
Math 212 Spring 2008 Exam 2

Instructor: S. Cautis

Instructions: This is a closed book, closed notes exam. Use of calculators is
not permitted. You have two hours. Do all 8 problems. You must show your
work to receive full credit on a problem. An answer with no supporting work
or explanation will receive little to no credit.
Please do all your work on stardard letter size sheets. At the end write your
name on each sheet, attach this page to the front and staple!
The exam is due at the beginning of class on April 10.

Please print you name clearly here.

Print name:

Upon finishing please sign the pledge below:
On my honor I have neither given nor received any aid on this exam and have
observed the time limit given. I started working on this exam at : and
finished at : on the th day of April.

Grader’s use only:

1. /20

2. /15

3. /25

4. /20

5. /20

6. /15

7. /15

8. /20



1. [20 points]

Find the extreme values of

f(x, y) = x2 + 3y2 − 4x + 3

over the region bounded by the curves y2 = x and x = 4.

We first find the critical points inside the region. ∂f
∂x = 2x−4 and ∂f

∂y = 6y

so the only critical point is (2, 0) which is inside the region.

The boundary is made up of two pieces. The first piece is parametrized
by (t2, t) where −2 ≤ t ≤ 2 (drawing a picture would help). On this piece
f restricts to

g1(t) = f(t2, t) = t4 + 3t2 − 4t2 + 3

Now g′1(t) = 4t3 − 2t so the critical values are at t = 0 and t = ± 1√
2
. This

corresponds to points (0, 0), (1
2
,± 1√

2
).

The second piece is parametrized by (4, t) where −2 ≤ t ≤ 2. On this
piece f restricts to

g2(t) = f(4, t) = 16 + 3t2 − 16 + 3 = 3t2 + 3

Now g′2(t) = 6t so the only critical point is t = 0 which is the point (4, 0).

Finally, we also need to check the special points (4, 2) and (4,−2) which
are the end-points of these two pieces.

Comparing all these points we have f(2, 0) = −1, f(0, 0) = 3, f(1
2
, 1√

2
) =

1/4+3/2−2+3 = 11/4 and similarly f(1
2
,−

√
1
√

2) = 11/4 while f(4, 2) =
16 + 12 − 16 + 3 = 15 and similarly f(4,−2) = 15.

Thus the absolute minimum is −1 and occurs at the point (2, 0) while the
absolute maximum is 15 and occurs at the two points (4,±2).



2. a)[5 points] Sketch the vector field F(x, y) = (−y, x) at the eight points
(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1) and (1,−1). The
vector fields points in the following directions at the eight points above:
(0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1, (1,−1), (1, 0) and (1, 1).

b)[5 points] Sketch the flow line through the point (1, 0). The flow line
is the unit circle (with center (0, 0)) oriented in the counter-clockwise
direction.

c)[5 points] Find an explicit parametrization of the flow line through the
point (1, 0) and check that it is indeed a flow line. An explicit parametriza-
tion is c(t) = (cos t, sin t) where −∞ ≤ t ≤ ∞. To check this notice that
c′(t) = (− sin t, cos t) while F(c(t)) = (− sin t, cos t). Thus c′(t) = F(c(t))
which proves that c(t) is the flow line through (1, 0).



3. a)[10 points] If F(x, y, z) is a vector field prove that ∇· (∇×F) = 0. This
is a direct application of the definitions. Suppose F = (F1, F2, F3). Then
we have

∇ · (∇× F) = ∇ · (
∂F3

∂x2

−
∂F2

∂x3

,−
∂F3

∂x1

+
∂F1

∂x3

,
∂F2

∂x1

−
∂F1

∂x2

)

=

(

∂2F3

∂x2∂x1

−
∂2F2

∂x3∂x1

)

−
(

∂2F3

∂x1∂x2

−
∂2F1

∂x3∂x2

)

+

(

∂2F2

∂x1∂x3

−
∂2F1

∂x2∂x3

)

= 0

where to obtain the last equality we just noticed that all the terms can-
celled out in pairs.

b)[5+5 points] Compute the curl and divergence of F(x, y, z) = (−xy, xz,−yz).

The curl is

∇× (−xy, xz,−yz) =

((

∂(−yz)

∂y
−

∂(xz)

∂z

)

,−
(

∂(−yz)

∂x
−

∂(−xy)

∂z

)

,

(

∂(xz)

∂x
−

∂(−xy)

∂y

))

= (−z − x, 0 + 0, z + x)

While the divergence is

∇ · (−xy, xz,−yz) =
∂(−xy)

∂x
+

∂(xz)

∂y
+

∂(−yz)

∂z
= −y + 0 − y

= −2y

c)[5 points] Can F(x, y, z) = (−xy, xz,−yz) be the curl of a vector field?
(i.e. does there exist a vector field V such that ∇× V = F.) If yes then
find such a V – otherwise justify why not.

If such a vector field existed then F = ∇× V so applying divergence we
get ∇·F = ∇· (∇×F). Now the right hand side is zero by part (a) while
the left hand side is −2y by part (b). So no such V can exist.



4. a)[10 points] Consider the triangle T with vertices (1, 1), (3, 2) and (2, 4)
and the triangle T ′ with vertices (0, 0), (1, 0) and (0, 1). Find a change of
variables f : R2 → R2 which maps the triangle T ′ onto the triangle T .

If we shift the triangle T by (−1,−1) then we get the triangle S with
vertices (0, 0), (2, 1) and (1, 3). Now it is easy to write down a map
f1 : T ′ → S since we can use the linear map

f1 =

(

2 1
1 3

)

:

(

x
y

)

(→
(

2x + y
x + 3y

)

which maps (1, 0) to (2, 1) and (0, 1) to (1, 3). To get T ′ we just have to
shift S by (1, 1) – i.e. to compose with the map f2 : (x, y) (→ (x+1, y+1).
Thus one change of variables we can use is the composition

f = f2 ◦ f1 :

(

x
y

)

(→
(

2x + y + 1
x + 3y + 1

)

which is nothing more than a linear map f1 composed with a translation
f2.

b)[10 points] Let E be the ellipse given by x2 + 4y2 = 4. Find a change
of coordinates f : R2 → R2 which maps the square [0, 1]× [0, 1] onto the
(interior of the) ellipse E.

If E were a circle then we could use our favourite parametrizations (cos t, sin t).
Since an ellipse is a squished circle we should look for a parametrization
of the form

(a cos t, b sin t)

where a, b are real numbers. To find a, b just plug in t = 0 to get (a, 0)
which ought to be one of the x intercepts of x2 + 4y2 = 4. Since the
x-intercepts are x = ±2 we we can take a = 2. Similarly, plugging in
t = π/2 we get (0, b) which should be the y-intercept (0, 1) so b = 1. Thus
our parametrization should be

(2 cos t, sin t)

where 0 ≤ t ≤ 2π just like in the case of a circle. To check that this
parametrization works we substitute into x2 + 4y2 to get

(2 cos t)2 + 4(sin t)2 = 4(cos2 t + sin2 t) = 4

as required.

Thus the parametrization we want is

(2r cos(2πt), r sin(2πt))

where 0 ≤ r ≤ 1 and 0 ≤ t ≤ 1 (we added the factor of 2π so that t varies
between 0 and 1 instead of 0 and 2π).



5. [20 points] Compute the integral
∫ 2

0

∫ x2

0
(y + 3x2)dydx by first changing

the order of integration and then integrating.

First one needs to determine what the region D of integration is. Checking
the endpoints of the integral we find that D is bounded above and below
by y = x2 and the x-axis while on the left and the right by the lines x = 0
and x = 2 (a figure at this point would be very helpful).

Integrating in the x-direction first we need to integrate from y = x2 (or
equivalently x =

√
y) to x = 2 so we get

∫ 2

√
y
(y + 3x2)dx

In the y direction we must integrate from y = 0 to y = 4. We got y = 4
here since the point of intersection of x = 2 and y = x2 is (2, 4) (the
y-coordinate being 4). Thus the integral we get is

∫ 4

0

∫ 2

√
y
(y + 3x2)dxdy =

∫ 4

0

[xy + x3]2√ydy

=

∫ 4

0

(2y + 8 − y
√

y − y
√

y)dy

= [y2 + 8y −
4

5
y5/2]40

= 16 + 32 −
4

5
(32) =

16 · 7
5

=
112

5



6. [15 points]

Let D be the region in R2 determined by conditions 4x2 + 9y2 ≤ 36 and
x, y ≥ 0. Compute the integral

∫ ∫

D
ydxdy

Like in problem 4(b) we can parametrize the ellipse 4x2 + 9y2 = 36 as
(3 cos t, 2 sin t) except that now 0 ≤ t ≤ π/2 since x, y ≥ 0 (so we’re in
the first quadrant). Thus we can use coordinates on D given by T (r, t) =
(3r cos t, 2r sin t) where 0 ≤ t ≤ π/2 and 0 ≤ r ≤ 1.

The Jacobian of this change of coordinates is

∂(x, y)

∂(r, t)
= det

(

−3r sin t 2r cos t
3 cos t 2 sin t

)

= −6r sin2 t − 6r cos2 t = −6r

Thus, by the change of coordinate formula the integral is equal to

∫ ∫

D
ydxdy =

∫ 1

0

∫ π/2

0

(2r sin t)| − 6r|dtdr

=

∫ 1

0

∫ π/2

0

12r2 sin tdtdr

=

∫ 1

0

12r2[− cos t]π/2

0 dr

=

∫ 1

0

12r2dr

= [4r3]10
= 4



7. Let f(x, y) = ex2
+y − 1.

a)[6 points] Find the second order Taylor series expansion of f(x, y) around
the point (0, 0).

We have f(0, 0) = 0 while ∂f
∂x = 2xex2

+y so ∂f
∂x (0, 0) = 0 and ∂f

∂y = ex2
+y

so ∂f
∂y (0, 0) = 1.

Next
(

∂2f
∂x∂x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y∂y

)

=

(

ex2
+y(2 + 4x2) 2xex2

+y

2xex2
+y ex2

+y

)

so
(

∂2f
∂x∂x(0, 0) ∂2f

∂x∂y (0, 0)
∂2f

∂y∂x(0, 0) ∂2f
∂y∂y (0, 0)

)

=

(

2 0
0 1

)

Thus the 2nd order Taylor series explansion around (0, 0) is

(x, y)

(

0
1

)

+
1

2
(x, y)

(

2 0
0 1

) (

x
y

)

= y +
1

2
(2x2 + y2)

b)[6 points] Find the second order Taylor series expansion of f(x, y) around
the point (0, 1).
We have f(0, 1) = e − 1. Using the computations in part (a) we have
∂f
∂x (0, 1) = 0 and ∂f

∂y (0, 1) = e while

(

∂2f
∂x∂x (0, 1) ∂2f

∂x∂y (0, 1)
∂2f

∂y∂x (0, 1) ∂2f
∂y∂y (0, 1)

)

=

(

2e 0
0 e

)

Thus the 2nd order Taylor series explansion around (0, 1) is

(e−1)+(x, y−1)

(

0
e

)

+
1

2
(x, y−1)

(

2e 0
0 e

) (

x
y − 1

)

= (e−1)+e(y−1)+
e

2
(2x2+(y−1)2)

c)[3 points] Give an example of a smooth function g(t) whose Taylor series
around 0 does not converge to g(t)?

One such function is given by g(t) = 0 if t ≤ 0 and g(t) = e−
1

t2 if t > 0.
We saw in one of the homework problems that this function is smooth and
that its Taylor series around t = 0 is 0 (which obviously does not equal
g(t)).



8. [20 points]

Let W be the region in R3 determined by conditions x2 + y2 + z2 ≤ 1 and
z2 ≥ x2 + y2. Compute the volume of W . (hint: it may be helpful for you
as well as the grader if you drew a picture of W ). You should be able to
compute the integral and get a number at the end.

W is made up of two pieces corresponding to z ≥ 0 and z ≤ 0. These
two pieces are the same and so have the same volume. We will calculate
the volume of the piece when z ≥ 0. To do this we first integrate in the z
direction to get

∫

√
1−x2−y2

√
x2+y2

1dz =
√

1 − x2 − y2 −
√

x2 + y2

Next we integrate in the x− y plane. The intersection of x2 + y2 + z2 = 1
and z2 = x2 + y2 (where z ≥ 0) is the circle with z-coordinate 1√

2
and

radius 1√
2
. So in the x − y plane we need to integrate over the disk D of

radius 1√
2
. We’ll use polar coordinates so we get

∫ ∫

D

√

1 − x2 − y2 −
√

x2 + y2dxdy =

∫ 1/
√

2

0

∫ 2π

0

(
√

1 − r2 − r)(rdθdr)

= 2π

∫ 1/
√

2

0

r
√

1 − r2 − r2dr

= 2π[−
1

3
(1 − r2)3/2 − r3/3]1/

√
2

0

= 2π[−
1

3

1

2
√

2
−

1

6
√

2
+

1

3
]

=
2π

3
· (1 −

1√
2
)

Thus the total volume is twice this which is 2π
3

(2 −
√

2).


