
Math 212 Multivariable Calculus - Final Exam

Instructions: You have 3 hours to complete the exam (12 problems). This is a closed book, closed notes
exam. Use of calculators is not permitted. Show all your work for full credit. Please do not forget to
write your name and your instructor’s name on the blue book cover, too.

Print your instructor’s name :

Print your name :

Upon finishing please sign the pledge below:

On my honor I have neither given nor received any aid on this exam.

Signature :

Problem Max Points Your Score Problem Max Points Your Score

1 8 7 8

2 8 8 8

3 8 9 9

4 8 10 9

5 8 11 9

6 8 12 9

Total 100
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[1] (8 points) Find the equation of the tangent line to the path c(t) = (cos t, sin t, t2) at t = π.

Solution. The derivative of this path is given by

c′ (t) = (−sin (t) , cos (t) , 2t)

The tangent line to c (t) at the point t = π is given by

L (t) = c (π) + t · c′ (π)
=

(
cos (π) , sin (π) , π2

)
+ t · (−sin (π) , cos (π) , 2π)

=
(−1, 0, π2

)
+ t · (0,−1, 2π)

=
(−1,−t, π2 + 2πt

)

(Or you may use L (t) = c (π) + (t− π) · c′ (π).)

[2] (8 points) Let f : R3 → R be defined by:

f (x, y, z) = 3z + ex2−y2

Let C be the set of the heads of unit vectors v in R3 such that f increases at 1/3 of its maximum
rate of change in the direction v starting from (0, 0, 1) . Find the equation(s) which determine(s)
the set C. (Hint : C is a circle in R3.)

Solution. The gradient of f is given by

∇f =
(
2x exp

(
x2 − y2

)
,−2y exp

(
x2 − y2

)
, 3

)

∇f (0, 0, 1) is a vector in the direction of greatest increase for the function f at the point (0, 0, 1).
So

∇f (0, 0, 1) = (0, 0, 3)
= 3 · (0, 0, 1)

Calculate the maximimum rate of change of f by evaluating the directional derivative of f .

Df(0,0,1) = ∇f · (0, 0, 1)
= (0, 0, 3) · (0, 0, 1)
= 3

1/3 of this rate is just 1, so the goal of this problem is to find and equation for the unit vectors
v = (x, y, z) such that Dfv = 1 at the point (0, 0, 1).

1 = Dfv

= ∇f · v
= (0, 0, 3) · (x, y, z)
= 3z

1/3 = z
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Now applying the constraint that v be a unit vector

v · v = 1
(x, y, 1/3) · (x, y, 1/3) = 1

x2 + y2 + 1/9 = 1
x2 + y2 = 8/9

The final equations are : x2 + y2 = 8/9 and z = 1/3.

[3] (8 points) Find the absolute minimum and maximum for the function f(x, y) = x + 2y2 + 1 on
the unit disk D = {(x, y)|x2 + y2 ≤ 1}.

Solution. On the interior of D, which is {(x, y)|x2 + y2 < 1}, if (x, y) is a critical point of f ,
∇f(x, y) = (0, 0). But ∇f(x, y) = (1, 4y) 6= (0, 0). Hence f has its extrema on ∂D.

On ∂D = {(x, y)|x2 + y2 = 1}, we use Lagarange Multiplier. Let g(x, y) = x2 + y2, and solve
∇f(x, y) = λ∇g(x, y) and x2 + y2 = 1 simultaneously. Then we have 1 = 2λx, 4y = 2λy, and
x2 + y2 = 1.

If y = 0, x = ±1, hence we have (x, y) = (1, 0), (−1, 0). If y 6= 0, then λ = 2 and x = 1
4 , hence

y = ±
√

15
4 . Thus (x, y) = (1

4 ,
√

15
4 ), (1

4 ,−
√

15
4 ).

Now f(1, 0) = 2, f(−1, 0) = 0, f(1
4 ,
√

15
4 ) = f(1

4 ,−
√

15
4 ) = 25

8 . Therefore f has the absolute
maxima (1

4 ,
√

15
4 ) and (1

4 ,−
√

15
4 ), and the absolute minimum (−1, 0).

[4] (8 points) Let C be a simple closed curve in R3, and c : [a, b] → R3 be a parametrization of C
such that ||c′(t)|| = 1 for all t ∈ [a, b]. The curvature of C at c(t) is defined to be

κ(t) = ||c′′(t)||
and the total curvature of C is defined by

∫

c
κ ds.

Compute the total curvature of a circle C = {(x, y, z) ∈ R3|x2 + y2 = R2, z = 0}.

Solution. Let c(s) = (Rcos(s/R), Rsin(s/R), 0), s ∈ [0, 2π]. Note that

c′(s) = (−sin(s/R), cos(s/R), 0)

is of unit length for all s. We have c′′(s) = (− cos(s/R)
R ,− sin(s/R)

R , 0) and κ(s) = ||c′′(s)|| = 1/R for
all s. Hence the total curvature is

∫

c
κ ds =

∫ 2π

0

1
R

ds =
1
R
· length(C) =

1
R
· 2πR = 2π.

[5] (8 points) Let C be the ellipse
x2

a2
+

y2

b2
= 1.
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Evaluate the line integral
∫

C
F · ds where F(x, y) = (x/a2, y/b2).

Solution. Method I: Consider the region

S = {(x, y, ) | x
2

a2
+

y2

b2
≤ 1}.

By Stokes’ theorem, we have
∫

C
F · ds =

∫∫

S
∇× F · dS.

But ∇× F = 0, hence the integral is 0.

Method II: The ellipse can be parametrized by

c(t) = (a cost, b sint), t ∈ [0, 2π].

Since we have

F(c(t)) · c′(t) =
cost
a

(−a sint) +
sint

b
b cost = 0,

the line integral is zero.

[6] (8 points) Evaluate the line integral
∫

c
ex2

dx−xy dy +y2 dz, where c(t) = (1, t, t2), 0 ≤ t ≤ 1.

Solution.
∫

c
ex2

dx − xy dy + y2 dz =
∫ 1

0
(e · 0 − 1 · t · 1 + t2 · 2t) dt =

∫ 1

0
(−t + 2t3) dt =

[
−1

2
t2 +

2
4
t4

]1

0

= 0.

[7] (8 points) Find the area of the portion of the unit sphere inside the cylinder x2 + y2 = 1
2 and

z > 0.
Solution. The intersection of the unit sphere and the cylinder is a circle, and the angle between
the z-axis and a line from the origin to the circle is π

4 . Denote the surface by S. We parametrize
S by Φ(φ, θ) = (sinφcos θ, sinφsin θ, cosφ) where 0 ≤ φ ≤ π

4 , 0 ≤ θ ≤ 2π. Then ||Φφ ×Φθ|| = sinφ.

Hence
∫∫

S
dS =

∫ 2π

0

∫ π
4

0
sinφ dφ dθ = [−cosφ]π/4

0 · 2π = (2−
√

2)π.

[8] (8 points) W is the volume defined by x2 + y2 + z2 ≤ 1 and y ≤ x. Find the flux of(
x3 − 3x, y3 + xy, z3 − xz

)
out of W .

Solution. Calculate that

∇ · F = 3x2 − 3 + 3y2 + x + 3z2 − x

= 3
(
x2 + y2 + z2 − 1

)
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By Gauss Theorem the flux out of W is given by∫ ∫

δW
F · dS =

∫ ∫ ∫

W
∇ · F · dW

= 3
∫ ∫ ∫

x2 + y2 + z2 − 1dxdydz

In spherical coordinates, the defining equations of the volume W are ρ2 ≤ 1 and sinθ ≤ cosθ.
The latter inequality implies −3π/4 ≤ θ ≤ π/4.

The Jacobian determinant for spherical coordinates is ρ2sinφ, so the integral is just:

3
∫ ∫ ∫

x2 + y2 + z2 − 1dxdydz = 3
∫ 1

0

∫ π/4

−3π/4

∫ π

0

(
ρ2 − 1

)
ρ2sinφdφdθdρ

= −4π/5

[9] (9 points) Let S be the surface of the tetrahedron whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 2)

and the origin. Evaluate
∫∫

S
f dS where f(x, y, z) = xz.

Solution. Let S′, S′′, S′′′, T denote the faces of the tetrahedron in the xz-plane, yz-plane, xy-
plane, and the plane 2x + 2y + z = 2 (the frontal face), respectively. Since x = 0 on S′′ and z = 0
on S′′′, it follows that the integral vanishes on those faces. Hence we have∫∫

S
xz dS =

∫∫

S′
xz dS +

∫∫

T
xz dS.

(1) ∫∫

S′
xz dS =

∫ 1

0

∫ 1−x

0
xz dz dx

=
∫ 1

0
x(1− x)2/2 dx = 1/24.

(2) T is the graph of z = 2 − 2x − 2y over the triangle ∆ with vertices (1, 0, 0), (0, 1, 0), and
the origin. Let g(x, y) = 2− 2x− 2y. Then we have∫∫

T
xz dS =

∫∫

∆
xg(x, y)

√
1 + g2

x + g2
y dA

=
∫ 1

0

∫ 1−x

0
x(2− 2x− 2y)3 dy dx

=
∫ 1

0
3x(1− x)2 dx = 1/4.

(3)
∫∫

S
xz dS = 1/24 + 1/4 = 7/24.

[10] (9 points) Evaluate
∫∫

S
F · dS where

F (x, y, z) =
(
1, 1, z

(
x2 + y2

)2
)
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and S is the surface of the cylinder x2 +y2 ≤ 1, 0 ≤ z ≤ 1 (oriented with the outward unit normal).

Solution. To use Gauss Theorem, write δW = S and so
∫ ∫

S
F · dS =

∫ ∫

δW
F · dS

=
∫ ∫ ∫

W
div (F ) · dW

div (F ) = 0 + 0 +
(
x2 + y2

)2

=
(
x2 + y2

)2

The Jacobian determinant of cylindrical coordinates is r, so
∫ ∫ ∫

W
div (F ) · dW =

∫ ∫ ∫

W

(
x2 + y2

)2 · dW

=
∫ 1

0

∫ 2π

0

∫ 1

0

(
r2

)2
rdzdθdr

= π/3

[11] (9 points) Let S be the portion of the unit sphere centered at the origin that is cut out by the

cone z ≥
√

x2 + y2. Evaluate
∫∫

S
F · dS where

F(x, y, z) = (xy + cos z,−yx + x2 + z3, 2z2 + x).

Solution. The boundary C of S is the circle of radius 1/
√

2 on z = 1/
√

2 and with its center on
the z-axis. Let D be the disc in the plane z = 1/

√
2 bounded by C, and T = S ∪D. Then we have

∫∫

S
F · dS =

∫∫

T
F · dS−

∫∫

D
F · dS.

(1) T is a surface without boundary and we can apply Gauss’ theorem to the first integral∫∫
T F · dS. Let W be the (3-dimensional) region bounded by T .

∫∫
T F · dS =

∫∫∫
W ∇ · F dV

=
∫∫∫

W y − x + 4z dV.

But
∫∫∫

W y dV =
∫∫∫

W x dV = 0 because of the apparent symmetry.
∫∫∫

W 4z dV =
∫ 2π
0

∫ 1
1/
√

2

∫ √1−z2

0 4z r dr dz dθ

= 8π
∫ 1
1/
√

2 z
1− z2

2
dz =

π

4
.

(2) Since n = −k on D, we have
∫∫

D F · dS =
∫∫

D F · (−k) dS
= − ∫∫

D 2z2 + x dA.
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But
∫∫

D x dA = 0 because of symmetry.

− ∫∫
D 2z2 dA = − ∫∫

D 2 · 1
2 dA

= − ∫∫
D dA = −π/2.

(3)
∫∫

S F · dS = π/4− (−π/2) = 3π/4.

[12] (9 points) Evaluate
∫∫

S
(∇×F)· dS, where F(x, y, z) = (xy, y, z) and S is the surface described

by x2 + y2 + z2 = 2 and z ≥ 1. (S is oriented with the upward unit normal.)
Solution. ∂S is a circle with the equations x2 + y2 = 1 and z = 1. Use Stokes’ Theorem.∫∫

S
(∇× F) · dS =

∫

∂S
F · ds. We parametrize ∂S by c(t) = (cos t, sin t, 1), 0 ≤ t ≤ 2π.

∫

∂S
F · ds =

∫ 2π

0
(cos tsin t(−sin t) + sin tcos t + 1 · 0) dt =

∫ 2π

0
(−sin2tcos t +

1
2
sin 2t) dt =

[
−1

3
sin3t− 1

4
cos 2t

]2π

0

= 0.
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