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Abstract

Consider a family of curves over the disc, with smooth fibers except
for the central fiber over the origin. By the local stable reduction
theorem, after suitable blow-ups and base changes we obtain a family
such that the central fiber has reduced normal crossings. This stable
central fiber has two parts: the proper transform of the original central
fiber and the ‘tail’. Which tails arise when the original central fiber
is a given plane curve singularity? We address this question using the
technique of stable reduction for log surfaces. For certain singularities,
we find that weighted plane curves naturally arise as tails.
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1 Introduction

One important consequence of the log minimal model program is the exis-
tence of compactifications for moduli spaces of log surfaces of general type.
These compactifications are discussed in [16] and [1], and may be regarded
as higher-dimensional analogs of moduli spaces of pointed stable curves. Im-
plicit in these compactifications is a notion of stable reduction, i.e. a proce-
dure for modifying a family of log surfaces acquiring arbitrarily complicated
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singularities to obtain a family of log surfaces with certain prescribed singu-
larities. For instance, after stable reduction the boundary of a log surface has
only nodal singularities. Unfortunately, this process is not well-understood
in practice, even in the simplest cases.

In this paper, we consider stable reduction from a local standpoint. Given
a germ of a family of log surfaces degenerating to a singular pair (.Sg, Cy),
what kinds of surfaces appear in the course of stable reduction? The simplest
cases to consider are germs of isolated plane curve singularities. One attrac-
tive aspect of these special cases is that they give insight into the following
elementary question: which stable curves are the limits of plane curves? An-
other, more ‘modern’ formulation of this question is: which stable maps to
the plane are smoothable?

This paper is organized as follows. First, we review some basic properties
of isolated plane curve singularities, their resolutions, and their classification.
In particular, we introduce singularities of toric type (e.g. ¥ — y? = 0)
and quasitoric type (e.g. wxy(z? — y?) = 0); these include all the simple
ADE singularities. In section three, we describe the notion of local stable
reduction for curves and log surfaces, and prove some elementary properties
of the stable limits. In section four, we give a partial description of these
stable limits, the Main Component Theorem (Theorem 4.1). This is made
explicit for singularities of toric and quasitoric type. In the fifth section,
we describe some degenerations of surfaces that arise naturally from the log
minimal model program. In the sixth section, we use these degenerations to
describe the ‘tails’” of stable limits arising from smoothings of singularities
of toric and quasitoric type. The key statements are Theorems 6.2 and 6.3,
Proposition 6.4, and Conjectures 6.5 and 6.6. Certain examples, like the
simple ADE singularities, are discussed in more detail. In the last section,
we show how these ideas shed light on the geometry of the equisingular
deformation space. We also describe certain boundary components of the
compatification for the moduli space of pairs (P2, '), where (' is a smooth
plane curve of degree d > 4. In a subsequent paper [13], we enumerate the
stable limits of pairs (P?, '), where (' is a smooth plane quartic.

I would like to thank Andrew Kresch for some helpful conversations on
toric geometry and Rahul Pandharipande for insights on weighted projective
spaces. Dan Edidin and Joe Harris generously explained their ideas on sta-
ble reduction for double points. Francisco Gallego and B. P. Purnaprajna
graciously shared their examples of stable limits of log surfaces. I have also
benefitted from discussions with Lawrence Ein and Anatoly Libgober, and



from William Fulton’s lucid lectures on toric varieties. Henry Pinkham made
helpful comments on the manuscript and the connection between Theorem
6.2 and his work [21]. Alessio Corti has informed me that he and his students
independently discovered some of the results discussed here.

Throughout this paper, we work over C.

2 Singularities of toric and quasitoric type

Throughout this paper, Co C Sy = Spec C[[x,y]] denotes the germ of an
isolated reduced plane curve singularity at the origin + = y = 0.

Definition 2.1 An imbedded resolution of C is a projective birational
morphism of smooth surfaces r : P, — S, with exceptional locus £, such
that:

1. (4, the proper transform of Cjy, is smooth;
2. F'U (Y} is a normal crossings divisor.

An imbedded resolution (P, C4) is minimal if every other imbedded resolu-
tion factors through it.

Since r is a birational projective morphism of smooth surfaces, it may be
obtained by a succession of blow-ups of smooth points. The exceptional
locus £ is thus a tree of smooth rational curves {F;}. The intersection form
on P restricts to a negative definite unimodular quadratic form on §,;ZF;.

Proposition 2.2 Let Cy C SpecC[[z,y]] be a plane curve singularity. Its
minimal imbedded resolution (Py,C1) is characterized by the fact that each
irreducible exceptional curve E; C Py satisfies at least one of the following:

1. E? < —1;

2. (Cy+ E— E)E; > 2.

Given an arbitrary imbedded resolution, the minimal resolution is obtained
by blowing down all exceptional curves satistying neither of these proper-
ties. Evidently, these curves may be blown down without introducing any
unwanted singularities.
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Figure 1: Topological type of y* = 21°

Let Cy be an isolated plane curve singularity and let (P, Cy) be its mini-
mal imbedded resolution. Let Ey, Es, ..., E, denote the distinct irreducible
components of the exceptional locus. Consider the graph 7 ¢, with edges cor-
responding to the E; and vertices corresponding to nonempty intersections
E; N E; with ¢+ # j. Clearly 7¢, is a tree with two edges meeting at each
vertex. The edges of 7, have two natural labellings

ZCO . EZ — EWZ2 ECO . EZ — EZCl
by negative and non-negative integers respectively.

Definition 2.3 The topological type of Cy is defined as the labelled tree
(Tcor ey, =0y ). Two curves Cy and Cf) have the same topological type if
there is a bijection 7 ¢, >~ 7 ¢y compatible with the labellings.

Of course, most triples (7,%, =) are not realized as the topological type of
any singularity.

We shall often use diagrams to represent the topological type of the sin-
gularities we consider. On these diagrams, 7 ¢, is represented as a tree of
straight line segments, the values of ¥, are indicated by the numbers in
parentheses, and the values of =¢, by the number of intersections of the
proper transform Cy with the edges of the tree. For example, the topological
type of y* = 2% is given in figure 1.

Intuitively, an equisingular deformation of an isolated plane curve sin-
gularity Cy is a deformation of Cy such that all the fibers have the same
topological type as Cy. A rigorous definition was given by Wahl [22].

Our notion of topological type coincides with other concepts used to char-
acterize the topology of the singularity, like Puiseux pairs and multiplicity
sequences. See [4] chapter 8 for an introduction to these notions; [23] and
[24] (Part I) show that all these definitions coincide.
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Figure 2: Topological types of z(y*—2'%) = 0, y(y*—2'°) = 0, 2y(y*—2'°) = 0

Definition 2.4 Let p and ¢ be integers with p > ¢ > 1. A plane curve
singularity Cj is said to be of toric type (p, q) if it has the same topological
type as P = y?. We say that Cj is of quasitoric type if it has the same
topological type as one of the following:

L. x(a? —y?) = 0 with p > ¢;
2. y(a? —y?) =0 with p > g and ¢ [p;
3. xy(a? —y?) = 0 with p > g and ¢ fp;
The branches = 0 and y = 0 are said to be distinguished.

The conditions on p and ¢ guarantee that each of the equations above de-
termines a distinct topological type. See figure 2 for diagrams representing
certain singularities of quasitoric type.

Remark: Note that the simple singularities of types A,,, D4, Fg, and Fg are
of toric type. Those of types Dy(k > 4) and E7 are of quasitoric type.

Proposition 2.5 If Cy is of type (p,q) then
1. ¢, s a chain;

2. =¢, > 0 for exactly one component F,, the unique component with

Yo, = —1.
Furthermore, E, is an endpoint of the chain iff ¢|p.

Proposition 2.6 If Cy is of quasitoric type then

1. ¢, s a chain;



2. the proper transforms of the non-distinguished branches all intersect a
single F,, the unique component with ¢, = —1;

3. the proper transforms of the distinguished branches meet components
at the ends of the chain with ¥¢c, < —1 and =¢, = 1.

To prove the propositions, we recast them in inductive form:

Lemma 2.7 Assume p and q are integers with p > g > 0. The minimal
resolution of xy(x? — y?) = 0 satisfies the following:

1. The union of the exceptional curves and the proper transforms of the
distinguished branches x = 0 and y = 0 forms a chain, with the distin-
quished branches at opposite ends of the chain.

2. The non-distinguished branches all meet a single exceptional component
E,, which is the exceptional curve of the last blow-up in the resolution
and the unique component with ¥¢o, = —1.

3. The proper transform of x = 0 (resp. y = 0) intersects F, iff ¢ = p
(resp. qlp).

After blowing up once we obtain the local equations
et(a? T =11 =0 sy(s"yP?1—1)=0

for the union of the exceptional divisors and the proper transform of Cj.
Hence we proceed by induction on n, the number of blow-ups occurring in
the minimal resolution. If n = 1 then p = ¢ and the result is evident. For
the induction, we simply reinterpret the local equations above. Consider the
exceptional curve F; and the proper transform of y = 0 as distinguished
branches of xt(a?~? — t9) = 0. More precisely, set #; = 2 and y; = ¢ if
p—q > qand q; =t and y; = = otherwise. The non-distinguished branches
of this new singularity correspond with those of xy(«? — y?) = 0.

We extract the results on the minimal resolution. It is clear that only the
last exceptional divisor F, satisfies £ = —1, and all the non-distinguished
branches meet F,. This yields (2). The proper transform of @ = 0 (i.e.
s = 0) intersects F4, but none of the other exceptional components, and thus
is at one end of the chain. By induction, the union of the proper transform
of y =0 (i.e. t =0) and the exceptional locus also forms a chain, with F;
and the proper transform of y = 0 at opposite ends. Thus (1) follows. The
proof of (3) is straightforward, and left to the reader. O



Proposition 2.8 Let Cy be a singularity with minimal resolution satisfying
the conditions of Proposition 2.5 or 2.6. Then there exist integers p and g and
a square-free weighted-homogeneous polynomial go(x,y) = aP+...+y? (where
x and y have weights g and p respectively) so that Cy admits an equisingular
specialization to one of the following:

1. go(z,y) =0 withp > ¢ > 1;
2. xgo(x,y) =0 withp > ¢ > 1;
3. ygo(x,y) =0 with p > q>1 and q [p;

4. xygo(x,y) with p > ¢ > 1 and q fp.

Again, the proposition is proved by induction on the number of excep-
tional curves in a minimal resolution. Number these curves Fq, ..., E, in the
order they appear in the minimal resolution. If n = 1, then the singularity
is evidently topologically equivalent to ¥ = y? for some p. Precisely, for
some coordinates x and y transverse to all the branches of Cy = {f = 0},
the homogeneous part of f with minimal degree takes the form

go(a,y) =aP + ...+ 4y~

Here go 1s square-free, and f = 0 has the same topological type as go = 0.

Now we establish the inductive step. Let Cy be a singularity with minimal
resolution containing n > 1 exceptional divisors and satisfying the conditions
of the Propositions 2.5 or 2.6. Blow up once, and consider C' = Cj U Ey,
the union of the proper transform and the exceptional curve. This has (at
most) two distinct singularities ry and ry; rq is where the non-distinguished
branches meet F; and ry is where F; meets a distinguished branch D. By
induction, we know that the singularity of C” at r; specializes to one of the
equations above, with E; satisfying ' = 0 or y’ = 0. Of course, Cy is obtained
by contracting one of these lines, and the image of the branches through r
satisfies equations 1 or 3 above. However, the image of the distinguished
branch D (if it exists) satisfies some equation x + higher order terms = 0, so
the equation of Cy takes the form

ygo(x,y)(x 4+ h.o.t.) =0 or go(x,y)(x + h.o.t.) = 0.

Since D meets each of the other branches generically, its equation can be
specialized to x = 0 without changing the topological type of Cy. O
Essentially the same proof yields the following corollary:



Corollary 2.9 Let Cy be of toric or quasitoric type. Then there exist local
coordinates x and y and positive integers p and q such that Cy has one of the
following analytic equations

1. go(x,y) + h.o.t. =0, with p > ¢ > 1;

2. w(go(x,y) + h.ot.) =0, withp > q > 1;

3. y(go(x,y) + h.ot.) =0, withp>q>1 and q [fp;
4. 2y(go(z,y)+ h.o.t.) =0, withp > ¢ >1 and q [p;

where go(x,y) = 2P 4+ ... + y? is weighted-homogeneous and square-free. (In
particular, Cy is semiquasihomogeneous.)

The weights on = and y are the same as in Proposition 2.8. Of course, ‘higher
order’ means higher degree with respect to this grading.

The equations of Proposition 2.8 all define singularities of toric or qua-
sitoric type. We therefore obtain the following corollary:

Corollary 2.10 Fach isolated plane curve singularity satisfying the condi-
tions of Proposition 2.5 (resp. 2.6) is of toric (resp. quasitoric) type.

Note also that Proposition 2.8 implies that each unibranch singularity
of toric type admits an equisingular specialization to 2 = y?. This is a
well known result of Zariski (chapter III §2.3 of [25]), and serves as the
foundation for the construction of moduli spaces for unibranch singularities of
toric type. For a systematic study of parameter/moduli spaces for unibranch
curve singularities, see the survey [11] and the lecture notes of Zariski (with
appendix by Teissier) [25].

We will also use the following result of Wahl [22] on equisingular defor-
mation spaces:

Theorem 2.11 Let Cy be an isolated plane curve singularity. Then the eq-
uisingular deformation space of Cy s smooth. For the singularity x* = y? it
may be represented as

yq :J}p—l—ztijl‘iyj
where 0 <1 <p—2,0<75<qg—2, and ¢t + pj > pq.



By Proposition 2.8, we may regard the singularities appearing in this family
as a parameter space for the singularities of type (p,¢). See the papers [11]
and [19] for an elaboration of this point of view. With this as motivation, we
make the following definition:

Definition 2.12 The codimension ¢(p, ¢) of the singularities of type (p,q)
is the codimension of the family in Theorem 2.11 in the versal deformation
space of y? = aP.

This will be computed in section 7.

3 Basic properties of local stable reduction

The stable reduction theorem for curves was proved by Deligne and Mumford
[6]. Another proof may be found in Artin and Winters [3], and a good general
introduction is the recent book of Harris and Morrison [12], chapter 3C.

Let Cy be the germ of an isolated plane curve singularity. Set A =
SpecC[[t]] or {t : |t| < 1}. Let 7 : C — A be a smoothing of Cy, i.e. 7 is flat,
Co = 7740), and C, := 7~1(¢) is smooth for ¢ # 0. Local stable reduction is
a procedure for obtaining a family of nodal curves #¢: C¢ — A. It involves
the following steps:

1. Carry out semistable reduction, following [15]. We find a base change
A — A and a resolution p : C — C xa A such that the central fiber Cy
is a reduced normal crossings divisor.

2. Obtain C¢ by taking the log canonical model of (C, () relative to the
morphism p.

We use a relative version of the minimal model program, i.e., we take minimal
models relative to a proper morphism of normal varieties. A good exposition
may be found in [14].

Over the punctured disc A*, C¢ coincides with the pull-back of the original
family. The central fiber C§ = €7 U Cr where (; is the normalization of C
and Cr = C§ — Cy. (We are assuming Cjy is not a node.) Let Cy N Cr =
{p1,...,pp}, where b is the number of branches of Cy. Note that the pointed
curve (C, p1, ... ,py) depends only on Cy, and not on the choice of smoothing.

Definition 3.1 The pointed curve (Cp,p1,...,p) is called the tail of the
local stable reduction.



Proposition 3.2 Let Cy be an isolated plane curve singularity and let T¢,
denote all the tails obtained from various smoothings of Cy. These tails are
pointed stable curves and To, C M., is a connected closed subvariety of the
moduli space.

Let C — A be a smoothing of Cy. After any base change ¢t = u', the
family C xa A remains normal. If C¢ is the stable reduction, then we have a
morphism of normal varieties ¢ : C° — C xa A. The tail Cr is the fiber over
the point + = y = u = 0 so it is connected by Zariski’s Main Theorem. Since
(C°,C§) is the log canonical model of C xa A relative to p, it follows that
Cr is nodal and we. (p1 + ... pp) is ample. In particular, (Cr,p1,... ,pp) is a
pointed stable curve.

We now show that 7¢, is closed in the corresponding moduli space of
stable pointed curves. Let Verg, be the versal deformation space of Cy and
let A be a linear series globalizing Ver¢,, i.e. some member Ly € A has a
single singularity p analytically equivalent to Cy, and the induced analytic
map Ar, — Verg, is an isomorphism. For instance, we may take A to be
a linear system of plane curves with sufficiently large degree. If the generic
member of A has genus ¢, we obtain a rational map A —» M,. This map
has indeterminacy at the point Lo and the total transform of Lg is a closed
subvariety W of the moduli space. Since (Cy,p1,... ,py) depends only on Lo,
we find that W ~ 7, . O

We want to describe 7, explicitly for certain singularities Cy. To do
this, we consider pairs (So, Co) where S = Spec C|[z,y]] and Cy C Sy. We
consider the smoothing C — A as a subscheme of the threefold S := Sy x A.
Local stable reduction for the family of pairs = : (S,C) — A involves the
following steps:

1. Carry out semistable reduction, following [15] and [5] Theorem 7.17.
We find a base change A — A and a resolution

p:(S,C) = (S xaA,CxaA)

such that the central fiber 5’0 is reduced and CU 5’0 is a normal crossings
divisor.

2. Obtain (8¢,C°) by taking the log canonical model of (3, C+ go) relative
to the morphism p.

10



The central fiber (5§, C§) is called the local stable limit. Local stable reduc-
tions satisfy the following:

Proposition 3.3 C§ is a Weil divisor, (S5,Cf) is semilog canonical, and
hence C§ s nodal. Furthermore, Kge 4+ C° is Cartier along C° and restricts
to [{Cc.

For the convenience of the reader we sketch the proof (see also §2 of [1].)
The pair (§¢,C°+ 5§) is log canonical so C§ is generically reduced. Since the
local stable reduction agrees with our original family away from the central
fiber, the exceptional divisors with log discrepancy < 1 are supported in the
central fiber. We obtain that (§¢,C°) is canonical hence §¢ (and also S§) is
Cohen-Macaulay. Furthermore, C¢ is also Cohen-Macaulay [17] 17.5 and thus
C§ has no imbedded points. Hence we may apply adjunction ([17] 17.2) to
obtain that (S5, C§) is semilog canonical. The fact that C§ is nodal follows
from the classification of semilog canonical singularities [17] 12.2.4.

Now Kge + C¢ is Cartier along C°¢ provided that ng + C§ is Cartier
along C§. (The log canonical bundle necessarily restricts well to the central
fiber.) Assume that Kse 4 C§ is not Cartier at p € C§, and let » > 1 be
the corresponding index. Restricting to a small analytic neighborhood about
p, we can take an index-one cover ¢ : (T, D) — (S§,C5). Note that ¢ is an
r-fold cover totally ramified at p and K7 + D is Cartier. It follows that
*Ko = Kp(—(r — 1)p), (K7 + D)|D = Kp, and hence Kgs: 4 C§ (when
restricted to C¢) has different =1 at p ([17] 16.6). This contradicts the

P

flatness of C5 — A. The isomorphism (Kgse 4+ C°)|C° = Kee follows by the
adjunction formula ([17] 16.4.2).00

Corollary 3.4 The boundary C° coincides with the local stable reduction of
C — A described above.

We now set some notation. The central fiber S§ = Sy U St where 54
is the proper transform of Sy and Sr the closure of S§ — 5i. We write
St = S U...US, where the 5, are irreducible, and C; = 5; N C§ for the
part of the tail Cr lying on Sj; it is possible that C; = §) for some j. We also

write B; =5, NS5 —5; and By = Sy N Sq; note that By = By.

Definition 3.5 The log surface (S, Cr 4+ Br) is called the surface tail of
the local stable reduction.

11



Proposition 3.6 Let Uy be an isolated plane curve singularity and let T/,
denote all the surface tails obtained from various smoothings of Cy. These
tails are stable log surfaces and form a connected closed subvariety of the
appropriate moduli space. There is a natural surjective forgetting morphism

/
TOO — TOO .

This proof follows the one for Proposition 3.2, using basic properties of stable
reduction for log surfaces. We shall prove that (S1, By + 1) depends only on
Cp and not on the choice of smoothing in Theorem 4.1. Since ¢ : §¢ — S XA A
is projective and birational, it is a blow-up of a suitable ideal sheaf. The
support of the exceptional divisor is S7. Because §¢ is Cohen-Macaulay
(Proposition 3.3), the exceptional divisor (a Cartier divisor) is also Cohen-
Macaulay, as is Sp. The pair (St,Cr + Byr) is therefore semilog canonical.
The log canonical bundle Kge +C¢ is ample relative to ¢. By the adjunction
formula ([17] 16.4.3) (Kse +C°)|St = Ks, + Cr + Br, so (S7,Cr + Br) is
stable. This establishes the first claim. The second claim is proved precisely
as in Proposition 3.2. The existence of the forgetting morphism follows from
Corollary 3.4. O

Remark: Can the forgetting map 7/ — 7¢, have positive dimensional

fibers?

4 Computing local stable reductions

4.1 The Main Component Theorem

We give a simple recipe for computing the component 57 of the local stable
reduction:

Theorem 4.1 (Main Component Theorem) Let Cy C Sy be an isolated
plane curve singularity, (S5, C§) the local stable limit of some smoothing of

Co, S1 C 5§ the proper transform of So, By = 51055 — 51, and Cy = C5N.ST.
There is a birational morphism o : S1 — Sp such that the divisor Ks,+B+C
is ample relative to o. Indeed, (51, By + C1) is obtained from an imbedded
resolution v : Py — Sy by taking the log canonical model of (P1, E + Cy)
relative to r.

The minimal model program gives us an induced map ¢ : ¢ — § Xa A
which is an isomorphism except over the origin 0 = (x =y =t = 0). The

12



exceptional divisors of ¢ correspond to S5\ 57, and ¢ restricts to a birational
morphism o : S; — Sp. By the adjunction formula ([17] ch. 16.4.3), we have

[(Sl + B; + Cl = (I(Sc + SS + CC)|51

which is o-ample because (S§¢,C°) is the log canonical model.

To prove the second part of the theorem, we must verify that B; equals
the image of the divisor E defined above. In other words, we must show
that every o-exceptional divisor is contained in some ¢-exceptional divisor.
Assume this is not the case, so the image of some component £’ C F in S}
is not contained in any of the ¢-exceptional divisors. Then at the generic
point of image of E’, which is a smooth point of §¢, ¢ has one-dimensional
exceptional locus. However S x o A is also smooth, and the exceptional locus
of any birational morphism of smooth varieties has pure codimension one. [

Generally, the map o : S — Sy can be expressed as the blow-up of a
natural ideal sheaf. Consider the log canonical divisor

D=0 (Ks, + Ci+ Bi) = Kp, + C1+ Y ails

=1

on the resolution A : P, — S;. Let N be the smallest positive number
such that ND is integral, globally generated relative to r, and generates
Bm>0rOp (mND) as an Og, algebra. (In practice, it often suffices to assume
that N D is integral.) The log adjoint ideal Ac, is defined as the push-forward
r.Op (ND) C Og,. This can interpretted geometrically: the images in Sy
of the members of |ND| yield a linear series on Sy, the log adjoint series.
The base locus of the log adjoint series is the log adjoint ideal. Using basic
properties of blowing up, we obtain the following:

Proposition 4.2 Retain the notation of Theorem J.1. Then o : S; — So
coincides with the blow-up of Sy along the log adjoint ideal Ac,.

Finally, we should point out when local stable reductions coincide with
global stable reductions. Assume we are given a family of log surfaces
(§,C) — A, such that the fibers over the punctured disc A* are smooth and
stable. In particular, Kg, + C} is ample for £ # 0. Furthermore, assume that
Sp 1s smooth but that Cy has an isolated singularity. We can apply local sta-
ble reduction to obtain a family (S¢,C¢) — A dominating (S xa A,C xa A),
so that the central fiber (S5, C§) has semilog canonical singularities. When

13



is this also the global stable reduction? Of course, (S5, C§) is semilog canon-
ical and global stable reductions are unique, so it suffices to check whether
Kse + (g is ample. This is clearly valid for each irreducible component of 5§
that is exceptional for the map ¢ : 8¢ — S xa A. It follows that the local
stable reduction is the global stable reduction whenever Kg, + By + C is
ample (using the notation of Theorem 4.1).

4.2 Computing log canonical models

We recall some results on surface singularities. Consider the cyclic quotient
surface singularity arising from the group action

(x,2) — (e"x,€2)

where € is a primitive rth root of unity, 1 < a < r, and (a,r) = 1. The
minimal resolution of this singularity can be described quite explicitly. It
consists of a chain of rational curves Ky, F,, ..., E, with self-intersections
E? = —b;

—by —bn

O [ — O
The b; are computed from the continued fraction representation

r 1
e
a by — [

The proper transforms of = 0 and z = 0 meet the first and last exceptional
curves of this chain. (See [10] §2.6 for a good exposition of this subject.)
We shall use the fraction = to label the cyclic quotient. For instance, the
singularity A, corresponds to the fraction L.

the choice of one of two possible orderings for the exceptional divisors of the

This notation depends on

minimal resolution.
We now describe the log minimal and log canonical models associated to
singularities of toric type.

Proposition 4.3 Retain the notation of Theorem 4.1, and assume further
that Cy is of type (p,q). Then Sy is obtained from Py by contracting all
the exceptional curves disjoint from Cy, and By is the image of the unique
exceptional curve meeting Cy. In particular, we have

1. If p = q > 2 then Sy is smooth and equal to the minimal imbedded
resolution of Cy.

14
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Figure 3: Log canonical model of y* = x
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2. If qlp but q # p, then Sy has one cyclic quotient singularity along By
(but disjoint from Cy).

3. If ¢ /|p, then Sy has two cyclic quotient singularities along By (but
disjoint from C1).

Finally, (51,C1 + B1) has log terminal singularities and thus coincides with
the log minimal model (except in the case where p=q =2).

See figure 3 for a schematic representation of such a log canonical model. The
number in parentheses is the self-intersection of By in the minimal resolution
of S7. The fraction denotes the corresponding quotient singularity.

We assume that Cj is not an ordinary node; if (y is a node then the
proposition is evident. Here we use Proposition 2.5 and Lemma 2.7. Let F,
be the unique exceptional curve meeting Cy. We claim that every exceptional
curve besides F, is contracted when we take the log minimal model; B
corresponds to the image of E,. Let I be the union of the exceptional
curves besides F,; it has zero (resp. one, resp. two) connected components
if ¢ = p (resp. q|p, resp. ¢ fp). Each such component is a chain of exceptional
curves, with one curve at the end of the chain intersecting I, once. Such
chains are log terminal [17] ch.3, so they are necessarily contracted when we
take the log minimal model. As we have seen, contracting such a chain of
rational curves yields a cyclic quotient singularity.

On the other hand, F,, may not be contracted even after taking the
log canonical model. If we contracted F,, then the boundary would have
singularities worse than normal crossings, which contradicts the fact that
the singularities are log canonical([17] chapter 3). O

Similar results hold for singularities of quasitoric type:

Proposition 4.4 Retain the notation of Theorem 4.1, and assume further
that Cy ts of quasitoric type. Then Sy is obtained from Py by contracting
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Figure 4: Toroidal representation of the log canonical model S}

all the exceptional curves disjoint from the nondistinguished branches of Cy;
By is the image of the unique exceptional curve meeting those branches. S
has (at most) two cyclic quotient singularities along By; each distinguished
branch passes through one of these quotient singularties.

The proof uses Proposition 2.6 and the classification of log canonical singu-
larities.

Remark: For singularities of toric and quasitoric type o : S — Sy has
a simple toroidal interpretation. Choose coordinates = and y and integers
p and ¢ satisfying the conclusions of Corollary 2.9. Let b = ged(p,¢q) and
consider the ideal A generated by the weighted monomials {z‘y’ : pj + g7 >
B}, Blowing up A yields a resolution of Cy, imbedded in a normal surface
with cyclic quotient singularities. This corresponds to the toric blow-up
represented by the fan depicted in figure 4. The horizontal and vertical
vectors in the fan correspond to the proper transforms of y = 0 and * = 0
respectively. The propositions above imply that this toroidal blow-up equals
Sy, which gives a combinatorial method for describing the singularities of
S1 (see [10] §2.6). Finally, we should point out that A is precisely the log
adjoint ideal Aq, defined in the previous section.
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5 Constructions of limiting surfaces

5.1 Geometry of weighted projective spaces

We recall some basic facts about the weighted projective plane P(r, s, 1) (see
[7] for a comprehensive survey). It may be represented as the toric surface
obtained from the complete fan with one-dimensional faces (1,0),(0,1), and
(—r,—s) [10] §2.2. In particular, P(r,s, 1) is isomorphic to P(nr,ns, 1), so
we assume that r and s are relatively prime and r > s. Let B; denote the
distinguished divisor corresponding to the face (—r, —s), and let Dy and D,
be the divisors corresponding to (1,0) and (0,1). These satisfy the rational

equivalences r By = Dy and sBy = Dy; the intersection form is

| D1 Dy B
Dylr/s 1 1/s
Dyl 1 s/r 1fr
By |1/s 1/r 1/rs

The Picard group is generated by L = rsBy ([10] 3.3) and the canonical
divisor Kp(, 51y = — (B2 + Dy + D3) ([10] 4.4).

If r >s =1 (resp. s > 1) then P(r,s,1) has one (resp. two) cyclic
quotient singularities, occuring at the intersection Dy N By (resp. at the
intersections Dy N By and D1 N By). We should point out that (P(r, s, 1), By+
D1 + D) is always log canonical.

We describe some natural ‘linear series’ on P(r, s,1), i.e. spaces of sections
of OP(T7571)(nt) for n > 0. Of course, these are not generally invertible
sheaves, but rather rank-one reflexive sheaves. The dimensions of their global
sections are determined by the isomorphism of graded rings [7] 1.4

Proj Cla", ", 2] = B0 H’(Op(rs)(nB2)). (1)

If r > s then h%(Op(r51)(D2)) = 2 and h°(Op(rs1)(D1)) = [E] + 2. If s =1
then P(r,1,1) is the cone over a rational normal curve of degree r in P7;
By = Dy is the class of a ruling and Dy is the class of a hyperplane section.
If s > 1 then P(r,s,1) is still ruled by the divisors linearly equivalent to Ds.

For each positive integer b, the Cartier divisor bl is very ample and its
higher cohomologies vanish ([10] pp. 70-74). It follows that the general
member of |bL| is smooth of genus L(brs —r — s — 1) + 1, contained in the

smooth locus of P(r,s,1), and k°(bL) = %(brs +r+4+s+1)+ 1. Finally,
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|bL| maps By to a rational normal curve of degree b. Thus there is a smooth
member of |bL| passing through any collection of b smooth points of P(r,s,1)
lying on Bj.

If » > s then a generic Weil divisor Cy € |bL 4+ D3| is smooth of genus
%(brs—l—s—r— 1), but it contains the singularity at BoND;. In the local divisor
class group at By N Dy C is linearly equivalent to Dg, so (P(r,s,1),Cy+ Bs)
is log canonical. If s > 1 then the generic member Cy € |bL + D4| is smooth
of genus %(brs — s+ r — 1), but it contains the singularity at By N Dy;
again (P(r,s,1),Cy + Bsy) is log canonical. Similarly, the generic member
Cy € |bL 4+ Dy 4+ D3] is smooth of genus %(brs +r+ s —1), contains both
singularities By N Dy and By N Dy, and (P(r,s,1),Cy+ By) is log canonical.

We will use the following result for dimension counts later in this paper.
It is a consequence of the cohomology computations of [7] §2, or of the de-
scription of the automorphisms of P(r,s,1) in terms of the automorphisms
of the corresponding graded algebras.

Proposition 5.1 Let r and s be relatively prime integers with r > s > 0.
Then the automorphism group of P(r,s,1) has dimension |Z] +4 if s # 1,
dimension r +5 if s =1 and r # 1, and dimension 8 if r = s = 1.

5.2 Construction of degenerations

In this section, we construct certain surfaces S§ containing tails arising from
plane curve singularities Cy of toric and quasitoric type. We describe how
these surfaces are obtained as central fibers of birational modifications of the
trivial families § = Sy x A.

Theorem 5.2 Let Cy C Sy be a singularity toric or quasitoric type which is
not an ordinary node. There exists a surface S5 with the following properties

1. S§ has two irreducible components Sy and Sy and has semilog terminal
singularities.

2. Sy is the log canonical model of the imbedded resolution of Cy (cf. The-
orem 4.1).

3. Sy is isomorphic to a weighted projective space P(p,q,1).

4. S§ can be smoothed to Sy so that the total space S¢ has terminal singu-
larities.
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(p/b,g/b,1)

10.0) (0,1,0) 10.0) (0,1,0)

Figure 5: The toroidal blow-up ¢ : §¢ — §

Choose analytic coordinates x and y and integers p and ¢ satisfying the
conclusions of Corollary 2.9. We assume that p > ¢ and set b = ged(p, q).
Consider the ideal Z° C Og generated by ¢ and generators of the log adjoint
ideal A¢,. By the remark at the end of section 4.2, this may be represented
torically as {t,z'y’ : pj + qi > %}. Let ¢ : 8¢ — S be the blow-up of S
along 7¢. We express this torically as follows: represent & by a fan with one
cone generated by the vectors vy = (1,0,0),v2 = (0,1,0), and v = (0,0, 1),
corresponding to the divisors y = 0,2 = 0, and t = 0. Then ¢ corresponds
to the toric blow-up represented by a fan with three cones, each spanned by
two of the v; along with the vector (£,%,1). (See figure 5.)

Basic properties of divisors in toric varieties imply that the central fiber
S5 C 8¢ (defined by t = 0) is reduced. By the description of orbit closures
in [10] 3.1, it consists of two components isomorphic to the toric blow-up
S1 — Sp and the weighted projective space Sy = P(p/b, q/b,1) respectively.
Each of these surfaces has (up to) two quotient singularities, lying along their
common intersection By = By. Away from these quotient singularities, S
and Sy intersect in normal crossings.

We claim the threefold S¢ has terminal singularities; this implies (by
adjunction) that S§ is semilog terminal. It suffices to prove that an affine
toric threefold U with fan generated by (1,0,0),(0,1,0),(1,s,r) (with r,s
relatively prime) has terminal singularities. Each affine neighborhood of
S°¢ has this form after an appropriate permutation. We represent this as a
quotient singularity of index r. Set wy = (1,0,0),wz = (0,1,0),ws = (1, s,7)
and let Ny be the corresponding lattice spanned by these elements. Now N,
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is an index r subgroup of the full torus N and
Z Z
N =N, + 7(w3 —wy —rwy) = Ny + ?((r — Dwy 4 (mr — s))wq + ws)

where m € N and 0 < mr—s < r. The toric variety with torus corresponding
to Ny and fan consisting of the cone generated by w, wsq, w3 is just A®. The
toric variety U = A3 /(Z [rZ), where Z [rZ acts with weights (r—1,mr—s, 1).
It follows that U has terminal singularities [20]. O

6 Description of the tails

6.1 General theorems

Let Cy C Sy be a singularity of toric or quasitoric type which is not an
ordinary node, S§ the surface constructed in Theorem 5.2, and Cy C 57 the
curve constructed in Theorem 4.1. Let (5 C S5 be a Well divisor in the
linear series

1. |O]p(p/b7q/b71)(b[/)| if Cy is of type (p, ¢);

2. |Opp/b,a/p1) (0L + D) if Cg is quasitoric of type x(aP —y?) = 0 (with
p>q>1);

3. |O]p(p/b7q/b71)(b[/ + D1)| (resp. |O]p(p/b7q/b71)(b[/ + Dy + D2)|) if Cy is qua-
sitoric of type y(a? — y?) = 0 (resp. ay(a? —y?) =0) (with p > ¢ > 1
and ¢ [p).

See section 5.1 for notation; we use b = ged(p,q),r = %, and s = { through-
out. Furthermore, assume that 5 is nodal and C; N By = Cy; N By, Let
C§ C S§ be the Weil divisor consisting of the union of C; and C3. We should

emphasize that C§ is Cartier iff Cy is of toric type.

Theorem 6.1 Retain the notation of the paragraph above and let S¢ — A
be the smoothing of S§ constructed in Theorem 5.2. Then there exists a
Weil divisor C° C 8¢ such that C°|S5 = C§ and C7 is smooth for t # 0.
Furthermore, (§¢,C) is the local stable reduction of a smoothing of Cy.

We first claim each rank-one reflexive sheaf F on 8¢ restricts to a depth-two
sheaf on the central fiber. In the proof of Theorem 5.2, we saw that S¢ is
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covered by affines U which are quotients of A*> by Z/rZ acting with weights
(r—1,mr—s,1). In other words, U is the cone over some weighted projective
space P(r— 1, mr — s,1). Each divisor class on U may be represented as the
cone over a divisor of the weighted projective space, and the corresponding
reflexive sheaves take the form Op(nCone(Bsy)) for some n. Using standard
results relating the local cohomology of a graded module to the ordinary
cohomology of its projectivization [8] Theorem A.4.1, we find that

Hé(OU(nCone(Bg))) = [t (Or(r—1,mr—s1)(nB2))

for « > 1. By standard cohomology computations for weighted projective
spaces [7] 1.4, we conclude that the local cohomology vanishes for ¢ < 3.
Consequently, reflexive rank-one sheaves on §¢ have depth three and restrict
to depth-two sheaves on the central fiber.

The toric representation of §¢ shows that 5 defines a Weil divisor gen-
erating the divisor class group of §¢ Recall that S;1 NSy = By = By, If
Co is of toric type (p,q), then the line bundle Os:(CF§) is the restriction of
F = Osc(55)) to the central fiber. More generally, if Cy is of quasitoric
type and C is a member of |Op(pyp,e/01) (0L + D3)| (vesp. |Opoqrm1) (0L +
D)y |Op gy (bL 4 Dy + Dy)|) then Ose(Cg) is the restriction of F =
Ose((ZF15)) (resp. Oge((ZH2S,), Oge(L1EFD G ),

The divisors Og,(C3) have no higher cohomology by [7] 1.4. This is also
the case for Og (C1), as can be seen by applying a variant of Kawamata-
Viehweg vanishing [14] 1.2.5. It follows that Ogsc(C§) also has no higher
cohomology. In particular, each section of this reflexive sheaf is the restriction
of a section of a suitable F. We choose C° to be a general section of F that
restricts to C§ along the central fiber. The fibers €} are smooth for ¢ # 0.

We check that (§¢,C°) is a local stable reduction. We know that (S5, C§)
is semilog canonical, Kgsc + Cf is relatively ample, and §¢ is Q-factorial, so
inversion of adjunction ([17] 17.12) gives that (S°,C° 4 S§) is log canonical.
The uniqueness of log canonical models implies this is a local stable reduction.
O

We apply this to describe certain smooth tails of singularities of toric
type. The statement is simplest in the unibranch case.

Theorem 6.2 (Main Theorem 1) Let Cy be a singularity of type (p,q),
where p and ¢ are relatively prime and p > q. Let Cy be a nodal curve in the
linear series Op,q1y(L) and set py = By N Cy. Then we have

(P(p,q,1),Co+ By) € TS, and  (Cy,p1) € To,.
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Furthermore, these curves satisfy the following properties:
1. p1 is a subcanonical point of Cy, i.e. (pg—p—q—1)pr = Ke,.
2. Cy is q-gonal, with gy equal to |[H(Oc,(qp1))|.
3. More generally, form=1,... ,;pg—p—q—1
W (Oc,(np1)) = {(i,j) : 1,j =2 0 and qi + pj < n}.

Recall that L is the effective generator of the Picard group of P(p,¢,1). The
first assertion follows immediately from Theorem 6.1 and the definitions of
Tc, and ’TC’O. The geometric statements about 'y are consequences of the
results on weighted projective spaces in § 5.1. The first statement follows
from the fact that the divisor class group of P(p,¢,1) is generated by B,
which meets Cy at the point p;. The second statement follows from our
description of the sections of Op,4.1)(¢B2), which restrict to give the g;.
Geometrically, the ruling of P(p, ¢, 1) restricts to the g; on (5. As for the
third statement, we first observe that the restriction

H®(Op(p,g1)(nB2)) = H*(Oc, (np2))

is surjective for all n [7] 1.4. The isomorphism of graded rings in equation 1
gives the desired formula. O
Remark: In the special case where the singularity is analytically isomorphic
to y? = xP, this result can be deduced from Pinkham’s work (see [21] §1.16
and 13). More generally, he considers certain smoothings of curve singulari-
ties with C*-action, and shows that curves Cy with distinguished Weierstrass
point p; naturally arise as tails. Weierstrass points also play an important
role in the theory of ‘limit linear series’ of Eisenbud and Harris [9].

In the case where the singularity is not unibranch, we have to keep track
of a compatibility condition along the intersection of surtaces 57 and Sy. This
makes our statements a bit more complicated.

Theorem 6.3 (Main Theorem 2) Let Cy be a singularity of type (p,q)
with b = ged(p,q). Let (S1,C1 + Bi) be the surface obtained from Theo-
rem 4.1, and let S§ be the surface obtained by gluing S1 and Sy as in The-
orem 35.2. Let Cy be a nodal curve in the linear series Op(p/@q/b’l)(b[/), such
that Co N By = {p1,pa2, ... .o} = C1 N By. Then we have

(P(p7Q71)702+B2) ETC/’O and (027}717}72,--- 7pb) ETOO'
Furthermore, these tails satisfy the following properties:
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1. pr+pes+ ...+ py s a subcanonical divisor of Cy, t.e.

————— D(pr+p2+...+p) = Ko,.

2. Cy is q-gonal, with g; = H*(Oc,($(p1 +p2+ ... + ).

3. More generally, forn=1,... B —%—1
W(Oc,(n(pr 4.+ ) = {(4,4) : 1,5 = 0 and qi + pj < nb}.

P P q 1

Again, this follows from Theorem 6.1 and the results on weighted projective
spaces.

Proposition 6.4 For each singularity Cy of toric type, Theorem 6.2 (or 6.3)
yields an irreducible component of T/, .

We claim that the space of allowable deformations of S§ is smooth of di-
mension one, and thus consists only of smoothings to Sy. By definition, a
deformation is allowable if it lifts locally to index-one covers. First, it is not
hard to check that weighted projective spaces admit no equisingular defor-
mations, hence S§ also admits no equisingular deformations. On the other
hand, the results from §3.2 of [13] imply that the versal deformation space
of the singularities of 5§ is smooth of dimension one. [

Proposition 6.4 suggests that the tails described in Theorems 6.2 and 6.3
might also yield an irreducible component of 7¢,. Proposition 7.3 provides
further evidence for this contention. We therefore make the following con-
jecture:

Conjecture 6.5 Let Cy be a singularity of toric type. Then the tails de-
seribed in Theorems 6.2 and 6.3 yield an irreducible component of Te,.

We also raise the following wildly speculative conjecture:

Conjecture 6.6 Let Cy be a (simple) singularity of toric (or even qua-
sitoric) type. Then T¢, is irreducible.

This is known for singularities of multiplicity two and some singularities of
multiplicity three. The proof involves analyzing the allowable deformation
spaces of each of the possible degenerate surface tails.

One can formulate analogous results for singularities of quasitoric type.
Again, all the weighted plane curves in a given divisor class (satisfying certain
compatibility conditions) appear as tails of stable reductions. We work out
certain examples in subsection 6.3.
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Figure 6: Some local stable reductions for y? = z29+2

6.2 Concrete examples

We illustrate these results by describing curves arising as tails for some simple
singularities.

6.2.1 A,,1, singularities

See figure 6 for a schematic representing this case; this figure uses the nota-
tional conventions of figure 3. Our general analysis implies that (Cq, p1 + p2)
is a hyperelliptic curve of genus ¢, where p; and py are exchanged under the
action of the involution. It is not difficult to verify that each such curve is
obtained in this way. Indeed, let C' be hyperelliptic of genus ¢ with double
cover f: C — PL. Then f.Oc = Op1 & Opi1(—g — 1), which gives a natural
imbedding
J:C — P(O]Pn S5 O]p1(—g — 1)) =Fy4.

(' is disjoint from the negative section of F,41, so we may regard ' as a
curve in Sy = P(g+ 1,1,1). The ruling of F,,; cuts out the g on (| so any
conjugate points p; and p, lie on some ruling of Ss.

6.2.2 A,, singularities

See figure 7 for a schematic representing this case. Our general analysis im-
plies that (Cy, p1) is a hyperelliptic curve of genus g, where p; is a fixed point
of the hyperelliptic involution. Again, every such curve arises in this way.
We imbed C into Fyy; as before. Each fixed point p; of the hyperelliptic
involution corresponds to a ruling tangent R to €. Blow up F,4; twice to
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Figure 7: Some local stable reductions for y* = z*¢*!
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Figure 8: Some local stable reductions for y* = 2*

eliminate this tangency and let F; and E5 denote the corresponding excep-
tional divisors. Then blow down all the curves with self-intersection < —1,
i.e. the proper transforms of the negative section, R, and E;. We obtain the
weighted projective space P(2g + 1,2,1) and F, corresponds to Bs.

6.2.3 yt=2!

See figure 8 for a schematic representing this case. Let Cy be the singularity
y* = 2*. Then () is a plane quartic curve and By N Cy = {p1,pa, p3,pa} is a
hyperplane section. There is a further compatibility condition to be satisfied.
The branches of our singularity determine four distinct tangent directions,
i.e. an element of Mg 4, which coincides with the element determined by

(B27p17p27p37p4)-
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Figure 9: Some local stable reductions for Dggis singularities

6.3 Singularities of quasitoric type

Applying Theorem 6.1 and emulating Theorems 6.2 and 6.3, we can describe
tails for certain singularities of quasitoric type. Again, the surface tail S,
will be a weighted projective space of type P(p,q,1), attached to Sy along
the same curve By. The only difference is that the tails C; are no longer
Cartier on Sy. They pass through one (or both) of the singularities of 53 and
are smooth at these points. If necessary, we impose compatibility conditions
like those of Theorem 6.3.

We illustrate this with the remaining ADE singularities. Note that the
singularities A,,, D4, Fg, and Eg are of toric type.

6.3.1 Dy 3 singularities

See figure 9 for a schematic representing this case. Let Cy be the singularity
z(y* — 2?1 i.e. the singularity Dogyz. The surface tail Sy = P(2,2k+1,1).
The curve Cy is a Weil divisor with class L +2B; = 4(k + 1)B; and contains
the index-(2k + 1) singularity p; € S3. It is hyperelliptic of genus k& + 1 and
Cy N By = {p1,p2}, where py is a Weierstrass point and p; is generic.

6.3.2  Dyjyy singularities, £ > 0

See figure 10 for a schematic representing this case. Now let Cy be the
singularity z(y* — 2?**2) for k > 0, i.e. the singularity Dyjy4. The surface
tail Sy = P(k+1,1,1). The curve C5 is a Weil divisor with class 2L + By =
(2k 4+ 3)By and contains the index-(k + 1) singularity on ps € S;. It is
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Figure 10: Some local stable reductions for Dyiy4 singularities, & > 0
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Figure 11: Some local stable reductions for F7

hyperelliptic of genus k + 1 and Cy N By = {p1, p2, p3}, where p; and p, are
conjugate under the hyperelliptic involution and ps is generic.

6.3.3 Fr

See figure 11 for a schematic representing this case. Let C be the singularity
z(x?—y?) = 0, i.e. the singularity of type F7. The surface tail Sy = P(2,3,1).
The curve (5 1s a Weil divisor with class L + 3By = 9B, and contains the
index-two singularity ps € S;. It is a non-hyperelliptic genus three curve and
CyN By = {p1,p2}, where 3p; 4+ p2 = K¢,. In other words, p; corresponds to
a flex on the canonical image of Cs.
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7 Equisingularity and boundary divisors

7.1 Blowing up equisingular deformations
Using Theorem 2.11 we compute the codimension of the locus of singularities
of type (p, q):

Corollary 7.1 Assume that p > ¢ and b = ged(p,q). Then the locus of
singularities of type (p,q) has codimension

1 P
c(p7Q):§(pQ‘|‘p‘|‘q_b)_ (6—‘ — 1.

The versal deformation space of the singularity 2 = y? has dimension pg —
p— g+ 1. It remains to find a formula for the cardinality N of the set

{(,0) 1 ai+pi 2 pg,0<j<q-20<i<p-2} =
{(i,7) st +7r] >brs,0<j<bs—20<i<br—2}

where p = br and g = bs. We have that

D SI(EA
S A S

b
= —bs—br—l—Z—l—(ﬁ—l—§(brs—r—3—|—1)
s

b
= 2—|—(£}—|—§(brs—3r—35—|—1)

In the third step, we applied the summation formula

bs—1

ZL%J :g(brs—r—s—l—l).

=0
Therefore, the codimension equals

1
§(bzrs—|—br—|—bs—b)— (ﬁ —1

S

which agrees with the formula. O
Now we can state the main result of this section.

28



Theorem 7.2 Let Cy be a singularity of type (p,q) and let Z C T, denote
the tails described in Theorems 6.2 and 6.3. Then

dim(Z) = ¢(p,q) — 1
where ¢(p, q) is the codimension of the locus of curves of type (p,q).

The proof of the theorem is a parameter count: for each Cy of type (p, q), the
stable limits parametrized by Z depend on ¢(p, ¢) — 1 parameters. It suffices
to compute the dimension of the corresponding linear series on P(p,q¢,1),
minus the dimension of the automorphism group and the constraints im-
posed by compatibility conditions. Indeed, any deformation of the imbed-
ding Cy — 95 is induced by an automorphism of S;. This follows from the
fact that H'(Ts,(—C3)) = 0, which can be proved using Serre duality and
the cohomology computations of [7] 2.3.2.

We first consider the case where p = ¢ = b. In this case, Cy C P?is a plane
curve of degree b, with a distinguished hyperplane section B;. Furthermore,
the compatibility condition Cy; N By = 7 N By must be satisfied, which
imposes b — 3 conditions. Finally, we have to account for the automorphism
group of P2 We obtain

Qim(Z) = S04 30) 42— (b=8) =8 = (¥ + 0 —6)

which equals ¢(b,b) — 1.

In the case where p = rq with r > 1, we have that Sy, = F,, (y €
|g¢,| where &, is a positive section, and By is a distinguished ruling. The
compatibility conditions are that By N Cy = By N and the singularities
of 51 and Sy coincide; this imposes ¢ — 2 conditions. Using the dimension
counts for weighted projective spaces (§ 5.1)

. 1
dlm(Z):%(rq—l—r—l—l—l—l)—l—l—(q—2)—(r—|—5):§(rq2+rq)—r—2

which equals ¢(rq,q) — 1.

Now we consider the case where ¢ does not divide p, and set b = ged(p, q),
p = br, and ¢ = bs. We have Sy = P(r,s,1) and Cy € |brsBs|. The
compatibility conditions are that B, N Cy = By N C} and the singularities of
Sy and Sy coincide; since S7 and S5 have two singularities, this imposes b — 1
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conditions. Again using the dimension counts for weighted projective spaces

b
dim(Z) = §(br3—|—r—|—3—|—1)—(b_1)_tij_4
S
= %(b%s+br+bs—b)_(ﬁ_z
S

which equals ¢(p,q) — 1. O

Theorem 7.2 is consistent with the following geometric picture of the
‘map to moduli.” Let Cy be an isolated plane curve singularity. Consider the
rational map u : Verg, ——» M associating to each curve its corresponding
stable limit. Of course, p is well-defined only after choosing a linear series
of projective curves representing Verc, (cf. proof of Proposition 3.2). u has
indeterminacy along the locus where the curves have singularities worse than
nodes. For each (p, ¢), the total transform of the curves of type (p,¢) under
¢ has dimension dim(Verg,) — 1, i.e. it forms a divisor in the image of u.
Note that this immediately implies the following:

Proposition 7.3 Let Cy be a general singularity of type (p,q). Then the
closure of 7 is an irreducible component of Te,.

Here ‘general’ means contained in an open subset of the parameter space for
singularities of type (p,q); this parameter space is discussed at the end of
§ 2.

For a concrete linear series A parametrizing curves of genus ¢, the moduli
map g : A ——» M, does not necessarily map the curves with a singularitiy
of type (p,q) to a divisor in the image. For example, if A = |Op2(+4)| then
p sends the tacnodal locus to a codimension-two subvariety of Ms [13].

7.2 Application to boundary divisors

In this section, we apply these results to analyze boundary components for
certain moduli spaces of stable log surfaces. See [18],[16], and [1] for more
information on the construction of these spaces. Consider pairs (P2, ') where
(' is a smooth plane curve of degree d > 4; let P; denote the isomorphism
classes of such pairs. Let M be the connected moduli space of smoothable
stable log surfaces containing Py as an open subset, and let Py denote the
closure of Py is M. This space is discussed in more detail in [13]. Our first
result is
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Proposition 7.4 Assume there exists a plane curve Dy of degree d with a
single singularity, of type (p,q), such that

1. the plane curves of degree d map surjectively onto the versal deforma-
tion space of Dy;

2. Ks, + By + Dy is ample.

Then the stable limits of the curves of type (p,q) yield a boundary divisor of
Pa.

By the first assumption, when we apply local stable reduction to degree d
plane curves, we obtain all the tails described in Theorems 6.2 and 6.3. It also
implies that the curves with a singularity of type (p,q) have the expected
codimension ¢(p,¢). The second assumption means that local and global
stable reductions coincide (see the end of § 3). Theorem 7.2 implies that the
corresponding stable limits yield a divisor in Py. O

For fixed (p, ¢), the assumptions of the proposition are satisfied for suffi-
ciently large d. As a consequence, we obtain the following theorem:

Theorem 7.5 Fix (p,q). For d sufficiently large, the stable reductions of
curves with a singularity of type (p,q) yield a boundary divisor of P,.
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