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Abstract

Harmonic maps into a Coxeter complex of Teichmüller spaces are
described by a certain degenerate elliptic PDE. We analyze the structure
of the singular set near a junction of Teichmüller spaces. In particular,
we show that the singular is n− 1 rectifiable.

1 Introduction

In recent years, there has been increasing attention towards variational prob-
lems associated with singular spaces as well as asymptotic limits of certain
nonlinear elliptic systems and their singular perturbations. Some noteworthy
examples among many others include: (i) the fundamental work of Gromov-
Schoen on p-adic superrigidity (cf. [GrSc]) and the development of the theory
of harmonic maps to metric spaces (cf. [KS1], [KS2], [Jo] and [DM1]); (ii) the
work of Eells-Fuglede on harmonic functions or more generally harmonic maps
defined on singular domains (cf. [EF] and [DM5]). (iii) the theory of degen-
erations of character varieties and coupled Yang-Mills equations (cf. [DDW],
[T1], [T2], [T3]), as well as the gluing constructions in [Mz]; (iv) the study
of certain singularly perturbed systems of elliptic equations and their asymp-
totic limits and its relation to the optimal partition problem for eigenvalues
(cf. [CL1], [CL2] and [CL3] and the references therein); and last but not least
(v) the theory of harmonic maps into Teichmüller space related to holomor-
phic rigidity of Teichmüller space and the rigidity of the mapping class group
(cf. [DM3]).

The simplest examples of singular spaces that are not pseudo manifolds
are trees and their generalizations. For example, a Euclidean building (which
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can be thought of as the higher dimensional version of a tree) can be charac-
terized by the property that any two points lie in a isometrically and totally
geodesically embedded copy of Euclidean space. A common theme in all
the work above, is to consider harmonic (or energy minimizing) maps to trees
or buildings and obtain estimates on the size as well as the structure of their
singular set. From this, one then can conclude important geometric and
analytic consequences.

The reason why trees and buildings are amongst the simplest types of
singular spaces is because they are made out of Euclidean spaces. In [DM2]
and [DM3], we study harmonic maps into the Weil-Petersson completion of
Teichmüller space. This is a space, as explained below, has significantly worse
singularities than buildings. More precisely, let T denote the Teichmüller
space of a genus g Riemann surface with n punctures and 3g − 3 + n > 0.
Endowed with the Weil-Petersson metric, T is a smooth incomplete Kähler
manifold of non-positive sectional curvature. Its metric completion T , called
the Weil-Petersson completion of Teichüller space, is no longer a Riemannian
manifold, but an NPC space; i.e. a complete metric space of non-positive
curvature in the sense of Alexandrov (cf. [Ya1]).

Recall that a neighborhood N ⊂ T of a point in ∂T is asymptotically a
product U × V (cf. [Ya1], [DW], [Wo1], [Wo2], [LSY1], [LSY2] and [DM4]),
where the smooth manifold U is an open subset of a lower dimensional Te-
ichmüller space along with the Weil-Petersson metric and V is an open subset
of H × . . . ×H where H (referred to as the model space) is the metric com-
pletion of the half-plane

H = {(ρ, φ) ∈ R2 : ρ > 0}

with respect to the metric gH = dρ2 + ρ6dφ2. The Riemannian manifold
(H, gH) is not complete reflecting also the incompleteness of T via neck pinch-
ing of nodal surfaces. (cf. [Wo3], [Ch]). The metric completion of (H, gH) is
the NPC space

(H, dH) = (H ∪ {P0}, dH) (1)

constructed by identifying the axis ρ = 0 to a single point P0 and extending
the induced distance function dH of gH to H by setting dH(Q,P0) = ρ for Q =
(ρ, φ) ∈ H.

Since each boundary stratum of T is a smooth Riemannian manifold, the
singular behavior of the Weil-Petersson geometry is completely captured by
the model space H. A harmonic maps map into T can be locally expressed as

(V, v1, . . . , vm)

where V maps into a lower dimensional Teichmüller space and vl (for l =
1, . . . ,m) maps into H. As T is only asymptotically and not exactly a product
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space near the boundary, the component map vl is not harmonic. On the
other hand, as explained in detail in [DM3], vl is approximately harmonic and
the crucial step in understanding the behavior of harmonic maps into T is
understanding the behavior of harmonic maps into H.

Since the sectional curvature of H blows up near P0, the harmonic map
equations become very degenerate. For a map u : Ω → H, we can write in a
neighborhood of a regular point u = (uρ, uφ) in terms of the coordinates (ρ, φ)
and write down the harmonic map equations

uρ4uρ = 3u6
ρ|∇uφ|2 and u4

ρ4uφ = −6∇uρ · u3
ρ∇uφ. (2)

Although the right hand side of the above equations is localy bounded by the
Lipschitz regularity of harmonic maps (cf. [KS1] Theorem 2.4.6), the left hand
side of the equations is degenarate since uρ(x) is the distance of the image
u(x) to P0 which tends to zero. Thus, from this point of view, it is hard to
see why the map should be uniformly regular near a singular point.

An important observation is that, because of the non-local compactness
of H near P0, the Alexandrov tangent space TP0H of H at P0 (which is
isometric to the interval [0,∞)) does not properly reflect the geometry of H
in a neighborhood of P0. Thus, a tangent map of a harmonic map u : Ω→ H
at a singular point (i.e. point in u−1(P0)) does not map into TP0H. Instead,
(cf. [W] or [DM2]), a tangent map of harmonic map u into H at a singular
point is a harmonic map u∗ whose image is not contained in TP0H but is
contained in the the space

HN = H
(1) ∪H

(2)
. . .H

(N)
/ ∼ (3)

defined by taking N copies H
(1)
, . . . ,H

(N)
of H and ∼ indicates that the point

P0 from each copy is identified as a single point. The space H
(N)

should be
thought of as a tree-like N -pod where all the 2-dimensional simplices, in this
case copies of H, meet at the single vertex P0.

In [DM2], we study how harmonic maps into H2 approximate harmonic
maps into H near a point of order 1. The goal of this paper is to investigate
the singular set of a harmonic map u : Ω → HN . The main theorem is the
following.

Theorem 1 If u : Ω → HN is a harmonic map from an n-dimensional
smooth Riemannian domain, then the singular set u−1(P0) is (n−1)-rectifiable.

In [Ya2], Yamada constructs a geodesic completion X of the Teichmüller
space through the formalism of Coxeter complex with the Teichmller space
as its non-linear non-homogeneous fundamental domain. His main result is
that this space X, called the Teichmüller-Coxeter complex, is of finite rank (in
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the sense of [KS2]) which in turn implies an existence theorem of equivariant
harmonic maps (cf. [Ya2] Theorem 2). Given a harmonic map u : Ω→ X from
a n-dimensional Riemannian domain into a Teichmüller-Coxeter complex, we
can define a regular point as a point of Ω that maps to the interior of any
fundamental domain of X (i.e. an isometric copy of T in X), the regular set
R(u) as the set of regular points and the singular set S(u) as the complement
of R(u). Using a similar proof as for Theorem 1, we obtain the following
regularity result.

Theorem 2 If u : Ω → X is a harmonic map from a n-dimensional Rie-
mannian domain into a Teichmüller-Coxeter complex, then S(u) is (n − 1)-
rectifiable.

2 Preliminaries

Let (H, gH) and (H, dH) be as above. The homogeneous cordinates (ρ,Φ) of
H are defined by setting

Φ = ρ3φ.

It can be easily seen that the metric gH is invariant under the scaling

ρ→ λρ, Φ→ λΦ.

For λ ∈ (0,∞), we define the map P 7→ λP using homogeneous coordinates
by setting

λP =

{
(λρ, λΦ) for P = (ρ,Φ) ∈ H
P0 for P = P0.

(4)

The distance function is homogeneous degree 1 in the sense that

dH(λP, λQ) = λdH(P,Q).

We now let HN as in (3). The distance function dHN
on HN is defined

by setting dHN
(P1, P2) = dH(P1, P2) if P1, P2 ∈ H

(j)
for some j ∈ {1, . . . , N}

and dH2(P1, P2) = ρ1 + ρ2 if P1 = (ρ1, φ1) ∈ H(j) = H
(j)\{P0} and P2 =

(ρ2, φ2) ∈ H(k) = H
(k)\{P0} for j 6= k. The metric space (HN , dHN

) is an
NPC space (cf. [BH]).

Convention 3 For N = 2, we write

H2 = H
+ tH

−
/ ∼ (5)

where H
+

= H
(1)

and H
−

= H
(2)

. We will consider H2 as a totally geodesic
subset of HN by the obvious inclusion. Furthermore, we define coordinates on
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H2\{P0} by first applying the change of variables (ρ, φ) 7→ (−ρ, φ) to obtain

new coordinates for H
−

. Thus, we then have coordinates

(ρ, φ) ∈ R\{0} ×R (6)

for H2\{P0} with the property that ρ > 0 implies (ρ, φ) ∈ H+ and ρ < 0
implies (ρ, φ) ∈ H−. The metric gH2 at (ρ, φ) with ρ 6= 0 is given by

gH2(ρ, φ) = dρ2 + ρ6dφ2. (7)

We also define the homogeneous coordinates (ρ,Φ) on H2\{P0}.

Convention 4 Given HN and any two copies H
(j)

and H
(k)

there is a totally

geodesic isometry σ : H2 → HN with image H
(j) tH

(k)
/ ∼. In particular (6)

and (7) induce coordinates and a metric on the image of σ inside HN .

For a map v : Ω → HN from a bounded Riemannian domain, let the
function |∇v|2 be the energy density as defined in [KS1]. The energy of v is

Ev =

∫
Ω
|∇v|2dµ.

Definition 5 The map u : Ω→ HN is said to be harmonic if for every x ∈ Ω,
there exists r > 0 such that u|Br(x) is energy minimizing with respect to all

finite energy maps v : Br(x)→ HN with the same trace (cf. [KS1]).

For a harmonic map u : Ω→ HN , we have the following important mono-
tonicity formula. Given x0 ∈ Ω and σ > 0 such that Bσ(x0) ⊂ Ω, let

Eu(σ) :=

∫
Bσ(x0)

|∇u|2dµ and Iu(σ) :=

∫
∂Bσ(x0)

d2(u, u(x))dΣ.

There exists a constant c > 0 depending only on the C2 norm of the metric
on g (with c = 0 when g is the standard Euclidean metric) such that

σ 7→ ecσ
2 σ Eu(σ)

Iu(σ)

is non-decreasing. As a non-increasing limit of continuous functions,

Ordu(x0) := lim
σ→0

ecσ
2 σ Eu(σ)

Iu(σ)

is an upper semicontinuous function and Ordu(x0) ≥ 1. (See Section 1.2 of
[GS] with [KS1] and [KS2] justify various technical steps.)
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Definition 6 The value Ordu(x0) is called the order of u at x0.

The singular set of a harmonic map u : Ω→ HN is defined by

S(u) = {x ∈ Ω : u(x) = P0}.

The set S(u) is partitioned into the following two sets

S0(u) = {x ∈ S(u) : Ordu(x) > 1}

and
S1(u) = {x ∈ S(u) : Ordu(x) = 1}.

The following result follows from [DM2].

Lemma 7 If u : B1(0) → HN is a harmonic map, then the set of higher
order points of u is of Hausdorff codimension at least 2, i.e.

dimH(S0(u)) ≤ n− 2.

Lemma 7 implies that we need only consider S1(u) in order to prove Theo-
rem 1.

We now define the notion of blow up maps of u at x ∈ Ω. To do this, we
need that the domain metric is expressed with respect to normal coordinates
so we make the following definition.

Definition 8 A smooth Riemannian metric g on BR(0) ⊂ Rn is said to
be normalized if the standard Euclidean coordinates (x1, . . . , xn) are normal
coordinates of g. The metric gs for s ∈ (0, R] on B1(0) is defined by

gs(x) = g(sx).

Given a normalized metric g onBR(0) and a harmonic map u : (BR(0), g)→
HN , the homogeneous coordinates can be used to define blow up maps of u
at 0. More precisely, write

u = (uρ, uΦ)

in homogeneous coordinates. For σ ∈ (0, R], define a harmonic map (which
will be referred to as a blow-up map)

uσ = (uσρ, uσΦ) : (B1(0), gσ)→ HN (8)

by setting

uσρ(x) = µ−1(σ)uρ(σx) and uσΦ(x) = µ−1(σ)uΦ(σx)
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where

µ(σ) =

√
Iu(σ)

σn−1
. (9)

The choice of the scaling constant µ(σ) implies that

Iuσ(1) =

∫
∂B1(0)

d2(uσ, P0)dΣ = 1. (10)

By the monotonicity property stated above, Euσ(1) ≤ 2Ordu(0) for σ > 0
sufficiently small. Thus, by [KS1] Theorem 2.4.6, {uσ} has a uniform modulus
of continuity. In turn, this implies that given a sequence uσi with σi → 0,
there exists a subsequence converging locally uniformly in the pullback sense
to a map u∗ : B1(0)→ (Y∗, d∗) into an NPC space (cf. [KS1] Proposition 3.7).
In particular,

d(uσi(·), uσi(·))→ d∗(u∗(·), u∗(·)) uniformly on compact sets.

Following [GrSc], we have that u∗ is a homogeneous map of degree α =
Ordu(0), i.e. d(u∗(x), u∗(0)) = |x|αd(u∗(

x
|x| , u(0)) and the curve t 7→ u∗(tx)

is a geodesic in Y∗ for each x ∈ ∂B1(0).
The qualitative behavior harmonic maps at order one points are given by

Lemma 9 below. The proof follows immediately from in [DM2] Lemma 33.

Lemma 9 Let g be a normalized metric on B1(0) and u : (B1(0), g) → HN

a harmonic map with Ordu(0) = 1 and u(0) = P0. Then given a sequence
σi → 0, there exists a subsequence (denoted again by σi) a rotation R : Rn →
Rn, a sequence of homogeneous degree 1 maps lσi : B1(0) → H2 ⊂ HN

defined by (after renumbering the copies of H in HN if necessary and using
Convention 4)

lσi(x) =


(Ax1, φ+

σi) x1 > 0
P0 x1 = 0

(Ax1, φ−σi) x1 < 0
(11)

for a constant A > 0 and sequences {φ+
σi}, {φ

−
σi} such that

lim
i→∞

sup
Br(0)

d(uσi ◦ R, lσi) = 0, ∀r ∈ (0, 1)

where uσi are the blow up maps u at 0.

After rotating the domain if necessary, we may assume in Lemma 9 that

lim
i→∞

d(uσi , lσi) = 0.
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For each i, define an isometry ισi : HN → HN by first defining

ισi(P ) =


(ρ, φ− φ+

σi) if P = (ρ, φ) with ρ > 0
P0 if P = P0

(ρ, φ− φ−σi) if P = (ρ, φ) with ρ < 0

on H2 and extending it to HN as an identity map outside of H2. In particular,
we then have l(x) := ισi ◦ lσi(x) = (Ax1, 0) and

lim
i→∞

d(ισi ◦ uσi , l) = 0. (12)

3 Order 1 singular points

We start with the following.

Theorem 10 Let E0 > 0, A > 0 and a normalized metric g on B1(0) be
given. There exist σ0 > 0, D∗0 > 0 and C > 0 such that if σ ∈ (0, σ0],
D0 ∈ (0, D∗0] and u : (B1(0), gσ)→ HN is a harmonic map that satisfies

u(0) = P0, Lip(u|B 1
2

(0)) ≤ E0,

and
sup
B1(0)

d(u, l) < D0 where l(x) = (Ax1, 0), (13)

then
sup
Bs(0)

d(u, l) < CD0s, ∀s ∈ (0, σ0].

Proof. First notice, that the proof of [DM3] Inductive Lemma 24 goes
through without any changes when we replace the target space Hk−j by HN ,
m = 1 and v = u is a harmonic map. For c0 > 0, E0, A and δ0 given in the
statement of the theorem, let θ ∈ (0, 1

24), ε0 > 0 and D∗0 > 0 be as in the
[DM3] Inductive Lemma 24. Let D0 ∈ (0, D∗0]. By letting 0l = l and 0δ = D0,
the assumption implies

sup
B1(0)

d(u, 0l) < D0

sup
B1(0)
|uρ −Ax1| < 0δ < 2D0.

Apply the [DM3] Inductive Lemma 24 repeatedly to conclude that for all
i = 0, 1, 2, . . .,

sup
Bθi (0)

d(v, l) < θi−1

(
23 (A+ 9D0)3

ε30
+ 10

)
D0.
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For s ∈ (0, 1], let i be a nonnegative integer such that s ∈ (θi+1, θi].

sup
Bs(0)

d(u, l) ≤ sup
Bθi (0)

d(u, l)

< θi−1

(
23 (A+ 9D0)3

ε30
+ 10

)
D0

≤ sθ−2

(
23 (A+ 9D0)3

ε30
+ 10

)
D0

< CD0s

where

C = θ−2

(
23 (A+ 9D∗0)3

ε30
+ 10

)
.

Since D∗0 and ε0 depend only on the given constants, we have proved the as-
sertion. q.e.d.

Lemma 11 Let g be a normalized metric defined on BR(0) (cf. Definitio 8)
and u : (BR(0), g) → (HN , d) be a harmonic map with Ordu(0) = 1 and
u(0) = P0. Furthermore, let σi, R and A > 0 be as in Lemma 9. Given
δ0 > 0, there exists σ > 0 such that

s−1 sup
Bs(0)

d(uσ, lσ ◦ R) < δ0, ∀s ∈ (0, 1)

where uσ is a blow up map of u at 0 as defined in (8) and lσ : B1(0)→ H2 ⊂
HN defined by

lσ(x) =


(Ax1, φ+

σ ) x1 > 0
P0 x1 = 0

(Ax1, φ−σ ) x1 < 0
(14)

for some fixed constants φ+
σ , φ

−
σ ∈ R.

Proof. By the normalization (10) and the fact that Ordu(x0) = 1, we
have that

lim
σi→0

Euσi (1) = 1.

For σi > 0 sufficiently small such that Euσi ≤ 2 there exists E0 > 0 such that
Lip(uσi |B 1

2
(0)) <

E0
2 . For this choice of E0 > 0, A > 0 and g given in the

statement of the lemma, let σ0 > 0, D∗0 > 0 and C > 0 be as in Theorem 10.
Given δ0 > 0, choose D0 ∈ (0, D∗0] such that CD0 < δ0. Fix σi ∈ (0, σ0]
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sufficiently small such that (after applying a rotation in the domain and an
isometry in the target)

sup
B 1

2
(0)
d(uσi , l) < D0.

Set σ = σi > 0, u(x) = uσi(2x) and note that u(0) = P0, Lip(u) < E0 and
supB1(0) d(u, l) < D0. Theorem 10 implies the assertion immediately. q.e.d.

Lemma 12 If g is a normalized metric defined on BR(0) and u : (BR(0), g)→
(HN , d) is a harmonic map with Ordu(0) = 1 and u(0) = P0, then

Iu∗ := lim
r→0

Iu(r)

rn+1
6= 0.

Proof. The fact that the limit as r → 0 of the ratio Iu(r)
rn+1 exists follows

from [GrSc] (also see [DM1]). Let A be as in Lemma 11. By choosing δ0 ∈
(0, A2 ) in Lemma 11, there exists σ > 0 such that

sup
Bs(0)

|uσρ − lσρ ◦ R| ≤ sup
Bs(0)

d(uσ, lσ ◦ R) < δ0s

Applying the triangle inequality, we obtain

As

2
≤ sup

Bs(0)
lσρ ◦ R − sup

Bs(0)
|uσρ − lσρ ◦ R| ≤ sup

Bs(0)
uσρ.

Therefore,

0 6= A

2
≤ lim

s→0

1

s
sup
Bs(0)

uσρ.

The assertion now follows from the fact that

Iu(r)

rn+1
=
Iu(σ)

σn−1
σ−2 I

uσ(σr)

(σr)n+1
.

q.e.d.

Remark 13 As shown in [DM6], Lemma 12 implies a strong uniqueness state-
ment of tangent maps of u.

Let g be a normalized metric defined on BR(0) and u : (BR(0), g) →
(HN , d) be a harmonic map with u(0) = P0 and Ordu(0) = 1. By virtue of
Lemma 12, there exists a constant λ > 0 such that

λs ≤ µ(s) ≤ λ−1s

where µ is defined in (9). Thus, we will consider blowup maps of u at x0

normalized by 1
t instead of µ−1(t).
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Definition 14 The map

ut : B1(0)→ HN , ut(x) :=
1

t
u(tx) (15)

will be referred to as the renormalized blow up map.

We now prove uniqueness of the tangent map.

Theorem 15 If g is a normalized metric defined on BR(0) (cf. Definition 8)
and u : (BR(0), g)→ (HN , d) is a harmonic map with Ordu(0) = 1 and u(0) =
P0. Then there exists a rotation R0 : Rn → Rn and constants A0, φ

+, φ− ∈ R
such that

lim
t→0

sup
B1(0)

d(ut, l ◦ R0) = 0

where l : B1(0)→ H2 ⊂ HN is defined by

l(x) =


(A0x

1, φ+) x1 > 0
P0 x1 = 0

(A0x
1, φ−) x1 < 0.

(16)

Proof. By Lemma 11, given δ0 > 0, we can choose σ > 0 and a homoge-
neous degree 1 map lσ : B1(0)→ HN given by (14) such that

sup
Bs(0)

d(uσ, lσ ◦ R0) < δ0s, ∀s ∈ (0, 1).

The lemma now follows immediately since σ is fixed. q.e.d.

Proposition 16 If u : Ω→ HN is a harmonic map, then the set

S1(u) = u−1(P0) ∩ {x ∈ Ω : Ordu(x) = 1}

is locally a graph of a Lipschitz function over an (n − 1)-dimensional affine
subspace.

Proof. For the sake of simplicity, we will assume in this proof that Ω is a
Euclidean domain. Slight modification of the argument below will prove the
case when Ω is equipped with an arbitrary Riemannian metric. By [Si] Section
3.8 Corollary 1, it is enough to show that given δ ∈ (0, 1) and y0 ∈ S1(u),
there exist ρ0 > 0, ε0 > 0 and an (n − 1)-dimensional affine subset L0 ⊂ Rn

such that for any y ∈ Bε0(y0) ∩ S1(u),

S1(u) ∩Bρ(y) ⊂ {x : dist(x, L0) ≤ δρ}, ∀ρ < ρ0. (17)
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Let T0 > 0 be such that B2T0(y0) ⊂ Ω. Theorem 15 implies that (after rotating
the domain if necessary) there exists l as in (16) such that

lim
t→0

sup
B 1

2
(0)
d(uty0 , l) = 0

where

uty0 : B1(0)→ HN , uty0(x) =
1

t
u(y0 + tx),

Without the loss of generality, we can assume φ+ = φ− = 0 in (16). By the
local Lipschitz continuity ([KS1] Theorem 2.4.6), there exists E0 > 0 such
that the Lipschitz constant of uty for t ∈ (0, T0) and y ∈ BT0(0) is bounded
by E0. For E0, A = A0 and δ0 = 1, let σ0 > 0, D∗0 > 0 C > 0 be as in
Theorem 10. Choose D0 ∈ (0, D∗0] such that

2CD0 < Aδ (18)

and t0 ∈ (0, T0] such that

sup
B 1

2
(0)
d(ut0y0 , l) <

D0

2
.

By the continuity of u, there exists ε0 > 0 such that

sup
B 1

2
(0)
d(ut0y0 , u

t0
y ) <

D0

2
, ∀y ∈ Bε0(y0).

Thus, by the triangle inequality,

sup
B 1

2
(0)
d(ut0y , l) < D0, ∀y ∈ Bε0(y0).

In other words, assumption (13) of Theorem 10 is satisfied with u(x) = ut0(x2 ),
and thus by (18) we can conclude

1

t0
sup

Bst0 (y)
d(u, l) = sup

Bs(0)
d(ut0y , l) < 2CD0s < Aδs, ∀s ∈ (0,

σ0

2
].

By letting ρ0 = σ0t0
2 , we obtain

y ∈ Bε0(y0) ⇒ sup
Bst0 (y)

d(u, l) < Aδst0, ∀s ∈ (0,
σ0

2
]

⇔ sup
Bρ(y)

d(u, l) < Aδρ, ∀ρ ∈ (0, ρ0]
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Therefore, assuming y ∈ Bε0(y0) and ρ ∈ (0, ρ0], we have

x ∈ S1(u) ∩Bρ(y) ⇒ x1 =
1

A
d(P0, l(x)) =

1

A
d(u(x), l(x)) < δρ.

By setting L0 equal to the hyperplane {x1 = 0}, this imediately implies (17).
q.e.d.

4 Proof of Theorem 1 and Theorem 2

We are now ready to prove our main theorems.

Proof of Theorem 1. Combine Lemma 7 and Proposition 16 q.e.d.

Proof of Theorem 2. Let P be a point in the boundary of a Te-
ichmüller-Coxeter complex. The metric estimates of [DM4] imply that the
Weil-Petersson metric is asymptotically a product of a lower dimensional Te-
ichmüller space and copies of HN ’s. This is analogous to the situation in
[DM1] where we studied harmonic maps to the Weil-Petersson completion T
of Teichmüller space. In this case, T is near a point in the boundary, asymp-
totically a product space of a lower dimensional Teichmüller space and copies
of H’s. In particular, we showed that the singular component maps (the com-
ponent maps which map into H) have blow up maps and tangent maps at
singular points. Similarly, we can show the same for component maps into
HN . Thus, applying an argument as in the proof of Theorem 1, the theorem
follows. q.e.d.
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