
Local stable reduction of plane curvesingularitiesBrendan Hassett �December 21, 1999AbstractConsider a family of curves over the disc, with smooth �bers exceptfor the central �ber over the origin. By the local stable reductiontheorem, after suitable blow-ups and base changes we obtain a familysuch that the central �ber has reduced normal crossings. This stablecentral �ber has two parts: the proper transform of the original central�ber and the `tail'. Which tails arise when the original central �beris a given plane curve singularity? We address this question using thetechnique of stable reduction for log surfaces. For certain singularities,we �nd that weighted plane curves naturally arise as tails.1991 AMS Subject Classi�cation: Primary 14H20, Secondary 14J101 IntroductionOne important consequence of the log minimal model program is the exis-tence of compacti�cations for moduli spaces of log surfaces of general type.These compacti�cations are discussed in [16] and [1], and may be regardedas higher-dimensional analogs of moduli spaces of pointed stable curves. Im-plicit in these compacti�cations is a notion of stable reduction, i.e. a proce-dure for modifying a family of log surfaces acquiring arbitrarily complicated�The author was partially supported by a National Science Foundation PostdoctoralFellowship. 1



singularities to obtain a family of log surfaces with certain prescribed singu-larities. For instance, after stable reduction the boundary of a log surface hasonly nodal singularities. Unfortunately, this process is not well-understoodin practice, even in the simplest cases.In this paper, we consider stable reduction from a local standpoint. Givena germ of a family of log surfaces degenerating to a singular pair (S0; C0),what kinds of surfaces appear in the course of stable reduction? The simplestcases to consider are germs of isolated plane curve singularities. One attrac-tive aspect of these special cases is that they give insight into the followingelementary question: which stable curves are the limits of plane curves? An-other, more `modern' formulation of this question is: which stable maps tothe plane are smoothable?This paper is organized as follows. First, we review some basic propertiesof isolated plane curve singularities, their resolutions, and their classi�cation.In particular, we introduce singularities of toric type (e.g. xp � yq = 0)and quasitoric type (e.g. xy(xp � yq) = 0); these include all the simpleADE singularities. In section three, we describe the notion of local stablereduction for curves and log surfaces, and prove some elementary propertiesof the stable limits. In section four, we give a partial description of thesestable limits, the Main Component Theorem (Theorem 4.1). This is madeexplicit for singularities of toric and quasitoric type. In the �fth section,we describe some degenerations of surfaces that arise naturally from the logminimal model program. In the sixth section, we use these degenerations todescribe the `tails' of stable limits arising from smoothings of singularitiesof toric and quasitoric type. The key statements are Theorems 6.2 and 6.3,Proposition 6.4, and Conjectures 6.5 and 6.6. Certain examples, like thesimple ADE singularities, are discussed in more detail. In the last section,we show how these ideas shed light on the geometry of the equisingulardeformation space. We also describe certain boundary components of thecompati�cation for the moduli space of pairs (P2; C), where C is a smoothplane curve of degree d � 4. In a subsequent paper [13], we enumerate thestable limits of pairs (P2; C), where C is a smooth plane quartic.I would like to thank Andrew Kresch for some helpful conversations ontoric geometry and Rahul Pandharipande for insights on weighted projectivespaces. Dan Edidin and Joe Harris generously explained their ideas on sta-ble reduction for double points. Francisco Gallego and B. P. Purnaprajnagraciously shared their examples of stable limits of log surfaces. I have alsobene�tted from discussions with Lawrence Ein and Anatoly Libgober, and2



fromWilliam Fulton's lucid lectures on toric varieties. Henry Pinkham madehelpful comments on the manuscript and the connection between Theorem6.2 and his work [21]. Alessio Corti has informed me that he and his studentsindependently discovered some of the results discussed here.Throughout this paper, we work over C .2 Singularities of toric and quasitoric typeThroughout this paper, C0 � S0 = Spec C [[x; y]] denotes the germ of anisolated reduced plane curve singularity at the origin x = y = 0.De�nition 2.1 An imbedded resolution of C0 is a projective birationalmorphism of smooth surfaces r : P1 ! S0, with exceptional locus E, suchthat:1. C1, the proper transform of C0, is smooth;2. E [ C1 is a normal crossings divisor.An imbedded resolution (P1; C1) is minimal if every other imbedded resolu-tion factors through it.Since r is a birational projective morphism of smooth surfaces, it may beobtained by a succession of blow-ups of smooth points. The exceptionallocus E is thus a tree of smooth rational curves fEig. The intersection formon P1 restricts to a negative de�nite unimodular quadratic form on �iZEi.Proposition 2.2 Let C0 � Spec C [[x; y]] be a plane curve singularity. Itsminimal imbedded resolution (P1; C1) is characterized by the fact that eachirreducible exceptional curve Ei � P1 satis�es at least one of the following:1. E2i < �1;2. (C1 + E �Ei)Ei > 2.Given an arbitrary imbedded resolution, the minimal resolution is obtainedby blowing down all exceptional curves satisfying neither of these proper-ties. Evidently, these curves may be blown down without introducing anyunwanted singularities. 3
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(-3)(-2)Figure 1: Topological type of y4 = x10Let C0 be an isolated plane curve singularity and let (P1; C1) be its mini-mal imbedded resolution. Let E1; E2; : : : ; En denote the distinct irreduciblecomponents of the exceptional locus. Consider the graph �C0 with edges cor-responding to the Ei and vertices corresponding to nonempty intersectionsEi \ Ej with i 6= j. Clearly �C0 is a tree with two edges meeting at eachvertex. The edges of �C0 have two natural labellings�C0 : Ei ! E2i �C0 : Ei ! EiC1by negative and non-negative integers respectively.De�nition 2.3 The topological type of C0 is de�ned as the labelled tree(�C0 ;�C0;�C0). Two curves C0 and C 00 have the same topological type ifthere is a bijection �C0 ' �C00 compatible with the labellings.Of course, most triples (�;�;�) are not realized as the topological type ofany singularity.We shall often use diagrams to represent the topological type of the sin-gularities we consider. On these diagrams, �C0 is represented as a tree ofstraight line segments, the values of �C0 are indicated by the numbers inparentheses, and the values of �C0 by the number of intersections of theproper transform C1 with the edges of the tree. For example, the topologicaltype of y4 = x10 is given in �gure 1.Intuitively, an equisingular deformation of an isolated plane curve sin-gularity C0 is a deformation of C0 such that all the �bers have the sametopological type as C0. A rigorous de�nition was given by Wahl [22].Our notion of topological type coincides with other concepts used to char-acterize the topology of the singularity, like Puiseux pairs and multiplicitysequences. See [4] chapter 8 for an introduction to these notions; [23] and[24] (Part I) show that all these de�nitions coincide.4
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(-1)Figure 2: Topological types of x(y4�x10) = 0; y(y4�x10) = 0; xy(y4�x10) = 0De�nition 2.4 Let p and q be integers with p � q > 1. A plane curvesingularity C0 is said to be of toric type (p; q) if it has the same topologicaltype as xp = yq. We say that C0 is of quasitoric type if it has the sametopological type as one of the following:1. x(xp � yq) = 0 with p > q;2. y(xp � yq) = 0 with p > q and q 6 jp;3. xy(xp � yq) = 0 with p > q and q 6 jp;The branches x = 0 and y = 0 are said to be distinguished.The conditions on p and q guarantee that each of the equations above de-termines a distinct topological type. See �gure 2 for diagrams representingcertain singularities of quasitoric type.Remark: Note that the simple singularities of types An;D4; E6; and E8 areof toric type. Those of types Dk(k > 4) and E7 are of quasitoric type.Proposition 2.5 If C0 is of type (p; q) then1. �C0 is a chain;2. �C0 > 0 for exactly one component En, the unique component with�C0 = �1.Furthermore, En is an endpoint of the chain i� qjp.Proposition 2.6 If C0 is of quasitoric type then1. �C0 is a chain; 5



2. the proper transforms of the non-distinguished branches all intersect asingle En, the unique component with �C0 = �1;3. the proper transforms of the distinguished branches meet componentsat the ends of the chain with �C0 < �1 and �C0 = 1.To prove the propositions, we recast them in inductive form:Lemma 2.7 Assume p and q are integers with p � q > 0. The minimalresolution of xy(xp � yq) = 0 satis�es the following:1. The union of the exceptional curves and the proper transforms of thedistinguished branches x = 0 and y = 0 forms a chain, with the distin-guished branches at opposite ends of the chain.2. The non-distinguished branches all meet a single exceptional componentEn, which is the exceptional curve of the last blow-up in the resolutionand the unique component with �C0 = �1.3. The proper transform of x = 0 (resp. y = 0) intersects En i� q = p(resp. qjp).After blowing up once we obtain the local equationsxt(xp�q � tq) = 0 sy(spyp�q � 1) = 0for the union of the exceptional divisors and the proper transform of C0.Hence we proceed by induction on n, the number of blow-ups occurring inthe minimal resolution. If n = 1 then p = q and the result is evident. Forthe induction, we simply reinterpret the local equations above. Consider theexceptional curve E1 and the proper transform of y = 0 as distinguishedbranches of xt(xp�q � tq) = 0. More precisely, set x1 = x and y1 = t ifp� q � q and x1 = t and y1 = x otherwise. The non-distinguished branchesof this new singularity correspond with those of xy(xp � yq) = 0.We extract the results on the minimal resolution. It is clear that only thelast exceptional divisor En satis�es E2n = �1, and all the non-distinguishedbranches meet En. This yields (2). The proper transform of x = 0 (i.e.s = 0) intersects E1, but none of the other exceptional components, and thusis at one end of the chain. By induction, the union of the proper transformof y = 0 (i.e. t = 0) and the exceptional locus also forms a chain, with E1and the proper transform of y = 0 at opposite ends. Thus (1) follows. Theproof of (3) is straightforward, and left to the reader. �6



Proposition 2.8 Let C0 be a singularity with minimal resolution satisfyingthe conditions of Proposition 2.5 or 2.6. Then there exist integers p and q anda square-free weighted-homogeneous polynomial g0(x; y) = xp+: : :+yq (wherex and y have weights q and p respectively) so that C0 admits an equisingularspecialization to one of the following:1. g0(x; y) = 0 with p � q > 1;2. xg0(x; y) = 0 with p > q > 1;3. yg0(x; y) = 0 with p > q > 1 and q 6 jp;4. xyg0(x; y) with p > q > 1 and q 6 jp.Again, the proposition is proved by induction on the number of excep-tional curves in a minimal resolution. Number these curves E1; : : : ; En in theorder they appear in the minimal resolution. If n = 1, then the singularityis evidently topologically equivalent to xp = yp for some p. Precisely, forsome coordinates x and y transverse to all the branches of C0 = ff = 0g,the homogeneous part of f with minimal degree takes the formg0(x; y) = xp + : : :+ yp:Here g0 is square-free, and f = 0 has the same topological type as g0 = 0.Now we establish the inductive step. Let C0 be a singularity with minimalresolution containing n > 1 exceptional divisors and satisfying the conditionsof the Propositions 2.5 or 2.6. Blow up once, and consider C 0 = C 00 [ E1,the union of the proper transform and the exceptional curve. This has (atmost) two distinct singularities r1 and r2; r1 is where the non-distinguishedbranches meet E1 and r2 is where E1 meets a distinguished branch D. Byinduction, we know that the singularity of C 0 at r1 specializes to one of theequations above, with E1 satisfying x0 = 0 or y0 = 0. Of course, C0 is obtainedby contracting one of these lines, and the image of the branches through r1satis�es equations 1 or 3 above. However, the image of the distinguishedbranch D (if it exists) satis�es some equation x+higher order terms = 0, sothe equation of C0 takes the formyg0(x; y)(x+ h.o.t.) = 0 or g0(x; y)(x+ h.o.t.) = 0:Since D meets each of the other branches generically, its equation can bespecialized to x = 0 without changing the topological type of C0. �Essentially the same proof yields the following corollary:7



Corollary 2.9 Let C0 be of toric or quasitoric type. Then there exist localcoordinates x and y and positive integers p and q such that C0 has one of thefollowing analytic equations1. g0(x; y) + h.o.t. = 0, with p � q > 1;2. x(g0(x; y) + h.o.t.) = 0, with p > q > 1;3. y(g0(x; y) + h.o.t.) = 0, with p > q > 1 and q 6 jp;4. xy(g0(x; y) + h.o.t.) = 0, with p > q > 1 and q 6 jp;where g0(x; y) = xp + : : :+ yq is weighted-homogeneous and square-free. (Inparticular, C0 is semiquasihomogeneous.)The weights on x and y are the same as in Proposition 2.8. Of course, `higherorder' means higher degree with respect to this grading.The equations of Proposition 2.8 all de�ne singularities of toric or qua-sitoric type. We therefore obtain the following corollary:Corollary 2.10 Each isolated plane curve singularity satisfying the condi-tions of Proposition 2.5 (resp. 2.6) is of toric (resp. quasitoric) type.Note also that Proposition 2.8 implies that each unibranch singularityof toric type admits an equisingular specialization to xp = yq. This is awell known result of Zariski (chapter III x2.3 of [25]), and serves as thefoundation for the construction of moduli spaces for unibranch singularities oftoric type. For a systematic study of parameter/moduli spaces for unibranchcurve singularities, see the survey [11] and the lecture notes of Zariski (withappendix by Teissier) [25].We will also use the following result of Wahl [22] on equisingular defor-mation spaces:Theorem 2.11 Let C0 be an isolated plane curve singularity. Then the eq-uisingular deformation space of C0 is smooth. For the singularity xp = yq itmay be represented as yq = xp +X tijxiyjwhere 0 � i � p � 2, 0 � j � q � 2, and qi+ pj � pq.8



By Proposition 2.8, we may regard the singularities appearing in this familyas a parameter space for the singularities of type (p; q). See the papers [11]and [19] for an elaboration of this point of view. With this as motivation, wemake the following de�nition:De�nition 2.12 The codimension c(p; q) of the singularities of type (p; q)is the codimension of the family in Theorem 2.11 in the versal deformationspace of yq = xp.This will be computed in section 7.3 Basic properties of local stable reductionThe stable reduction theorem for curves was proved by Deligne and Mumford[6]. Another proof may be found in Artin and Winters [3], and a good generalintroduction is the recent book of Harris and Morrison [12], chapter 3C.Let C0 be the germ of an isolated plane curve singularity. Set � =Spec C [[t]] or ft : jtj < 1g. Let � : C ! � be a smoothing of C0, i.e. � is 
at,C0 = ��1(0), and Ct := ��1(t) is smooth for t 6= 0. Local stable reduction isa procedure for obtaining a family of nodal curves �c : Cc ! ~�: It involvesthe following steps:1. Carry out semistable reduction, following [15]. We �nd a base change~�! � and a resolution � : ~C ! C �� ~� such that the central �ber ~C0is a reduced normal crossings divisor.2. Obtain Cc by taking the log canonical model of ( ~C; ~C0) relative to themorphism �.We use a relative version of the minimalmodel program, i.e., we take minimalmodels relative to a proper morphism of normal varieties. A good expositionmay be found in [14].Over the punctured disc ~��, Cc coincides with the pull-back of the originalfamily. The central �ber Cc0 = C1 [ CT where C1 is the normalization of C0and CT = Cc0 � C1. (We are assuming C0 is not a node.) Let C1 \ CT =fp1; : : : ; pbg, where b is the number of branches of C0. Note that the pointedcurve (C1; p1; : : : ; pb) depends only on C0, and not on the choice of smoothing.De�nition 3.1 The pointed curve (CT ; p1; : : : ; pb) is called the tail of thelocal stable reduction. 9



Proposition 3.2 Let C0 be an isolated plane curve singularity and let TC0denote all the tails obtained from various smoothings of C0. These tails arepointed stable curves and TC0 �M
;b is a connected closed subvariety of themoduli space.Let C ! � be a smoothing of C0. After any base change t = uN , thefamily C �� ~� remains normal. If Cc is the stable reduction, then we have amorphism of normal varieties � : Cc ! C �� ~�: The tail CT is the �ber overthe point x = y = u = 0 so it is connected by Zariski's Main Theorem. Since(Cc; Cc0) is the log canonical model of C �� ~� relative to �, it follows thatCT is nodal and !CT (p1 + : : : pb) is ample. In particular, (CT ; p1; : : : ; pb) is apointed stable curve.We now show that TC0 is closed in the corresponding moduli space ofstable pointed curves. Let VerC0 be the versal deformation space of C0 andlet � be a linear series globalizing VerC0 , i.e. some member L0 2 � has asingle singularity p analytically equivalent to C0, and the induced analyticmap b�L0 ! VerC0 is an isomorphism. For instance, we may take � to bea linear system of plane curves with su�ciently large degree. If the genericmember of � has genus g, we obtain a rational map � 9 9 KMg: This maphas indeterminacy at the point L0 and the total transform of L0 is a closedsubvarietyW of the moduli space. Since (C1; p1; : : : ; pb) depends only on L0,we �nd that W ' TC0 . �We want to describe TC0 explicitly for certain singularities C0. To dothis, we consider pairs (S0; C0) where S0 = Spec C [[x; y]] and C0 � S0. Weconsider the smoothing C ! � as a subscheme of the threefold S := S0��.Local stable reduction for the family of pairs � : (S; C) ! � involves thefollowing steps:1. Carry out semistable reduction, following [15] and [5] Theorem 7.17.We �nd a base change ~�! � and a resolution� : ( ~S; ~C)! (S �� ~�; C �� ~�)such that the central �ber ~S0 is reduced and ~C[ ~S0 is a normal crossingsdivisor.2. Obtain (Sc; Cc) by taking the log canonical model of ( ~S; ~C+ ~S0) relativeto the morphism �. 10



The central �ber (Sc0; Cc0) is called the local stable limit. Local stable reduc-tions satisfy the following:Proposition 3.3 Cc0 is a Weil divisor, (Sc0; Cc0) is semilog canonical, andhence Cc0 is nodal. Furthermore, KSc + Cc is Cartier along Cc and restrictsto KCc.For the convenience of the reader we sketch the proof (see also x2 of [1].)The pair (Sc; Cc+Sc0) is log canonical so Cc0 is generically reduced. Since thelocal stable reduction agrees with our original family away from the central�ber, the exceptional divisors with log discrepancy < 1 are supported in thecentral �ber. We obtain that (Sc; Cc) is canonical hence Sc (and also Sc0) isCohen-Macaulay. Furthermore, Cc is also Cohen-Macaulay [17] 17.5 and thusCc0 has no imbedded points. Hence we may apply adjunction ([17] 17.2) toobtain that (Sc0; Cc0) is semilog canonical. The fact that Cc0 is nodal followsfrom the classi�cation of semilog canonical singularities [17] 12.2.4.Now KSc + Cc is Cartier along Cc provided that KSc0 + Cc0 is Cartieralong Cc0. (The log canonical bundle necessarily restricts well to the central�ber.) Assume that KSc0 + Cc0 is not Cartier at p 2 Cc0, and let r > 1 bethe corresponding index. Restricting to a small analytic neighborhood aboutp, we can take an index-one cover i : (T;D) ! (Sc0; Cc0). Note that i is anr-fold cover totally rami�ed at p and KT + D is Cartier. It follows thati�KC = KD(�(r � 1)p), (KT + D)jD = KD, and hence KSc0 + Cc0 (whenrestricted to Cc0) has di�erent r�1r at p ([17] 16.6). This contradicts the
atness of Cc0 ! ~�. The isomorphism (KSc + Cc)jCc = KCc follows by theadjunction formula ([17] 16.4.2).�Corollary 3.4 The boundary Cc coincides with the local stable reduction ofC ! � described above.We now set some notation. The central �ber Sc0 = S1 [ ST where S1is the proper transform of S0 and ST the closure of Sc0 � S1. We writeST = S2 [ : : : [ Sn where the Sj are irreducible, and Cj = Sj \ Cc0 for thepart of the tail CT lying on Sj; it is possible that Cj = ; for some j. We alsowrite Bj = Sj \ Sc0 � Sj and BT = ST \ S1; note that BT = B1.De�nition 3.5 The log surface (ST ; CT + BT ) is called the surface tail ofthe local stable reduction. 11



Proposition 3.6 Let C0 be an isolated plane curve singularity and let T 0C0denote all the surface tails obtained from various smoothings of C0. Thesetails are stable log surfaces and form a connected closed subvariety of theappropriate moduli space. There is a natural surjective forgetting morphismT 0C0 ! TC0 :This proof follows the one for Proposition 3.2, using basic properties of stablereduction for log surfaces. We shall prove that (S1; B1+C1) depends only onC0 and not on the choice of smoothing in Theorem 4.1. Since � : Sc ! S�� ~�is projective and birational, it is a blow-up of a suitable ideal sheaf. Thesupport of the exceptional divisor is ST . Because Sc is Cohen-Macaulay(Proposition 3.3), the exceptional divisor (a Cartier divisor) is also Cohen-Macaulay, as is ST . The pair (ST ; CT + BT ) is therefore semilog canonical.The log canonical bundle KSc + Cc is ample relative to �. By the adjunctionformula ([17] 16.4.3) (KSc + Cc)jST = KST + CT + BT , so (ST ; CT + BT ) isstable. This establishes the �rst claim. The second claim is proved preciselyas in Proposition 3.2. The existence of the forgetting morphism follows fromCorollary 3.4. �Remark: Can the forgetting map T 0C0 ! TC0 have positive dimensional�bers?4 Computing local stable reductions4.1 The Main Component TheoremWe give a simple recipe for computing the component S1 of the local stablereduction:Theorem 4.1 (Main Component Theorem) Let C0 � S0 be an isolatedplane curve singularity, (Sc0; Cc0) the local stable limit of some smoothing ofC0, S1 � Sc0 the proper transform of S0, B1 = S1\Sc0 � S1, and C1 = Cc0\S1.There is a birational morphism � : S1 ! S0 such that the divisorKS1+B1+C1is ample relative to �. Indeed, (S1; B1 + C1) is obtained from an imbeddedresolution r : P1 ! S0 by taking the log canonical model of (P1; E + C1)relative to r.The minimal model program gives us an induced map � : Sc ! S �� ~�which is an isomorphism except over the origin 0 = (x = y = t = 0). The12



exceptional divisors of � correspond to Sc0nS1, and � restricts to a birationalmorphism � : S1 ! S0. By the adjunction formula ([17] ch. 16.4.3), we haveKS1 +B1 + C1 = (KSc + Sc0 + Cc)jS1which is �-ample because (Sc; Cc) is the log canonical model.To prove the second part of the theorem, we must verify that B1 equalsthe image of the divisor E de�ned above. In other words, we must showthat every �-exceptional divisor is contained in some �-exceptional divisor.Assume this is not the case, so the image of some component E 0 � E in S1is not contained in any of the �-exceptional divisors. Then at the genericpoint of image of E 0, which is a smooth point of Sc, � has one-dimensionalexceptional locus. However S�� ~� is also smooth, and the exceptional locusof any birational morphism of smooth varieties has pure codimension one. �Generally, the map � : S1 ! S0 can be expressed as the blow-up of anatural ideal sheaf. Consider the log canonical divisorD :� h�(KS1 + C1 +B1) = KP1 + C1 + nXi=1 aiEion the resolution h : P1 ! S1. Let N be the smallest positive numbersuch that ND is integral, globally generated relative to r, and generates�m�0r�OP1(mND) as anOS0 algebra. (In practice, it often su�ces to assumethat ND is integral.) The log adjoint ideal AC0 is de�ned as the push-forwardr�OP1(ND) � OS0 . This can interpretted geometrically: the images in S0of the members of jNDj yield a linear series on S0, the log adjoint series.The base locus of the log adjoint series is the log adjoint ideal. Using basicproperties of blowing up, we obtain the following:Proposition 4.2 Retain the notation of Theorem 4.1. Then � : S1 ! S0coincides with the blow-up of S0 along the log adjoint ideal AC0.Finally, we should point out when local stable reductions coincide withglobal stable reductions. Assume we are given a family of log surfaces(S; C)! �, such that the �bers over the punctured disc �� are smooth andstable. In particular, KSt +Ct is ample for t 6= 0. Furthermore, assume thatS0 is smooth but that C0 has an isolated singularity. We can apply local sta-ble reduction to obtain a family (Sc; Cc)! ~� dominating (S �� ~�; C �� ~�),so that the central �ber (Sc0; Cc0) has semilog canonical singularities. When13



is this also the global stable reduction? Of course, (Sc0; Cc0) is semilog canon-ical and global stable reductions are unique, so it su�ces to check whetherKSc0 +Cc0 is ample. This is clearly valid for each irreducible component of Sc0that is exceptional for the map � : Sc ! S �� ~�. It follows that the localstable reduction is the global stable reduction whenever KS1 + B1 + C1 isample (using the notation of Theorem 4.1).4.2 Computing log canonical modelsWe recall some results on surface singularities. Consider the cyclic quotientsurface singularity arising from the group action(x; z)! (�ax; �z)where � is a primitive rth root of unity, 1 � a < r, and (a; r) = 1. Theminimal resolution of this singularity can be described quite explicitly. Itconsists of a chain of rational curves E1; E2; : : : ; En with self-intersectionsE2i = �bi �b1� � � � �� �bn� :The bi are computed from the continued fraction representationra = b1 � 1b2 � 1b3�::: :The proper transforms of x = 0 and z = 0 meet the �rst and last exceptionalcurves of this chain. (See [10] x2.6 for a good exposition of this subject.)We shall use the fraction ra to label the cyclic quotient. For instance, thesingularity Ag corresponds to the fraction g+1g . This notation depends onthe choice of one of two possible orderings for the exceptional divisors of theminimal resolution.We now describe the log minimal and log canonical models associated tosingularities of toric type.Proposition 4.3 Retain the notation of Theorem 4.1, and assume furtherthat C0 is of type (p; q). Then S1 is obtained from P1 by contracting allthe exceptional curves disjoint from C1, and B1 is the image of the uniqueexceptional curve meeting C1. In particular, we have1. If p = q > 2 then S1 is smooth and equal to the minimal imbeddedresolution of C0. 14
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B1Figure 3: Log canonical model of y4 = x102. If qjp but q 6= p, then S1 has one cyclic quotient singularity along B1(but disjoint from C1).3. If q 6 jp, then S1 has two cyclic quotient singularities along B1 (butdisjoint from C1).Finally, (S1; C1 + B1) has log terminal singularities and thus coincides withthe log minimal model (except in the case where p = q = 2).See �gure 3 for a schematic representation of such a log canonical model. Thenumber in parentheses is the self-intersection of B1 in the minimal resolutionof S1. The fraction denotes the corresponding quotient singularity.We assume that C0 is not an ordinary node; if C0 is a node then theproposition is evident. Here we use Proposition 2.5 and Lemma 2.7. Let Enbe the unique exceptional curve meeting C1. We claim that every exceptionalcurve besides En is contracted when we take the log minimal model; B1corresponds to the image of En. Let F be the union of the exceptionalcurves besides En; it has zero (resp. one, resp. two) connected componentsif q = p (resp. qjp, resp. q 6 jp). Each such component is a chain of exceptionalcurves, with one curve at the end of the chain intersecting En once. Suchchains are log terminal [17] ch.3, so they are necessarily contracted when wetake the log minimal model. As we have seen, contracting such a chain ofrational curves yields a cyclic quotient singularity.On the other hand, En may not be contracted even after taking thelog canonical model. If we contracted En, then the boundary would havesingularities worse than normal crossings, which contradicts the fact thatthe singularities are log canonical([17] chapter 3). �Similar results hold for singularities of quasitoric type:Proposition 4.4 Retain the notation of Theorem 4.1, and assume furtherthat C0 is of quasitoric type. Then S1 is obtained from P1 by contracting15



N

(1,0)

(0,1)

(p,q)

Figure 4: Toroidal representation of the log canonical model S1all the exceptional curves disjoint from the nondistinguished branches of C1;B1 is the image of the unique exceptional curve meeting those branches. S1has (at most) two cyclic quotient singularities along B1; each distinguishedbranch passes through one of these quotient singularties.The proof uses Proposition 2.6 and the classi�cation of log canonical singu-larities.Remark: For singularities of toric and quasitoric type � : S1 ! S0 hasa simple toroidal interpretation. Choose coordinates x and y and integersp and q satisfying the conclusions of Corollary 2.9. Let b = gcd(p; q) andconsider the ideal A generated by the weighted monomials fxiyj : pj + qi �pqb g: Blowing up A yields a resolution of C0, imbedded in a normal surfacewith cyclic quotient singularities. This corresponds to the toric blow-uprepresented by the fan depicted in �gure 4. The horizontal and verticalvectors in the fan correspond to the proper transforms of y = 0 and x = 0respectively. The propositions above imply that this toroidal blow-up equalsS1, which gives a combinatorial method for describing the singularities ofS1 (see [10] x2.6). Finally, we should point out that A is precisely the logadjoint ideal AC0 de�ned in the previous section.16



5 Constructions of limiting surfaces5.1 Geometry of weighted projective spacesWe recall some basic facts about the weighted projective plane P(r; s; 1) (see[7] for a comprehensive survey). It may be represented as the toric surfaceobtained from the complete fan with one-dimensional faces (1; 0); (0; 1); and(�r;�s) [10] x2.2. In particular, P(r; s; 1) is isomorphic to P(nr;ns; 1), sowe assume that r and s are relatively prime and r � s. Let B2 denote thedistinguished divisor corresponding to the face (�r;�s), and let D1 and D2be the divisors corresponding to (1; 0) and (0; 1). These satisfy the rationalequivalences rB2 � D1 and sB2 � D2; the intersection form isD1 D2 B2D1 r=s 1 1=sD2 1 s=r 1=rB2 1=s 1=r 1=rs :The Picard group is generated by L = rsB2 ([10] 3.3) and the canonicaldivisor KP(r;s;1) = �(B2 +D1 +D2) ([10] 4.4).If r > s = 1 (resp. s > 1) then P(r; s; 1) has one (resp. two) cyclicquotient singularities, occuring at the intersection D2 \ B2 (resp. at theintersectionsD2\B2 and D1\B2). We should point out that (P(r; s; 1); B2+D1 +D2) is always log canonical.We describe some natural `linear series' on P(r; s;1), i.e. spaces of sectionsof OP(r;s;1)(nB2) for n � 0. Of course, these are not generally invertiblesheaves, but rather rank-one re
exive sheaves. The dimensions of their globalsections are determined by the isomorphism of graded rings [7] 1.4Proj C [xr ; ys; z] �= �n�0H0(OP(r;s;1)(nB2)): (1)If r > s then h0(OP(r;s;1)(D2)) = 2 and h0(OP(r;s;1)(D1)) = b rsc + 2. If s = 1then P(r;1; 1) is the cone over a rational normal curve of degree r in Pr;B2 � D2 is the class of a ruling and D1 is the class of a hyperplane section.If s > 1 then P(r; s; 1) is still ruled by the divisors linearly equivalent to D2.For each positive integer b, the Cartier divisor bL is very ample and itshigher cohomologies vanish ([10] pp. 70-74). It follows that the generalmember of jbLj is smooth of genus b2(brs � r � s � 1) + 1, contained in thesmooth locus of P(r; s;1), and h0(bL) = b2(brs + r + s + 1) + 1. Finally,17



jbLj maps B2 to a rational normal curve of degree b. Thus there is a smoothmember of jbLj passing through any collection of b smooth points of P(r; s; 1)lying on B2.If r > s then a generic Weil divisor C2 2 jbL + D2j is smooth of genusb2(brs+s�r�1), but it contains the singularity at B2\D2. In the local divisorclass group at B2 \D2 C2 is linearly equivalent to D2, so (P(r; s; 1); C2+B2)is log canonical. If s > 1 then the generic member C2 2 jbL+D1j is smoothof genus b2(brs � s + r � 1), but it contains the singularity at B2 \ D1;again (P(r; s; 1); C2 + B2) is log canonical. Similarly, the generic memberC2 2 jbL + D1 + D2j is smooth of genus b2(brs + r + s � 1), contains bothsingularities B2 \D1 and B2 \D2, and (P(r; s; 1); C2+B2) is log canonical.We will use the following result for dimension counts later in this paper.It is a consequence of the cohomology computations of [7] x2, or of the de-scription of the automorphisms of P(r; s; 1) in terms of the automorphismsof the corresponding graded algebras.Proposition 5.1 Let r and s be relatively prime integers with r � s > 0.Then the automorphism group of P(r; s; 1) has dimension b rsc + 4 if s 6= 1,dimension r + 5 if s = 1 and r 6= 1, and dimension 8 if r = s = 1.5.2 Construction of degenerationsIn this section, we construct certain surfaces Sc0 containing tails arising fromplane curve singularities C0 of toric and quasitoric type. We describe howthese surfaces are obtained as central �bers of birational modi�cations of thetrivial families S = S0 ��.Theorem 5.2 Let C0 � S0 be a singularity toric or quasitoric type which isnot an ordinary node. There exists a surface Sc0 with the following properties1. Sc0 has two irreducible components S1 and S2 and has semilog terminalsingularities.2. S1 is the log canonical model of the imbedded resolution of C0 (cf. The-orem 4.1).3. S2 is isomorphic to a weighted projective space P(p; q; 1).4. Sc0 can be smoothed to S0 so that the total space Sc has terminal singu-larities. 18
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(p/b,q/b,1)Figure 5: The toroidal blow-up � : Sc ! SChoose analytic coordinates x and y and integers p and q satisfying theconclusions of Corollary 2.9. We assume that p � q and set b = gcd(p; q).Consider the ideal Ic � OS generated by t and generators of the log adjointideal AC0 . By the remark at the end of section 4.2, this may be representedtorically as ft; xiyj : pj + qi � pqb g: Let � : Sc ! S be the blow-up of Salong Ic. We express this torically as follows: represent S by a fan with onecone generated by the vectors v1 = (1; 0; 0); v2 = (0; 1; 0); and v3 = (0; 0; 1),corresponding to the divisors y = 0; x = 0; and t = 0. Then � correspondsto the toric blow-up represented by a fan with three cones, each spanned bytwo of the vi along with the vector (pb ; qb ; 1). (See �gure 5.)Basic properties of divisors in toric varieties imply that the central �berSc0 � Sc (de�ned by t = 0) is reduced. By the description of orbit closuresin [10] 3.1, it consists of two components isomorphic to the toric blow-upS1 ! S0 and the weighted projective space S2 = P(p=b; q=b;1) respectively.Each of these surfaces has (up to) two quotient singularities, lying along theircommon intersection B1 = B2. Away from these quotient singularities, S1and S2 intersect in normal crossings.We claim the threefold Sc has terminal singularities; this implies (byadjunction) that Sc0 is semilog terminal. It su�ces to prove that an a�netoric threefold U with fan generated by (1; 0; 0); (0; 1; 0); (1; s; r) (with r; srelatively prime) has terminal singularities. Each a�ne neighborhood ofSc has this form after an appropriate permutation. We represent this as aquotient singularity of index r. Set w1 = (1; 0; 0); w2 = (0; 1; 0); w3 = (1; s; r)and let N1 be the corresponding lattice spanned by these elements. Now N119



is an index r subgroup of the full torus N andN = N1 + Zr (w3 � w1 � rw2) = N1 + Zr ((r � 1)w1 + (mr � s))w2 + w3)wherem 2 N and 0 < mr�s < r. The toric variety with torus correspondingto N1 and fan consisting of the cone generated by w1; w2; w3 is just A 3 . Thetoric variety U �= A 3=(Z=rZ), whereZ=rZacts with weights (r�1;mr�s; 1).It follows that U has terminal singularities [20]. �6 Description of the tails6.1 General theoremsLet C0 � S0 be a singularity of toric or quasitoric type which is not anordinary node, Sc0 the surface constructed in Theorem 5.2, and C1 � S1 thecurve constructed in Theorem 4.1. Let C2 � S2 be a Weil divisor in thelinear series1. jOP(p=b;q=b;1)(bL)j if C0 is of type (p; q);2. jOP(p=b;q=b;1)(bL +D2)j if C0 is quasitoric of type x(xp � yq) = 0 (withp > q > 1);3. jOP(p=b;q=b;1)(bL+D1)j (resp. jOP(p=b;q=b;1)(bL+D1 +D2)j) if C0 is qua-sitoric of type y(xp � yq) = 0 (resp. xy(xp � yq) = 0) (with p > q > 1and q 6 jp).See section 5.1 for notation; we use b = gcd(p; q); r = pb , and s = qb through-out. Furthermore, assume that C2 is nodal and C1 \ B1 = C2 \ B2. LetCc0 � Sc0 be the Weil divisor consisting of the union of C1 and C2. We shouldemphasize that Cc0 is Cartier i� C0 is of toric type.Theorem 6.1 Retain the notation of the paragraph above and let Sc ! �be the smoothing of Sc0 constructed in Theorem 5.2. Then there exists aWeil divisor Cc � Sc such that CcjSc0 = Cc0 and Cct is smooth for t 6= 0.Furthermore, (Sc; Cc) is the local stable reduction of a smoothing of C0.We �rst claim each rank-one re
exive sheaf F on Sc restricts to a depth-twosheaf on the central �ber. In the proof of Theorem 5.2, we saw that Sc is20



covered by a�nes U which are quotients of A 3 by Z=rZacting with weights(r�1;mr�s; 1). In other words, U is the cone over some weighted projectivespace P(r� 1;mr� s; 1). Each divisor class on U may be represented as thecone over a divisor of the weighted projective space, and the correspondingre
exive sheaves take the form OU (nCone(B2)) for some n. Using standardresults relating the local cohomology of a graded module to the ordinarycohomology of its projectivization [8] Theorem A.4.1, we �nd thatH i0(OU(nCone(B2))) = H i�1(OP(r�1;mr�s;1)(nB2))for i > 1. By standard cohomology computations for weighted projectivespaces [7] 1.4, we conclude that the local cohomology vanishes for i � 3.Consequently, re
exive rank-one sheaves on Sc have depth three and restrictto depth-two sheaves on the central �ber.The toric representation of Sc shows that S1 de�nes a Weil divisor gen-erating the divisor class group of Sc. Recall that S1 \ S2 = B1 = B2. IfC0 is of toric type (p; q), then the line bundle OSc0(Cc0) is the restriction ofF = OSc(pqb S1) to the central �ber. More generally, if C0 is of quasitorictype and C2 is a member of jOP(p=b;q=b;1)(bL +D2)j (resp. jOP(p=b;q=b;1)(bL +D1)j, jOP(p=b;q=b;1)(bL + D1 + D2)j) then OSc0(Cc0) is the restriction of F =OSc((pq+qb S1) (resp. OSc((pq+pb S1), OSc(( (pq+p+q)b S1)).The divisors OS2(C2) have no higher cohomology by [7] 1.4. This is alsothe case for OS1(C1), as can be seen by applying a variant of Kawamata-Viehweg vanishing [14] 1.2.5. It follows that OSc0(Cc0) also has no highercohomology. In particular, each section of this re
exive sheaf is the restrictionof a section of a suitable F . We choose Cc to be a general section of F thatrestricts to Cc0 along the central �ber. The �bers Cct are smooth for t 6= 0.We check that (Sc; Cc) is a local stable reduction. We know that (Sc0; Cc0)is semilog canonical, KSc0 + Cc0 is relatively ample, and Sc is Q-factorial, soinversion of adjunction ([17] 17.12) gives that (Sc; Cc + Sc0) is log canonical.The uniqueness of log canonical models implies this is a local stable reduction.� We apply this to describe certain smooth tails of singularities of torictype. The statement is simplest in the unibranch case.Theorem 6.2 (Main Theorem 1) Let C0 be a singularity of type (p; q),where p and q are relatively prime and p > q. Let C2 be a nodal curve in thelinear series OP(p;q;1)(L) and set p1 = B2 \ C2. Then we have(P(p; q; 1); C2+B2) 2 T 0C0 and (C2; p1) 2 TC0 :21



Furthermore, these curves satisfy the following properties:1. p1 is a subcanonical point of C2, i.e. (pq � p � q � 1)p1 = KC2 .2. C2 is q-gonal, with g1q equal to jH0(OC2(qp1))j.3. More generally, for n = 1; : : : ; pq � p� q � 1h0(OC2(np1)) = f(i; j) : i; j � 0 and qi+ pj � ng:Recall that L is the e�ective generator of the Picard group of P(p; q;1). The�rst assertion follows immediately from Theorem 6.1 and the de�nitions ofTC0 and T 0C0. The geometric statements about C2 are consequences of theresults on weighted projective spaces in x 5.1. The �rst statement followsfrom the fact that the divisor class group of P(p; q; 1) is generated by B2,which meets C2 at the point p1. The second statement follows from ourdescription of the sections of OP(p;q;1)(qB2), which restrict to give the g1q .Geometrically, the ruling of P(p; q; 1) restricts to the g1q on C2. As for thethird statement, we �rst observe that the restrictionH0(OP(p;q;1)(nB2))! H0(OC2(np2))is surjective for all n [7] 1.4. The isomorphism of graded rings in equation 1gives the desired formula. �Remark: In the special case where the singularity is analytically isomorphicto yq = xp, this result can be deduced from Pinkham's work (see [21] x1.16and 13). More generally, he considers certain smoothings of curve singulari-ties with C � -action, and shows that curves C2 with distinguished Weierstrasspoint p1 naturally arise as tails. Weierstrass points also play an importantrole in the theory of `limit linear series' of Eisenbud and Harris [9].In the case where the singularity is not unibranch, we have to keep trackof a compatibility condition along the intersection of surfaces S1 and S2. Thismakes our statements a bit more complicated.Theorem 6.3 (Main Theorem 2) Let C0 be a singularity of type (p; q)with b = gcd(p; q). Let (S1; C1 + B1) be the surface obtained from Theo-rem 4.1, and let Sc0 be the surface obtained by gluing S1 and S2 as in The-orem 5.2. Let C2 be a nodal curve in the linear series OP(p=b;q=b;1)(bL), suchthat C2 \B2 = fp1; p2; : : : ; pbg = C1 \ B1. Then we have(P(p; q;1); C2+B2) 2 T 0C0 and (C2; p1; p2; : : : ; pb) 2 TC0 :Furthermore, these tails satisfy the following properties:22



1. p1 + p2 + : : :+ pb is a subcanonical divisor of C2, i.e.(pqb � pb � qb � 1)(p1 + p2 + : : :+ pb) = KC2 :2. C2 is q-gonal, with g1q = H0(OC2( qb (p1 + p2 + : : :+ pb))).3. More generally, for n = 1; : : : ; pqb � pb � qb � 1h0(OC2(n(p1 + : : :+ pb))) = f(i; j) : i; j � 0 and qi+ pj � nbg:Again, this follows from Theorem 6.1 and the results on weighted projectivespaces.Proposition 6.4 For each singularity C0 of toric type, Theorem 6.2 (or 6.3)yields an irreducible component of T 0C0 .We claim that the space of allowable deformations of Sc0 is smooth of di-mension one, and thus consists only of smoothings to S0. By de�nition, adeformation is allowable if it lifts locally to index-one covers. First, it is nothard to check that weighted projective spaces admit no equisingular defor-mations, hence Sc0 also admits no equisingular deformations. On the otherhand, the results from x3.2 of [13] imply that the versal deformation spaceof the singularities of Sc0 is smooth of dimension one. �Proposition 6.4 suggests that the tails described in Theorems 6.2 and 6.3might also yield an irreducible component of TC0. Proposition 7.3 providesfurther evidence for this contention. We therefore make the following con-jecture:Conjecture 6.5 Let C0 be a singularity of toric type. Then the tails de-scribed in Theorems 6.2 and 6.3 yield an irreducible component of TC0 .We also raise the following wildly speculative conjecture:Conjecture 6.6 Let C0 be a (simple) singularity of toric (or even qua-sitoric) type. Then TC0 is irreducible.This is known for singularities of multiplicity two and some singularities ofmultiplicity three. The proof involves analyzing the allowable deformationspaces of each of the possible degenerate surface tails.One can formulate analogous results for singularities of quasitoric type.Again, all the weighted plane curves in a given divisor class (satisfying certaincompatibility conditions) appear as tails of stable reductions. We work outcertain examples in subsection 6.3. 23
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Figure 6: Some local stable reductions for y2 = x2g+26.2 Concrete examplesWe illustrate these results by describing curves arising as tails for some simplesingularities.6.2.1 A2g+1 singularitiesSee �gure 6 for a schematic representing this case; this �gure uses the nota-tional conventions of �gure 3. Our general analysis implies that (C2; p1+ p2)is a hyperelliptic curve of genus g, where p1 and p2 are exchanged under theaction of the involution. It is not di�cult to verify that each such curve isobtained in this way. Indeed, let C be hyperelliptic of genus g with doublecover f : C ! P1. Then f�OC = OP1 �OP1(�g � 1), which gives a naturalimbedding j : C ,! P(OP1 �OP1(�g � 1)) = Fg+1:C is disjoint from the negative section of Fg+1 , so we may regard C as acurve in S2 = P(g+ 1; 1; 1). The ruling of Fg+1 cuts out the g12 on C, so anyconjugate points p1 and p2 lie on some ruling of S2.6.2.2 A2g singularitiesSee �gure 7 for a schematic representing this case. Our general analysis im-plies that (C2; p1) is a hyperelliptic curve of genus g, where p1 is a �xed pointof the hyperelliptic involution. Again, every such curve arises in this way.We imbed C into Fg+1 as before. Each �xed point p1 of the hyperellipticinvolution corresponds to a ruling tangent R to C. Blow up Fg+1 twice to24
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Figure 7: Some local stable reductions for y2 = x2g+1
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Figure 8: Some local stable reductions for y4 = x4eliminate this tangency and let E1 and E2 denote the corresponding excep-tional divisors. Then blow down all the curves with self-intersection < �1,i.e. the proper transforms of the negative section, R, and E1. We obtain theweighted projective space P(2g+ 1; 2; 1) and E2 corresponds to B2.6.2.3 y4 = x4See �gure 8 for a schematic representing this case. Let C0 be the singularityy4 = x4. Then C2 is a plane quartic curve and B2 \ C2 = fp1; p2; p3; p4g is ahyperplane section. There is a further compatibility condition to be satis�ed.The branches of our singularity determine four distinct tangent directions,i.e. an element of M0;4, which coincides with the element determined by(B2; p1; p2; p3; p4). 25
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Figure 9: Some local stable reductions for D2k+3 singularities6.3 Singularities of quasitoric typeApplying Theorem 6.1 and emulating Theorems 6.2 and 6.3, we can describetails for certain singularities of quasitoric type. Again, the surface tail S2will be a weighted projective space of type P(p; q;1), attached to S1 alongthe same curve B2. The only di�erence is that the tails C2 are no longerCartier on S2. They pass through one (or both) of the singularities of S2 andare smooth at these points. If necessary, we impose compatibility conditionslike those of Theorem 6.3.We illustrate this with the remaining ADE singularities. Note that thesingularities An;D4; E6; and E8 are of toric type.6.3.1 D2k+3 singularitiesSee �gure 9 for a schematic representing this case. Let C0 be the singularityx(y2�x2k+1), i.e. the singularity D2k+3. The surface tail S2 = P(2; 2k+1; 1).The curve C2 is a Weil divisor with class L+2B2 = 4(k+1)B2 and containsthe index-(2k + 1) singularity p2 2 S2. It is hyperelliptic of genus k + 1 andC2 \B2 = fp1; p2g, where p1 is a Weierstrass point and p2 is generic.6.3.2 D2k+4 singularities, k > 0See �gure 10 for a schematic representing this case. Now let C0 be thesingularity x(y2 � x2k+2) for k > 0, i.e. the singularity D2k+4. The surfacetail S2 = P(k+ 1; 1; 1). The curve C2 is a Weil divisor with class 2L +B2 =(2k + 3)B2 and contains the index-(k + 1) singularity on p3 2 S2. It is26
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Figure 10: Some local stable reductions for D2k+4 singularities, k > 0
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Figure 11: Some local stable reductions for E7hyperelliptic of genus k + 1 and C2 \ B2 = fp1; p2; p3g, where p1 and p2 areconjugate under the hyperelliptic involution and p3 is generic.6.3.3 E7See �gure 11 for a schematic representing this case. Let C0 be the singularityx(x2�y3) = 0, i.e. the singularity of type E7. The surface tail S2 = P(2; 3; 1).The curve C2 is a Weil divisor with class L + 3B2 = 9B2 and contains theindex-two singularity p2 2 S2. It is a non-hyperelliptic genus three curve andC2 \B2 = fp1; p2g, where 3p1 + p2 = KC2 . In other words, p1 corresponds toa 
ex on the canonical image of C2. 27



7 Equisingularity and boundary divisors7.1 Blowing up equisingular deformationsUsing Theorem 2.11 we compute the codimension of the locus of singularitiesof type (p; q):Corollary 7.1 Assume that p � q and b = gcd(p; q). Then the locus ofsingularities of type (p; q) has codimensionc(p; q) = 12(pq + p+ q � b)� dpq e � 1:The versal deformation space of the singularity xp = yq has dimension pq �p� q + 1. It remains to �nd a formula for the cardinality N of the setf(i; j) : qi+ pj � pq; 0 � j � q � 2; 0 � i � p � 2g =f(i; j) : si+ rj � brs; 0 � j � bs� 2; 0 � i � br � 2gwhere p = br and q = bs. We have thatN = bs�2Xj=1 (bjrs c � 1)= �(bs� 2)� b(bs� 1)rs c+ bs�1Xj=0 bjrs c= �bs� br + 2 + drse+ b2(brs� r � s+ 1)= 2 + drse+ b2(brs� 3r � 3s + 1)In the third step, we applied the summation formulabs�1Xj=0 bjrs c = b2(brs� r � s+ 1):Therefore, the codimension equals12(b2rs+ br + bs� b)� drse � 1which agrees with the formula. �Now we can state the main result of this section.28



Theorem 7.2 Let C0 be a singularity of type (p; q) and let Z � TC0 denotethe tails described in Theorems 6.2 and 6.3. Thendim(Z) = c(p; q)� 1where c(p; q) is the codimension of the locus of curves of type (p; q).The proof of the theorem is a parameter count: for each C0 of type (p; q), thestable limits parametrized by Z depend on c(p; q)� 1 parameters. It su�cesto compute the dimension of the corresponding linear series on P(p; q; 1),minus the dimension of the automorphism group and the constraints im-posed by compatibility conditions. Indeed, any deformation of the imbed-ding C2 ,! S2 is induced by an automorphism of S2. This follows from thefact that H1(TS2(�C2)) = 0, which can be proved using Serre duality andthe cohomology computations of [7] 2.3.2.We �rst consider the case where p = q = b. In this case, C2 � P2 is a planecurve of degree b, with a distinguished hyperplane section B2. Furthermore,the compatibility condition C2 \ B2 �= C1 \ B1 must be satis�ed, whichimposes b� 3 conditions. Finally, we have to account for the automorphismgroup of P2. We obtaindim(Z) = 12(b2 + 3b) + 2� (b� 3)� 8 = 12(b2 + b� 6)which equals c(b; b)� 1.In the case where p = rq with r > 1, we have that S2 = Fr , C2 2jq�rj where �r is a positive section, and B2 is a distinguished ruling. Thecompatibility conditions are that B2 \ C2 = B1 \ C1 and the singularitiesof S1 and S2 coincide; this imposes q � 2 conditions. Using the dimensioncounts for weighted projective spaces (x 5.1)dim(Z) = q2(rq + r + 1 + 1) + 1 � (q � 2)� (r + 5) = 12(rq2 + rq)� r � 2which equals c(rq; q)� 1.Now we consider the case where q does not divide p, and set b = gcd(p; q),p = br, and q = bs. We have S2 = P(r; s; 1) and C2 2 jbrsB2j. Thecompatibility conditions are that B2 \ C2 = B1 \C1 and the singularities ofS1 and S2 coincide; since S1 and S2 have two singularities, this imposes b� 129



conditions. Again using the dimension counts for weighted projective spacesdim(Z) = b2(brs+ r + s+ 1) � (b� 1) � brsc � 4= 12(b2rs + br + bs� b)� drse � 2which equals c(p; q)� 1. �Theorem 7.2 is consistent with the following geometric picture of the`map to moduli.' Let C0 be an isolated plane curve singularity. Consider therational map � : VerC0 9 9 KM associating to each curve its correspondingstable limit. Of course, � is well-de�ned only after choosing a linear seriesof projective curves representing VerC0 (cf. proof of Proposition 3.2). � hasindeterminacy along the locus where the curves have singularities worse thannodes. For each (p; q), the total transform of the curves of type (p; q) under� has dimension dim(VerC0) � 1, i.e. it forms a divisor in the image of �.Note that this immediately implies the following:Proposition 7.3 Let C0 be a general singularity of type (p; q). Then theclosure of Z is an irreducible component of TC0 .Here `general' means contained in an open subset of the parameter space forsingularities of type (p; q); this parameter space is discussed at the end ofx 2.For a concrete linear series � parametrizing curves of genus g, the modulimap � : � 9 9 KMg does not necessarily map the curves with a singularitiyof type (p; q) to a divisor in the image. For example, if � = jOP2(+4)j then� sends the tacnodal locus to a codimension-two subvariety of M3 [13].7.2 Application to boundary divisorsIn this section, we apply these results to analyze boundary components forcertain moduli spaces of stable log surfaces. See [18],[16], and [1] for moreinformation on the construction of these spaces. Consider pairs (P2; C) whereC is a smooth plane curve of degree d � 4; let Pd denote the isomorphismclasses of such pairs. Let M be the connected moduli space of smoothablestable log surfaces containing Pd as an open subset, and let Pd denote theclosure of Pd is M. This space is discussed in more detail in [13]. Our �rstresult is 30



Proposition 7.4 Assume there exists a plane curve D0 of degree d with asingle singularity, of type (p; q), such that1. the plane curves of degree d map surjectively onto the versal deforma-tion space of D0;2. KS1 +B1 +D1 is ample.Then the stable limits of the curves of type (p; q) yield a boundary divisor ofPd.By the �rst assumption, when we apply local stable reduction to degree dplane curves, we obtain all the tails described in Theorems 6.2 and 6.3. It alsoimplies that the curves with a singularity of type (p; q) have the expectedcodimension c(p; q). The second assumption means that local and globalstable reductions coincide (see the end of x 3). Theorem 7.2 implies that thecorresponding stable limits yield a divisor in Pd. �For �xed (p; q), the assumptions of the proposition are satis�ed for su�-ciently large d. As a consequence, we obtain the following theorem:Theorem 7.5 Fix (p; q). For d su�ciently large, the stable reductions ofcurves with a singularity of type (p; q) yield a boundary divisor of Pd.References[1] V. Alexeev, Moduli spaces Mg;n(W ) for surfaces. In: Higher Dimen-sional Complex Varieties, (Trento, Italy 1994,) 1-22, ed. M. Andreattaand T. Peternell, Walter de Guyter, Berlin, 1996.[2] E. Arbarello, M. Cornalba, P.A. Gri�ths, and J. Harris, Geometry ofAlgebraic Curves, Volume I, Springer-Verlag, New York, 1985.[3] M. Artin and G. Winters, Degenerate �bres and stable reduction ofcurves, Topology 10 (1971), 373-383.[4] E. Brieskorn and H. Kn�orrer, Plane Algebraic Curves, Birkhauser Ver-lag, Basel, 1986.[5] A. Corti, Semistable minimal models, In: Birational Geometry ofAlgebraic Varieties, by J. Koll�ar and S. Mori, with the collaborationof H. Clemens and A. Corti, Cambridge University Press, Cambridge,1998. 31
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