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Abstract

Given a family of surfaces of general type over a smooth curve,
one can apply semistable reduction and the minimal model program
to obtain a stable reduction. This is the basis for a geometric compact-
ification for moduli spaces of surfaces of general type, due to Kollar,
Shepherd-Barron, and Alexeev. However, this approach hinges on the
fact that the resulting stable limit has relatively mild singularities;
in particular, it should be Cohen-Macaulay. Unfortunately, the stan-
dard formalism does not guarantee that stable limits of families of log
surfaces are Cohen-Macaulay. Here we prove that this is the case.

Subject classification: 14J17, 14J10
Keywords: Cohen-Macaulay, surfaces, moduli spaces
1 Introduction

Canonical models are fundamental in the study of surfaces of general type.
However, they are generally singular and it is not always clear they are
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smoothable. So in constructing compact moduli spaces for surfaces of gen-
eral type, one considers stable limits arising as degenerations of surfaces
with canonical singularities ([13] §5). Similarly, when compactifying moduli
spaces for log surfaces of general type, one should consider degenerations of
log surfaces with log canonical singularities. This is necessary if every log
canonical model is to occur in some component of our compactification. In
this paper, we prove theorems needed to construct compact moduli spaces
with this property. Existing compactifications ([1] 3.18) do not have this
property.

We fix some notation. Throughout this paper, we work over an alge-
braically closed field & of characteristic zero. We use A to denote the unit
disc (or the algebraic analog Spec k[[t]]) and write A* for the punctured disc
A —0. A family of log surfaces consists of a log variety with reduced bound-
ary (S,C) and a flat morphism 7 : § — B such that «|C is flat and the fibers
are log surfaces. In particular, the fibers of 7 and #|C are reduced. When
B = A, the fiber over 0 (the central fiber) will be denoted (g, Cp). Our main

result is:

Theorem 1.1 (Main Theorem) Let 7°: (§°,C°) — A be a family of log
surfaces so that the pair (S8¢,C° 4 S§) is log canonical and the fibers over A*
are log canonical. Then 8¢ and C° are Cohen-Macaulay.

The inclusion of the central fiber in the boundary is a bookkeeping device;
it keeps track of the singularities of Sy. Even a smooth surface fibered over
the disc may have unpleasant singularities in the central fiber.

The main application is a description of the limiting surfaces arising in
compactications of moduli spaces of log surfaces of general type. A family of
log surfaces 7 : (S,C) — B is allowable if the fibers have semilog canonical
singularities, each reflexive power of w,(C) commutes with base extension,
and some power is locally free. The allowability assumption is a natural one:
it excludes pathological cases where (K, + C;)? and the log plurigenera fail
to be constant. The constancy of plurigenera in families of smooth surfaces is
an important and useful property that we would like to preserve on compact-
ifying the moduli space. Furthermore, a family of log surfaces (S,C) — A
with Ks 4 C log canonical (and & Cohen-Macaulay) is automatically allow-
able. This is obvious when Kgs + C is locally free and is proven in general by
passing to an index-one cover. See [10] for more on allowable families and
compactifications of moduli spaces of surfaces.



Theorem 1.2 (Local Stable Reduction Theorem) Let 7 : (S,C) — A
be a family of log surfaces. Assume that m|A* is allowable with normal fibers.
Then there exists a base change A — A, an allowable family of log surfaces
¢ (85C%) — A, and a birational projective morphism 3 (8°,C°) —
(S xa A,C xa A) satisfying the following:

1. 3 induces an isomorphism over A*:

(8°,C9) A" = (S xa A%, C xa A%);

2. (8°,C°4S55) has log canonical singularities and Kg.+C¢ is ample relative
to 3.

We sketch the proof. By the semistable reduction theorem ([12] Theorem
7.17), we obtain a semistable resolution

pi(S,C+ S0+ F) = (Sxal CxaA+5S)

i.e., the boundary has reduced normal crossings. Here F denotes the excep-
tional divisors dominating the base. Let (§° C¢ 4 S§) be the log canonical
model relative to p; this evidently has log canonical singularities and rela-
tively ample log canonical bundle. S5 has normal crossings in codimension
one and is S2 by the Main Theorem. The Main Theorem also implies that
C¢ is Cohen-Macaulay, so C§ has no imbedded points and #¢ is a family of
log surfaces. The reflexive powers of w,(C°) commute with restriction to the
central fiber because (S¢,C°) has log canonical singularities. Adjunction ([11]
17.2) yields that (S5, C§) and the other fibers are also semilog canonical. O
A similar argument gives a global version of this result. A (projective)
log surface (5, C') is stable if it is semilog canonical and Kg + C' is ample.

Theorem 1.3 (Stable Reduction Theorem) Let 7 : (S,C) — A be a
family of log surfaces. Assume that m|A* is allowable with normal, stable
fibers. Then there exists a base change A — A and an allowable family of
stable log surfaces = : (8°,C°) — A such that (8°,C°) is the pull-back of
(8,C) over A,

We should emphasize that C° — A is a family of reduced nodal curves; if the
adjunction formula (Kse +C°)|C® = Kc¢e holds, it is a family of stable curves.
This is used to study plane curves in [6] and [7].



In section two, some ideas from commutative algebra are developed. The
third section contains the proof of the Main Theorem. In the final section
we sketch an application of our results to bielliptic curves.

The author has greatly benefitted from conversations with Janos Kollar,
Sandor Kovacs, Andrew Kresch, and Kenji Matsuki.

2 Algebraic Notions

We assume all schemes are separated, reduced, and of finite type over a field.

A morphism of reduced schemes Y — X is birational if it maps generic
points of irreducible components bijectively to generic points of irreducible
components and induces isomorphisms on the corresponding residue class

fields.

Definition 2.1 A reduced scheme X is weakly normal ([2]) (resp. semi-
normal ([18] [4])) if each morphism Z — X which is finite, bijective, and
birational (resp. finite, bijective, birational, and induces trivial residue field
extensions at each point) is an isomorphism.

The going-up theorem ([3] 4.15) implies that any dominant finite morphism
is surjective, so we could replace ‘bijective’ by ‘injective’ in the definition.
Evidently, weakly normal and seminormal coincide in characteristic zero.
We now resume our blanket assumption that the base field has characteristic
zero. For simplicity, we shall only use the term ‘seminormal’.

Remark 2.2 IfY is a S2 surface with normal crossings in codimension one

then Y is seminormal ([4] 2.7).

Let X™ = Spec A" be the normalization of X, i.e. A" is the algebra of
elements of the total ring of fractions which are integral over X. Under our
assumptions, the induced morphism h : X" — X is finite ([14] pp. 261-264);
it is also maximal, i.e. it factors through any other birational finite morphism

7 — X.

Definition 2.3 (/18] §1.2) The seminormalization X*" of X is defined as
Spec A°", where A*" is the algebra of functions f € A such that, for each
p € X with residue field k, and py,ps lying over p,

1. f(pl) S kp C kpi;'



2. f(p1) = f(p2)-

We have a factorization

XSTL
h1 ho
/! N
X N X

so that hy is birational, finite, injective, induces isomorphisms of residue class
fields, and is maximal with these properties.

It is well known that the normalization satisfies a universal property: If
m : Y — X is a dominant morphism of integral schemes and Y is normal
then m factors through X". The seminormalization satisfies an analogous
universal property:

Proposition 2.4 (Universal Property of Seminormalization) (/9], ch.
I, Proposition 7.2.3.3) Let m : Y — X be a morphism and assume that'Y is
seminormal. Then m factors uniquely through X°", the seminormalization

of X.

We now assume that all schemes are pure dimensional.

Let X* be the S2-ification of X ([5] §5.10), i.e., X* = Spec A® where A*
denotes the functions regular in the complement of a codimension-two subset
of X. The induced map ¢ : X* — X is finite because the normalization map
factors through it. In this context, we can emulate the definition of the
seminormalization:

Definition 2.5 The semiS2-ification X*° of X is defined as Spec A*°, where
A*? is the algebra of functions [ € A® such that, for each p € X with residue
field k, and py, py lying over p,

1. f(pl) € kp C kpi;'
2. f(p1) = f(p2)-

We have a factorization

so that g is birational, finite, injective, induces isomorphisms of residue class
fields, and is maximal with these properties.



We obtain a natural morphism X** — X** by the maximality of the semi-
normalization.

Definition 2.6 X is topologically S2 at x if g1 : X* — X*° is an isomor-
phism over x.

This is equivalent to insisting that ¢, : X* — X** is injective. For example,
the union of two planes glued together at a single point is not topologically
S2 at the point of intersection. Topologically 52 schemes have the following
connectivity property:

Proposition 2.7 Assume that X is topologically S2 at p. Then there ex-
ists no point x specializing to p such that the punctured formal neighborhood
Spec Ox » — x is disconnected.

proof: Without changing the topology we may replace X by X**. Let p €
X be a point where X is not S2; let + € X correspond to an irreducible
component of the locus where X is not S2 so that z specializes to p. The
codimension of x is at least two.

Let X = Spec Ox , be the formal neighborhood of X at . Note that X
is $2 at @ iff X is S2 at ([14] pp. 136). Furthermore, X is S2 away from
z. Consider the S2-ification §: X* — X. Note that X* — g z) — X -z
is an isomorphism, and regular functions on X -z correspond to regular
functions on X*. Since g 1s finite, X* is the disjoint union of the localizations
at its maximal ideals, each of which is finite over X ([3] Corollary 7.6).
By assumption ¢ is not injective, so X* and X° — g '(x) are disconnected.
Therefore, X — 2 is also disconnected. O

This means that if X is not topologically S2, then X is not locally analyt-
ically connected in codimension one, i.e. it can be disconnected (analytically
locally) by removing a subset of codimension > 1. By a result of Rim ([16]
Prop. 3.3), X is not smoothable. Indeed, the proof yields the following
criterion:

Proposition 2.8 Let X be a reduced, pure-dimensional, separated scheme of
finite type over a field k. Assume there is a flat family X — Spec k[[t]] such
that X is normal and the central fiber is X. Then X s locally analytically
connected in codimension one.



3 Proof of Theorem 1.1

We first reduce to the case where (§¢,C°+55) admits a semistable resolution.
The semistable reduction theorem ([12] Theorem 7.17) implies that such a
resolution exists after pulling back via a finite base change A — A. The
base-changed 8¢ xa A is still normal (its fibers are reduced), so the base-
changed pair is log canonical by the logarithmic ramification formula (see
Prop. 20.3 of [11]). In particular, the base-changed pair still satisfies the
hypotheses of the Theorem 1.1; the base-changed tfamily is Cohen-Macaulay
if and only if the original is. For simplicity, we shall still write (S¢,C° 4 S§)
for the base-changed family and

R:(S,C4 So+F)— (S8,C°+ S5)

for the semistable resolution. It suffices to prove Theorem 1.1 when such a
resolution exists.

Consider the log minimal model of (S, C+ 5’0 + .73) relative to R, denoted
(8™, C™ + S5+ F™), and the induced proper morphism h : §™ — S§°. Both
(8™, C™ 4+ S5+ F™) and (8™,C™ 4+ F™) have Q-factorial weak Kawamata
log terminal singularities, and the underlying space &™ has Kawamata log
terminal singularities as well. At points of §¢ not in the image h(F™) the
proof is straightforward. Over these points there are no exceptional divisors
dominating the base with discrepancy zero, hence (§°,C°) is divisorial log
terminal and therefore weak Kawamata log terminal ([17]). It follows that
S§¢ and C¢ are Cohen-Macaulay ([11] 2.16 and 17.5). We therefore restrict to
points in h(F™).

In what follows, canonical bundles are all taken relative to h and its
restrictions to subvarieties (which, for simplicity, are also denoted h). We
shall use the following key exact sequence

0 = Osn(NEKsn + (N = 1)(C" + F")) = On(N(Ksn +C" + F"))
— Oc¢mygm(N(Kemuzm 4 Diff)) — 0.

Here Diff is the appropriate different ([11] chapter 16), an effective Q-divisor
with no irreducible components contained in the singular locus. We choose N
so that the last two terms are locally free on ™ and C™ U F™ respectively.
The higher direct images of the first term are zero by a corollary to the
Kawamata-Viehweg Vanishing Theorem ([8] 1.2.5 and 1.2.6).



We first show that C¢ is Cohen-Macaulay. Observe that v : C"UF™ — A
is Cohen-Macaulay: (8™,C™ + F™) is weak Kawamata log terminal and
thus divisorial log terminal ([11] 2.16), so C™ U F™ is seminormal and S2
([11] 17.5) and the fibers of 4 have no imbedded points. The fibers of 7™ :
(S, C" 4+ F™) — A have semilog canonical singularities by adjunction ([11]
17.2), hence v is a family of reduced nodal curves. Furthermore, Diff is
supported in the smooth locus of ~.

Our application of Kawamata-Viehweg vanishing shows that » : C™ U
F™ — C¢ is induced by the sections of

OCmu}‘m(N(I(CmU]:m -I— Dlﬂ))
for N is suitably large and divisible. Evidently, the pluricanonical image
D= PI’Oj @Mzoh*Oanupgn(NM([(cgnupgn + Dllcfo))

has no imbedded points, so it suffices to show that C§ coincides with D. This
fails exactly when the map D — C§, induced by the restriction

hOcmuFn(MN(Kemyrm 4 Diff)) — h.Ocmopm (M N(Komorm + Diffg)),
has nontrivial cokernel. Such a cokernel yields torsion in
th*OCmu}‘m(N([(CmU]:m -I— Dlﬂ))

as an Oz-module. We are reduced to showing there is no such torsion.

We employ a similar argument to prove that S§ is S2. Proposition 2.8
implies S§ is topologically 52, so it suffices to show S§ equals its seminormal-
ization. The boundary divisor has normal crossings in codimension one, so
Sgt is seminormal by Remark 2.2. Let k£ : S§* — T denote the log canonical
model of (5§, C5 + FJ") relative to h, i.e.,

T = Proj @Mzoh*osgn(MN([(Sgn + Oy + an))

for suitably large and divisible N. Of course, T' comes with an ample line
bundle I such that k*[ = (’)Sgn(N(ngn + CF + ).

We assert the seminormalization ¢, : T°" — T'is an isomorphism. Indeed,
since S§' is seminormal Proposition 2.4 yields

TSTL



Since g is finite, g5 L is ample on T and pulls back to Ogm (N (Ksm + Cg" +
Fg")). A suitably high power of g5 L is very ample and its sections pull back
to sections of some (’)Sgn(nN(KSgn + CF + ).

We next construct the desired morphism r : 1" — S§. Since
S¢ = Proj ®a>0hOsm (MN(Kgm +C™ + F™))
for suitably large N, r is induced by the restriction
Er>0hOsm(MN(Ksm +C™" +F™)) — Bar>0hOsm (MN(Ksm +Cg" 4+ Fg")).
We assert the higher direct image sheaves
Rh.Osm(N(Ksm +C™ 4+ F™))

are torsion-free O z-modules for ¢ > 0 and N suitably divisible. This implies
that

hOsn(N(Ksm +C™ + F™)) = hOsp(N(Ksp + CF" + Fg))

is surjective; its cokernel consists of elements of th*osm(N([(Sm +C™ 4+
F™)) supported in the central fiber. Again, Kawamata-Viehweg vanish-
ing and the key exact sequence reduces our assertion to the claim that
R'%.Ocmyzm(N(Kemyznm + Diff)) has no torsion over A.

Now we establish our claim on the vanishing of torsion. Some care is
required because the higher direct image may have torsion as an Oge-module,
(e.g. if we are contracting a family of simple elliptic singularities). We apply
the following lemma with W = C,,UF,,, X = §¢, and L the log pluricanonical
bundle:

Lemma 3.1 Let~v: W — A be a flat family of reduced nodal curves, X — A
another flat morphism, and h : W — X a proper morphism over A. Let L
be an invertible sheaf on X such that h*L = Ow(N(Kw + A)), where N >0
and A is an effective Q-divisor flat over A and supported in the smooth locus
of v. Then R'h.h*L is torsion-free as an Ox-module.

proof: Pick a point p of the central fiber in the support of R'a,h*L. We re-
strict to a neighborhood of p containing no other such points (the intersection
of the support with each fiber is a finite set).



Let E) C h™'(p) denote the union of the one-dimensional (i.e., non-
imbedded) points of the fiber; it is a closed subscheme of Wy := 47*(0)
and thus is a nodal reduced proper curve. By the standard classification
results ([11] §3), each connected component Fy C FE{ has arithmetic genus
zero or one. In the genus-zero case, Fy is a tree of smooth rational curves
intersecting A or Wy — Ey nontrivially. (Here Wy — Ey denotes the closure
of the components other than Fy.) The pull-back of L to Fy has no higher
cohomology, so it does not contribute to R1A,.h*L. If the genus of Ej is one,
we have either a smooth genus one curve, a rational curve with one node, or
a cycle of smooth rational curves, in each case intersecting A and Wy — Fj
trivially. The pull-back of L to Ey does then have higher cohomology, i.e.,
h*(Ey, L|Fo) = 1. Let m denote the number of genus-one components in £
The computation above shows that the dimension of the fiber of R'A,A*L at
p is equal to m, and thus the dimension over 0 € A is also m. On the other
hand, for each genus-one component Fjy, there exists a connected component
FE C W so that EN Wy = Ey (because Fy is also a connected component of
Wos). Hence the dimension of the fiber of R*,.h*L over the generic point of
A is also m. Thus RA.h*L is torsion-free as an Oz-module.O

4 An example: compact moduli for bielliptic
curves

Here we work over an algebraically closed field of characteristic zero.

There are simple examples of log surfaces of general type such that the
log canonical model has elliptic singularities which are not smoothable. Such
log surfaces arise quite naturally in the study of bielliptic curves.

A smooth projective curve C' (connected of genus ¢ > 2) is bielliptic if
it admits a degree-two finite map onto a smooth curve of genus one. We
write r : (' — FE for the double cover, B C F for the branch locus, and V :=
r.Oc £ Og® L™ where L2 = Og(B). The natural map r*V — O¢ yields an
imbedding €' < § := P(V*). Let 7: S — E be the projection map, Og(+1)
the relative hyperplane, and ¥ the distinguished section of 7 arising from the
trace map. Note that O5(C) = 7*Og(B)(4+2),05(X) = Oz(+1), XN C =0,
and Og(X) = L1

Consider the log surface (g, C + ) with logarithmic canonical bundle

Ks+C+E=(r"L)(+1).
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We have natural identifications
HY(S,04(K;+C+%))=H(E,V®L)=H(E 05D L).

It g > 2, O & L is globally generated by ¢ sections and the log canonical
series yields a morphism .
pr S — Pt

It ¢ > 3, p is birational onto its image S, a cone over an elliptic curve of
degree g—1, and contracts ¥ to the vertex. For ¢ = 2 or 3 a suitable multiple
of the log canonical series has the same effect. To summarize:

Proposition 4.1 Let C be a smooth projective curve of genus g > 2, which
may be represented as a double cover of a genus-one curve E. Then C' admits
a natural tmbedding into a projective surface S, which ts birationally ruled
over I and has a simple elliptic singularity of multiplicity g—1. The resulting
log surface (S,C') is stable. For g >3, S may be realized as the cone over F,
where £ C P972 is projectively normal of degree g — 1.

The cone over a projectively normal elliptic curve of degree > 9 does not
possess a smoothing ([15] ch. 9). Thus if ¢ > 10, we obtain natural examples
of stable log surfaces (9, C') with elliptic singularities that are not smoothable.
The Main Theorem allows us to construct compact moduli spaces for such
pairs, and we obtain a new compactification for the locus of bielliptic curves.

The cases where g < 10 are also quite interesting geometrically, although
they do not require the full force of the Main Theorem. Here S deforms to a
Del Pezzo surface T with K7 = g — 1 and C' deforms to some D € | — 2K7r|.
The classification of Del Pezzo surfaces implies that 7' is isomorphic to P! x P!
or a blow-up of P? at 10 — ¢ (sufficiently general) points. In the second case,
the blow-down T' — P? maps D to a singular sextic plane curve, and we may
regard the bielliptic curves as examples of curves admitting a ga.
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