
Solutions, Exam 1

Exercise 1. (a) Since ‖u‖ =
√

1 + 4 + 4 = 3 and ‖v‖ =
√

1 + 0 + 1 =
√

2, the normalized
vectors are

u

‖u‖
=

(1

3
,

2

3
,

2

3

)
and

v

‖v‖
=

( 1√
2
, 0,

1√
2

)
.

(b) Since

cos θ =
u · v
‖u‖‖v‖

=
1 + 2

3
√

2
=

1√
2
, θ =

π

4
.

(c) A vector orthogonal to both u and v is u × v = (2, 1,−2). Since the length of
this vector is

√
4 + 1 + 4 = 3, a unit vector orthogonal to both u and v is the normalized

vector
(
2
3 ,

1
3 ,−

2
3

)
.

(d) We can use the vector from (c) to see that the general equation of a plane parallel
to both u and v is c = (2, 1,−2) · (x, y, z) = 2x + y − 2z Inserting A = (0, 0, 1) gives
c = 2(0) + 1(1)− 2(1) = −1 . So 2x+ y − 2z = −1 .

Exercise 2. (a) Here ‖a‖ =
√

4 + 12 = 4 and ‖b‖ =
√

3 + 1 = 2. Also

cos θ =
a · b
‖a‖‖b‖

=
4
√

3

4 · 2
=

√
3

2
.

So sin θ = 1
2 , and Area = ‖a‖‖b‖ sin θ = 4 · 2 · 12 = 4 .

(b) The volume is the absolute value of scalar triple product

|(a× b) · c| = |(4, 0, 0) · (4, 2
√

3,
√

5)| = 16 .

(c) Let x = (x, y, z). Since 0 = (x, y, z) · (1, 0, 3) = x+ 3z, x = −3z. Then we find

(0, 2, 1) = 2j + k = (−3z, y, z)× (1, 0, 0) = (0, z,−y) .

Thus, z = 2, y = −1, x = −3(2) = −6 and x = (−6,−1, 2).

Exercise 3. Since Q − P = (0 − 4,−2 − 4, 2 − 0) = (−4,−6, 2), a parameterization for
the line is

c(t) = (4, 4, 0) + t(−4,−6, 2) = (4− 4t, 4− 6t), 2t) .

(b) Using the normal direction (−4,−6, 2) from (a), we get 0 = (−4,−6, 2) · (x, y, z)
or −2x− 3y + z = 0.

(c) The desired plane is parallel to the plane of (b) and passes through the midpoint
between P and Q, which is 1

2 (P + Q) = (2, 1, 1). So the equation is −2x − 3y + z = c
where c = −2(2)− 3(1) + 1 = −6. So −2x− 3y + z = −6 is the desired equation.

Exercise 4. See attachment.



Exercise 5. (a) This set is open. [A point (a, b) with a > 0 and b > 0 is the center of an
open ball of radius r = min {a, b} which also lies in the set].

The boundary of the set is the union of the origin, the positive X-axis and the positive
Y-axis. That is {(0, y) : y ≥ 0} ∪ {(x, 0) : x ≥ 0}.

(b) This set is also open. [A point (a, b) with a > 0 and b > 0 is the center of an open
ball of radius r = |a| which also lies in the set].

It’s boundary is the entire Y axis.
(c) This set is not open. It contains all its boundary points which forms the unit circle

x2 + y2 = 1. Any ball centered at one of these boundary points intersects both points in
the set and points not in the set.

Exercise 6. (a) ∂f
∂x = 1

2 (x2y + 1)−1/2(2yx) = xy√
x2y+1

.

(b) ∂f
∂y = 1

2 (x2y + 1)−1/2(x2) = x2

2
√

x2y+1
.

(b) These partial derivatives exist for all (x, y) such that x2y + 1 + 1 > 0, that is,
x2y > −1.

(c) ∂f
∂x (2, 2) = 2·2√

222+1
= 4

3 ,
∂f
∂y (2, 2) = 22

2
√
222+1

= 2
3 .

Exercise 7. (a) Here we note that t = x2 + y4 ↓ 0 as x, y → 0. Since
limt→0 cos t = cos 0 = 1, we find

lim
x,y→0

x2 + y4

cos(x2 + y4)
= lim

t↓0

t

cos t
=

0

1
= 0 .

(b) Similarly, using L’hôpital’s rule, we find

lim
x,y→0

x2 + y4

sin(x2 + y4)
= lim

t↓0

t

sin t
= lim

t↓0

1

cos t
=

1

1
= 1 .

(c) The difference between x2 + y4 and x4 + y2 makes us suspicious that the limit may not
exist. To show the limit does not exist, it suffices to find two different ways of approaching
(0, 0) that give different limiting behavior of f .

If we take x = 0 and let y ↓ 0, we find that

lim
y↓0

y4

sin(y2)
= lim

y↓0
y2

y2

sin y2
= 0 · 1 = 0 .

On the other hand, if we take y = 0 and let x ↓ 0, we find that

lim
x↓0

x2

sin(x4)
= lim

x↓0
x−2

x4

sinx4
= (∞) · 1 = ∞ .

So the limit in part (c) does not exist.


