepoints. If there are two suh points this omponent admits an automorphismof order two exhanging the points and �xing the point of intersetion withthe rest of C. This proves the seond assertion. If there are more than twomarked points then there is generally no suh automorphism. This provesthe third assertion.The rami�ation formula and the fat that the pair ( ~X; ~D) is log-anonialfollow from an easy loal omputation ombined with Remark 2.4 (see Propo-sitions 20.2 and 20.3 of [17℄). �Take Sn-quotients of the point map to obtain a birational map% : ~X ! P(SymnV �);assigning to p1; :::; pn 2 P1 a polynomial vanishing at these points. Theboundary divisor ~D[2℄ is the proper transform of the disriminant D under%. The boundary divisors ~D[s℄ (for s � 3) are the exeptional divisors for %.11



2.4 Resolution of the generi orbitLet � := (�1; :::; �n) be a set of distint omplex numbers and f = f� thebinary form of degree n with roots �j. Let C� 2 M0;n be the orrespondingpointed rational urve and �� 2 M0;n(P1) the orresponding map. The �berY� :=  �1(C�) �M0;n(P1; 1)ontains ��. Let ~Xf be the image of Y� under the quotient map q and ~Dfits intersetion with the boundary ~D. This oinides with the general �berof the map  0 : ~X =M0;n(P1; 1)!M0;n=Sn:The map % indues a resolution%f : ~Xf ! Xf ;with %f ( ~Df) = Df .To desribe the Y� expliitly, we use the towerM0;n(P1; 1)�n
��

 
// M0;n�n

��M0;n�1(P1; 1)  // M0;n�1�4
��

�4
��M0;3(P1; 1)  

// M0;3:When n = 3, M0;3 = point and Y� ' M0;3(P1; 1), whih is isomorphi tothe produt (P1)3 blown up along the small diagonal �small. The boundarydivisors orrespond to the following stable mapsB[2℄ =
k

j ; B[3℄ = :In the above pitures the ollapsed omponents are represented by vertiallines. Note that the normal bundleN� �= O(2)�O(2);12



so that the exeptional divisor E = B[3℄ ' P1 � P1. Let�1 : E ! P1be the projetion to the ross ratio of the marked points and the node and�2 : E ! P1the projetion onto the image of the ollapsed urve.The divisor B[2℄ is the proper transform of �, the large diagonal.For the arbitrary degree ase, we analyze the failure of the blok squaresin the tower to be �ber produts. Given a generiC� = (P1; �1; : : : ; �n) 2 M0;n; �i 6= �j;we ompare the �bersY�1;:::;�n =  �1(C�) and Y�1;:::;�n�1 =  �1(�n(C�)) =  �1(P1; �1; : : : ; �n�1)using the forgetting map�n : M0;n(P1; 1)!M0;n�1(P1; 1):Given a stable map (C; �1; : : : ; �n; �) 2  �1(C�);there are three ases to onsider:1. C = P1;2. C = P1 [ P1 with the ollapsed omponent ontaining �1; :::; �n;3. C = P1 [ P1 with the ollapsed omponent ontaining �1; :::; �n�1 butnot �n.Case 1: 1 n
 �! 1

n13



Case 2: 1

n

 �! 1

nCase 3: 1

n

n-1

 �! 1

nOver the open subset of Y�1;:::;�n orresponding to the �rst two ases, �nindues an isomorphism between Y�1;:::;�n and Y�1;:::;�n�1. In the third ase,we forget the image of the n-th marked point. The map �n blows up thelous in Y�1;:::;�n�1 where �1; :::; �n�1 are on the ollapsed omponent and�n oinides with the node (of attahment). This is a urve isomorphi toP1 � (B[n� 1℄ \ Y�1;:::;�n�1): The generi map takes the form:
n

1

n-1We summarize the above disussion in the followingProposition 2.6 Let �1; :::�n be distint omplex numbers. The forgettingmaps indue a sequene of birational morphismsY�1;:::;�n �n�! Y�1;:::;�n�1 : : : �4�! Y�1;�2;�3 'M0;3(P1; 1):The moduli spae of stable maps M0;3(P1; 1) is isomorphi to (P1)3 blown upalong the small diagonal with exeptional divisor E ' P1 � P1. The map �jblows up the proper transform of ��11 (�j). In partiular, Y�1;:::;�n is smoothand its boundary has strit normal rossings, ontained in B[n� 1℄ [B[n℄.Remark 2.7 We are blowing up along disjoint urves, so the order of theblow-up does not matter. 14



Proposition 2.8 Let f be a generi binary form of degree n � 3 with roots�1; :::; �n. Then the restrition of q to Xf is rami�ed only along the boundaryB \ Xf . At generi points of (B[n℄ [ B[n � 1℄) \ Y�, the restrition of q isunrami�ed. We have the formulaq�(K ~Xf + ~Df ) = KY� + [Y� \B℄and ( ~Xf ; ~Df) is log-anonial.Proof. The argument is similar to the one in Proposition 2.5, and is omitted.�
3 Veri�ation of exponents3.1 Expliit basis of Pi(Y�)Write Pi((P1)3) = Zg1 + Zg2 + Zg3; gi = pr�i (1(OP1(+1)));with large diagonals�ij = gi + gj � E; B[2℄ = 2(g1 + g2 + g3)� 3E:By Proposition 2.6, Y� is obtained by blowing up the (n� 3) setions of�2 : B[3℄! P1:Let F4; :::; Fn denote the orresponding exeptional divisors and identify Eand its proper transform. RelabelFk = �ij; fi; j; kg = [1; 2; 3℄= gi + gj � E � F4 � � � � � Fn;so that Sn ats on the Fk, k = 1; :::; n, in the obvious way. Note that E andthe Fk generate Pi(Y�).Proposition 3.1 The Sn-stable boundary divisorsA[n� 1℄ = F1 + � � �+ FnA[n℄ = E;15



generate the Sn-invariant Piard group of Y�, and A[j℄ = B[j℄ \ Y�. Theanonial lass of Y� isK = �2(g1 + g2 + g3) + E + 2(F4 + � � �+ Fn)= �A[n� 1℄� 2A[n℄3.2 Computation of the e�etive oneLemma 3.2 TheSn-invariant e�etive one of Y� is generated by the lassesA[n℄ and A[n� 1℄.Proof. We apply the method of x1.3. The lass A[n℄ is exeptional and thus agenerator of the e�etive one. To show that A[n�1℄ is the seond generator,we exhibit a nef urve not interseting A[n� 1℄. Consider the G m -ation onP1: �t : (z; w) 7! (tz; w):We may assume that the points �1; :::; �n are not ontained in the �xed pointlous of �t. Any singular element in the orbit losure is:
1

nwhere the point of attahment is 0 (or 1) and the other labelled point is1(resp. 0). This is disjoint from A[n� 1℄. �3.3 Proof of Theorem 2.1Proof. The Kodaira energy for (Xf ; Df) an be omputed on ( ~Xf ; ~Df), byPropositions 1.3 and 2.8. By Propositions 1.4 and 2.6, it suÆes to omputethe Kodaira energy for (Y�; A[n℄ + A[n � 1℄). Reall there is a omposedmorphism � : Y� q! Xf ,! P(SymnV �) ' Pn:Lemma 3.3 The pull-bak of the hyperplane lass takes the formL =: [��OPn(+1)℄ = 12 ((n� 2)A[n� 1℄ + nA[n℄) :16



Proof. Let R be the lass of a urve in A[n℄ orresponding to
1

nwith varying point of attahment on the ollapsed omponent. This is theproper transform of the generi �ber of the map �1 : E ! P1. ThenA[n� 1℄jR = n = #8<: j

1,...,j-1,j+1,...,n ; j = 1; : : : ; n9=;A[n℄jR = �1� (n� 3) = 2� n:For the seond intersetion number, note that A[n℄ = E and apply the blow-up desription of Proposition 2.6. In M0;3(P1; 1) we haveE = P(N�small) = P1 � P1and NE = O(�1). After blowing up (n� 3) further setions ofE ! �smallthe normal bundle is redued to O(�1� (n� 3)).We know that A[n℄ = B[n℄ \ Y� is ollapsed by the map �, so��O(1) =  ((n� 2)A[n� 1℄ + nA[n℄)for some  2 N . Sine(n� 2)A[n� 1℄ + nA[n℄= 2 ((n� 2)(g1 + g2 + g3)� (n� 3)E � (n� 2)(F4 + � � �+ Fn)) :the laim follows. �We have KY� + [Y� \ B℄ = KY� + A[n℄ + A[n� 1℄ = �A[n℄KY� + [Y� \B℄ + �L = �n� 22 A[n� 1℄ + (�n2 � 1)A[n℄;17



and by de�nitiona(��L) := inff� j���L +KY� + [Y� \ B℄ 2 �e�(Y�)g:Hene Lemma 3.2 yields a(L; [Y� \B℄) = 2=n:Thus a(L;Df) = 2=n, as desired! �4 The Sn-invariant e�etive one of the fullmoduli spaeIn this setion, we ompute the Sn-invariant part of the e�etive one ofM0;n(P1; 1), its anonial lass, and the Kodaira energy of the line bundleL := ��OPn(+1), where� = � Æ q : M0;n(P1; 1) q! ~X �! Pn:We will also ompute the Kodaira energy of H := ��OPn(+1).We �rst reall some basi fats aboutM0;n(P1; 1) ' P1[n℄, following [11℄.In addition to the divisor lasses BS introdued above, we shall also onsiderLa := f(C; p1; : : : ; pn; �) 2 M0;n(P1; 1) : �(pa) = 0 2 P1g; a = 1; : : : ; n:The ohomology H�(M0;n(P1; 1)) is generated by the lasses La and BS ,subjet to the relations1. L2a = 0;2. BS �BS0 = 0 for S \ S 0 6= ;;3. (La � La0)BS = 0 for a; a0 2 S;4. (PS�fa;a0gBS) = La + La0 , for 1 � a < a0 � n.
18



The generators of the Sn-invariant subspae areL := nXa=1 La; B[s℄ = XjSj=sBS; 2 � s � n:After averaging over Sn(n� 1)L = nXs=2 s(s� 1)2 B[s℄: (1)Theorem 4.1 The lasses D[2℄; :::; D[n℄ generate the e�etive one of Y .The lasses B[2℄; :::; B[n℄ generate the Sn-invariant e�etive one of the mod-uli spae M0;n(P1; 1).Proof. We implement the strategy of x1.3 with� = fB[2℄; : : : ; B[n℄g:This entails �nding urve lasses that are nef relative to �. LetM = nXj=2 djB[j℄denote an Sn-invariant divisor lass with no boundary divisors as �xed om-ponents.Reall the desription of the boundary divisor BS:BS ' M0;n+1�s(P1; 1)�M0;s+1; s = jSj > 2;' M0;n�1(P1; 1); s = 2:Take s � 3 and let Cs � BS be the lass of the generi �ber of the mapM0;n+1�s(P1; 1)�M0;s+1 !M0;n+1�s(P1; 1)�M0;sforgetting the attahing point. Sine Cs passes through the generi point ofBS, averaging Cs over Sn yields a urve lass whih is nef relative to �. Inpartiular, for eah Sn-invariant divisor M = Pnj=2 djB[j℄, moving relativeto �, we have Cs �M � 0: 19



We ompute intersetions of Cs with the various elements of �. First, themap � blows down the divisors BS for jSj 6= 2; the data of the ollapsed om-ponent is lost ompletely. It follows that L �Cs = 0. A simple ombinatorialanalysis gives Cs �BT = � 1 if T = S � f�g;0 otherwise, unless T = S:whih means that Cs �B[s� 1℄ = s. Relation 1 gives0 = BS �Cs s(s� 1)2 + s(s� 1)(s� 2)2so BS �Cs = �(s� 2). To summarize, we haveCs �B[j℄ = 8<: s if j = s� 1;�(s� 2) if j = s;0 otherwise.Using this information, we extrat inequalities on the oeÆients of M .The ondition M � Cs � 0 yieldssds�1 � (s� 2)ds;so we get a hain of inequalities:dn � nn� 2dn�1 � n(n� 1)(n� 2)(n� 3)dn�2 � : : : � n(n� 1)2 d2: (2)If some ds < 0 then dj < 0 for eah j � s.We onsider another urve lass in BS to get inequalities in the reversediretion. Fix s � 2 and let Rs denote the lass of the generi �ber ofM0;n+1�s(P1; 1)�M0;s+1 !M0;n�s(P1; 1)�M0;s+1indued by forgetting � , one of the n+1�s points not ontained in S. Again,Rs passes through the generi point of BS, so averaging overSn yields a urvelass suh that Rs �M � 0: 20



We ompute intersetions as before. The map � sends Rs to a line in Pn,i.e., the linear forms with n� 1 �xed roots and one varying root. It followsthat L �Rs = 1. The line Rs intersets BT properly in the following asesRs �BT = 8<: 1 if T = S [ f�g;1 if T = f�; �g; � 62 S;0 otherwise, unless T = S:Summing over Sn-orbits givesRs �B[j℄ = 8<: 1 if j = s+ 1;n� s� 1 if j = 2;0 otherwise, unless j = s:Applying Relation 1, we �nd(n� 1) = s(s� 1)=2Rs �B[s℄ + (s+ 1)s=2 + (n� s� 1);so RS �BS = Rs �B[s℄ = �1:We extrat the inequalitiesds+1 � ds � (n� s� 1)d2;in partiular, if d2 > 0 then eah dj > 0. Adding together the inequalitiesdn � dn�1 � 0dn�1 � dn�2 � d2: : :d4 � d3 � (n� 4)d2d3 � (n� 2)d2:gives dn � n2 � 5n+ 82 d2:Combining with inequality 2, we obtain(n2 � 1)d2 � (n2 � 5n + 8)d2;hene d2 > 0. �21



Theorem 4.2 On the moduli spae of stable maps (M0;n(P1; 1); B) and itsSn-quotient (Y;D), we havea(B;L) = a(D;H) = 2=n:Proof. We proeed to alulate the anonial lass:KM0;n(P1;1) = �2L + nXs=3 B[s℄(s� 2)This follows from the expliit blowup realization of the Fulton-MaPhersonon�guration spae P1[n℄ = M0;n(P1; 1) [11℄. The exeptional divisors BS(for s = jSj � 3) arise from blowing up enters in odimension s� 1.We ompute the log-Kodaira energy of L on M0;n(P1; 1) with respet tothe boundary B. We haveK +B + aL = (a� 2)L+ nXs=2(s� 1)B[s℄= (a� 2) nXs=2 s(s� 1)2(n� 1)B[s℄!+ nXs=2(s� 1)B[s℄= nXs=2(s� 1)� s(a� 2)2(n� 1) + 1�B[s℄whih is e�etive if and only ifa � 2(s� n+ 1)s ; s = 2; : : : ; n:The most restritive inequality ours when s = n, where we obtain a � 2=n.Consequently, a(L;B) = 2=n, as expeted.The Kodaira energy for (X;D) an be omputed on ( ~X; ~D), by Propo-sitions 1.3 and 2.5. By Proposition 1.4 and Theorem 2.3, it is equal to theKodaira energy for (M0;n(P1; 1); B). �
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5 Final remarksA) The orbit losure Xf depends on the form [f ℄. We get equivariant om-pati�ations of PGL2 depending on moduli. This dependene is made abun-dantly lear in the blow-up desription of Proposition 2.6.B) The pair (M0;n; Æ) is of log general type: KM0;n + Æ is ample and loganonial (see, for example, x7.1 of [13℄). The map : M0;n(P1; 1)!M0;nis a log-Fano �bration onto a log-variety of general type (or the point, whenn = 3).C) The pair (M0;n; Æ) satis�es Vojta's onjeture. We realize M0;n as anopen subset of an algebrai torus with expliit omplement. Fix n� 1 pointsin Pn�3 in general position. Consider the set H of 12(n�1)(n�2) hyperplanesspanned by n� 3 of the �xed points. Kapranov [15℄ has shown that M0;n 'Pn�3 � [H2HH. The torus is obtained by exising the n � 2 hyperplanesspanned by subsets of the �rst n� 2 of the points.D) We therefore expet that the asymptoti behavior of integral points ofM0;n(P1; 1) with respet to the boundary is obtained by summing the on-tributions of the integral points on the �bers of  . This explains why theKodaira energies for the moduli spae of stable maps (Theorem 4.2) and the�bers of  (Theorem 2.1) should oinide (for the ase of rational points, see[2℄).Referenes[1℄ V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels dehauteur born�ee des vari�et�es algebriques, Math. Ann. 286 (1990), 27{43.[2℄ V. Batyrev and Yu. Tshinkel, Tamagawa numbers of polarized algebraivarieties, Ast�erisque 251 (1998), 299{340.[3℄ B. J. Birh, Forms in many variables, Pro. Roy. So. Ser. A 265(1961/1962), 245{263. 23
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